WO2010067198A1 - Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso - Google Patents

Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso Download PDF

Info

Publication number
WO2010067198A1
WO2010067198A1 PCT/IB2009/007795 IB2009007795W WO2010067198A1 WO 2010067198 A1 WO2010067198 A1 WO 2010067198A1 IB 2009007795 W IB2009007795 W IB 2009007795W WO 2010067198 A1 WO2010067198 A1 WO 2010067198A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous phase
process according
organic
soda
spent
Prior art date
Application number
PCT/IB2009/007795
Other languages
English (en)
French (fr)
Inventor
Jorge Enrique Forero Sanabria
Javier Diaz Sierra
Jose Javier Duque Osorio
Victor Julio Echeverria Restrepo
Original Assignee
Ecopetrol S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A. filed Critical Ecopetrol S.A.
Publication of WO2010067198A1 publication Critical patent/WO2010067198A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/08Recovery of used refining agents

Definitions

  • the present application is aimed at a process of treatment and disposal of spent sodas and the recovery and generation of valuable products, obtained from the compounds and hydrocarbons dissolved in the water, which form very toxic aqueous waste.
  • These highly hazardous wastes result in the processes of caustic treatment of hydrocarbons, crude and refined, as well as other caustic wastes produced by different processes of the oil industry and the metallurgical and paper industry.
  • the oxidation processes consist of the addition of reagents of high oxidant power, such as chlorine oxides, permanganate, ozone, peroxides etc. These reagents are effective in eliminating large concentrations of toxic substances, but their costs are high, which limits them to very specialized treatments, particularly applicable to low flow rates.
  • the adsorption treatment comprises the use of a solid adsorbent agent that retains, without change in its nature, the contaminating compounds of the phase to be treated.
  • the adsorbent agent In this process normally the adsorbent agent must be treated and regenerated to remove the adsorbed substances in order to reactivate it and be able to be used again in the absorption process; Normally the adsorption process does not allow contaminating compounds to be easily recovered.
  • it is frequent to replace the adsorbent material because it is lost or deactivated due to its frequent use.
  • it is also limited to low waste streams with low concentrations of contaminants.
  • the costs of this alternative are generally high and its efficiency is related to the amount of absorbent used.
  • the extraction processes can be carried out with industrial solvents (di-isopropyl ether, acetophenone, n-butyl acetate) or refinery solvents (BTX (benzene, toluene and xylene), cyclohexanone, paraphmas), and
  • industrial solvents di-isopropyl ether, acetophenone, n-butyl acetate
  • refinery solvents BTX (benzene, toluene and xylene), cyclohexanone, paraphmas
  • U.S. Patent No. 4, 519,881 entitled “Regeneration of alkaline treatment agents” refers to a process of electrolysis of a spent caustic current carried out in a three compartment electrolytic cell to produce alkali metal hydroxide, hydrogen and hydrogen sulfide. Hydrogen sulfide is oxidized to sulfur dioxide, which is returned to the electrolytic cell to form sulfuric acid.
  • the present patent application does not employ electrolysis processes, but rather phenomena of changing the solubility of pollutants, which significantly reduces costs.
  • U.S. Patent No. 5,368,726 relates to an apparatus for the treatment and regeneration of spent soda solutions at room temperature, which includes a means to oxidize the spent soda stream with an air / ozone mixture, followed by radiation from the stream of spent soda, oxidized with a wide range of ultraviolet radiation and finally, the filtration of the spent soda solution.
  • the process consists basically of the following stages: separation of suspended solids, neutralization of the caustic current by the addition of acidic substances, separation of the organic and aqueous phases by decantation, in addition to the separation of gases from neutralization and liquid-liquid extraction intensive (multistage) of those remaining organic components that remain soluble in the aqueous phase after neutralization, until reaching a minimum concentration of contaminants.
  • the advantage of the proposed process is to avoid or drastically reduce the spillage of highly concentrated aromatic pollutants into the environment in wastewater streams, with the consequent recovery of these compounds making them valuable products. If this process is not applied, a greater load of contaminating waste is generated that makes the treatment of industrial aqueous effluents more complex with a strong impact on their costs.
  • FIGURE 1 Process flow diagram for the treatment of spent sodas according to the present invention. DETAILED DESCRIPTION OF THE PROCESS
  • the process of the present invention contemplates the treatment of spent soda (1) by controlled neutralization with preferably inorganic acids (2), followed by gravity separation of the treated aqueous phase and the organic phase, which is intended as raw material for petrochemical processes, additionally the separation of gases resulting from neutralization (3) and finally, the extraction of contaminants from the aqueous phase with a solvent (5), preferably light cycle oil from catalytic cracking processes (4) .
  • a solvent (5) preferably light cycle oil from catalytic cracking processes
  • the process claimed here recovers the organic pollutant compounds present in the spent soda such as: phenols, cresyl and naphthenic acids, which before the present invention were eliminated by biological and oxidation means that are destructive processes, after dilution in other streams of wastewater from the refinery, which substantially increases treatment costs, since the flows to be managed are increased in some cases by more than two thousand times to be able to adjust to the low concentrations required by the biological treatment processes, concentrations which are generally less than 100 ppm.
  • the process includes in detail the following steps: 1. Controlled neutralization for spent sodas.
  • the alkalinity of the spent soda, stored in the tank (1) is determined in order to establish the volume of inorganic acid required for neutralization.
  • the inorganic acid is selected from the group comprising nitric acid, phosphoric acid, hydrochloric acid or sulfuric acid. Because the system can treat all types of spent sodas, preferably the inorganic acid selected is the acid sulfuric.
  • the mentioned inorganic acid, stored in the tank (2) is dosed in line to the spent soda, in a static mixer, until reaching a pH in the mixture between 4.0 and 6.0, based on the concentrations of free soda that In some typical cases of cresyl, naphthenic or phenolic sodas it can reach ratios of up to 10% by volume of free soda.
  • the neutralized spent soda in line is sent to the tank tank (3), where in addition to the stripping of the neutralization gases, the mixture is left at rest for a period of between 2 and 4 hours to allow the separation of an aqueous phase and an oily phase formed by the organic compounds from the different stages of washing the hydrocarbons with caustic soda.
  • Said organic phase comprises hydrocarbons, among which are phenols, cresyl and naphthenic acids, among others.
  • the extraction stage must be started, ensuring that light oil is available Fresh cycle in the tank (4).
  • the way in which the tanks are arranged and the fluids circulate is presented to carry out the extraction process in line with the help of a static high-shear mixer, in which the formation of a mixture of high contact area between the aqueous phase and the proposed absorbent (ALC), which is received in the tank (5), in where enough time is left for a new phase separation, aqueous and oily.
  • the facilities for the displacement of the light cycle oil (LAC) enriched with the cresyl and / or naphthenic acids extracted are aligned, from the tank (5) towards the process of fuel oil production in refinery (7).
  • LAC light cycle oil
  • the aqueous phase already exposed to an extraction stage is recirculated to the tank (3) and subjected to new extraction stages with fresh absorbent until reducing the concentration of contaminants in the aqueous phase to values below 1000 ppm, in each step of recirculation between 80 and 90% by weight of the organic pollutants present in the aqueous phase are extracted.
  • the extraction stages vary between two and five depending on the characteristics of the currents involved. It is important to ensure during the extraction stages that the soda / light cycle oil ratio remains close to 1: 1 to ensure the effectiveness of the process.
  • the corresponding products obtained are left to decant in the tank (5) for a period of 4 to 6 hours.
  • the treated aqueous phase with a low content of phenolic pollutants (less than 1000 ppm) is sent to the wastewater treatment plant (6) and the light cycle oil stream rich in organic pollutants, with greater solvent capacity, is returned to the refinery fuel oil preparation process (7).
  • EXAMPLE 1 summarizes the data obtained in the treatment and disposal of spent sodas derived from a refinery through the process object of the present application and implemented as a spent soda treatment plant.
  • Table No. 1 Summary of data obtained in the treatment of sodas spent in the soda treatment unit of the GRC.
  • An extraction test was performed at 31.8 m 3 of neutralized soda with an initial content of 18000 ppm of phenol.
  • 31.8 m 3 of light fresh cycle oil (LAC) from a catalytic cracking plant were used for the extraction.
  • the test was performed by recirculating the neutralized soda and injecting fresh ALC (LAC) in line at a 1/1 ratio of recirculated LAC / soda, at a rate of 0.3 mVmin of each stream.
  • Table 2 shows the results of online monitoring for 9 hours, where the effectiveness of the extraction in each sample taken with phenol values in the treated soda ranging between 500 and 2500 ppm in all cases is observed;
  • the extraction progress is observed in the samples - of sodas taken every hour within the test deposit, starting at zero hour with 18000 ppm of phenolic compounds, corresponding to their initial concentration, reaching 3500 ppm of phenolic compounds at the end of the test, reaching an extraction level of 80.5%, recovering from the original residual current a total of 462 kilograms of phenols.
  • the recovered value of phenols (462 kilograms) is approximately double the amount of phenol that is removed from the wastewater in the conventional treatment system on a normal day of operation at the refinery wastewater treatment plant where it is He performed the test. Thus, it is preventing this amount of phenol from being diluted in wastewater, where two more days would be required for degradation.
  • the solvent extraction treatment method disclosed here is applicable for waters or effluents contaminated with high concentrations of phenol, greater than 1000 ppm, using a good contact system at an appropriate ratio with absorbent LAC .
  • Biological treatment is not recommended under these conditions, in which said treatment is complementary and only applicable when there is contaminated water with a low concentration of phenol (less than 100 ppm) and generally high flows to be treated.
  • the phenol recovered is of the order of 0.6 m 3 , that is, approximately 1.8% of the total volume of light cycle oil used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención hace referencia a un proceso para el tratamiento de efluentes cáustico con alta concentración de compuestos peligrosos y tóxicos como sustancias aromáticas provenientes de procesos de endulzamiento de hidrocarburos agrios y sodas gastadas provenientes del tratamiento de hidrocarburos, naftas y productos refinados. El proceso consiste en separar sólidos suspendidos, neutralizar la corriente cáustica y separar la fase orgánica y la fase acuosa. Adicionalmente, la separación de gases producidos de la neutralización y la extracción líquido-líquido intensiva (multietapas) de aquellos componentes orgánicos remanentes que permanecen solubles en la fase acuosa.

Description

PROCESO PARAEL TRATAMIENTO DE SODAS GASTADAS YDEL PRODUCTO OBTENIDO EN EL MISMO PROCESO
SECTORTECNOLÓGICO.
La presente solicitud está dirigida a un proceso de tratamiento y disposición de sodas gastadas y a la recuperación y generación de productos valiosos, obtenidos a partir de los compuestos e hidrocarburos disueltos en el agua, los cuales forman residuos acuosos muy tóxicos. Estos residuos altamente peligrosos resultan en los procesos de tratamiento cáustico de hidrocarburos, crudos y refinados, así como otros residuos cáusticos producidos por diferentes procesos de la industria del petróleo y de la industria metalúrgica y papelera.
ESTADO DEL ARTE
En el estado de la técnica se presentan alternativas para el tratamiento de corrientes cáusticas con un alto contenido de compuestos fenolicos y otros compuestos aromáticos peligrosos. Entre estas alternativas se encuentran tratamientos biológicos, procesos de oxidación, incineración, adsorción y extracción.
> Los procesos biológicos generalmente se llevan a cabo en piscinas con altos tiempos de residencia y exigen que las condiciones de operación sean muy estables para evitar pérdidas severas de eficiencia. Los mismos están limitados al tratamiento de corrientes con bajas concentraciones de compuestos fenolicos contaminantes, en general menores a 100 ppm y en condiciones y características muy constantes del efluente a tratar.
> Los procesos de oxidación consisten en la adición de reactivos de alto poder oxidante, tal como óxidos de cloro, permanganato, ozono, peróxidos etc. Estos reactivos son efectivos para eliminar grandes concentraciones de sustancias tóxicas, pero sus costos son elevados, lo que los limita a tratamientos muy especializados, particularmente aplicables a bajas tasas de flujo.
> La incineración, que es una oxidación a altas temperaturas, debe llevarse a cabo en forma muy controlada y con alto consumo de combustible. Dado el costo de estas alternativas, ellas no son aplicables a altos caudales, tales como las corrientes residuales de refinerías.
> El tratamiento por adsorción comprende el uso de un agente adsorbente solido que retiene, sin cambio en su naturaleza, los compuestos contaminantes de la fase a tratar. En este proceso normalmente el agente adsorbente debe ser tratado y regenerado para eliminar las sustancias adsorbidas con el fin de reactivarlo y poder ser usado nuevamente en el proceso de absorción; normalmente el proceso de adsorción no permite que los compuestos contaminantes sean recuperados fácilmente. Además, en estos procesos es frecuente hacer reposición del material adsorbente debido a que se pierde o se desactiva por su uso frecuente. Al igual que los procesos mencionados anteriormente, éste también está limitado a bajos caudales de residuos con bajas concentraciones de contaminantes. Los costos de esta alternativa generalmente son altos y su eficiencia se encuentra relacionada con la cantidad de absorbente que se use.
> Finalmente, los procesos de extracción se puede llevar a cabo con solventes industriales (di-isopropil-éter, acetofenona, acetato de n-butilo) o solventes de refinería (BTX (benceno, tolueno y xileno), ciclohexanona, parafmas), y su principal ventaja consiste en que los agentes contaminantes removidos de la fase acuosa pueden ser recuperados y valorizados. Además, es un proceso aplicable a cualquier rango de concentración y flujo de contaminantes. Sin embargo, sus costos no son competitivos para esta aplicación; debido especialmente al costo que se genera en el procesamiento del solvente para recuperar las sustancias retiradas de la corriente acuosa tratada. En lo referente al estado de la técnica, se encontró que los procesos para tratamiento de sodas gastadas proveniente de diferentes procesos de refinería se encuentran orientados inicialmente al tratamiento por oxidación de estas corrientes para eliminar los residuos azufrados y compuestos aromáticos con aire/ozono u otros compuestos, como lo indican las siguientes patentes:
La patente U.S. No. 4, 519,881, titulada "Regeneración de agentes de tratamiento alcalino", se refiere a un proceso de electrólisis de una corriente cáustica gastada realizada en una celda electrolítica de tres compartimientos para producir hidróxido metal álcali, hidrogeno y sulfuro de hidrogeno. El sulfuro de hidrógeno es oxidado a dióxido de azufre, el cuál es retornado a la celda electrolítica para formar acido sulfúrico. La presente solicitud de patente no emplea procesos de electrólisis, sino fenómenos de cambio de solubilidad de los contaminantes, lo cual reduce notablemente los costos.
La patente U.S. No. 5, 368,726 se relaciona con un aparato para el tratamiento y la regeneración de soluciones de soda gastada a temperatura ambiente, lo cual incluye un medio para oxidar la corriente de soda gastada con una mezcla de aire / ozono, seguida por la radiación de la corriente de soda gastada, oxidada con un amplio rango de radiación ultravioleta y finalmente, la filtración de la solución de soda gastada.
Otro proceso de este tipo es reportado en la patente U.S. No. 5, 395,517, la cual está dirigida a un aparato y proceso de oxidación industrial de corrientes de soda gastada, donde la oxidación de la corriente ocurre en una torre con tres cámaras que operan simultáneamente para oxidar el gas de la primera cámara, separar la soda gastada del gas oxidado en la segunda cámara y en la tercera cámara se enfría la soda por medio de procesos de transferencia que también enfrían y limpian el gas.
En este mismo campo se encontró la Patente U.S. No 6, 387,348, que reporta un proceso en el que los compuestos de azufre, como sulfuros y mercaptanos, presentes en corrientes de sodas gastadas de refinería y procesos petroquímicos, son oxidados mediante el contacto con una corriente gaseosa de aire en un reactor de columna empacada con un material no catalítico. La columna empacada opera a rangos inferiores de temperatura de 2000C y a presiones menores a 20 atmósferas (2.03 MPa).
También se ubicó la patente U.S. No. 7, 214,290, la cual describe que el efluente cáustico, corriente de refinería, es concentrado por evaporación y neutralizado con dióxido de carbono para separar la soda como carbonato de sodio y obtener los subproductos de refinería.
En este mismo sentido, se estableció que la patente U.S. No. 5, 891,346 reivindica un proceso para el tratamiento de un efluente alcalino que contiene azufre mediante oxidación con aire húmedo en cámaras conectadas en serie.
Finalmente, se cita la solicitud de patente WO 03/072224 que se orienta a un proceso de regeneración de corrientes cáusticas gastadas que comprende la oxidación de los compuestos azufrados, la recuperación de los hidrocarburos y ozonización de la corriente remanente.
Adicional a los procesos ya citados, los procesos de oxidación mencionados en las patentes US6,210,583, US5,885,422, US5,268,104, US5,244,576 y US5,434,329 proponen otros métodos de tratamiento de sodas gastadas que consisten en una extracción líquido-líquido de los compuestos orgánicos, seguida de una destilación, para finalmente, oxidar la corriente resultante obteniendo así un residuo con baja demanda biológica de oxígeno (DBO) y un baja demanda química de oxígeno (DQO). La mayoría de estos procesos comprenden un paso de pre tratamiento de la corriente con un solvente orgánico de tipo aromático o gasolina.
En vista de lo anterior, existe la necesidad de contar con un proceso que permita tratar las corrientes cáusticas gastadas, que provienen de las diferentes etapas de refinación y con un alto volumen de contaminantes, que permita recuperar los compuestos de tipo fenólicos sin que ello implique alto costo, largos periodos de tratamiento procesos de refinación y destilación adicionales, al tiempo que posibilite que estos compuestos de tipo fenólico sean incorporados nuevamente al proceso de refinación, sin ser vertidos al medio ambiente.
RESUMEN DE LA INVENCIÓN
Un proceso para el tratamiento de efluentes cáusticos con alta concentración de compuestos peligrosos1, tóxicos y altamente contaminantes, como sustancias aromáticas provenientes de los procesos de endulzamiento de hidrocarburos agrios y sodas gastadas provenientes del tratamiento de hidrocarburos, ñañas y productos refinados.
El proceso consiste básicamente de las siguientes etapas: separación de sólidos suspendidos, neutralización de la corriente cáustica mediante la adición de sustancias acidas, separación de las fases orgánica y acuosa por decantación, además de la separación de gases producto de neutralización y extracción líquido-líquido intensiva (multietapas) de aquellos componentes orgánicos remanentes que permanecen solubles en la fase acuosa después de la neutralización, hasta alcanzar mínima concentración de contaminantes.
La ventaja del proceso propuesto es evitar o reducir drásticamente el vertimiento de contaminantes de tipo aromático altamente concentrados al medio ambiente en corrientes de agua residual, con la consiguiente recuperación de estos compuestos convirtiéndolos en productos valiosos. En caso de no aplicar este proceso se genera una mayor carga de residuos contaminantes que hacen más complejos los tratamientos de los efluentes acuosos industriales con un fuerte impacto en sus costos.
DESCRIPCIÓN DETALLADA DEL PROCESO
FIGURA 1. Diagrama de flujo del proceso para el tratamiento de sodas gastadas según la presente invención. DESCRIPCIÓN DETALLADA DEL PROCESO
El proceso de la presente invención contempla el tratamiento de la soda gastada (1) mediante neutralización controlada con ácidos preferiblemente de tipo inorgánico (2), seguida de la separación por gravedad de la fase acuosa tratada y la fase orgánica, la cual se destina como materia prima para procesos petroquímicos, adicionalmente la separación de gases producto de la neutralización (3) y finalmente, la extracción de contaminantes de la fase acuosa con un solvente (5), preferiblemente aceite liviano de ciclo proveniente de procesos de craqueo catalítico (4). La soda procesada y con bajo contenido de compuestos orgánicos, es dispuesta hacia la planta de tratamiento de aguas residuales (6) y el aceite liviano de ciclo enriquecido con compuestos orgánicos se retorna al proceso de mezcla y preparación de combustóleo (7). Tal como se enseñan en la Figura 1.
El proceso que aquí se reivindica recupera los compuestos contaminantes orgánicos presentes en la soda gastada como: fenoles, ácidos cresílicos y nafténicos, los cuales antes de la presente invención se eliminaban por medios biológicos y de oxidación que son procesos destructivos, previa dilución en otras corrientes de aguas residuales de la refinería, lo cual aumenta sustancialmente los costos de tratamiento, dado que los caudales a manejar se incrementan en algunos casos en más de dos mil veces para poder ser ajustados a las bajas concentraciones requeridas por los procesos de tratamiento biológicos, concentraciones que generalmente son menores a 100 ppm.
El proceso comprende en detalle los siguientes pasos: 1. Neutralización controlada para las sodas gastadas.
Se determina la alcalinidad de la soda gastada, almacenada en el depósito (1), con el fin de establecer el volumen de ácido inorgánico requerido para su neutralización. El ácido inorgánico se selecciona a partir del grupo que comprende ácido nítrico, ácido fosfórico, ácido clorhídrico o ácido sulfúrico. Debido a que el sistema puede tratar todos los tipos de sodas gastadas, preferiblemente el ácido inorgánico seleccionado es el ácido sulfúrico. El mencionado ácido inorgánico, almacenado en el depósito (2) es dosificado en línea a la soda gastada, en un mezclador estático, hasta alcanzar un pH en la mezcla entre 4,0 y 6,0, basado en las concentraciones de soda libre que en algunos casos típicos de sodas cresílicas, nafténicas o fenólicas puede alcanzar relaciones de hasta 10% en volumen de soda libre.
2. Separación por gravedad de la fase acuosa tratada, la fase orgánica y los gases.
La soda gastada neutralizada en línea, es enviada al tanque de depósito (3), donde además del despojo de los gases de neutralización, se deja la mezcla en reposo por un periodo de entre 2 y 4 horas para permitir la separación de una fase acuosa y una fase aceitosa conformada por los compuestos orgánicos provenientes de las diferentes etapas de lavado de los hidrocarburos con soda cáustica. Dicha fase orgánica comprende hidrocarburos entre los cuales se encuentran fenoles, ácidos cresílicos y nafténicos, entre otros. Con la remoción de la fase orgánica, en esta etapa se elimina entre el 70 y el 85% de los contaminantes orgánicos presentes en la corriente de soda gastada.
3. Procedimiento de extracción de fenoles con aceite liviano de ciclo.
Una vez se tiene la soda gastada neutralizada a pH entre 4,0 y 6,0 en el depósito (3) y la fase aceitosa ha sido retirada, se debe dar inicio a la etapa de extracción, garantizando que se tenga disposición de aceite liviano de ciclo fresco en el depósito (4).
La operación para la etapa de extracción comprende la puesta en marcha del sistema de bombeo para tomar tanto la soda gastada neutralizada (pH = 4 - 6) como el aceite liviano de ciclo fresco de sus respectivos depósitos (3, 4). En la Figura 1, se presenta la manera como están dispuestos los tanques y circulan los fluidos para realizar el proceso de extracción en línea con la ayuda de un mezclador estático de alto esfuerzo de corte, en el cual se logra la formación de una mezcla de alta área de contacto entre la fase acuosa y el absorbente propuesto (ALC), la cual es recibida en el depósito (5), en donde se deja el suficiente tiempo para que se realice una nueva separación de fases, acuosa y aceitosa.
Después de la separación de las fases en el deposito (5), se alinean las instalaciones para el desplazamiento del aceite liviano de ciclo (ALC) enriquecido con los ácidos cresílicos y/o nafténicos extraídos, desde el depósito (5) hacia el proceso de producción de combustóleo en refinería (7). Posteriormente, la fase acuosa ya expuesta a una etapa de extracción es recirculada al depósito (3) y sometida a nuevas etapas de extracción con absorbente fresco hasta reducir la concentración de contaminantes en la fase acuosa a valores inferiores a 1000 ppm, en cada paso de recirculación se extraen entre el 80 y el 90% en peso de los contaminantes orgánicos presentes en la fase acuosa.
En general, las etapas de extracción varían entre dos y cinco dependiendo de las características de las corrientes involucradas. Es importante asegurar durante las etapas de extracción que la relación soda/aceite liviano de ciclo se mantenga cercana a 1 : 1 para garantizar la efectividad del proceso.
Una vez terminada la última etapa de extracción, los productos obtenidos correspondientes se dejan decantar en el depósito (5) durante un periodo de 4 a 6 horas. La fase acuosa tratada con bajo contenido de contaminantes fenólicos (menor de 1000 ppm) es enviada hacia la planta de tratamiento de aguas residuales (6) y la corriente de aceite liviano de ciclo rico en contaminantes orgánicos, con mayor capacidad disolvente, es devuelta al proceso de preparación de combustóleo de refinería (7).
A continuación se presentan algunos ejemplos no limitantes de la invención, donde se aplica el proceso que aquí se reivindica a sodas gastadas de una refinería.
EJEMPLO 1. En la Tabla No. 1 se resumen los datos obtenidos en el tratamiento y disposición de sodas gastadas derivadas de una refinería mediante el proceso objeto de la presente solicitud e implementado como una planta de tratamiento de sodas gastadas.
Tabla No. 1. Resumen de datos obtenidos en el tratamiento de sodas gastadas en la unidad de tratamiento de sodas de la GRC.
Figure imgf000011_0001
CR = Cresílica; NF = Nañénica
EJEMPLO 2.
Se realizó una prueba de extracción a 31,8 m3 de soda neutralizada con un contenido inicial de 18000 ppm de fenol. Se usaron para la extracción 31,8 m3 de aceite liviano de ciclo fresco (ALC) provenientes de una planta de craqueo catalítico. La prueba se realizó recirculando la soda neutralizada e inyectando el ALC fresco (ALC) en línea en una relación 1/1 de ALC/soda recirculada, a razón de 0,3 mVmin de cada corriente.
La tabla 2 muestra los resultados del monitoreo en línea durante 9 horas, donde se observa la efectividad de la extracción en cada muestra tomada con valores de fenol en la soda tratada que oscilan entre 500 y 2500 ppm en todos los casos; además se observa el avance de la extracción en las muestras - de sodas tomadas cada hora dentro del depósito de prueba, partiendo en la hora cero con 18000 ppm de compuestos fenólicos, correspondientes a su concentración inicial, llegando a 3500 ppm de compuestos fenólicos al finalizar la prueba, alcanzándose un grado de extracción de 80.5%, recuperándose de la corriente residual original un total de 462 kilogramos de fenoles.
Tabla 2. Corrida de extracción en línea con recirculación al mismo deposito.
Figure imgf000012_0001
El valor recuperado de fenoles (462 kilogramos) es aproximadamente el doble de la cantidad de fenol que se retira de las aguas residuales en el sistema de tratamiento convencional en un día de operación normal en la planta de tratamiento de aguas residuales de la refinería donde se realizó la prueba. Siendo así, se está evitando que esta cantidad de fenol se diluya en las aguas residuales, donde se requeriría de dos días más para su degradación. De esta manera, se comprueba que el método de tratamiento por extracción con solvente que aquí se divulga es aplicable para aguas o efluentes contaminados con altas concentraciones de fenol, mayores a 1000 ppm, utilizando un buen sistema de contacto a una relación apropiada con ALC absorbente. El tratamiento biológico no es recomendable bajo estas condiciones, en las que dicho tratamiento es complementario y solamente aplicable cuando se tiene agua contaminada de baja concentración de fenol (menor 100 ppm) y por lo general altos flujos a tratar.
En cuanto al arrastre de fase acuosa en el aceite liviano de ciclo, los análisis de laboratorio muestran concentraciones por debajo de 2000 ppm, después de una hora de sedimentación. Para el caso industrial este valor será menor debido a que se dispondrá de mayor tiempo de sedimentación. Por lo tanto, es posible disponer del aceite liviano de ciclo enriquecido para la preparación de combustóleo, dado que también se mejora su capacidad de solvencia de corrientes como combustóleos, principalmente por el alto contenido de ácidos cresílicos.
A las condiciones de la prueba del ejemplo, el fenol recuperado es del orden de los 0,6 m3, es decir, aproximadamente 1.8% del volumen total de aceite liviano de ciclo usado. Estos valores cambian de acuerdo a la concentración inicial de contaminantes orgánicos en la soda y de la relación soda/aceite liviano de ciclo.
EJEMPLO 3.
Según pruebas de extracción realizadas y cuyos resultados finales se registran en la Tabla 3, se pueden obtener diferentes eficiencias de extracción variando la relación ALC fresco/ soda neutralizada y el número de etapas de extracción. Sin embargo, para determinar cual es la mejor estrategia de extracción se debe tener en cuenta, entre otras, las capacidades de la planta, los volúmenes a tratar y los costos operativos. Generalmente, a pesar de ser más eficiente la extracción a mayor relación ALC/ soda como se muestra en la tabla 3, la extracción mas económica se logra manteniendo una relación de solvente /soda de 1 :1. Tabla 3. Relación de solvente/soda y su efecto sobre la recuperación de fenol.
Relación Solvente/Soda Etapas Fenol final ( ppm)
1 1 3500
1 2 1200
1 3 700
2 1 1600
2 2 600
2 3 400
3 1 1200
3 2 400
3 3 300

Claims

REIVINDICACIONES
1. Proceso para el tratamiento de corrientes cáusticas gastadas y recuperación de los contaminantes orgánicos presentes en las mismas caracterizado porque comprende: a) almacenar las corrientes de soda gastadas provenientes de las diferentes etapas del proceso de refinación de petróleo; b) determinar el pH y alcalinidad de las sodas gastadas almacenadas; c) establecer la cantidad de ácido inorgánico, seleccionado del grupo que consiste de ácido nítrico, ácido clorhídrico, ácido sulfúrico y ácido fosfórico, necesaria para reducir el pH de dichas sodas gastadas a un valor entre 4,0 y 6,0; d) bombear la soda neutralizada a un primer depósito (3) donde se deja decantar por un periodo de entre 2 y 4 horas; e) separar la fase orgánica y la fase acuosa; y f) extraer los contaminantes que aún quedan en la fase acuosa con un solvente, preferiblemente aceite liviano de ciclo.
2. Un proceso de acuerdo con la reivindicación 1, caracterizado porque la etapa f) relativa a la extracción de contaminantes comprende las siguientes subetapas:
fl) Bombear la fase acuosa del depósito (3) para combinarla en línea con una corriente de aceite liviano de ciclo fresco bombeada del depósito (4); f2) Recibir dicha mezcla en el deposito (5) donde se deja en reposo para la separación de las fases acuosa (soda) y aceitosa orgánica (ALC enriquecido); f3) Proporcionar depósitos para recibir la fase orgánica que se ha separado mediante el contacto entre el aceite liviano de ciclo y la soda gastada.
Dicha fase orgánica comprende el aceite liviano de ciclo más los contaminantes orgánicos tales como fenoles, ácidos cresílicos y nafténicos , entre otros; y f4) Realizar una nueva etapa de extracción de la fase acuosa con ALC fresco, para lo cual se transfiere la fase acuosa del depósito (5) al depósito (3) y repetir la operación que se inicia en fl).
3. Un proceso de acuerdo con la reivindicación 2, caracterizado porque la cantidad de aceite liviano de ciclo se determina tras llevar a cabo una caracterización de la fase acuosa con el fin de cuantificar el contenido de contaminantes orgánicos presentes.
4. Un proceso de acuerdo con la reivindicación 2, caracterizado porque la relación entre fase acuosa y aceite liviano de ciclo en la etapa fl) es de 1 : 1.
5. Un proceso de acuerdo con la reivindicación 2, caracterizado porque la fase aceitosa se envía hacia un depósito o directamente a reproceso en refinería (7).
6. Un proceso de acuerdo con la reivindicación 5, caracterizado porque la mezcla de aceite liviano de ciclo y contaminante orgánico obtenida en la etapa G) es recirculada a la planta de refinación de petróleo para la preparación de combustoleo.
7. Un proceso de acuerdo con la reivindicación 6, caracterizado porque la mezcla de aceite liviano de ciclo y contaminantes orgánicos es empleada como solvente en la etapa de producción de combustoleo, para reducir la cantidad de solventes totales requeridos en dicha etapa.
8. Un proceso de acuerdo con la reivindicación 1, caracterizado porque el ácido inorgánico empleado en el paso c) es ácido sulfúrico.
9. Un proceso de acuerdo con la reivindicación 1, caracterizado porque la etapa e) elimina entre el 70% y el 85% en peso de los contaminantes orgánicos presentes en la corriente de soda cáustica gastada.
10. Un proceso de acuerdo con la reivindicación 1 o 2, caracterizado porque los contaminantes orgánicos comprende fenoles, ácidos cresílicos o ácidos nañalénicos.
11. Un proceso de acuerdo con la reivindicación 2, caracterizado porque en cada paso fl) se extraen entre el 80 y el 90% en peso de los contaminantes orgánicos presentes en la fase acuosa.
PCT/IB2009/007795 2008-12-12 2009-12-03 Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso WO2010067198A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO08-132105 2008-12-12
CO08132105A CO6170071A1 (es) 2008-12-12 2008-12-12 Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso

Publications (1)

Publication Number Publication Date
WO2010067198A1 true WO2010067198A1 (es) 2010-06-17

Family

ID=42242397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/007795 WO2010067198A1 (es) 2008-12-12 2009-12-03 Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso

Country Status (4)

Country Link
CO (1) CO6170071A1 (es)
EC (1) ECSP11011093A (es)
PE (1) PE20120382A1 (es)
WO (1) WO2010067198A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679507A (en) * 1952-11-15 1954-05-25 Standard Oil Co Disposal of spent refinery caustic waste
US2679537A (en) * 1952-11-15 1954-05-25 Standard Oil Co Disposal of waste caustic solution by treatment with spent pickle liquor
GB2254015A (en) * 1991-02-05 1992-09-30 Stone & Webster Eng Ltd Spent caustic treatment
ES2057980T3 (es) * 1991-02-20 1994-10-16 Ecotec Srl Procedimiento para el tratamiento de disoluciones acuosas gastadas de sosa caustica utilizadas para la purificacion y lavado de productos petroliferos.
WO1998037937A1 (en) * 1997-02-26 1998-09-03 Stone & Webster Engineering Corporation Spent caustic (pre)treatment process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2679507A (en) * 1952-11-15 1954-05-25 Standard Oil Co Disposal of spent refinery caustic waste
US2679537A (en) * 1952-11-15 1954-05-25 Standard Oil Co Disposal of waste caustic solution by treatment with spent pickle liquor
GB2254015A (en) * 1991-02-05 1992-09-30 Stone & Webster Eng Ltd Spent caustic treatment
ES2057980T3 (es) * 1991-02-20 1994-10-16 Ecotec Srl Procedimiento para el tratamiento de disoluciones acuosas gastadas de sosa caustica utilizadas para la purificacion y lavado de productos petroliferos.
WO1998037937A1 (en) * 1997-02-26 1998-09-03 Stone & Webster Engineering Corporation Spent caustic (pre)treatment process

Also Published As

Publication number Publication date
CO6170071A1 (es) 2010-06-18
ECSP11011093A (es) 2011-06-30
PE20120382A1 (es) 2012-05-17

Similar Documents

Publication Publication Date Title
US5268104A (en) Process for treating and regenerating spent caustic
JP5718237B2 (ja) 廃棄物の流れを処理するための装置
JP6389832B2 (ja) 炭化水素から硫黄化合物を除去する処理方法
US20150060286A1 (en) Water treatment systems and associated methods
US9315405B2 (en) Treatment of produced water
EP2646375A1 (en) Method for recovering gas from shale reservoirs and purifying resulting produced water
US10316257B2 (en) System for the treatment of mercaptan contaminated hydrocarbon streams
JP2002241767A (ja) 液状炭化水素からの水銀除去方法
CN103045288A (zh) 高硫含量高cod碱渣废液的综合处理方法
CN103045289A (zh) 液态烃碱渣废液的综合处理方法
ES2694004T3 (es) Refinación de aceites usados
ES2950470T3 (es) Proceso para tratamiento de agua residual con alto contenido de sólidos disueltos totales
KR100555649B1 (ko) 배기가스 처리방법 및 처리장치
WO2010067198A1 (es) Proceso para el tratamiento de sodas gastadas y del producto obtenido en el mismo proceso
KR101206399B1 (ko) 배수의 처리방법 및 처리시스템
CN110845070B (zh) 污水处理系统
US9422177B2 (en) Removal of organic impurities from water
KR102312754B1 (ko) 세라믹 분리막의 막여과 공정과 오존 산화반응 공정이 결합된 일체형 수처리 장치
ES2293804B1 (es) Desarrollo de un proceso integrado de oxidacion avanzada con recuperacion y reutilizacion del catalizador homogeneo de cobre.
JP2007007583A (ja) 汚染容器の洗浄方法及び洗浄装置
JP5383595B2 (ja) Pcb混入絶縁油の無害化処理設備
WO2001040113A1 (en) Process and apparatus for treating and regenerating spent aqueous solutions of caustic soda from purification and cleansing of petroliferous products
JP5377415B2 (ja) Pcb混入絶縁油の無害化処理設備
JP2004243175A (ja) 難分解性有機化合物を含む廃液の処理方法と装置
ITMI971508A1 (it) Procedimento per la de-tossificazione di reflui acquosi contenenti inquinanti alogenati

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831541

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 001124-2011

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831541

Country of ref document: EP

Kind code of ref document: A1