WO2010066479A1 - Verfahren zur stromversorgung eines cvd-prozesses bei der siliziumabscheidung - Google Patents

Verfahren zur stromversorgung eines cvd-prozesses bei der siliziumabscheidung Download PDF

Info

Publication number
WO2010066479A1
WO2010066479A1 PCT/EP2009/061261 EP2009061261W WO2010066479A1 WO 2010066479 A1 WO2010066479 A1 WO 2010066479A1 EP 2009061261 W EP2009061261 W EP 2009061261W WO 2010066479 A1 WO2010066479 A1 WO 2010066479A1
Authority
WO
WIPO (PCT)
Prior art keywords
rods
pair
rod
pairs
silicon
Prior art date
Application number
PCT/EP2009/061261
Other languages
English (en)
French (fr)
Inventor
Wilfried Vollmar
Original Assignee
Centrotherm Sitec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centrotherm Sitec Gmbh filed Critical Centrotherm Sitec Gmbh
Priority to DE212009000165U priority Critical patent/DE212009000165U1/de
Publication of WO2010066479A1 publication Critical patent/WO2010066479A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Definitions

  • the invention relates to a method for powering a thermal CVD process in the silicon deposition, in which silicon is deposited on rod pairs of thin silicon rods in a reactor, wherein the heating of the rod pairs by applying an electrical voltage.
  • Rod pairs are understood to mean upright silicon thin rods that are electrically connected to one another at the upper free end, forming a pair. The lower ends of the rod pairs are over
  • Plug connections connected to a voltage source These pairs of rods must be brought to a temperature at which the (silicon) deposition process from the gas phase becomes possible. In this process, polysilicon is deposited on the pairs of rods, whereby a progressive increase in thickness of the rod pairs takes place.
  • the starting material, silicon thin rods, as used in the process are very high impedance.
  • the heating of the silicon thin rods takes place electrically in the sense of resistance heating.
  • a high voltage is used in a parallel connection of the silicon thin-rod pairs.
  • Each rod pair receives the same full voltage. Since the currents are only a few amperes in this case, this is technically easy to control.
  • the currents increase sharply with increasing diameter of the silicon rods due to the deposition of silicon and the resistance thus decreasing and at the same time the voltage decreases. As a result, it is switched from a certain, predetermined by the electrical parameters, point on a series connection of the rod pairs.
  • a major disadvantage of this prior art is that both a circuit arrangement for the operating mode parallel operation of the rod pairs and a circuit arrangement for the operating mode serial operation of the rod pairs, which only alternative, so can not be operated simultaneously, must be kept ready.
  • the invention is based on the object at significantly reduced cost while avoiding the complex parallel / serial switching to ensure rapid and effective heating of the rod pairs and to realize a uniform load on the three-phase network.
  • the object is achieved in a method for powering a CVD process in silicon production in that the rod pairs are connected in a series electrical circuit and that each pair of rods by means for electrically bridging the rod pair is at least partially bridged and that at least a pair of rods the invested electrical voltage is applied.
  • the pairs of rods consisting of two silicon thin rods are arranged in an electrical series circuit, wherein the number of pairs of rods is arbitrary but equal to or greater than two.
  • a means for electrically bridging the rod pair is arranged parallel to the rod pair such that the means for electrically bridging the rod pair bridges or short-circuits the rod pair by means of an electrically conductive connection.
  • the bridging of a pair of rods completely, ie with an electrical resistance of about zero ohms or only partially done with a residual resistance greater than zero ohms.
  • An electrical voltage is applied to the pairs of rods arranged in the series connection. This voltage is controlled by the CVD process controlling control and regulating arrangement.
  • the bridging of the pairs of rods can be controlled so that only one pair of rods is not bridged, in which case the applied voltage is fully applied to the non-bridged pair of rods.
  • Another variant consists in not bridging two of, for example, three or more pairs of rods. In this case, the applied voltage divides on the two or more pairs of rods.
  • the means for electrically bridging the rod pair is designed as a mechanical means.
  • the means for electrically bridging the rod pair is designed as an electrical means.
  • the electrical means is designed as two antiparallel connected thyristors.
  • the means for electrically bridging the pair of rods may be implemented as a mechanical or electrical means.
  • a switch or a variable resistor for example, as a switch or a variable resistor.
  • a transistor, a thyristor or two antiparallel-connected thyristors can be used.
  • Fig. 1 shows a vacuum reactor for performing a CVD process for silicon deposition
  • Fig. 2 shows an implementation of the method according to the invention.
  • FIG. 1 shows a reactor 1 with silicon thin rods arranged therein, the so-called rod pair 2, schematically and by way of example.
  • rod pair 2 the so-called rod pair 2
  • a plurality of such pairs of rods 2 are arranged side by side in the reactor.
  • the rod pair 2 is bridged above, e.g. introduced by means of a silicon bridge 3 and below in graphite receptacles 4, which are connected to the power supply 5.
  • the reactor 1 is placed on a base 6 and has an opening for the process gas supply 7 and an opening for the exhaust discharge 8.
  • FIG. 2 shows a circuit arrangement for carrying out the method according to the invention for temporally changing bridges of one or two partial loads.
  • partial load is below a pair of rods 2 to understand.
  • an applied voltage generating arrangement 9 This comprises a transformer 13 with a plurality of taps and a plurality of stages for controllable voltage switching on the connected pairs of rods 2, which as one consisting of several partial loads
  • Load resistor 10 can be understood for the arrangement.
  • This load resistor 10 comprises a plurality of rod pairs 2, wherein in FIG. 2, for example, three pairs of rods 2 are shown.
  • Each rod pair 2 according to the invention for example, bridged by means of two antiparallel-connected thyristors 11.
  • These thyristors 11 are controlled via their respective control electrode by means of a control, not shown.
  • a control not shown.
  • other bridging means such as triacs, can be used.
  • a bridging only a pair of rods 2 or two rod pairs 2 can be done.
  • Voltage supply 9 are connected is provided that a pair of rods 2 when using only two pairs of rods 2 in the series connection or more pairs of rods 2 when using more than two pairs of rods 2 in the series circuit temporarily bridged so be electrically shorted.
  • This bridging ensures that the applied electrical voltage of the entire series circuit is applied to a single pair of rods 2 and this is thus traversed by a current. Due to the current flowing through the rod pair 2 current, this pair of rods 2 is heated.
  • the switching operation is performed such that the applied electric voltage is not short-circuited, i. always at least one load resistor in series with the power supply 9 is connected.
  • Rod pairs 2 have reached a predetermined operating temperature.
  • the heating process can also take place in such a way that a first rod pair 2 is started and subsequently switched over to a second rod pair 2. Following can be a third
  • Rod pair 2 is heated or the first pair of rods 2 are heated further, so that the temperature of the first pair of rods 2 is maintained at least.
  • a possible continuation of the control could be the heating of the third pair of rods 2 with subsequent preservation of the heating of the second pair of rods 2 and so on until the predetermined heating of all pairs of rods 2.
  • the bridging of the pairs of rods 2 can be done by means of thyristors or mechanical switches, which can be accommodated in a power cabinet of the control of the CVD process.
  • the heating of the reactor can take place over part of the rod pairs 2 used.
  • the switches for bridging individual pairs of rods 2 can then be made in a separate structure, so that the power parts, i. the superstructures in a control cabinet can all be made the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Der Erfindung, welche ein Verfahren zur Stromversorgung eines CVD-Prozesses bei der Siliziumabscheidung betrifft, liegt die Aufgabe zugrunde, bei deutlich verringertem Aufwand unter Vermeidung der aufwändigen Parallel-/Seriell-Umschaltung eine schnelle und effektive Aufheizung der Stabpaare zu gewährleisten. Diese Aufgabe wird dadurch gelöst, dass die Stabpaare in einer elektrischen Reihenschaltung geschaltet werden und dass jedes Stabpaar durch ein Mittel zum elektrischen überbrücken des Stabpaares zumindest teilweise überbrückbar ist und dass an mindestens einem Stabpaar die angelegte elektrische Spannung anliegt.

Description

Verfahren zur Stromversorgung eines CVD-Prozesses bei der
Siliziumabscheidung
Die Erfindung betrifft ein Verfahren zur Stromversorgung eines thermischen CVD-Prozesses bei der Siliziumabscheidung, bei welchem auf Stabpaaren aus Siliziumdünnstäben in einem Reaktor Silizium abgeschieden wird, wobei die Heizung der Stabpaare durch Anlegen einer elektrischen Spannung erfolgt.
In einem Reaktor zur Siliziumabscheidung, in dem ein CVD- Prozess, beispielsweise nach dem Siemens-Verfahren, stattfinden soll, stehen üblicherweise mehrere Stabpaare aus Silizium nebeneinander. Unter Stabpaaren sollen aufrecht stehende Siliziumdünnstäbe verstanden werden, die am oberen freien Ende ein Paar bildend elektrisch miteinander verbunden sind. Die unteren Enden der Stabpaare sind über
Steckverbindungen mit einer Spannungsquelle verbunden. Diese Stabpaare müssen auf eine Temperatur gebracht werden, bei der der (Silizium-) Abscheidungsprozess aus der Gasphase erst möglich wird. Bei diesem Prozess wird auf den Stabpaaren Polysilizium abgelagert, wodurch ein fortschreitendes Dickenwachstum der Stabpaare stattfindet.
Das Ausgangsmaterial, Siliziumdünnstäbe, wie sie im Prozess verwendet werden, sind sehr hochohmig. Das Heizen der Siliziumdünnstäbe erfolgt elektrisch im Sinne einer Widerstandsheizung. Um mit technisch sinnvollen Spannungen zu arbeiten, wird zunächst mit einer hohen Spannung in einer Parallelschaltung der Siliziumdünnstabpaare gearbeitet. Dabei erhält jedes Stabpaar die gleiche volle Spannung. Da die Ströme in diesem Fall nur wenige Ampere betragen, ist das technisch leicht beherrschbar. Die Ströme steigen aber mit steigendem Durchmesser der Siliziumstäbe infolge der Siliziumabscheidung und des damit sinkenden Widerstandes stark an und gleichzeitig nimmt die Spannung ab. Daraus resultiert, dass es ab einem bestimmten, durch die elektrischen Parameter vorgegebenen, Punkt auf eine Reihenschaltung der Stabpaare geschaltet wird.
Der technische Aufwand für eine derartige Umschaltung ist allerdings erheblich, weil zusätzliche Thyristorsätze, Umschalter für Parallel- und Seriellbetrieb, sowie Stromteilerdrosseln zur Gewährleistung einer gleichmäßigen
Stromverteilung im Parallelbetrieb vorgesehen werden müssen.
Ein wesentlicher Nachteil dieses Standes der Technik besteht darin, dass sowohl eine Schaltungsanordnung für die Betriebsart Parallelbetrieb der Stabpaare als auch eine Schaltungsanordnung für die Betriebsart Seriellbetrieb der Stabpaare, welche nur alternativ, also nicht gleichzeitig betrieben werden können, bereitgehalten werden muss.
Darüber hinaus sind entsprechende Umschaltelemente vorzusehen um von einer Betriebsart in eine andere umschalten zu können.
Der Erfindung liegt die Aufgabe zugrunde, bei deutlich verringertem Aufwand unter Vermeidung der aufwändigen Parallel-/Seriell-Umschaltung eine schnelle und effektive Aufheizung der Stabpaare zu gewährleisten und eine gleichmäßige Belastung des Drehstromnetzes zu realisieren.
Gemäß der Erfindung wird die Aufgabe bei einem Verfahren zur Stromversorgung eines CVD-Prozesses bei der Siliziumherstellung dadurch gelöst, dass die Stabpaare in einer elektrischen Reihenschaltung geschaltet werden und dass jedes Stabpaar durch ein Mittel zum elektrischen überbrücken des Stabpaares zumindest teilweise überbrückbar ist und dass an mindestens einem Stabpaar die angelegte elektrische Spannung anliegt.
Die aus je zwei Siliziumdünnstäben bestehenden Stabpaare werden in einer elektrischen Reihenschaltung angeordnet, wobei die Anzahl der Stabpaare beliebig aber gleich oder größer zwei ist. Je Stabpaar ist ein Mittel zum elektrischen überbrücken des Stabpaares parallel zum Stabpaar derart angeordnet, dass das Mittel zum elektrischen überbrücken des Stabpaares das Stabpaar mittels einer elektrisch leitfähigen Verbindung überbrückt oder kurzschließt. Dabei kann das Überbrücken eines Stabpaares vollständig, also mit einem elektrischen Widerstand von ca. Null Ohm oder nur teilweise mit einem Restwiderstand größer Null Ohm erfolgen. An die in der Reihenschaltung angeordneten Stabpaare wird eine elektrische Spannung angelegt. Diese Spannung wird von der den CVD-Prozess steuernden Steuer- und Regelanordnung gesteuert .
Die Überbrückung der Stabpaare kann so gesteuert werden, dass nur ein Stabpaar nicht gebrückt ist, wobei dann die anliegende Spannung voll an dem nicht gebrückten Stabpaar anliegt. Eine andere Variante besteht darin zwei von beispielsweise drei oder mehr Stabpaaren nicht zu überbrücken. In diesem Fall teilt sich die anliegende Spannung auf die beiden oder mehreren Stabpaare auf.
In einer weiteren Ausgestaltung ist vorgesehen, dass das Mittel zum elektrischen überbrücken des Stabpaares als ein mechanisches Mittel ausgeführt ist.
In einer weiteren Ausführungsform ist vorgesehen, dass das Mittel zum elektrischen überbrücken des Stabpaares als ein elektrisches Mittel ausgeführt ist.
In einer weiteren Ausführung ist vorgesehen, dass das elektrische Mittel als zwei antiparallel geschaltete Thyristoren ausgeführt ist. Das Mittel zum elektrischen überbrücken des Stabpaares kann als eine mechanisches oder elektrisches Mittel ausgeführt werden. Beispielsweise als eine Schalter oder ein regelbarer Widerstand. Im Fall der Ausführung als elektrisches Mittel können eine Transistor, ein Thyristor oder zwei antiparallel geschaltete Thyristoren zum Einsatz kommen.
Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels näher erläutert werden. In den zugehörigen Zeichnungen zeigt
Fig. 1 einen Vakuumreaktor zur Durchführung eines CVD- Prozesses zur Siliziumabscheidung und
Fig. 2 eine Umsetzung des erfindungsgemäßen Verfahrens.
In Figur 1 ist ein Reaktor 1 mit darin angeordneten Siziumdünnstäben, dem sogenannten Stabpaar 2 schematisch und beispielhaft dargestellt. Üblicherweise wird in dem Reaktor eine Vielzahl solcher Stabpaare 2 nebeneinander angeordnet.
Das Stabpaar 2 ist oben gebrückt, z.B. mittels einer Siliziumbrücke 3 und unten in Graphit-Aufnahmen 4 eingeführt, welche mit der Spannungsversorgung 5 verbunden sind.
Der Reaktor 1 ist auf einem Sockel 6 aufgesetzt und weist eine Öffnung zur Prozessgaszuführung 7 und eine Öffnung zur Abgasabführung 8 auf.
In einem Reaktor 1 können mehrere dieser Stabpaare 2 angeordnet werden. An den Stabpaaren 2 wird das Polysilizium abgeschieden 12.
Die Figur 2 zeigt eine Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens zum zeitlich wechselnden Brücken von ein oder zwei Teillasten. Unter Teillast ist nachfolgend ein Stabpaar 2 zu verstehen. Nur schematisch dargestellt ist eine die anliegende Spannung erzeugende Anordnung 9. Diese umfasst einen Transformator 13 mit mehreren Anzapfungen und mehreren Stufen zur steuerbaren Spannungsdurchschaltung auf die angeschlossenen Stabpaare 2, welche als ein aus mehreren Teillasten bestehender
Lastwiderstand 10 für die Anordnung aufgefasst werden können .
Dieser Lastwiderstand 10 umfasst mehrere Stabpaare 2, wobei in der Figur 2 beispielsweise drei Stabpaare 2 dargestellt sind.
Jedes Stabpaar 2 ist erfindungsgemäß beispielsweise mittels zweier antiparallel geschalteter Thyristoren 11 überbrückbar. Diese Thyristoren 11 werden über ihre jeweilige Steuerelektrode mittels einer nicht dargestellten Steuerung gesteuert. Anstelle der Thyristoren 11 können auch andere Überbrückungsmittel, wie Triacs, eingesetzt werden.
Für dieses Ausführungsbeispiel kann eine Überbrückung nur eines Stabpaares 2 oder aber zweier Stabpaare 2 erfolgen.
Bei der erfindungsgemäßen Lösung, bei der Stabpaare 2 (Siliziumdünnstäbe) in Reihe geschaltet und mit einer
Spannungsversorgung 9 verbunden werden ist vorgesehen, dass ein Stabpaar 2 bei der Verwendung von nur zwei Stabpaaren 2 in der Reihenschaltung oder mehrere Stabpaare 2 bei der Verwendung von mehr als zwei Stabpaaren 2 in der Reihenschaltung vorübergehend überbrückt also elektrisch kurzgeschlossen werden.
Durch diese Überbrückung wird gewährleistet, dass die angelegte elektrische Spannung der gesamten Reihenschaltung an einem einzigen Stabpaar 2 anliegt und dieses somit von einem Strom durchflössen wird. Bedingt durch den durch das Stabpaar 2 fließenden Strom wird dieses Stabpaar 2 erwärmt.
Nach dem Erreichen einer vorgegebenen Temperatur für das vom Strom durchflossene erste Stabpaar 2 erfolg ein Umschalten der Mittel zum überbrücken der Stabpaare 2 derart, dass das nun erwärmte erste Stabpaar 2 elektrisch überbrückt wird, wobei gleichzeitig die Überbrückung eines anderen zweiten Stabpaares 2 beseitigt wird. Somit liegt die angelegte elektrische Spannung nun an dem zweiten Stabpaar 2 an welches nun von einem Strom durchflössen wird und sich erwärmt .
Dabei wird der Umschaltvorgang derart durchgeführt, dass die angelegte elektrische Spannung nicht kurzgeschlossen wird, d.h. immer mindestens ein Lastwiderstand in Reihe zur Spannungsversorgung 9 geschaltet ist.
Nach dem Erreichen einer vorgegebenen Temperatur für das zweite Stabpaar 2 kann ein Umschalten auf ein drittes zu erwärmendes Stabpaar 2 erfolgen und so weiter bis alle
Stabpaare 2 eine vorgegebene Betriebstemperatur erreicht haben .
Nach dem Erreichen der Betriebstemperatur werden alle Überbrückungen beseitigt, so dass die anliegende Spannung über der gesamten Reihenschaltung der Stabpaare 2 anliegt.
Alternativ zu einem nacheinander erfolgendem Erwärmungsvorgang für die Stabpaare 2 kann der Erwärmungsvorgang auch derart erfolgen, dass mit einem ersten Stabpaar 2 begonnen wird und nachfolgen auf eine zweites umgeschaltet wird. Im Anschluss kann ein drittes
Stabpaar 2 erwärmt oder das erste Stabpaar 2 weiter erwärmt werden, so dass die Temperatur des ersten Stabpaares 2 zumindest erhalten bleibt. Eine mögliche Fortsetzung der Steuerung könnte die Erwärmung des dritten Stabpaares 2 mit nachfolgender Erhaltung der Erwärmung des zweiten Stabpaares 2 und so weiter bis zur Vorgegebenen Erwärmung aller Stabpaare 2 sein. Das Brücken der Stabpaare 2 kann mittels Thyristoren oder mechanischen Schaltern erfolgen, welche in einem Leistungsschrank der Steuerung des CVD-Prozesses untergebracht werden können.
Infolge der durchgängigen Serienschaltung der Stabpaare 2, wobei vorzugsweise die gleiche Anzahl von Stabpaaren 2 je Vakuum-Reaktor (2, 3, 4, ...) auf einen Leistungsschrank geschaltet wird, wird eine Reduzierung des Materialeinsatzes erreicht und eine Standardisierung der Leistungsteile ermöglicht.
Die Aufheizung des Reaktors kann über einen Teil der eingesetzten Stabpaare 2 erfolgen. Die Schalter zum Überbrücken einzelner Stabpaare 2 können dann in einem separaten Aufbau erfolgen, so dass die Leistungsteile, d.h. die Aufbauten in einem Schaltschrank alle gleich ausgeführt werden können.
Soll beispielsweise ein 12-Paar Reaktor verwendet werden, sind 3 Leistungsschränke für jeweils 4 Stabpaare 2 in Reihe aufzubauen. Für einen 18-Paar Reaktor wären das 6 Leistungsschränke für jeweils 3 stabpaare 2.
Auf diese Weise lassen sich die Lasten auch gleichmäßig auf das Drehstromnetz verteilen.
Verfahren zur Stromversorgung eines CVD-Prozesses bei der
Siliziumabscheidung
Bezugzeichenliste
1 Reaktor
2 Siliziumdünnstäbe/Stabpaar
3 Siliziumbrücke
4 Graphit-Aufnahmen
5 Spannungsversorgung 6 Sockel
7 Öffnung zur Prozessgaszuführung
8 Öffnung zur Abgasabführung
9 Spannungserzeugungsanordnung
10 Lastwiderstand 11 Thyristoren
12 abgeschiedenes Polysilizium
13 Transformator

Claims

Verfahren zur Stromversorgung eines CVD-Prozesses bei derSiliziumabscheidungPatentansprüche
1. Verfahren zur Stromversorgung eines thermischen CVD- Prozesses bei der Siliziumabscheidung, bei welchem auf Stabpaaren aus Siliziumdünnstäben in einem Reaktor Silizium abgeschieden wird, wobei die Heizung der Stabpaare durch Anlegen einer elektrischen Spannung erfolgt, d a du r c h g e k e n n z e i c h n e t , d a s s die Stabpaare in einer elektrischen Reihenschaltung geschaltet werden und dass jedes Stabpaar durch ein Mittel zum elektrischen überbrücken des Stabpaares zumindest teilweise überbrückbar ist und dass an mindestens einem Stabpaar die angelegte elektrische Spannung anliegt.
2. Verfahren nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , d a s s das Mittel zum elektrischen überbrücken des Stabpaares als ein mechanisches Mittel ausgeführt ist.
3. Verfahren nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , d a s s das Mittel zum elektrischen überbrücken des Stabpaares als ein elektrisches Mittel ausgeführt ist.
4. Verfahren nach Anspruch 3, d a du r c h g e k e n n z e i c h n e t , d a s s das elektrische Mittel als zwei antiparallel geschaltete Thyristoren ausgeführt ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a du r c h g e k e n n z e i c h n e t , d a s s das nach dem Erreichen einer vorgegebenen Temperatur eines ersten von einem Strom durchflossenen Stabpaar 2, dass erste Stabpaar 2 durch ein Mittel zum elektrischen überbrücken des Stabpaares überbrückt wird und zeitgleich für ein zweites Stabpaar 2 eine Überbrückung aufgehoben wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadu r ch ge ke nn z e i chne t , da s s die Stabpaar 2 abwechselnd solange erwärmt werden bis alle Stabpaar 2 eine vorgegebene Temperatur erreicht haben.
PCT/EP2009/061261 2008-12-09 2009-09-01 Verfahren zur stromversorgung eines cvd-prozesses bei der siliziumabscheidung WO2010066479A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212009000165U DE212009000165U1 (de) 2008-12-09 2009-09-01 Vorrichtung zur Stromversorgung eines CVD-Prozesses bei der Siliziumabscheidung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008060908 2008-12-09
DE102008060908.0 2008-12-09

Publications (1)

Publication Number Publication Date
WO2010066479A1 true WO2010066479A1 (de) 2010-06-17

Family

ID=41354671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061261 WO2010066479A1 (de) 2008-12-09 2009-09-01 Verfahren zur stromversorgung eines cvd-prozesses bei der siliziumabscheidung

Country Status (2)

Country Link
DE (1) DE212009000165U1 (de)
WO (1) WO2010066479A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549638A1 (de) * 2011-07-19 2013-01-23 AEG Power Solutions B.V. Stromversorgungsanordnung für einen Reaktor zur Polysiliciumherstellung mit einem Frequenzumrichter
DE102011113484A1 (de) * 2011-09-13 2013-03-14 Centrotherm Sitec Gmbh Vorrichtung und Verfahren zum Zünden eines Siliziumkörpers in einem Abscheidereaktor
DE102011117462A1 (de) * 2011-11-02 2013-05-02 Frank Grundmann Vorrichtung und Verfahren zum Zünden von Siliziumdünnstäben
CN107040130A (zh) * 2017-05-04 2017-08-11 重庆大全泰来电气有限公司 一种多晶硅还原炉电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212948B (de) * 1959-11-02 1966-03-24 Siemens Ag Verfahren zum Herstellen von reinen Siliciumstaeben
US3941900A (en) * 1973-03-28 1976-03-02 Siemens Aktiengesellschaft Method for producing highly pure silicon
DE3535071C1 (en) * 1985-09-28 1987-02-26 Licentia Gmbh Circuit arrangement of a voltage supply for directly heating polycrystalline silicon rods during their production
DE3602988A1 (de) * 1986-01-31 1987-08-06 Siemens Ag Polysilitanlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1212948B (de) * 1959-11-02 1966-03-24 Siemens Ag Verfahren zum Herstellen von reinen Siliciumstaeben
US3941900A (en) * 1973-03-28 1976-03-02 Siemens Aktiengesellschaft Method for producing highly pure silicon
DE3535071C1 (en) * 1985-09-28 1987-02-26 Licentia Gmbh Circuit arrangement of a voltage supply for directly heating polycrystalline silicon rods during their production
DE3602988A1 (de) * 1986-01-31 1987-08-06 Siemens Ag Polysilitanlage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549638A1 (de) * 2011-07-19 2013-01-23 AEG Power Solutions B.V. Stromversorgungsanordnung für einen Reaktor zur Polysiliciumherstellung mit einem Frequenzumrichter
DE102011113484A1 (de) * 2011-09-13 2013-03-14 Centrotherm Sitec Gmbh Vorrichtung und Verfahren zum Zünden eines Siliziumkörpers in einem Abscheidereaktor
DE102011117462A1 (de) * 2011-11-02 2013-05-02 Frank Grundmann Vorrichtung und Verfahren zum Zünden von Siliziumdünnstäben
DE102011117462B4 (de) * 2011-11-02 2013-12-24 Frank Grundmann Vorrichtung und Verfahren zum Zünden von Siliziumdünnstäben
CN107040130A (zh) * 2017-05-04 2017-08-11 重庆大全泰来电气有限公司 一种多晶硅还原炉电源

Also Published As

Publication number Publication date
DE212009000165U1 (de) 2012-02-10

Similar Documents

Publication Publication Date Title
EP0709000B1 (de) Verfahren und vorrichtung zur steuerung einer m-pulsigen wechselrichteranordnung, bestehend aus einem master-wechselrichter und wenigstens einem slave-wechselrichter
EP1638196B1 (de) Anordnung zur Versorgung von veränderlichen Lasten
EP2329684B1 (de) Stromversorgungsanlage für einen drehstrom-lichtbogenofen mit zwischenkreisumrichter zwischen netzanschluss und ofentransformator
DE3608704C2 (de)
EP2361435B1 (de) Transformator zur transformation zwischen mittel- und niederspannung mit stufenschaltung und verfahren zu dessem betrieb
DE102009021403B4 (de) Vorrichtung zur Versorgung eines Reaktors mit elektrischer Leistung zum Erzeugen von Siliziumstäben aus Silizium-Dünnstäben nach dem Siemens-Verfahren
WO2010066479A1 (de) Verfahren zur stromversorgung eines cvd-prozesses bei der siliziumabscheidung
EP2445076A1 (de) Stromversorgungseinrichtung für eine nichtlineare, zeitlich variierende Last
DE102014015740A1 (de) Batterie und Verfahren zum Betrieb einer Batterie
WO2018050332A1 (de) Umrichtergespeister lichtbogenofen mit kondensatoranordnung im sekundärkreis
EP2362533A1 (de) Stromversorgungsanordnung, insbesondere zur Versorgung eines Reaktors zur Herstellung von Polysilicium nach dem Siemens-Verfahren
EP1398867B1 (de) Vorrichtung zur Spannungserhaltung eines elektrischen Wechselspannungsnetzes sowie Verfahren zum Betrieb einer solchen Vorrichtung
EP2084940B1 (de) Reaktanzvorschalteinrichtung
EP1503475B1 (de) Anschaltverfahren für einen Blindleistungskompensator
DE102010020740A1 (de) Vorrichtung und Verfahren zum Anlegen einer Spannung an eine Vielzahl von Siliziumstäben in einem CVD-Reaktor
EP2660964A1 (de) Stromversorgungsanordnung mit einer ersten und einer zweiten Stromversorgungseinrichtung, wobei die zweite Stromversorgungseinrichtung an die erste Stromversorgungseinrichtung angeschlossen ist
EP2733837A1 (de) Umrichter
WO2017085330A1 (de) Energieversorgungssystem für einen elektroofen
DE102015220220A1 (de) Blindleistungskompensationseinrichtung sowie Verfahren zum Betreiben einer Blindleistungskompensationseinrichtung
WO2015096915A1 (de) Vorrichtung und verfahren zur stabilen lichtbogenerzeugung und insbesondere zur erhöhung des wirkleistungseintrags bei einem elektrolichtbogenofen
WO2013064229A2 (de) Vorrichtung und verfahren zum anlegen einer spannung an eine vielzahl von siliziumstäben in einem cvd-reaktor
WO2013159981A1 (de) Erdschluss-system
WO1998048432A1 (de) Schaltungsanordnung bei einem lastumschalter
DE102011117462B4 (de) Vorrichtung und Verfahren zum Zünden von Siliziumdünnstäben
DE202004004655U1 (de) Schaltungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2120090001651

Country of ref document: DE

Ref document number: 212009000165

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09782446

Country of ref document: EP

Kind code of ref document: A1