WO2010064720A1 - Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon - Google Patents

Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon Download PDF

Info

Publication number
WO2010064720A1
WO2010064720A1 PCT/JP2009/070443 JP2009070443W WO2010064720A1 WO 2010064720 A1 WO2010064720 A1 WO 2010064720A1 JP 2009070443 W JP2009070443 W JP 2009070443W WO 2010064720 A1 WO2010064720 A1 WO 2010064720A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
solar cell
cell
solar
image
Prior art date
Application number
PCT/JP2009/070443
Other languages
French (fr)
Japanese (ja)
Inventor
光博 下斗米
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Publication of WO2010064720A1 publication Critical patent/WO2010064720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence

Definitions

  • the present invention relates to a solar cell inspection device for inspecting a solar cell having a function of generating electricity by light, a solar cell inspection method, and a recording medium recording the program.
  • FIG. 15 is a diagram schematically showing the configuration of the inspection apparatus described in Patent Document 1.
  • the inspection apparatus 100 includes a dark room 110, a CCD camera 120 provided on the dark room 110, and a power supply 140 that supplies current to the solar cells 130 placed on the floor of the dark room 110.
  • the image processing apparatus 150 is configured to process an image signal from the CCD camera 120.
  • the dark room 110 has a window 110a.
  • a finder 120a of the CCD camera 120 is provided here, and a photographed image of the CCD camera 120 can be confirmed by looking into it with the naked eye.
  • a personal computer is used as the image processing apparatus 150.
  • a defect in the solar battery cell can be detected. Because it only determines the quality of the solar cell according to the degree of the defect, it is only possible to determine whether it can withstand use at the present time, and it is not possible to know in detail what the solar cell is. It was not considered whether or not there was a possibility of failure when used for a long time. Also, if it is determined that it cannot be used, it is discarded as it is or dissolved and recycled.
  • the solar cell inspection apparatus of the prior art since the defect of the solar cell cannot be determined in detail, the class of the solar cell and the performance of the solar cell module cannot be accurately determined.
  • the present invention has been made in view of such a situation, and its purpose is to make it possible to accurately determine the quality of a solar cell by analyzing in detail the image of the solar cell obtained by photographing,
  • An object of the present invention is to provide a solar cell inspection apparatus with high cell use efficiency, a solar cell inspection method, and a recording medium recording the program.
  • a further purpose is to use a detailed analysis of solar cell images to understand the correlation of what defects (dark areas) are missing during use, and to obtain the results of the solar cell defects.
  • An object of the present invention is to provide a solar cell inspection apparatus, a solar cell inspection method, and a recording medium recording the program, which can be fed back to the determination method to further improve the accuracy of defect determination.
  • An inspection apparatus for a solar cell includes an image acquisition unit that acquires a cell image representing a solar cell in an energized state, and a defect determination that determines a defect of the solar cell using the solar cell image.
  • a marking device provided outside the solar cell inspection device for marking at least the solar cell identification symbol information on the solar cell. It is characterized by. According to this one aspect, since the identification symbol is given to the solar battery cell, when a defect occurs during use, the content can be fed back to further improve the accuracy of the defect determination.
  • the inspection apparatus of the photovoltaic cell of such an aspect it is good also as a structure which provided the marking part inside the inspection apparatus of a photovoltaic cell.
  • the solar cell inspection device of one embodiment of the present invention is made of at least cracks and cracks by an image acquisition unit that acquires a cell image representing a solar cell in an energized state and a captured image of the solar cell. It is determined that there is a possibility that the dark area information brighter than the defect may become a defect, and the image obtained by binarizing the photographed image is compared with the dark area information brighter than the defect formed by the crack. And a defect determination unit that accurately determines a defect.
  • the class determination of the solar battery cell becomes accurate. According to this aspect, it is possible to accurately determine whether or not each defect that can be regarded as a defect is a defect. Moreover, in the inspection apparatus of the solar cell of such an aspect, it is good also as a structure which provided the marking apparatus outside the inspection apparatus of the solar battery cell, or as a structure which provides a marking part inside the inspection apparatus of a solar cell. good. Furthermore, it can also be set as the structure which provides a marking apparatus outside the test
  • An inspection apparatus for a solar cell includes an image acquisition unit that acquires a cell image representing a solar cell in an energized state, and a defect determination that determines a defect of the solar cell using the solar cell image. And a region where the solar cell is defective and a region where there is no defect based on the defect determination result of the solar cell, and at least a boundary between the region where the solar cell is defective and the region where there is no defect And a defect area determination unit that generates defect area determination information including boundary line information that can be identified. According to this aspect, it is possible to accurately identify a portion that can be determined as a non-defective product in a solar cell that is determined to be defective. Eventually, the use efficiency of the solar battery cell is increased.
  • the inspection apparatus of the solar cell of such an aspect it is good also as a structure which provided the marking apparatus outside the inspection apparatus of the solar battery cell, or as a structure which provides a marking part inside the inspection apparatus of a solar cell. good. Furthermore, it can also be set as the structure which provides a marking apparatus outside the test
  • the method for inspecting a solar battery cell according to one embodiment of the present invention is brighter than at least cracks and cracks caused by cracks, by the step of obtaining a cell image representing an energized solar battery cell and the image of the solar battery cell.
  • the recording medium on which the photovoltaic cell inspection program of one embodiment of the present invention is recorded includes a process of obtaining a cell image representing a solar cell in an energized state, a process of determining a defect from the solar cell image, A process of determining a dark area from the captured image and causing a computer to execute a process of scanning a cell image including a dark part due to the defect in a direction perpendicular to the bus bar of the solar battery cell and determining an area without a defect. It is a feature. According to this one aspect, in the solar battery cell, a usable part can be accurately determined.
  • the accuracy of determination of a defect that may develop into a large defect in the future during use and the use efficiency of the solar cell can be increased.
  • FIG. 1 is an explanatory diagram of a solar battery cell.
  • FIG. 2 is a block diagram illustrating a configuration example of the solar cell inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration example of a control unit of the solar cell inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a solar cell inspection method according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating an example of a solar battery cell image.
  • FIG. 6 is an explanatory diagram of generation of crack position information.
  • FIG. 7 is an explanatory diagram of generation of dark region position information.
  • FIG. 1 is an explanatory diagram of a solar battery cell.
  • FIG. 2 is a block diagram illustrating a configuration example of the solar cell inspection apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration example of a control unit of the solar cell
  • FIG. 8 is a block diagram showing the structural example of the control part of the inspection apparatus of the photovoltaic cell which concerns on Example 2 of this invention.
  • FIG. 9 is a flowchart showing a method for inspecting a solar battery cell according to Example 2 of the present invention.
  • FIG. 10 is a flowchart for explaining in detail the defect area determination method.
  • FIG. 11 is an explanatory diagram 1 of the defect area determination means.
  • FIG. 12 is an explanatory diagram 2 of the defect area determination means.
  • FIG. 13 is a drawing showing a light receiving surface (a) and a back surface (b) of a marked solar battery cell.
  • FIG. 14 is a drawing showing a modification of the first embodiment and the second embodiment.
  • FIG. 15 is a diagram showing a conventional solar cell inspection apparatus.
  • (4) (5) is a defect, which leads to a decrease in the efficiency of the solar cell.
  • (1) (3) is a defect, but it cannot be said that it is missing in the present state. It is a part that can be determined to be. According to the present invention, it is possible to classify the above types of defects in detail to increase the use efficiency of the solar battery cell.
  • Example 1 is a means for enabling a result of actual use of a solar cell module incorporated in a solar cell module to be fed back to the defect determination of the solar cell inspection device, and more accurately determining the defect of the solar cell inspection device; Is the method.
  • FIG. 1 is a view showing a solar battery cell according to the present embodiment, in which FIG. 1 (a) is a plan view on the light receiving surface side of the solar battery cell, and FIG. 1 (b) is a view of the solar battery cell. It is a top view on the back side.
  • the solar battery cell 1 includes a semiconductor substrate 10 and electrodes provided on the light receiving surface and the back surface of the semiconductor substrate 10.
  • the semiconductor substrate 10 is formed in a flat plate shape having, for example, a rectangular shape with a side of approximately 150 mm square and a thickness of approximately 0.16 mm.
  • the semiconductor substrate 10 is formed using an elemental semiconductor such as single crystal silicon, polycrystalline silicon, and amorphous silicon, a compound semiconductor, or the like.
  • the semiconductor substrate 10 has a function of converting light energy into electrical energy.
  • Finger portions 11 and bus bar portions 12 are provided on the light receiving surface of the semiconductor substrate 10 (see FIG. 1A).
  • a plurality of finger portions 11 are provided in parallel from one side of the semiconductor substrate 10 to the opposite side. The fingers 11 collect the electrons generated on the light receiving surface side of the semiconductor substrate 10.
  • the bus bar portion 12 is a light receiving surface side electrode, and two bus bar portions 12 are provided in parallel across one side facing from one side of the semiconductor substrate 10 in a direction orthogonal to the direction in which the finger portions 11 are provided.
  • the bus bar portion 12 collects electrons collected by the finger portion 11 and is connected to a tab lead.
  • a back surface side electrode 13 and a connection portion 14 are provided (see FIG. 1B).
  • the back side electrode 13 is provided over the entire back side of the semiconductor substrate 10.
  • the back surface side electrode 13 is formed by, for example, baking aluminum after applying aluminum on the back surface of the semiconductor substrate 10.
  • the back surface side electrode 13 collects holes generated on the back surface side of the semiconductor substrate 10.
  • connection portions 14 are intermittently provided on the back surface of the semiconductor substrate 10, for example, eight locations in the drawing. More specifically, the connecting portion 14 is a position symmetrical to the bus bar portion 12 provided on the light receiving surface of the semiconductor substrate 10 and a virtual central plane crossing the center of the thickness of the semiconductor substrate 10. 14 is formed to have a gap of a predetermined distance at regular intervals.
  • the connection portion 14 may be formed by vapor-depositing solder on the back surface side electrode 13.
  • a tab lead is connected to the connecting portion 14.
  • the solar battery cell may be a thin film solar battery cell.
  • FIG. 2 is a block diagram illustrating a configuration example of the solar cell inspection apparatus according to the present embodiment.
  • an energization section 3, a positioning section 4, an imaging section 5, a marking section 7, an operation section 8, and a display section 9 are connected to a control section 20 that controls the entire apparatus.
  • the number of solar cells to be measured may be one or plural.
  • a plurality of solar cells may be separately arranged in the inspection apparatus, or solar cells are arranged by tab leads.
  • a string connected in a straight line may be used, or a panel-like structure in which a plurality of strings are connected in parallel may be arranged.
  • the energization unit 3 energizes the solar battery cell as the inspection target in response to a command from the control unit 20.
  • the energization unit 3 supplies a forward current to each of the one or more solar cells using a probe (not shown).
  • a probe not shown
  • FIG. 2 the case where only one photovoltaic cell is installed is illustrated.
  • the imaging unit 5 is configured with a CCD camera or the like, and images one or more solar cells in an energized state in response to a command from the control unit 20.
  • the marking unit 7 includes a solar cell identification symbol, a class symbol, and a defect-free region and a defect-free region in an embodiment described later based on the result of the defect determination of the solar cell inspected based on the result of imaging of the solar cell. Mark the boundary line.
  • the positioning unit 4 moves and positions the imaging unit 5 to a predetermined imaging position of each solar battery cell in accordance with a command from the control unit 20. Further, when a plurality of solar cells to be inspected are arranged in the apparatus, the energization unit 3 and the marking unit 7 are also moved to predetermined positions by the positioning unit 4 and positioned. The interaction of these parts will be described.
  • the imaging unit 5 is moved by the positioning unit 4 and sequentially images one or more solar cells arranged in the solar cell inspection apparatus. Moreover, the data of the cell image showing a photovoltaic cell obtained by this is input into the control part 20 sequentially. Based on the input image data, the defect determination unit (see 2A in FIG. 3) in the control device determines whether or not there is a defect.
  • the control unit 20 is configured as a computer including a CPU (Central Processing Unit) and a RAM as a work area thereof.
  • the control unit 20 may include a storage unit that stores programs and data necessary for the operation of the CPU.
  • the operation unit 8 includes a keyboard, a mouse, and the like, and transfers operation inputs based on user operations to the control unit 20.
  • the display unit 9 is composed of a liquid crystal display or the like, and displays an image corresponding to a display command from the control unit 20.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the control unit
  • FIG. 4 is a flowchart illustrating a solar cell inspection method realized in the control unit.
  • the control unit 20 functionally includes an energization control unit 21, a position control unit 22, an image acquisition unit 23, a defect determination unit 2A, a quality determination unit 28, and a display control unit 29. And each part performs the said process, when CPU runs the program stored in the memory
  • the energization control unit 21 controls the energization unit 3 to energize one or more solar cells 1. Thereby, each photovoltaic cell 1 emits EL light.
  • data of energization conditions such as a voltage value, a current value, and an energization time are stored in the storage unit of the control unit 20.
  • the position control unit 22 controls the positioning unit 4 to execute position control of the imaging unit 5, the energization unit 3, and the marking unit 7. Specifically, the position control unit 22 sequentially moves the imaging unit 5 to each imaging position where each solar cell 1 can be imaged, sequentially moves the energization unit 3 to the position of each solar cell 1, and further performs marking. The part 7 is sequentially moved to the position of each solar battery cell.
  • imaging positions are determined by the size and number of solar cells 1, the arrangement interval, and the like, and are stored as data in the storage unit of the control unit 20.
  • the image acquisition unit 23 acquires cell image data representing the energized solar cell from the imaging unit 5 (S1). In addition, the image acquisition unit 23 performs preprocessing of the acquired cell image (S2). As the cell image preprocessing, for example, scaling processing for standardizing the brightness of the EL light of the solar battery cell 1, cell area extraction processing for extracting the solar battery cell 1 area, and the bus bar 12 portion of the solar battery cell 1 are excluded. There are a bus bar exclusion process, a shading process for correcting a brightness difference caused by the lens of the imaging unit 5, and the like. Then, the image acquisition unit 23 outputs the cell image data subjected to the preprocessing to the defect determination unit 2A.
  • the defect determination unit 2A includes a crack position information generation unit 24, a crack determination unit 25, a dark region position information generation unit 26, and a dark region determination unit 27.
  • FIG. 5 is a diagram illustrating an example of the cell image 30.
  • the defective part of the solar battery cell 1 appears as a dark part with relatively low brightness.
  • Such defective portions include cracks 32a, 32b, 32c and dark regions 34a, 34b.
  • one cell image includes at least hundreds of thousands to millions of images, and even a defect that cannot be confirmed with the naked eye can be determined as an image group of the cell image.
  • the cracks 32 a, 32 b, and 32 c appear as a linear pixel group with low brightness in the cell image 30.
  • These cracks 32a, 32b, and 32c have a large difference in brightness from portions that emit light well. Such cracks 32a, 32b, and 32c are considered to be caused by heat when soldering the tab lead to the bus bar 12 or the connecting portion 14, or a load or impact during processing or transportation. As another dark region, there is a dark region caused by cell chipping or finger disconnection.
  • the dark regions 34a and 34b appear in the cell image 30 as a pixel group having a certain area or more and low brightness. Such dark regions 34a and 34b are generated when current supply is inhibited by the cracks 32a and 32b. That is, the dark areas 34a and 34b are caused by the cracks 32a and 32b.
  • the cracks 32a and 32b often overlap at least a part of the outer edges of the dark regions 34a and 34b.
  • the brightness of the dark areas 34a and 34b is not uniform, and there are a dark area 34a having a slightly lower brightness than the surrounding area and a dark area 34b having a clearly lower brightness.
  • the dark region 36 is also generated by finger disconnection. In this case, a dark region is formed in a rectangular shape between fingers arranged at right angles to the bus bar of the solar battery cell.
  • the crystal grain boundary 37 of the solar battery cell 1 may appear in the cell image 30.
  • Such a crystal grain boundary 37 is not a defect of the solar battery cell 1 but appears in the cell image 30 as a pixel group having a slightly lower brightness than the surroundings.
  • Such crystal grain boundaries 37 often have a relatively small shape.
  • the crack position information generation unit 24 of the defect determination unit 2A identifies the cracks 32a, 32b, and 32c in the cell image 30, and generates information on the positions and shapes of the cracks 32a, 32b, and 32c (S3).
  • the information on the crack position / shape generated in this way is output to the quality determination unit 28 and the display control unit 29 through the crack determination unit 25 and the dark region determination unit 27.
  • the crack determination unit 25 identifies the positions of the cracks 32 a, 32 b, and 32 c by extracting the boundary part of the brightness change in the cell image 30. Such extraction of the boundary portion can be realized by using a differential filter or the like.
  • the information on the crack position / shape includes information that is not actually a crack, and the crack is determined by excluding it (S4).
  • An example of determining a crack is performed as follows.
  • FIG. 6 is an explanatory diagram of generation of crack position / shape information.
  • the boundary portions 42a, 42b, and 42c correspond to the cracks 32a, 32b, and 32c, respectively, and the boundary portion 47 corresponds to the crystal grain boundary 37.
  • the boundary portion 46 corresponds to the finger break portion 36. Therefore, the boundary portion becomes thicker as the difference in brightness increases in the cell image.
  • the crack position information generation unit 24 sorts the boundary portions 42a, 42b, and 42c extending in the same thickness from the boundary portions 42a, 42b, 42c, 47, and 46 extracted in this way, The positions of the cracks 32a, 32b, and 32c can be specified.
  • extending as a line means that a circular part such as a crystal grain boundary that is not a defect is excluded by removing a linear part (closed curve) where the start point and the end point cannot be distinguished (crystals) Grain boundary distinction processing 1) and quadrilaterals caused by finger breakage can be excluded (disconnection distinction processing 1).
  • the crack position information generation unit 24 can determine a region appearing as a rectangle in the cell image as a boundary portion due to finger breakage in order to distinguish a defect due to finger breakage from a crack. If the outer edge of the quadrangle is vertical and horizontal in the entire cell image, it can be determined that it is due to a finger break (disconnection distinguishing process 2).
  • the following prevention means may be additionally or selectively employed so that harmless things such as crystal grain boundaries are not determined as defects.
  • the aspect ratio ratio between the length in the longitudinal direction and the length in the width direction
  • the angle of one side of the two-dimensional minimum rectangle is not necessarily limited to 0 degrees and 90 degrees in comparison with the cell image, and may be extended toward a certain angle.
  • a threshold for this aspect ratio is set, and it is determined that a threshold smaller than the set value is not a defect.
  • the aspect ratio is a small numerical value, so that the crystal grain boundary can be prevented from being determined as a crack (crystal grain boundary distinction process 2).
  • this grain boundary distinction process 2 in order to distinguish from the boundary part by finger disconnection, the brightness in a boundary part can also be utilized. In this manner, the disconnection distinguishing process 2 is not performed, and even if only the crystal grain boundary distinguishing process 2 is performed, it can be distinguished from the boundary portion due to the finger disconnection. However, the accuracy is further increased by performing each processing simultaneously.
  • the crack determination unit 25 compares the length of each crack with the threshold value to be determined as a crack based on the image information from the crack position information generation unit 24, and excludes those below the threshold value from the crack. Then, the image noise generated at the time of imaging is considerably excluded.
  • the dark region position information generation unit 26 performs binarization processing on the cell image 30 and specifies a dark pixel group having a predetermined area or more, thereby indicating dark region position information representing the positions of the dark regions 34a, 34b, and the like. Is generated (S5). The dark area position information generated in this way is output to the dark area determination unit 27.
  • the threshold value of the brightness of the binarization process is set to such an extent that each pixel in the dark region 34a (see FIG. 5) whose brightness is slightly lower than the surroundings is determined as a dark pixel.
  • FIG. 7 is an explanatory diagram of generation of dark region position information.
  • the dark region position information includes unintended dark regions such as the dark region 57 corresponding to the crystal grain boundary 37 in addition to the information indicating the positions of the dark regions 34a and 34b caused by the cracks 32a, 32b, and 32c. May be included.
  • the dark area position information includes coordinate information of the dark areas 34a and 34b.
  • the dark area position information also includes coordinate information of the outer edges of the dark areas 34a, 34b and the like. Specifically, the outer edge of each dark region 34a, 34b, etc.
  • the dark region position information may include information on the areas of the dark regions 34a and 34b.
  • the dark area determination unit 27 is caused by the cracks 32a, 32b, and 32c among the dark areas 34a, 34b, 36, and 57 extracted in S4 based on the input crack position information and dark area position information.
  • the dark areas 34a and 34b are determined (S6). The boundary between the dark region of the finger break and the dark region due to the grain boundary is not determined to be a crack.
  • the dark region where the dark region position information including the coordinate information of the start point and the end point of the outer edge of the dark region is not compared with the crack position / shape information output from the crack position information generating unit 24 is not overlapped.
  • the dark region determination unit 27 corrects the dark region position information according to the determination result, and outputs the result to the quality determination unit 28 and the display control unit 29.
  • the quality determination unit 28 determines the number or / and length of the cracks 32a, 32b, and 32c specified in the cell image 30, the number or / and size of the dark areas 34a and 34b caused by the cracks 32a and 32b, and fingers Based on the number or / and size of the dark regions 36 due to disconnection, the quality of the solar cells 1 shown in the cell image 30 is determined, and classification is performed (S7). Information on the quality class is output to the display control unit 29.
  • a simple sum of the numbers of cracks 32a, 32b, 32c and dark regions 34a, 34b may be used, or a weighted sum corresponding to these types may be used.
  • a weighted sum corresponding to the size (area) or length may be used.
  • the class information of the solar battery cell determined by the quality determination unit 28 is output (transferred) to the marking unit 7.
  • the display control unit 29 displays a display image for identifying and displaying the cracks 32a, 32b, and 32c identified in the cell image 30, the dark regions 34a and 34b caused by the cracks 32a and 32b, and the dark region 36 due to finger breakage. Display control is performed (S8), and the display image is displayed on the display unit 9 (S9).
  • the display control unit 29 may identify and display the quality class of the solar battery cell 1 based on information from the quality determination unit 28.
  • the marking unit 7 transfers information such as the class of solar cells and the identification symbol of the solar cells to the marking unit 7 (S12). Then, the transferred information is marked on the solar battery cell (S10).
  • the marking operation of the class and the identification symbol of these solar cells can be realized by using a known laser irradiation device.
  • the marking part which consists of this laser irradiation apparatus can also be provided in the inspection apparatus of the photovoltaic cell of this invention, and can also be installed separately as the marking apparatus outside the inspection apparatus of a photovoltaic cell.
  • the class information and identification symbols of these solar cells can be stored in a storage unit in the control unit 20 of the solar cell inspection apparatus.
  • the storage capacity becomes large, it may be stored in a separate computer.
  • the first embodiment of the present invention has been described above.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art.
  • the crack position information generation unit 24 specifies the positions of the cracks 32a, 32b, and 32c by a differential filter.
  • the present invention is not limited to this mode.
  • a linear pixel group having a lightness lower than that of the surroundings may be extracted and specified as cracks 32a, 32b, 32c, and the like.
  • defects of solar cells can be determined in detail.
  • the solar battery module it is possible to determine in detail the performance and quality of the solar battery module using the solar battery cells determined for the class. Since the identification information is marked on the solar cell incorporated in the solar cell module in this way, if a defect such as chipping occurs during its use and the performance deteriorates, the solar cell is inspected. Since the defect determination threshold is known, the result can be fed back to the determination method of the inspection apparatus. For example, if a crack (see 32c in FIG. 5) is later lost during use, the threshold value for defect determination that is currently set is changed (re-adjusted), and this is the case during the next inspection. A defect equivalent to a crack (32c in FIG. 5) can be determined as a defect by a solar cell inspection apparatus. In addition to this, since a lot of information such as changes in defects after the passage of time and differences due to defects in the changes can be collected during use, the accuracy of thresholds, the accuracy of defect determination, etc. can be improved step by step. Can be increased.
  • the second embodiment is an embodiment provided by adding a preferable configuration to the first embodiment.
  • the description of the first embodiment can be omitted as it is.
  • the solar battery cell has a size of 150 mm square, it often has a place where it can be partially used even if there is a defect.
  • Example 2 is a means and method for partially reusing a solar cell when the solar cell can be partially used even if it is entirely defective.
  • the second embodiment is also a means and method for enabling feedback of the result of actual use of the solar cell module and making the determination of defects in the solar cell inspection apparatus and method more accurate.
  • FIG. 8 is a block diagram illustrating a functional configuration example of the control unit in the second embodiment, and FIG.
  • the control unit 20 further includes a defective area determination unit 2B as compared to FIG. 3 of the first embodiment.
  • the defect area determination unit 2B receives the cell image including at least the defect information determined by the defect determination unit 2A, and determines a defective area and a non-existent area of the solar battery cell based on the cell image (S110). .
  • the defect area determination step S110 will be described in detail with reference to the flowchart of FIG. 10 showing the defect area determination method.
  • a cell image including a dark portion that is regarded as a defect based on the crack determination result in S4 and the dark region determination result in S6 is scanned from one end of the cell to the other end in the direction of the solar cell bus bar by a scanning line or the like. It is moved and scanned, and even if there is one defect at one scanning position, this region is determined as a region having a defect. Furthermore, as a result of scanning, an area having no dark portion is extracted, and this area is determined as an area having no defect (S101).
  • the scanning direction is the bus bar direction. This is because when the solar battery cell is partially reused, the partially reused solar battery cell also has a shape having a bus bar.
  • the determination threshold for each defect type is changed (readjusted) (S103). Specifically, it is performed as follows.
  • the threshold value set for determining the defect is a threshold value (length, area, etc.) for each defect type. In this way, the dark portion of the entire cell image can be reconstructed by replacing the dark portion with a bright portion for a defect smaller than the threshold value based on a preset threshold value (S104).
  • the cell image obtained by reconstruction is different depending on the threshold value, but when the threshold value is equal to or larger than a certain value, the reconstructed image has a dark area smaller than the original image (cell image received from the defect determination unit 2A). Become. After the cell image is reconstructed by the above means (S104), the reconstructed cell image is scanned again (S101). As a result, if the area without defects exceeds a certain threshold, the process proceeds to the next stage.
  • changing the threshold value adjusted in the threshold readjustment step S103 changes the threshold value for each defect type.
  • the threshold value is changed by preferentially changing a crack having a low importance as a defect, and then changing in the order of finger disconnection and finally a chip.
  • a crack is first judged to be a defect, but later it is less important because it may not lead to chipping during use. Since the area of the dark part due to finger breakage is small, the degree of importance is made lower than the chip.
  • the above-mentioned preferential change means that the threshold for determining which type of defect is changed before the threshold for determining other defects.
  • the threshold value for defect determination may be changed by weighting change (change more than other defects). It is also possible to combine and use both the priority change and the weight change.
  • the threshold value of the area of a defect-free area or the like is preferably about half that of the solar battery cell, but the threshold value can be set as appropriate if it can be determined that it can be reused.
  • FIG. 11 shows the first cell image. It is determined that almost all areas are defective areas, and then S101, S102, S103, and S104 are repeated.
  • FIG. 12 shows that about half of the solar cell is a defect-free region (no dark portion). If the threshold value for determining the area and the like of the defect-free area is set to half of the area of the solar battery cell (for example, 50% threshold value), the above-described repeated determination operation (S101 to S104) ends at this point.
  • the threshold value for determining the area and the like of the defect-free area is set to half of the area of the solar battery cell (for example, 50% threshold value)
  • the defective area determination unit 2B generates defect area determination information so as to be output to the marking unit 7 for marking (S110).
  • the determination information of the defect area includes boundary information between the defect area and the defect-free area, identification information indicating that the defect area is defective, class information, solar cell identification symbol information, defect This includes information on defect determination threshold values for determining that a region having no defect exceeds a certain threshold value.
  • the defect area determination information from the defect determination unit 2A, the defect area determination unit 2B, and the quality determination unit 28 of the solar cell inspection apparatus is transferred to the marking unit (S120).
  • the defect area determination unit 2B outputs the determination information of the defect area to the marking unit 7 provided in the inspection apparatus, and the identification symbol information and the like to be given to the solar battery cell includes the defect determination unit 2A and the quality determination. It can also be transferred from the unit 28 to the marking unit 7.
  • the solar cell is inspected. You may transfer and memorize
  • FIG. 13 is a diagram showing a light receiving surface (a) and a back surface (b) of a marked solar battery cell. With reference to FIG. 13, the information marked on a photovoltaic cell is demonstrated concretely.
  • boundary lines 64 and 65 provided as identification lines at the boundary between a region having a defect and a region having no defect. The solar cells are cut along the boundary lines 64 and 65 so that the defect-free region can be reused as a non-defective product.
  • one boundary line 64, 65 is common with one end of the solar cell in the direction of the bus bar 12, one boundary line can be used.
  • identification symbols 61a and 61b (indicated by x in the drawing) marked to indicate the area having the defect, and the solar battery cell
  • the identification symbols 62a and 62b and the identification symbols 63a and 63b representing the determination class can be marked (see FIG. 13A).
  • the identification symbol 70 of the solar battery cell In the defect-free region distinguished by the boundary lines 64 and 65, the identification symbol 70 of the solar battery cell, threshold information for determining that there is no defect (the threshold value used for determining YES in S102)
  • An identification symbol 72 representing information) and / or an identification symbol 71 representing class information associated therewith can be marked.
  • the markings are given to the boundary lines 64 and 65 in a linear shape, and the identification symbols 70, 71 and 72 are given using a two-dimensional code such as a QR code.
  • the combination of the identification symbol 70 of the solar cell, the identification symbol 72 representing the threshold information, and the identification symbol 71 representing the class information indicates that the threshold value can be obtained if a chip occurs during its use. Can do.
  • a defect equal to such a crack (32c, 32d) can be determined as a defect to the end by the solar cell inspection apparatus.
  • the accuracy of the threshold and the accuracy of defect determination can be improved step by step. Can be increased.
  • the marking operation of these identification lines and identification symbols can be realized by using a known laser irradiation apparatus.
  • the marking part which consists of this laser irradiation apparatus can also be provided in the inspection apparatus of the photovoltaic cell of this invention, and can also be installed separately as the marking apparatus outside the inspection apparatus of a photovoltaic cell.
  • the marking is preferably on the back electrode 13 side (opposite to the light receiving surface) in FIG. 1B in the case of a non-defective solar battery cell or a region where it is determined that there is no defect.
  • the light receiving surface side in FIG. This is because it is preferable not to perform post-processing to prevent light reception as much as possible on the surface to be reused later.
  • FIG. 14 is a diagram showing a modification of the first embodiment and the second embodiment.
  • the marking device 80 may be provided separately outside the solar cell inspection device.
  • information from the defect determination unit 2A, the defect region determination unit 2B, and the quality determination unit 28 of the solar cell inspection apparatus is transferred to the marking device 80 and marked on the solar cell.
  • Example 1 and Example 2 when it is necessary to wait for a plurality of solar cells that have already been inspected for defects between the solar cell inspection device and the marking device due to the tact time of the production line And the like, only a symbol for identifying the solar cell is given by the marking unit 7 in the solar cell inspection apparatus, and the remaining identification symbols and identification lines (border line between the defect-free region and the defect-free region) The information may be transferred and marked to a marking device 80 outside the solar cell inspection device.
  • the following embodiments can be adopted as other modifications of the first and second embodiments.
  • the identification symbol of the solar battery cell is marked, and the determination information of the defect area is stored in a personal computer or the like with electronic information, and after setting the solar battery cell in another processing apparatus, It is also possible to read a given identification symbol, read necessary defect area determination information and boundary line information from a personal computer, and based on that information, the solar cell is cut to remove unnecessary portions. At this time, threshold information for defect determination is marked on the solar cell to be reused.
  • a method of giving identification information or the like to the solar battery cell not only laser marking but also identification means such as an RF tag can be adopted.
  • the solar cell identification symbol and the defect area determination information can be stored in the RF tag. Therefore, when a malfunction such as a decrease in performance occurs in a solar battery module incorporating a solar battery cell, the necessary information is obtained from the electronic information of the RF tag attached to the solar battery, and the threshold for determining the defect of the inspection device It is possible to improve the accuracy of defect determination by correcting the determination method.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided is an apparatus for inspecting a solar cell having a high cell use efficiency, said apparatus being configured so as to determine whether the quality of the solar cell is acceptable or not by analyzing in detail a solar cell image obtained by photographing the solar cell. The apparatus for inspecting the solar cell includes: an image acquiring unit (5) which acquires the cell image which depicts the solar cell in the state wherein a current is carried therein; a defect determining unit (2A) which identifies defects in the solar cell based on the solar cell image; and a defect region identifying unit (2B) which identifies regions where defects exist and regions where defects do not exist in the solar cell, based on the results of the identification of the solar cell defects.

Description

太陽電池セルの検査装置、検査方法及びそのプログラムを記録した記録媒体Solar cell inspection device, inspection method, and recording medium recording the program
 本発明は、光により発電する機能を有する太陽電池セルを検査する太陽電池セルの検査装置、太陽電池セルの検査方法、及びそのプログラムを記録した記録媒体に関する。 The present invention relates to a solar cell inspection device for inspecting a solar cell having a function of generating electricity by light, a solar cell inspection method, and a recording medium recording the program.
 太陽電池セルに通電させEL発光させて太陽電池セル内の欠陥を検査する方法および装置は、以下の特許文献1に記載されている。
 図15は、特許文献1に記載された検査装置の構成を模式的に示す図である。図15を参照すると、検査装置100は、暗室110と、この暗室110の上部に設けられたCCDカメラ120と、暗室110の床面に載置された太陽電池セル130に電流を流す電源140と、CCDカメラ120からの画像信号を処理する画像処理装置150とからなる構成である。
 暗室110には窓110aがあり、ここにCCDカメラ120のファインダー120aがあって、ここから肉眼で覗くことで、CCDカメラ120の撮影画像を確認することができる。画像処理装置150としては、パソコンを使用している。太陽電池セルをこのような検査装置により検査することで、太陽電池セル内の欠陥を検出することができる。その欠陥の程度により太陽電池セルの良否を判定しているにすぎないため、現時点で使用に耐える否か判定できるのみであり太陽電池セルがどのような状況なのか詳細に知ることができずましてや長期的に使用した場合に不具合が発生する可能性があるか否か考慮していなかった。また使用できないと判定されたものはそのまま廃棄されるか溶解して再生利用されることになる。
 しかしながら、前記従来技術の太陽電池セルの検査装置によると太陽電池セルの欠陥が詳細に判定できないため、太陽電池セルの階級、並びに太陽電池モジュールの性能が正確に判定できない。
 また、前記従来技術によると太陽電池セル全体の階級のみ判定できるので、部分的には使用できるものが全体的に使用できないと判断されてしまうという問題点がある。しかも、太陽電池セルは非常に高価であり調達が困難な状況であり、この問題点は顕著になってきている。また、欠陥を有した太陽電池セルは太陽電池セルの性能が低下するので、従来技術の太陽電池セルの検査装置では、部分的にでも有効に高性能の太陽電池セルとして再利用することはできない。
 更に、前記従来技術によると欠陥の種類と欠陥の程度(欠陥の長さ及び面積等)が正確に判定できない。それで、長期の使用で欠けに進展するような欠陥か否か判定がつかないような欠陥を有した太陽電池セルを太陽電池モジュールに組み込んで、実際に長期に使用して目に見えない欠陥が欠けに進展してもそれが、太陽電池モジュールに組み込まれる前にセルの欠陥の状態がどのような状態であったか確認することができない。その上、従来技術の太陽電池セルの検査装置はその欠陥判定の正確度は装置が出来上がった当初のままで変わる事が無い(正確度が向上することは無い)、使用前の欠陥の程度による使用中の欠け情報の相関関係に関してはどんな記載も無い。即ち使用中の太陽電池セルの欠陥の状況を太陽電池セルの検査装置にフィードバック処理し太陽電池セルやそれを組み込んだ太陽電池モジュールを品質向上させるという記載はまったく無い。
WO/2006/059615
A method and apparatus for inspecting a defect in a solar battery cell by energizing the solar battery cell to emit EL light is described in Patent Document 1 below.
FIG. 15 is a diagram schematically showing the configuration of the inspection apparatus described in Patent Document 1. As shown in FIG. Referring to FIG. 15, the inspection apparatus 100 includes a dark room 110, a CCD camera 120 provided on the dark room 110, and a power supply 140 that supplies current to the solar cells 130 placed on the floor of the dark room 110. The image processing apparatus 150 is configured to process an image signal from the CCD camera 120.
The dark room 110 has a window 110a. A finder 120a of the CCD camera 120 is provided here, and a photographed image of the CCD camera 120 can be confirmed by looking into it with the naked eye. A personal computer is used as the image processing apparatus 150. By inspecting the solar battery cell with such an inspection device, a defect in the solar battery cell can be detected. Because it only determines the quality of the solar cell according to the degree of the defect, it is only possible to determine whether it can withstand use at the present time, and it is not possible to know in detail what the solar cell is. It was not considered whether or not there was a possibility of failure when used for a long time. Also, if it is determined that it cannot be used, it is discarded as it is or dissolved and recycled.
However, according to the solar cell inspection apparatus of the prior art, since the defect of the solar cell cannot be determined in detail, the class of the solar cell and the performance of the solar cell module cannot be accurately determined.
In addition, according to the prior art, since only the class of the entire solar battery cell can be determined, there is a problem that it is determined that what can be partially used cannot be used as a whole. Moreover, solar cells are extremely expensive and difficult to procure, and this problem has become prominent. Moreover, since the performance of the solar cell is deteriorated in the solar cell having defects, the solar cell inspection apparatus of the prior art cannot be partially reused as a high-performance solar cell effectively. .
Furthermore, according to the conventional technique, the type of defect and the degree of defect (defect length, area, etc.) cannot be determined accurately. Therefore, it is possible to incorporate a solar cell with a defect that cannot be determined whether it is a defect that progresses poorly over a long period of use into a solar cell module. Even if it progresses to the chip, it cannot be confirmed what the state of the defect of the cell was before it was incorporated into the solar cell module. In addition, the accuracy of the defect determination of the conventional solar cell inspection device does not change as it was originally made (the accuracy does not improve), and depends on the degree of defects before use. There is no description about the correlation of missing information in use. In other words, there is no description of improving the quality of a solar battery cell or a solar battery module incorporating it by feedback processing of the defect state of the solar battery cell in use to a solar cell inspection apparatus.
WO / 2006/059615
 本発明はこうした状況に鑑みてなされたものであり、その目的は、撮影して得られた太陽電池セルの画像を詳細に分析して太陽電池セルの良否の判定が正確に出来るようにして、セル使用効率の高い太陽電池セルの検査装置、太陽電池セルの検査方法、及びそのプログラムを記録した記録媒体を提供する事にある。更なる目的は、太陽電池セル画像の詳細な分析を利用して、現在のどんな欠陥(暗部)が使用中にて欠けになるかなどに関する相関関係を把握し、その結果を太陽電池セルの欠陥判定方法にフィードバックし欠陥判定の正確度を更に向上させることが可能な太陽電池セルの検査装置、太陽電池セルの検査方法、及びそのプログラムを記録した記録媒体を提供する事にある。 The present invention has been made in view of such a situation, and its purpose is to make it possible to accurately determine the quality of a solar cell by analyzing in detail the image of the solar cell obtained by photographing, An object of the present invention is to provide a solar cell inspection apparatus with high cell use efficiency, a solar cell inspection method, and a recording medium recording the program. A further purpose is to use a detailed analysis of solar cell images to understand the correlation of what defects (dark areas) are missing during use, and to obtain the results of the solar cell defects. An object of the present invention is to provide a solar cell inspection apparatus, a solar cell inspection method, and a recording medium recording the program, which can be fed back to the determination method to further improve the accuracy of defect determination.
 本発明の一態様の太陽電池セルの検査装置は、通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、を含む太陽電池セルの検査装置において、前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セルの検査装置の外部に設けられたマーキング装置を含むことを特徴としている。この一態様によれば、太陽電池セルに識別記号が付与されているので、使用中に不具合が発生した場合にその内容をフィードバックし欠陥判定の正確度を更に向上させることができる。
 またこのような態様の太陽電池セルの検査装置において、太陽電池セルの検査装置の内部にマーキング部を設けた構成としても良い。さらに太陽電池セルの検査装置内部にマーキング部を設けると同時に検査装置の外部にマーキング装置を設ける構成とすることもできる。
 本発明の一態様の太陽電池セルの検査装置は、通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、前記太陽電池セルの撮影画像により、少なくともクラックとクラックによりできた欠けより明るい暗領域情報とを欠陥になる可能性があると判定し、前記撮影画像を2値化処理して得られた画像と前記クラックとクラックによりできた欠けより明るい暗領域情報とを比べて正確に欠陥を判定する欠陥判定部を含むことを特徴としている。この一態様によれば、欠陥ごとに欠陥か否かについて正確に判定できるため太陽電池セルの階級判定が正確になる。この一態様によれば、欠陥であると見なされる可能性のある欠陥ごとに欠陥か否かについて正確に判定できる。
 またこのような態様の太陽電池セルの検査装置において、太陽電池セルの検査装置の外部にマーキング装置を設けた構成としても良いし、または太陽電池セルの検査装置内部にマーキング部を設ける構成としても良い。さらに太陽電池セルの検査装置内部にマーキング部を設けると同時に検査装置の外部にマーキング装置を設ける構成とすることもできる。
 本発明の一態様の太陽電池セルの検査装置は、通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、前記太陽電池セルの欠陥判定結果に基づき太陽電池セルに欠陥の有る領域と欠陥の無い領域を判定して、少なくとも前記太陽電池セルの欠陥の有る領域と欠陥の無い領域の境界とを識別できる境界線情報を含む欠陥領域の判定情報を生成する欠陥領域判定部と、を含むことを特徴としている。この一態様によれば、不良と判定される太陽電池セルにおいて良品と判定できる部分が正確に識別できるようになる。結局、太陽電池セルの使用効率が高くなる。
 またこのような態様の太陽電池セルの検査装置において、太陽電池セルの検査装置の外部にマーキング装置を設けた構成としても良いし、または太陽電池セルの検査装置内部にマーキング部を設ける構成としても良い。さらに太陽電池セルの検査装置内部にマーキング部を設けると同時に検査装置の外部にマーキング装置を設ける構成とすることもできる。
 本発明の一態様の太陽電池セルの検査方法は、通電された状態の太陽電池セルを表すセル画像を取得する工程と、前記太陽電池セルの画像により、少なくともクラックとクラックによりできた欠けより明るい暗領域情報とを欠陥になる可能性があると判定して太陽電池セルの欠陥を判定する工程と、前記撮影画像を2値化して得られた画像と前記クラックとクラックによりできた欠けより明るい暗領域情報とを比べてノイズによる暗領域を削除して暗領域を判定する工程と、前記判定した欠陥と暗領域から得られたセル画像とを基に太陽電池セルの品質を判定する工程とを含むことを特徴としている。この一態様によれば、欠陥であると見なされる可能性のある欠陥ごとに欠陥か否かについて正確に判定できるため太陽電池セルの階級判定の精度が向上する。
 本発明の一態様の太陽電池セルの検査プログラムを記録した記録媒体は、通電された状態の太陽電池セルを表すセル画像を取得する処理と、前記太陽電池セル画像により欠陥を判定する処理と、前記撮影画像から暗領域を判定する処理と、前記欠陥による暗部を含むセル画像を太陽電池セルのバスバーと垂直方向で走査させ、欠陥のない領域を判定する処理と、をコンピュータに実行させることを特徴としている。この一態様によれば、太陽電池セルにおいて、利用できる部分が正確に判定できる。
An inspection apparatus for a solar cell according to one embodiment of the present invention includes an image acquisition unit that acquires a cell image representing a solar cell in an energized state, and a defect determination that determines a defect of the solar cell using the solar cell image. A marking device provided outside the solar cell inspection device for marking at least the solar cell identification symbol information on the solar cell. It is characterized by. According to this one aspect, since the identification symbol is given to the solar battery cell, when a defect occurs during use, the content can be fed back to further improve the accuracy of the defect determination.
Moreover, in the inspection apparatus of the photovoltaic cell of such an aspect, it is good also as a structure which provided the marking part inside the inspection apparatus of a photovoltaic cell. Furthermore, it can also be set as the structure which provides a marking apparatus outside the test | inspection apparatus simultaneously with providing a marking part inside the test | inspection apparatus of a photovoltaic cell.
The solar cell inspection device of one embodiment of the present invention is made of at least cracks and cracks by an image acquisition unit that acquires a cell image representing a solar cell in an energized state and a captured image of the solar cell. It is determined that there is a possibility that the dark area information brighter than the defect may become a defect, and the image obtained by binarizing the photographed image is compared with the dark area information brighter than the defect formed by the crack. And a defect determination unit that accurately determines a defect. According to this aspect, since it is possible to accurately determine whether or not each defect is a defect, the class determination of the solar battery cell becomes accurate. According to this aspect, it is possible to accurately determine whether or not each defect that can be regarded as a defect is a defect.
Moreover, in the inspection apparatus of the solar cell of such an aspect, it is good also as a structure which provided the marking apparatus outside the inspection apparatus of the solar battery cell, or as a structure which provides a marking part inside the inspection apparatus of a solar cell. good. Furthermore, it can also be set as the structure which provides a marking apparatus outside the test | inspection apparatus simultaneously with providing a marking part inside the test | inspection apparatus of a photovoltaic cell.
An inspection apparatus for a solar cell according to one embodiment of the present invention includes an image acquisition unit that acquires a cell image representing a solar cell in an energized state, and a defect determination that determines a defect of the solar cell using the solar cell image. And a region where the solar cell is defective and a region where there is no defect based on the defect determination result of the solar cell, and at least a boundary between the region where the solar cell is defective and the region where there is no defect And a defect area determination unit that generates defect area determination information including boundary line information that can be identified. According to this aspect, it is possible to accurately identify a portion that can be determined as a non-defective product in a solar cell that is determined to be defective. Eventually, the use efficiency of the solar battery cell is increased.
Moreover, in the inspection apparatus of the solar cell of such an aspect, it is good also as a structure which provided the marking apparatus outside the inspection apparatus of the solar battery cell, or as a structure which provides a marking part inside the inspection apparatus of a solar cell. good. Furthermore, it can also be set as the structure which provides a marking apparatus outside the test | inspection apparatus simultaneously with providing a marking part inside the test | inspection apparatus of a photovoltaic cell.
The method for inspecting a solar battery cell according to one embodiment of the present invention is brighter than at least cracks and cracks caused by cracks, by the step of obtaining a cell image representing an energized solar battery cell and the image of the solar battery cell. It is brighter than the image obtained by binarizing the photographed image, the crack, and the chip formed by the crack. A step of determining a dark region by deleting a dark region due to noise in comparison with the dark region information, and a step of determining the quality of the solar battery cell based on the determined defect and a cell image obtained from the dark region; It is characterized by including. According to this aspect, since it is possible to accurately determine whether or not each defect that can be regarded as a defect is a defect, the accuracy of the solar cell class determination is improved.
The recording medium on which the photovoltaic cell inspection program of one embodiment of the present invention is recorded includes a process of obtaining a cell image representing a solar cell in an energized state, a process of determining a defect from the solar cell image, A process of determining a dark area from the captured image and causing a computer to execute a process of scanning a cell image including a dark part due to the defect in a direction perpendicular to the bus bar of the solar battery cell and determining an area without a defect. It is a feature. According to this one aspect, in the solar battery cell, a usable part can be accurately determined.
 本発明によれば、太陽電池セルの階級判定において、使用中に将来大きな欠陥に進展する可能性の有る欠陥の判定の正確度及び太陽電池セルの使用効率を高くする事ができる。 According to the present invention, in the determination of the class of solar cells, the accuracy of determination of a defect that may develop into a large defect in the future during use and the use efficiency of the solar cell can be increased.
 図1は、太陽電池セルの説明図である。
 図2は、本発明の実施例1に係る太陽電池セルの検査装置の構成例を表すブロック図である。
 図3は、本発明の実施例1に係る太陽電池セルの検査装置の制御部の構成例を表すブロック図である。
 図4は、本発明の実施例1に係る太陽電池セルの検査方法を表すフローチャートである。
 図5は、太陽電池セル画像の例を表す図面である。
 図6は、クラック位置情報の生成の説明図である。
 図7は、暗領域位置情報の生成の説明図である。
 図8は、本発明の実施例2に係る太陽電池セルの検査装置の制御部の構成例を表すブロック図である。
 図9は、本発明の実施例2に係る太陽電池セルの検査方法を表すフローチャートである。
 図10は、欠陥領域判定方法を詳しく説明するフローチャートである。
 図11は、欠陥領域判定手段の説明図1である。
 図12は、欠陥領域判定手段の説明図2である。
 図13は、マーキングされた太陽電池セルの受光面(a)及び裏面(b)を示す図面である。
 図14は、実施例1と実施例2の一変形例を示す図面である。
 図15は、従来の太陽電池セルの検査装置を示す図面である。
FIG. 1 is an explanatory diagram of a solar battery cell.
FIG. 2 is a block diagram illustrating a configuration example of the solar cell inspection apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a block diagram illustrating a configuration example of a control unit of the solar cell inspection apparatus according to Embodiment 1 of the present invention.
FIG. 4 is a flowchart showing a solar cell inspection method according to Embodiment 1 of the present invention.
FIG. 5 is a diagram illustrating an example of a solar battery cell image.
FIG. 6 is an explanatory diagram of generation of crack position information.
FIG. 7 is an explanatory diagram of generation of dark region position information.
FIG. 8: is a block diagram showing the structural example of the control part of the inspection apparatus of the photovoltaic cell which concerns on Example 2 of this invention.
FIG. 9 is a flowchart showing a method for inspecting a solar battery cell according to Example 2 of the present invention.
FIG. 10 is a flowchart for explaining in detail the defect area determination method.
FIG. 11 is an explanatory diagram 1 of the defect area determination means.
FIG. 12 is an explanatory diagram 2 of the defect area determination means.
FIG. 13 is a drawing showing a light receiving surface (a) and a back surface (b) of a marked solar battery cell.
FIG. 14 is a drawing showing a modification of the first embodiment and the second embodiment.
FIG. 15 is a diagram showing a conventional solar cell inspection apparatus.
 1    太陽電池セル
 2    太陽電池セルの検査装置
 3    通電部
 4    位置決め部
 5    撮像部
 7    マーキング部
 8    操作部
 9    表示部
 10   半導体基板
 11   フィンガー部
 12   バスバー部
 13   裏面側電極
 14   接続部
 2A   欠陥判定部
 2B   欠陥領域判定部
 20   制御部
 21   通電制御部
 22   位置制御部
 23   画像取得部
 24   クラック位置情報生成部
 25   クラック判定部
 26   暗領域位置情報生成部
 27   暗領域判定部
 28   品質判定部
 29   表示制御部
 30   セル画像
 32a、32b、32c   クラック
 34a、34b、36   暗領域
 37   結晶粒界
 42a、42b、42c,46、47   明度の変化の境界部分
 57   結晶粒界37に対応する暗領域
 61a、61b   欠陥のある領域を示すためにマーキングされる識別記号
 62a、62b   太陽電池セルの識別記号
 63a、63b   判定の階級を表す識別記号
 64、65   境界線
 70   太陽電池の識別記号
 71   階級情報を識別記号
 72   閾値の情報を表す識別記号
 80   マーキング装置
 100   太陽電池セルの検査装置
 110   暗室
 120   CCDカメラ
 130   太陽電池セル
 140   電源
 150   画像処理装置
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Solar cell inspection apparatus 3 Current supply part 4 Positioning part 5 Imaging part 7 Marking part 8 Operation part 9 Display part 10 Semiconductor substrate 11 Finger part 12 Bus bar part 13 Back surface side electrode 14 Connection part 2A Defect determination part 2B Defect region determination unit 20 Control unit 21 Energization control unit 22 Position control unit 23 Image acquisition unit 24 Crack position information generation unit 25 Crack determination unit 26 Dark region position information generation unit 27 Dark region determination unit 28 Quality determination unit 29 Display control unit 30 Cell image 32a, 32b, 32c Crack 34a, 34b, 36 Dark region 37 Grain boundary 42a, 42b, 42c, 46, 47 Boundary part of change in brightness 57 Dark region 61a, 61b corresponding to grain boundary 37 Defective Marking to indicate the area Identification symbol 62a, 62b Identification symbol 63a, 63b Identification cell 63a, 63b Identification symbol 64, 65 Boundary line 70 Solar cell identification symbol 71 Classification information 72 Identification symbol 72 Threshold information identification 80 Marking device DESCRIPTION OF SYMBOLS 100 Solar cell inspection apparatus 110 Dark room 120 CCD camera 130 Solar cell 140 Power supply 150 Image processing apparatus
 まず、本発明の実施形態を説明する前に、太陽電池セルの欠陥と、太陽電池セルを撮像して得られたセル画像との差について説明する。得られたセル画像の明度が低い部分としては、クラック(1)と暗領域がある。暗領域の中では明らかに暗い暗領域とやや暗い暗領域(明らかに暗領域より明るいことが明確である領域)がある。そして、やや暗い暗領域の中でも結晶粒界により生じる暗領域(2)と少なくても一部の境界がクラックに囲まれて生じる暗領域(3)とがある。明らかに暗い暗領域の中でも現在のクラックによる欠けとして全然発光しない暗領域(4)とフィンガー断線による欠陥として全然発光しない暗領域(5)とがある。
 この中で、(2)は欠陥ではなくて欠けでもない。(4)(5)は欠陥であり太陽電池の効率低下に繋がり、(1)(3)は欠陥とは言えるものの現状態では欠けとは言えないが、但し使用により将来欠けになる可能性があると判定できる部分である。本発明によれば、以上の欠陥の種類を詳細に分類して太陽電池セルの使用効率を高めるとこが出来る。
First, before describing an embodiment of the present invention, a difference between a defect of a solar battery cell and a cell image obtained by imaging the solar battery cell will be described. As a portion where the brightness of the obtained cell image is low, there are a crack (1) and a dark region. Among the dark areas, there are obviously dark areas and slightly dark areas (areas that are clearly brighter than the dark areas). Among the darker dark areas, there are a dark area (2) caused by a crystal grain boundary and a dark area (3) produced at least partially surrounded by cracks. There are apparently dark areas (4) that do not emit light at all as defects due to current cracks and dark areas (5) that do not emit light as defects due to finger disconnection.
Among these, (2) is neither a defect nor a chip. (4) (5) is a defect, which leads to a decrease in the efficiency of the solar cell. (1) (3) is a defect, but it cannot be said that it is missing in the present state. It is a part that can be determined to be. According to the present invention, it is possible to classify the above types of defects in detail to increase the use efficiency of the solar battery cell.
 実施例1は、太陽電池セルを太陽電池モジュールに組み込み実際使用した結果を太陽電池セルの検査装置の欠陥判定にフィードバックできるようにし、太陽電池セル検査装置の欠陥の判定をより正確にする手段と方法である。
 図1は、本実施形態に係る太陽電池セルを示す図面であって、図1(a)は、太陽電池セルの受光面側の平面図であり、図1(b)は、太陽電池セルの裏面側の平面図である。太陽電池セル1は、半導体基板10と、半導体基板10の受光面及び裏面に設けられた電極と、を含んで構成されている。
 半導体基板10は、例えば一辺を略150mm四方の矩形状とし、厚さを略0.16mmとする平板状に形成されている。また、半導体基板10は、単結晶シリコン、多結晶シリコン及びアモルファスシリコン等の元素半導体や化合物半導体等を用いて形成されている。半導体基板10は、光エネルギーを電気エネルギーに変換する機能を有する。
 半導体基板10の受光面上には、フィンガー部11とバスバー部12とが設けられている(図1(a)参照)。フィンガー部11は、半導体基板10の一辺から対向する一辺に亘って平行に複数、設けられている。フィンガー部11により、半導体基板10の受光面側に発生した電子を集電する。バスバー部12は、受光面側電極であり、フィンガー部11が設けられている方向と直交する方向に半導体基板10の一辺から対向する一辺に亘って平行に2本設けられている。バスバー部12は、フィンガー部11によって集電された電子を集電すると共に、タブリードが接続される。
 半導体基板10の照射面の反対側である裏面上には、裏面側電極13と接続部14とが設けられている(図1(b)参照)。裏面側電極13は、半導体基板10の裏面全体に亘って設けられている。裏面側電極13は、例えばアルミニウムを半導体基板10の裏面に塗布した後に焼成等して形成されている。裏面側電極13により、半導体基板10の裏面側に発生した正孔を集電する。接続部14は、半導体基板10の裏面に断続的に複数、本図では例えば8ヶ所が設けられている。具体的に説明すると、接続部14は、半導体基板10の受光面に設けられたバスバー部12と、半導体基板10の厚みの中心を横切る仮想中央面に対して対称な位置であって、接続部14が一定間隔に所定距離の隙間を有するように形成されている。この接続部14は、裏面側電極13上にハンダを蒸着させて形成させてもよい。接続部14には、タブリードが接続される。
 また、本発明において、太陽電池セルは、薄膜式の太陽電池セルであってもよい。
 図2は、本実施形態に係る太陽電池セルの検査装置の構成例を表すブロック図である。この太陽電池セルの検査装置2では、装置全体の制御を司る制御部20に、通電部3、位置決め部4、撮像部5、マーキング部7、操作部8及び表示部9が接続されている。本検査装置では、測定するべき太陽電池セルは1つでもよいし、複数個でもよい。また複数個の太陽電池セルを本実施形態の太陽電池セルの検査装置に配置する時は、検査装置内に別々に複数個の太陽電池セルを配置しても良いし、タブリードにより太陽電池セルを直線的に接続したストリングでも良いしストリングを複数列平行に接続したパネル状のものを配置しても良い。
 通電部3は、制御部20からの指令に応じて、検査対象としての太陽電池セルに通電する。この通電部3は、不図示のプローブにより一つ以上の太陽電池セルの各太陽電池セルに順方向電流を供給する。図2にては太陽電池セルを1枚のみ設置した場合を図示している。
 撮像部5は、CCDカメラ等で構成され、制御部20からの指令に応じて、通電された状態の一つ以上の太陽電池セルを撮像する。マーキング部7は、太陽電池セルの撮像した結果により検査した太陽電池セルの欠陥判定の結果に基づき太陽電池セルの識別記号、階級記号及び後述する実施例における欠陥の有る領域と欠陥の無い領域との境界線などをマーキングする。位置決め部4は、制御部20からの指令に応じて、撮像部5を各太陽電池セルの所定の撮像位置に移動させ、位置決めする。さらに検査する太陽電池セルが装置内に複数枚配置されている場合は、通電部3やマーキング部7もこの位置決め部4により所定の位置に移動させ、位置決めする。
 これらの各部の相互作用を説明する。撮像部5は、位置決め部4により移動され、太陽電池セルの検査装置内に配置された一つ以上の太陽電池セルを順次撮像していく。また、これにより得られる、太陽電池セルを表すセル画像のデータは、制御部20に順次入力される。入力された画像データによって制御装置内の欠陥判定部(図3の2A参照)にて欠陥の有無を判断する。そして検査装置内に設けられたマーキング部7により識別記号等が付与される。
 なお、こうした太陽電池セルの撮像は、暗室内で行われる。また、太陽電池セルのEL(エレクトロルミネッセンス)光は微弱であるので、撮像部5としては比較的感度の高いカメラが好適である。
 制御部20は、CPU(中央演算装置)及びその作業領域であるRAM等を含んだコンピュータとして構成されている。また、制御部20は、CPUの動作に必要なプログラム及びデータを記憶する記憶部を含んでいてもよい。また、操作部8は、キーボードやマウス等で構成され、ユーザの操作に基づく操作入力を制御部20に転送する。表示部9は、液晶ディスプレイ等で構成され、制御部20からの表示指令に応じた画像を表示する。
 図3は、制御部の機能構成例を表すブロック図であり、図4は、この制御部において実現される太陽電池セルの検査方法を表すフローチャートである。制御部20は、通電制御部21、位置制御部22、画像取得部23、欠陥判定部2A、品質判定部28及び表示制御部29を機能的に有している。そしてCPUが、記憶部に格納されたプログラムを実行することにより、各部は当該処理を行う。
 通電制御部21は、通電部3を制御して、一つ以上の太陽電池セル1への通電を実行する。これにより、各太陽電池セル1はEL光を発する。ここで、電圧値、電流値及び通電時間などの通電条件のデータは、制御部20の記憶部に格納されている。
 位置制御部22は、位置決め部4を制御して、撮像部5、通電部3およびマーキング部7の位置制御を実行する。具体的には、位置制御部22は、撮像部5を各太陽電池セル1を撮像可能な各撮像位置に順次移動させ、通電部3を各太陽電池セル1の位置に順次移動させ、さらにマーキング部7を各太陽電池セルの位置に順次移動させる。こうした撮像位置は、太陽電池セル1の寸法や数、配列間隔等により定められ、制御部20の記憶部にデータとして格納されている。
 画像取得部23は、通電された状態の太陽電池セルを表すセル画像のデータを、撮像部5から取得する(S1)。また、画像取得部23は、取得したセル画像の下処理を行う(S2)。セル画像の下処理としては、例えば、太陽電池セル1のEL光の明度を規格化するスケーリング処理、太陽電池セル1の領域を抽出するセル領域抽出処理、太陽電池セル1のバスバー12部分を除くバスバー除外処理、及び撮像部5のレンズに起因する明度差を補正するシェーディング処理などがある。
 そして、画像取得部23は、下処理が施されたセル画像のデータを、欠陥判定部2Aに出力する。欠陥判定部2Aは、クラック位置情報生成部24、クラック判定部25、暗領域位置情報生成部26および暗領域判定部27を含んでいる。
 図5は、セル画像30の例を表す図である。セル画像30内には、太陽電池セル1の欠陥部分が比較的明度の低い暗部となって現れる。こうした欠陥部分としては、クラック32a、32b、32c及び暗領域34a,34bなどがある。ここで、一つのセル画像には少なくとも数十万から数百万に至る画像が含まれ、肉眼で確認できない欠陥でもセル画像の画像群として判定できる。
 クラック32a、32b、32cは、セル画像30内に明度の低い線状の画素群として現れる。こうしたクラック32a、32b、32cは、発光が良好な部分との明度差が大きい。こうしたクラック32a、32b、32cは、バスバー12や接続部14にタブリードを半田付けする際の熱や、加工時や輸送時の荷重や衝撃により生じると思量する。
 他の暗領域として、セルの欠けやフィンガー断線により発生する暗領域がある。
 暗領域34a,34bは、セル画像30内に、一定以上の面積を持った明度の低い画素群として現れる。こうした暗領域34a,34bは、クラック32a,32bによって電流の供給が阻害されることで生じる。すなわち、暗領域34a,34bは、クラック32a,32bに起因する。従って、暗領域34a,34bの外縁の少なくとも一部には、クラック32a,32bが重なっていることが多い。また、暗領域34a,34bの明度は一律ではなく、周囲と比較してやや明度が低い暗領域34aと、明らかに明度が低い暗領域34bとがある。なお、明らかに明度が低い暗領域34bでは、その外縁にクラック32bが生じていても、明度が同程度であるため両者の判別が困難な場合がある。
 さらに、フィンガー断線によっても暗領域36が生じる。この場合は、太陽電池セルのバスバーと直角に配置されたフィンガーの間に矩形状に暗領域が生じる。
 この他、セル画像30内には、太陽電池セル1の結晶粒界37が現れることがある。こうした結晶の粒界37は、太陽電池セル1の欠陥ではないが、セル画像30内に、周囲よりもやや明度の低い画素群として現れてしまう。なお、こうした結晶粒界37は、比較的小さな形状であることが多い。
 図3及び図4の説明に戻る。欠陥判定部2Aのクラック位置情報生成部24は、セル画像30内でクラック32a、32b、32cを特定し、これらクラック32a、32b、32cの位置・形状の情報を生成する(S3)。こうして生成されたクラック位置・形状の情報は、クラック判定部25、暗領域判定部27を通して品質判定部28及び表示制御部29に出力される。具体的には、クラック判定部25は、セル画像30内で明度の変化の境界部分を抽出することで、クラック32a、32b、32cの位置を特定する。こうした境界部分の抽出は、微分フィルタなどを用いることで実現できる。上記クラック位置・形状の情報には実際にクラックではない情報も含まれていて、それを除外してクラックを判定する(S4)。クラックを判定する例は以下のように行なわれる。
 図6は、クラック位置・形状情報の生成の説明図である。上記図5に示したセル画像30に対して微分フィルタを適用すると、図6に示されるように、明度の変化の境界部分42a、42b、42c,46、47が抽出される。このうち、境界部分42a、42b、42cはクラック32a、32b、32cに各々対応し、境界部分47は結晶粒界37に対応する。境界部分46はフィンガー断線部分36と対応する。そこで、セル画像において明るさの差が大きくなるほど境界部分は太くなる。
 クラック位置情報生成部24は、このように抽出される境界部分42a、42b、42c,47、46の中から、同じ太さの線状に延びる境界部分42a、42b、42cを選別することで、クラック32a、32b、32cの位置を特定することができる。
 ここで、線状として延びるということは、始点と終点の区別ができない線状の部分(閉曲線)は除くことで、欠陥ではない結晶粒界のような円状形は除外されるのであり(結晶粒界区別処理1)、フィンガー断線により生じた四角形も除外できる(断線区別処理1)。
 更なる方法では、クラック位置情報生成部24は、フィンガー断線による欠陥をクラックと区別するためにセル画像中、四角形で現れる領域はフィンガー断線による境界部分と判定できる。なお、その四角形の外縁が全体セル画像にて垂直及び水平ならそれをフィンガー断線によるものと判断できる(断線区別処理2)。
 また、結晶粒界のような無害なものが欠陥と判定されないように以下のような防止手段を追加的または選択的に採用してもよい。境界部分42a、42b、42c,47を構成する画素群を囲む最小矩形のアスペクト比(長手方向の長さと幅方向の長さとの比)を求めることも行う。ここで、2次元最小矩形の一辺の角度は必ずしもセル画像を対比して0度と90度に限らず、ある角度の方向に向かって伸ばせばよい。このアクペクト比の閾値を設定し、その閾値が設定値より小さなものは欠陥ではないと判定する。結晶粒界は、比較的小さな略円形状をしているので、アスペクト比は小さな数値であるため、結晶粒界がクラックとして判定されることを防止できる(結晶粒界区別処理2)。
 さらに、この結晶粒界区別処理2にて、フィンガー断線による境界部分と区別するため、境界部分の中の明度さを利用することもできる。この様にすれば、上記断線区別処理2は行わず、上記結晶粒界区別処理2のみ行ってもフィンガー断線による境界部分と区別できる。但し、夫々の処理を同時に行うことにより正確度が更に高まる。
 なお、クラック判定部25では、クラック位置情報生成部24からの画像情報により各クラックの長さとクラックと判定する閾値を比較し、閾値以下のものはクラックから除外する。そうすると、撮像の際に発生した画像のノイズが相当除外される。
 図3及び図4の説明に戻る。暗領域位置情報生成部26は、セル画像30に対して2値化処理を行い、所定以上の面積の暗画素群を特定することで、暗領域34a,34b等の位置を表す暗領域位置情報を生成する(S5)。こうして生成された暗領域位置情報は、暗領域判定部27に出力される。
 ここで、2値化処理の明度の閾値は、周囲と比較してやや明度が低い暗領域34a(図5を参照)の各画素が暗画素と判断される程度に設定される。
 図7は、暗領域位置情報の生成の説明図である。上記図5に示したセル画像30に対し、こうした閾値による2値化処理を行うと、図7に示されるように、クラック32a、32b、32cに起因する暗領域34a,34bの他に、結晶粒界37に対応する暗領域57と断線に対応する暗領域36とも抽出されてしまうことがある。
 また、この他にも、太陽電池セル1の外周部分の明度が中央部分の明度よりもやや落ちることや、個々の太陽電池セル1から発光される光の明度にバラツキがあること等の要因によっても、2値化処理において意図しない暗領域が抽出されてしまうことがある。従って、暗領域位置情報は、このようにクラック32a、32b、32cに起因する暗領域34a,34bの位置を表す情報の他に、結晶粒界37に対応する暗領域57等の意図しない暗領域の位置を表す情報を含むことがある。なお、この暗領域位置情報は、暗領域34a,34b等の座標情報を含む。また、暗領域位置情報は、暗領域34a,34b等の外縁の座標情報も含む。具体的には、各暗領域34a,34b等の外縁は、直線の組み合わせとして定義され、各直線の始点および終点の座標情報が、暗領域位置情報に含まれる。また、暗領域位置情報は、暗領域34a,34bの面積の情報を含んでいてもよい。
 図3及び図4の説明に戻る。暗領域判定部27は、入力されるクラック位置情報および暗領域位置情報に基づいて、上記S4で抽出された暗領域34a,34b,36、57の中から、クラック32a、32b、32cに起因する暗領域34a,34bを判定する(S6)。フィンガー断線の暗領域や結晶粒界による暗領域の境界線は、クラックであると判定しない。したがって例えば少なくとも暗領域の外縁の始点および終点の座標情報を含む暗領域位置情報とクラック位置情報生成部24から出力されるクラック位置・形状情報を比べて重ならない暗領域は、フィンガー断線か結晶粒界であり除外する。暗領域判定部27は、判定結果に応じて暗領域位置情報を修正し、品質判定部28及び表示制御部29に結果を出力する。
 品質判定部28は、セル画像30内で特定されたクラック32a、32b、32cの数又は/及び長さ、クラック32a,32bに起因する暗領域34a,34bの数又は/及び大きさ、及びフィンガー断線による暗領域36の数又は/及び大きさなどに基づいて、セル画像30に表された太陽電池セル1の品質を判定し、階級分けを行う(S7)。この品質の階級に関する情報は、表示制御部29に出力される。ここで、品質の判定には、クラック32a、32b、32c及び暗領域34a,34bの数の単純な合計を用いてもよいし、これらの種類に応じた重み付け和を用いてもよいし、これらの大きさ(面積)や長さに応じた重み付け和を用いてもよい。
 品質判定部28で判定された太陽電池セルの階級の情報は、マーキング部7に出力(転送)される。ここで、単純なクラックや、そのクラックによりできた欠けより明るい暗領域情報も欠陥になる可能性があるので階級の判定に考慮する。
 表示制御部29は、セル画像30内で特定されたクラック32a、32b、32cと、クラック32a,32bに起因する暗領域34a,34b、及びフィンガー断線による暗領域36を識別表示する表示用画像を生成し(S8)、この表示用画像を表示部9に表示させる表示制御を行う(S9)。また表示制御部29は、品質判定部28からの情報に基づいて、太陽電池セル1の品質の階級を識別表示するようにしてもよい。マーキング部7は品質判定部28の結果に基づいて太陽電池セルの階級と太陽電池セルの識別記号等の情報をマーキング部7へ転送する(S12)。そして転送された情報を太陽電池セルにマーキングする(S10)。これらの太陽電池セルの階級と識別記号のマーキング作業は、公知のレーザ照射装置を使用することで実現することができる。またこのレーザ照射装置からなるマーキング部は、本発明の太陽電池セルの検査装置内に設けることもできるし、マーキング装置として太陽電池セルの検査装置外に別置とすることもできる。
 またこれらの太陽電池セルの階級情報や識別記号は、太陽電池の検査装置の制御部20内の記憶部などに保存しておくことができる。尚保存容量が大きくなった場合は、別置きのコンピュータに保存しておくことでも良い。
 以上、本発明の第1の実施形態について説明したが、上記実施形態に限定されるものではなく、種々の変形実施が当業者にとって可能であることはもちろんである。例えば、一つの変形例として、上記クラック位置情報生成部24は、微分フィルタによりクラック32a、32b、32cなどの位置の特定を行っていたが、この態様に限らず、例えば、セル画像30内で周囲よりも明度が低い線状の画素群を抽出し、これをクラック32a、32b、32cなどとして特定するようにしてもよい。
 以上説明したように本実施形態によれば、太陽電池セルの欠陥が詳細に判定できる。また階級判定された太陽電池セルを使用した太陽電池モジュールの性能や良否を詳しく判定できる。
 このように太陽電池モジュールに組み込まれた太陽電池セルには識別情報がマーキングされているので、その使用中に欠けが発生し性能低下などの不具合が発生すれば、太陽電池セルを検査した時のその欠陥判定の閾値が分かるので、その結果を検査装置の判定方法にフィードバック処理をすることができる。例えばあるクラック(図5の32c参照)が、後で、使用中で欠けになった時には、現在設定している欠陥判定用の閾値を変更(再調整)して次の検査の時には、このようなクラック(図5の32c)と等しい欠陥は太陽電池セルの検査装置にて欠陥と判定することができる。この外にも、時間経過後の欠陥の変化や、その変化の欠陥による差異などの多くの情報を使用中に集めることができるため、段階的に閾値の正確性、欠陥判定の正確性などを高めることができる。
Example 1 is a means for enabling a result of actual use of a solar cell module incorporated in a solar cell module to be fed back to the defect determination of the solar cell inspection device, and more accurately determining the defect of the solar cell inspection device; Is the method.
FIG. 1 is a view showing a solar battery cell according to the present embodiment, in which FIG. 1 (a) is a plan view on the light receiving surface side of the solar battery cell, and FIG. 1 (b) is a view of the solar battery cell. It is a top view on the back side. The solar battery cell 1 includes a semiconductor substrate 10 and electrodes provided on the light receiving surface and the back surface of the semiconductor substrate 10.
The semiconductor substrate 10 is formed in a flat plate shape having, for example, a rectangular shape with a side of approximately 150 mm square and a thickness of approximately 0.16 mm. The semiconductor substrate 10 is formed using an elemental semiconductor such as single crystal silicon, polycrystalline silicon, and amorphous silicon, a compound semiconductor, or the like. The semiconductor substrate 10 has a function of converting light energy into electrical energy.
Finger portions 11 and bus bar portions 12 are provided on the light receiving surface of the semiconductor substrate 10 (see FIG. 1A). A plurality of finger portions 11 are provided in parallel from one side of the semiconductor substrate 10 to the opposite side. The fingers 11 collect the electrons generated on the light receiving surface side of the semiconductor substrate 10. The bus bar portion 12 is a light receiving surface side electrode, and two bus bar portions 12 are provided in parallel across one side facing from one side of the semiconductor substrate 10 in a direction orthogonal to the direction in which the finger portions 11 are provided. The bus bar portion 12 collects electrons collected by the finger portion 11 and is connected to a tab lead.
On the back surface opposite to the irradiation surface of the semiconductor substrate 10, a back surface side electrode 13 and a connection portion 14 are provided (see FIG. 1B). The back side electrode 13 is provided over the entire back side of the semiconductor substrate 10. The back surface side electrode 13 is formed by, for example, baking aluminum after applying aluminum on the back surface of the semiconductor substrate 10. The back surface side electrode 13 collects holes generated on the back surface side of the semiconductor substrate 10. A plurality of connection portions 14 are intermittently provided on the back surface of the semiconductor substrate 10, for example, eight locations in the drawing. More specifically, the connecting portion 14 is a position symmetrical to the bus bar portion 12 provided on the light receiving surface of the semiconductor substrate 10 and a virtual central plane crossing the center of the thickness of the semiconductor substrate 10. 14 is formed to have a gap of a predetermined distance at regular intervals. The connection portion 14 may be formed by vapor-depositing solder on the back surface side electrode 13. A tab lead is connected to the connecting portion 14.
In the present invention, the solar battery cell may be a thin film solar battery cell.
FIG. 2 is a block diagram illustrating a configuration example of the solar cell inspection apparatus according to the present embodiment. In this solar cell inspection apparatus 2, an energization section 3, a positioning section 4, an imaging section 5, a marking section 7, an operation section 8, and a display section 9 are connected to a control section 20 that controls the entire apparatus. In this inspection apparatus, the number of solar cells to be measured may be one or plural. Further, when a plurality of solar cells are arranged in the solar cell inspection apparatus of this embodiment, a plurality of solar cells may be separately arranged in the inspection apparatus, or solar cells are arranged by tab leads. A string connected in a straight line may be used, or a panel-like structure in which a plurality of strings are connected in parallel may be arranged.
The energization unit 3 energizes the solar battery cell as the inspection target in response to a command from the control unit 20. The energization unit 3 supplies a forward current to each of the one or more solar cells using a probe (not shown). In FIG. 2, the case where only one photovoltaic cell is installed is illustrated.
The imaging unit 5 is configured with a CCD camera or the like, and images one or more solar cells in an energized state in response to a command from the control unit 20. The marking unit 7 includes a solar cell identification symbol, a class symbol, and a defect-free region and a defect-free region in an embodiment described later based on the result of the defect determination of the solar cell inspected based on the result of imaging of the solar cell. Mark the boundary line. The positioning unit 4 moves and positions the imaging unit 5 to a predetermined imaging position of each solar battery cell in accordance with a command from the control unit 20. Further, when a plurality of solar cells to be inspected are arranged in the apparatus, the energization unit 3 and the marking unit 7 are also moved to predetermined positions by the positioning unit 4 and positioned.
The interaction of these parts will be described. The imaging unit 5 is moved by the positioning unit 4 and sequentially images one or more solar cells arranged in the solar cell inspection apparatus. Moreover, the data of the cell image showing a photovoltaic cell obtained by this is input into the control part 20 sequentially. Based on the input image data, the defect determination unit (see 2A in FIG. 3) in the control device determines whether or not there is a defect. And an identification symbol etc. are provided by the marking part 7 provided in the inspection apparatus.
Such solar cell imaging is performed in a dark room. Further, since the EL (electroluminescence) light of the solar battery cell is weak, a camera with relatively high sensitivity is suitable as the imaging unit 5.
The control unit 20 is configured as a computer including a CPU (Central Processing Unit) and a RAM as a work area thereof. The control unit 20 may include a storage unit that stores programs and data necessary for the operation of the CPU. The operation unit 8 includes a keyboard, a mouse, and the like, and transfers operation inputs based on user operations to the control unit 20. The display unit 9 is composed of a liquid crystal display or the like, and displays an image corresponding to a display command from the control unit 20.
FIG. 3 is a block diagram illustrating a functional configuration example of the control unit, and FIG. 4 is a flowchart illustrating a solar cell inspection method realized in the control unit. The control unit 20 functionally includes an energization control unit 21, a position control unit 22, an image acquisition unit 23, a defect determination unit 2A, a quality determination unit 28, and a display control unit 29. And each part performs the said process, when CPU runs the program stored in the memory | storage part.
The energization control unit 21 controls the energization unit 3 to energize one or more solar cells 1. Thereby, each photovoltaic cell 1 emits EL light. Here, data of energization conditions such as a voltage value, a current value, and an energization time are stored in the storage unit of the control unit 20.
The position control unit 22 controls the positioning unit 4 to execute position control of the imaging unit 5, the energization unit 3, and the marking unit 7. Specifically, the position control unit 22 sequentially moves the imaging unit 5 to each imaging position where each solar cell 1 can be imaged, sequentially moves the energization unit 3 to the position of each solar cell 1, and further performs marking. The part 7 is sequentially moved to the position of each solar battery cell. Such imaging positions are determined by the size and number of solar cells 1, the arrangement interval, and the like, and are stored as data in the storage unit of the control unit 20.
The image acquisition unit 23 acquires cell image data representing the energized solar cell from the imaging unit 5 (S1). In addition, the image acquisition unit 23 performs preprocessing of the acquired cell image (S2). As the cell image preprocessing, for example, scaling processing for standardizing the brightness of the EL light of the solar battery cell 1, cell area extraction processing for extracting the solar battery cell 1 area, and the bus bar 12 portion of the solar battery cell 1 are excluded. There are a bus bar exclusion process, a shading process for correcting a brightness difference caused by the lens of the imaging unit 5, and the like.
Then, the image acquisition unit 23 outputs the cell image data subjected to the preprocessing to the defect determination unit 2A. The defect determination unit 2A includes a crack position information generation unit 24, a crack determination unit 25, a dark region position information generation unit 26, and a dark region determination unit 27.
FIG. 5 is a diagram illustrating an example of the cell image 30. In the cell image 30, the defective part of the solar battery cell 1 appears as a dark part with relatively low brightness. Such defective portions include cracks 32a, 32b, 32c and dark regions 34a, 34b. Here, one cell image includes at least hundreds of thousands to millions of images, and even a defect that cannot be confirmed with the naked eye can be determined as an image group of the cell image.
The cracks 32 a, 32 b, and 32 c appear as a linear pixel group with low brightness in the cell image 30. These cracks 32a, 32b, and 32c have a large difference in brightness from portions that emit light well. Such cracks 32a, 32b, and 32c are considered to be caused by heat when soldering the tab lead to the bus bar 12 or the connecting portion 14, or a load or impact during processing or transportation.
As another dark region, there is a dark region caused by cell chipping or finger disconnection.
The dark regions 34a and 34b appear in the cell image 30 as a pixel group having a certain area or more and low brightness. Such dark regions 34a and 34b are generated when current supply is inhibited by the cracks 32a and 32b. That is, the dark areas 34a and 34b are caused by the cracks 32a and 32b. Accordingly, the cracks 32a and 32b often overlap at least a part of the outer edges of the dark regions 34a and 34b. In addition, the brightness of the dark areas 34a and 34b is not uniform, and there are a dark area 34a having a slightly lower brightness than the surrounding area and a dark area 34b having a clearly lower brightness. It should be noted that in the dark region 34b where the lightness is clearly low, even if a crack 32b occurs at the outer edge, the lightness is almost the same, and therefore it may be difficult to distinguish between the two.
Further, the dark region 36 is also generated by finger disconnection. In this case, a dark region is formed in a rectangular shape between fingers arranged at right angles to the bus bar of the solar battery cell.
In addition, the crystal grain boundary 37 of the solar battery cell 1 may appear in the cell image 30. Such a crystal grain boundary 37 is not a defect of the solar battery cell 1 but appears in the cell image 30 as a pixel group having a slightly lower brightness than the surroundings. Such crystal grain boundaries 37 often have a relatively small shape.
Returning to FIG. 3 and FIG. The crack position information generation unit 24 of the defect determination unit 2A identifies the cracks 32a, 32b, and 32c in the cell image 30, and generates information on the positions and shapes of the cracks 32a, 32b, and 32c (S3). The information on the crack position / shape generated in this way is output to the quality determination unit 28 and the display control unit 29 through the crack determination unit 25 and the dark region determination unit 27. Specifically, the crack determination unit 25 identifies the positions of the cracks 32 a, 32 b, and 32 c by extracting the boundary part of the brightness change in the cell image 30. Such extraction of the boundary portion can be realized by using a differential filter or the like. The information on the crack position / shape includes information that is not actually a crack, and the crack is determined by excluding it (S4). An example of determining a crack is performed as follows.
FIG. 6 is an explanatory diagram of generation of crack position / shape information. When the differential filter is applied to the cell image 30 shown in FIG. 5, boundary portions 42a, 42b, 42c, 46, and 47 of brightness changes are extracted as shown in FIG. Among these, the boundary portions 42a, 42b, and 42c correspond to the cracks 32a, 32b, and 32c, respectively, and the boundary portion 47 corresponds to the crystal grain boundary 37. The boundary portion 46 corresponds to the finger break portion 36. Therefore, the boundary portion becomes thicker as the difference in brightness increases in the cell image.
The crack position information generation unit 24 sorts the boundary portions 42a, 42b, and 42c extending in the same thickness from the boundary portions 42a, 42b, 42c, 47, and 46 extracted in this way, The positions of the cracks 32a, 32b, and 32c can be specified.
Here, extending as a line means that a circular part such as a crystal grain boundary that is not a defect is excluded by removing a linear part (closed curve) where the start point and the end point cannot be distinguished (crystals) Grain boundary distinction processing 1) and quadrilaterals caused by finger breakage can be excluded (disconnection distinction processing 1).
In a further method, the crack position information generation unit 24 can determine a region appearing as a rectangle in the cell image as a boundary portion due to finger breakage in order to distinguish a defect due to finger breakage from a crack. If the outer edge of the quadrangle is vertical and horizontal in the entire cell image, it can be determined that it is due to a finger break (disconnection distinguishing process 2).
Further, the following prevention means may be additionally or selectively employed so that harmless things such as crystal grain boundaries are not determined as defects. The aspect ratio (ratio between the length in the longitudinal direction and the length in the width direction) of the minimum rectangle surrounding the pixel group constituting the boundary portions 42a, 42b, 42c, and 47 is also obtained. Here, the angle of one side of the two-dimensional minimum rectangle is not necessarily limited to 0 degrees and 90 degrees in comparison with the cell image, and may be extended toward a certain angle. A threshold for this aspect ratio is set, and it is determined that a threshold smaller than the set value is not a defect. Since the crystal grain boundary has a relatively small substantially circular shape, the aspect ratio is a small numerical value, so that the crystal grain boundary can be prevented from being determined as a crack (crystal grain boundary distinction process 2).
Furthermore, in this grain boundary distinction process 2, in order to distinguish from the boundary part by finger disconnection, the brightness in a boundary part can also be utilized. In this manner, the disconnection distinguishing process 2 is not performed, and even if only the crystal grain boundary distinguishing process 2 is performed, it can be distinguished from the boundary portion due to the finger disconnection. However, the accuracy is further increased by performing each processing simultaneously.
Note that the crack determination unit 25 compares the length of each crack with the threshold value to be determined as a crack based on the image information from the crack position information generation unit 24, and excludes those below the threshold value from the crack. Then, the image noise generated at the time of imaging is considerably excluded.
Returning to FIG. 3 and FIG. The dark region position information generation unit 26 performs binarization processing on the cell image 30 and specifies a dark pixel group having a predetermined area or more, thereby indicating dark region position information representing the positions of the dark regions 34a, 34b, and the like. Is generated (S5). The dark area position information generated in this way is output to the dark area determination unit 27.
Here, the threshold value of the brightness of the binarization process is set to such an extent that each pixel in the dark region 34a (see FIG. 5) whose brightness is slightly lower than the surroundings is determined as a dark pixel.
FIG. 7 is an explanatory diagram of generation of dark region position information. When the binarization process using such a threshold is performed on the cell image 30 shown in FIG. 5, as shown in FIG. 7, in addition to the dark regions 34a and 34b caused by the cracks 32a, 32b, and 32c, crystals Both the dark region 57 corresponding to the grain boundary 37 and the dark region 36 corresponding to the disconnection may be extracted.
In addition, the brightness of the outer peripheral portion of the solar battery cell 1 is slightly lower than the brightness of the central part, and the brightness of the light emitted from the individual solar battery cells 1 varies. However, an unintended dark region may be extracted in the binarization process. Therefore, the dark region position information includes unintended dark regions such as the dark region 57 corresponding to the crystal grain boundary 37 in addition to the information indicating the positions of the dark regions 34a and 34b caused by the cracks 32a, 32b, and 32c. May be included. The dark area position information includes coordinate information of the dark areas 34a and 34b. The dark area position information also includes coordinate information of the outer edges of the dark areas 34a, 34b and the like. Specifically, the outer edge of each dark region 34a, 34b, etc. is defined as a combination of straight lines, and the coordinate information of the start point and end point of each straight line is included in the dark region position information. The dark region position information may include information on the areas of the dark regions 34a and 34b.
Returning to FIG. 3 and FIG. The dark area determination unit 27 is caused by the cracks 32a, 32b, and 32c among the dark areas 34a, 34b, 36, and 57 extracted in S4 based on the input crack position information and dark area position information. The dark areas 34a and 34b are determined (S6). The boundary between the dark region of the finger break and the dark region due to the grain boundary is not determined to be a crack. Therefore, for example, the dark region where the dark region position information including the coordinate information of the start point and the end point of the outer edge of the dark region is not compared with the crack position / shape information output from the crack position information generating unit 24 is not overlapped. Excludes the world. The dark region determination unit 27 corrects the dark region position information according to the determination result, and outputs the result to the quality determination unit 28 and the display control unit 29.
The quality determination unit 28 determines the number or / and length of the cracks 32a, 32b, and 32c specified in the cell image 30, the number or / and size of the dark areas 34a and 34b caused by the cracks 32a and 32b, and fingers Based on the number or / and size of the dark regions 36 due to disconnection, the quality of the solar cells 1 shown in the cell image 30 is determined, and classification is performed (S7). Information on the quality class is output to the display control unit 29. Here, for the quality determination, a simple sum of the numbers of cracks 32a, 32b, 32c and dark regions 34a, 34b may be used, or a weighted sum corresponding to these types may be used. A weighted sum corresponding to the size (area) or length may be used.
The class information of the solar battery cell determined by the quality determination unit 28 is output (transferred) to the marking unit 7. Here, since a dark area information brighter than a simple crack or a chip formed by the crack may be a defect, it is taken into consideration for the determination of the class.
The display control unit 29 displays a display image for identifying and displaying the cracks 32a, 32b, and 32c identified in the cell image 30, the dark regions 34a and 34b caused by the cracks 32a and 32b, and the dark region 36 due to finger breakage. Display control is performed (S8), and the display image is displayed on the display unit 9 (S9). The display control unit 29 may identify and display the quality class of the solar battery cell 1 based on information from the quality determination unit 28. Based on the result of the quality determination unit 28, the marking unit 7 transfers information such as the class of solar cells and the identification symbol of the solar cells to the marking unit 7 (S12). Then, the transferred information is marked on the solar battery cell (S10). The marking operation of the class and the identification symbol of these solar cells can be realized by using a known laser irradiation device. Moreover, the marking part which consists of this laser irradiation apparatus can also be provided in the inspection apparatus of the photovoltaic cell of this invention, and can also be installed separately as the marking apparatus outside the inspection apparatus of a photovoltaic cell.
The class information and identification symbols of these solar cells can be stored in a storage unit in the control unit 20 of the solar cell inspection apparatus. If the storage capacity becomes large, it may be stored in a separate computer.
The first embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art. For example, as one modification, the crack position information generation unit 24 specifies the positions of the cracks 32a, 32b, and 32c by a differential filter. However, the present invention is not limited to this mode. A linear pixel group having a lightness lower than that of the surroundings may be extracted and specified as cracks 32a, 32b, 32c, and the like.
As described above, according to the present embodiment, defects of solar cells can be determined in detail. In addition, it is possible to determine in detail the performance and quality of the solar battery module using the solar battery cells determined for the class.
Since the identification information is marked on the solar cell incorporated in the solar cell module in this way, if a defect such as chipping occurs during its use and the performance deteriorates, the solar cell is inspected. Since the defect determination threshold is known, the result can be fed back to the determination method of the inspection apparatus. For example, if a crack (see 32c in FIG. 5) is later lost during use, the threshold value for defect determination that is currently set is changed (re-adjusted), and this is the case during the next inspection. A defect equivalent to a crack (32c in FIG. 5) can be determined as a defect by a solar cell inspection apparatus. In addition to this, since a lot of information such as changes in defects after the passage of time and differences due to defects in the changes can be collected during use, the accuracy of thresholds, the accuracy of defect determination, etc. can be improved step by step. Can be increased.
 実施例2は、実施例1に好ましい構成を追加して提供される実施例である。この実施例2は実施例1の説明がそのまま採用できる部分については、その説明は省略する。
 太陽電池セルは150mm四方の大きさを有しているので一部に欠陥があっても部分的に使える場所を有していることが多い。実施例2は太陽電池セルに全体的には欠陥が入っていても部分的に使用できる場合、その太陽電池セルを部分的に再利用する手段と方法である。また実施例2は、太陽電池モジュールを実際使用した結果をフィードバックできるようにし、太陽電池セルの検査装置及び方法の欠陥の判定をより正確にする手段と方法でもある。
 図8は、実施例2における制御部の機能構成例を表すブロック図であり、図9は、実施例2における制御部において実現される太陽電池セルの検査方法を表すフローチャートである。制御部20には、実施例1の図3に対して欠陥領域判定部2Bがさらに含まれている。この欠陥領域判定部2Bは欠陥判定部2Aで判定した、少なくとも欠陥情報が含まれるセル画像を受けて、このセル画像に基き太陽電池セルの欠陥の有る領域と無い領域の判定を行う(S110)。
 具体的に、欠陥領域判定のステップS110は、図10の欠陥領域判定の方法を表すフローチャートで詳しく説明する。
 S4にてのクラック判定結果、S6にての暗領域判定結果に基づき欠陥と見なされる暗部を含むセル画像を太陽電池セルのバスバーの方向にセルの一方の端から他方の端まで走査線等により移動させ走査し、一つの走査箇所で一つの欠陥があってもこの領域は欠陥が有る領域と判断する。更に、走査した結果、暗部が無い領域を抽出して、この領域を欠陥の無い領域と判定する(S101)。ここで、走査する方向はバスバーの方向とする。太陽電池セルを部分的に再利用する際、部分的に再利用した太陽電池セルもバスバーを有した形状にするためである。
 しかしながら、一回目の走査で全ての領域において欠陥が有る領域と判定されることがある。そのため、欠陥の無い領域の面積等が一定閾値を越える部分があるか否かについて判断する(S102)。
 詳しくは、判定の結果、欠陥の無い領域が前記一定閾値を越えなければ欠陥の種類毎の判定用の閾値を変更(再調整)する(S103)。具体的には、以下の様に行なう。ここで欠陥と判断されるため設定される閾値は欠陥の種類ごとの閾値(長さ・面積など)を設定する。こうすると全体的なセル画像の暗部は予め設定した閾値により、その閾値よりも小さな欠陥は、その暗部が明部に置き換えられてセル画像は再構成できる(S104)。再構成して得られたセル画像は閾値によって異なるが、閾値がある値以上の場合、再構成された画像には暗部の面積が元の画像(欠陥判定部2Aから受けたセル画像)より少なくなる。
 上記手段によりセル画像を再構成(S104)した後に、再構成したセル画像を再度走査する(S101)。その結果欠陥の無い領域が、一定閾値を越えれば次の段階に移行する。
 ここで、上記閾値の再調整ステップS103にて調整する閾値の変更は、各欠陥の種類ごとの閾値を変更させる。閾値の変更は、欠陥として重要度の低いクラックを優先的に変更し、次はフィンガー断線、最後は欠けの順に変更していく。クラックはまず欠陥と判断するが、後で、使用中に欠けに繋がらない可能性もあるから重要度を低くしている。フィンガー断線による暗部は、その面積は小さいので欠けより重用度を低くしている。ここで、上記優先的な変更とは、どの種類の欠陥の判定用の閾値を他の欠陥の判定用の閾値より先に変更することを意味している。欠陥判定用の閾値は、重み付け変更(他の欠陥より多く変更すること)で変更しても良い。また優先的変更と重み付け変更の両者を結合して使用することもできる。
 欠陥の無い領域の面積等の閾値は、太陽電池セルの約半分が望ましいが、その閾値は、再利用できると判断できれば適宜設定することができる。
 S102の判定で欠陥の無い領域の面積等が前記閾値を越えると、次の段階へ移行し欠陥の無い領域を特定する(S105)。
 図11及び図12は、セル画像の再構成の説明図である。図11は最初のセル画像で、ほぼ全ての領域が欠陥の有る領域と判定され、その後、S101、S102、S103及びS104を繰り返す。図12は、太陽電池セルの約半分の部分が欠陥の無い領域(暗部が無い)となったことを示す。欠陥の無い領域の面積等を判定する閾値が太陽電池セルの面積の半分(例えば50%閾値)に設定してあれば、この時点で上記の繰り返しの判定作業(S101~S104)は終了する。図12では、図11には欠陥と判定されていたクラック32c及び32dが削除されている。
 クラック32c及び32dは、この段階では問題無いと判断して、欠陥判定の閾値を変更してセル画像を再構成した。
 図8及び図9の説明に戻る。この欠陥領域判定部2Bは、前記マーキング部7に出力されてマーキングできるように欠陥領域の判定情報を生成する(S110)。上記欠陥領域の判定情報には、欠陥の有る領域と欠陥の無い領域との境界線情報、欠陥の有る領域に欠陥が有ることを示す識別情報、階級情報、太陽電池セルの識別記号情報、欠陥が無い領域がある閾値を越えるように判定するための欠陥判定の閾値の情報などが含まれる。太陽電池セルの検査装置の欠陥判定部2A、欠陥領域判定部2Bおよび品質判定部28からの欠陥領域判定情報は、マーキング部へ転送される(S120)。
 また、前記欠陥領域判定部2Bは、検査装置に設けられたマーキング部7に前記欠陥領域の判定情報を出力すると共に、太陽電池セルに付与する識別記号情報等は、欠陥判定部2Aおよび品質判定部28からマーキング部7に転送することもできる。
 また、太陽電池セルの検査装置により欠陥検査した太陽電池セルにマーキング部7により付与した識別記号情報や境界線情報などの付与情報は、太陽電池セルに付与した後、太陽電池セルの検査装置の制御部、または検査装置とは別置きのコンピュータに転送し記憶させても良い。この情報は、太陽電池セルを太陽電池モジュールに組み込んで使用して性能低下などの不具合が発生し、その太陽電池モジュールを検査した時にその太陽電池セルに欠けが生じた事が分かれば、太陽電池セルのどの位置のどのクラックが欠けになったかなどのフィードバック管理ができる。
 図13は、マーキングされた太陽電池セルの受光面(a)及び裏面(b)を示す図である。図13を参照して太陽電池セルにマーキングされる情報を具体的に説明する。まず、欠陥の有る領域と欠陥の無い領域との境界に識別線として付与される境界線64、65がある。太陽電池セルは境界線64,65に沿って切断されて欠陥の無い領域は良品として再利用できるようになる。もし、一つの境界線64,65が太陽電池セルのバスバー12の方向の一端と共通なら境界線は一つで済すこともできる。
 また、境界線64,65によって区別される欠陥の有る領域には、欠陥の有る領域を示すためにマーキングされる識別記号61a、61b(図面には×と表記されている)と、太陽電池セルの識別記号62a、62bと、判定の階級を表す識別記号63a、63bなどがマーキングされることができる(図13(a)参照)。境界線64,65によって区別される欠陥の無い領域には、太陽電池セルの識別記号70、欠陥が無いと判定するための閾値の情報(S102にてYESと判定できるために使用された閾値の情報)を表す識別記号72及び/またはそれに関連した階級情報を表す識別記号71がマーキングされることができる。尚マーキングは、境界線64、65は、線状に付与され、識別記号70、71、72は、QRコードなどの2次元コードを使用して付与される。
 太陽電池セルの識別記号70、この閾値の情報を表す識別記号72及び階級情報を表す識別記号71の組み合わせによって、その使用中に欠けが発生すれば、その閾値が分かるので、検査装置にフィードバック処理ができる。例えば、S102のステップで50%の閾値でYESと判定された時、あるクラック(図11の32c、32d参照)が、後で、使用中で欠けになった時には、現在設定している欠陥判定用の閾値を再調整して次の検査の時には、このようなクラック(32c、32d)と等しい欠陥は太陽電池セルの検査装置で最後まで欠陥と判定することができる。この外にも、時間経過後、欠陥の変化や、その変化の欠陥による差異などの多くの情報を使用中に集めることができるため、段階的に閾値の正確性、欠陥判定の正確性などを高めることができる。
 これらの識別線や識別記号のマーキング作業は、公知のレーザ照射装置を使用することで実現することができる。またこのレーザ照射装置からなるマーキング部は、本発明の太陽電池セルの検査装置内に設けることもできるし、マーキング装置として太陽電池セルの検査装置外に別置とすることもできる。
 そして、マーキングは、太陽電池セルの良品の場合や欠陥が無いと判定された領域には、図1(b)の裏面電極13側(受光面と反対側)が好ましい。但し欠陥を有した太陽電池セルの場合には、図1(a)の受光面側でも良い。これは、後で太陽電池セルの再利用される面にはできるだけ受光を妨げる後加工をしない方が好ましいからである。さらに後で廃棄される可能性が高い部分では、間違えて良品として利用されないよう、目立つ部分となる受光面にマーキングするのが好ましい。
 以上説明した実施の形態によれば、一つの太陽電池セルの内に欠陥があっても、部分的に使用できる部分はその部分だけでも利用できることで再利用性(利用効率)が高くなる。また使用経過よる太陽電池セルの欠陥の追移分析が可能になって、太陽電池セル検査装置の欠陥判定の正確度が益々高くなる。
 本発明は実施例1と実施例2に限定されるものではなく、種々の変形した実施形態を採用することが可能であるのはもちろんである。
 図14は実施例1と実施例2の変形例を示す図である。図14に示す通り、マーキング装置80は太陽電池セルの検査装置の外部に別置に設けても良い。この場合は、太陽電池セルの検査装置の欠陥判定部2A、欠陥領域判定部2Bおよび品質判定部28からの情報はマーキング装置80に転送されて、太陽電池セルにマーキングされる。
 実施例1と実施例2の他の変形例として、生産ラインのタクトタイムの関係で太陽電池セルの検査装置とマーキング装置の間に既に欠陥検査した太陽電池を複数枚待機させることが必要な場合などは、太陽電池セルの検査装置内のマーキング部7で太陽電池セルを識別する記号のみを付与し、残りの識別記号や識別線(欠陥が有る領域と欠陥の無い領域の境界線)などの情報は、太陽電池セルの検査装置外のマーキング装置80に転送しマーキングする形態としても良い。
 実施例1と実施例2の他の変形例として以下のような実施形態を採用することもできる。例えば太陽電池セルの識別記号のみマーキングしておき、欠陥領域の判定情報が電子的情報でパソコンなどに格納され、別の加工装置に太陽電池セルをセットした後、加工装置にて太陽電池セルに付与された識別記号を読み取り、必要な欠陥領域の判定情報や境界線情報をパソコンから読み出し、その情報に基づき、太陽電池セルを切断加工し不要部分を除去することもできる。その際、再利用する側の太陽電池セルには、欠陥判定の閾値情報をマーキングする。更に、太陽電池セルに識別情報等を付与する方法は、レーザマーキングだけでなくRFタグなどの識別手段を採用することもできる。RFタグが太陽電池セルに付与されている場合には、太陽電池セルの識別記号や欠陥領域の判定情報をRFタグの中に保存することもできる。したがって太陽電池セルを組み込んだ太陽電池モジュールにて性能低下などの不具合が発生した場合に、その太陽電池に付与されたRFタグの電子情報中から必要な情報を入手し検査装置の欠陥判定の閾値などの判定方法を修正し欠陥判定の正確度を向上させることができる。
The second embodiment is an embodiment provided by adding a preferable configuration to the first embodiment. In the second embodiment, the description of the first embodiment can be omitted as it is.
Since the solar battery cell has a size of 150 mm square, it often has a place where it can be partially used even if there is a defect. Example 2 is a means and method for partially reusing a solar cell when the solar cell can be partially used even if it is entirely defective. In addition, the second embodiment is also a means and method for enabling feedback of the result of actual use of the solar cell module and making the determination of defects in the solar cell inspection apparatus and method more accurate.
FIG. 8 is a block diagram illustrating a functional configuration example of the control unit in the second embodiment, and FIG. 9 is a flowchart illustrating a solar cell inspection method realized in the control unit in the second embodiment. The control unit 20 further includes a defective area determination unit 2B as compared to FIG. 3 of the first embodiment. The defect area determination unit 2B receives the cell image including at least the defect information determined by the defect determination unit 2A, and determines a defective area and a non-existent area of the solar battery cell based on the cell image (S110). .
Specifically, the defect area determination step S110 will be described in detail with reference to the flowchart of FIG. 10 showing the defect area determination method.
A cell image including a dark portion that is regarded as a defect based on the crack determination result in S4 and the dark region determination result in S6 is scanned from one end of the cell to the other end in the direction of the solar cell bus bar by a scanning line or the like. It is moved and scanned, and even if there is one defect at one scanning position, this region is determined as a region having a defect. Furthermore, as a result of scanning, an area having no dark portion is extracted, and this area is determined as an area having no defect (S101). Here, the scanning direction is the bus bar direction. This is because when the solar battery cell is partially reused, the partially reused solar battery cell also has a shape having a bus bar.
However, it may be determined that there is a defect in all areas in the first scan. Therefore, it is determined whether or not there is a portion where the area of the defect-free area exceeds a certain threshold (S102).
Specifically, as a result of the determination, if the area without defects does not exceed the predetermined threshold, the determination threshold for each defect type is changed (readjusted) (S103). Specifically, it is performed as follows. Here, the threshold value set for determining the defect is a threshold value (length, area, etc.) for each defect type. In this way, the dark portion of the entire cell image can be reconstructed by replacing the dark portion with a bright portion for a defect smaller than the threshold value based on a preset threshold value (S104). The cell image obtained by reconstruction is different depending on the threshold value, but when the threshold value is equal to or larger than a certain value, the reconstructed image has a dark area smaller than the original image (cell image received from the defect determination unit 2A). Become.
After the cell image is reconstructed by the above means (S104), the reconstructed cell image is scanned again (S101). As a result, if the area without defects exceeds a certain threshold, the process proceeds to the next stage.
Here, changing the threshold value adjusted in the threshold readjustment step S103 changes the threshold value for each defect type. The threshold value is changed by preferentially changing a crack having a low importance as a defect, and then changing in the order of finger disconnection and finally a chip. A crack is first judged to be a defect, but later it is less important because it may not lead to chipping during use. Since the area of the dark part due to finger breakage is small, the degree of importance is made lower than the chip. Here, the above-mentioned preferential change means that the threshold for determining which type of defect is changed before the threshold for determining other defects. The threshold value for defect determination may be changed by weighting change (change more than other defects). It is also possible to combine and use both the priority change and the weight change.
The threshold value of the area of a defect-free area or the like is preferably about half that of the solar battery cell, but the threshold value can be set as appropriate if it can be determined that it can be reused.
When the area of the defect-free area exceeds the threshold value in the determination of S102, the process proceeds to the next stage, and the defect-free area is specified (S105).
11 and 12 are explanatory diagrams of cell image reconstruction. FIG. 11 shows the first cell image. It is determined that almost all areas are defective areas, and then S101, S102, S103, and S104 are repeated. FIG. 12 shows that about half of the solar cell is a defect-free region (no dark portion). If the threshold value for determining the area and the like of the defect-free area is set to half of the area of the solar battery cell (for example, 50% threshold value), the above-described repeated determination operation (S101 to S104) ends at this point. In FIG. 12, the cracks 32c and 32d determined to be defective in FIG. 11 are deleted.
The cracks 32c and 32d were judged to have no problem at this stage, and the cell image was reconstructed by changing the defect judgment threshold.
Returning to FIG. 8 and FIG. The defective area determination unit 2B generates defect area determination information so as to be output to the marking unit 7 for marking (S110). The determination information of the defect area includes boundary information between the defect area and the defect-free area, identification information indicating that the defect area is defective, class information, solar cell identification symbol information, defect This includes information on defect determination threshold values for determining that a region having no defect exceeds a certain threshold value. The defect area determination information from the defect determination unit 2A, the defect area determination unit 2B, and the quality determination unit 28 of the solar cell inspection apparatus is transferred to the marking unit (S120).
The defect area determination unit 2B outputs the determination information of the defect area to the marking unit 7 provided in the inspection apparatus, and the identification symbol information and the like to be given to the solar battery cell includes the defect determination unit 2A and the quality determination. It can also be transferred from the unit 28 to the marking unit 7.
Moreover, after providing the solar cell with the assigned information such as the identification symbol information and the boundary line information given to the solar cell subjected to the defect inspection by the solar cell inspection device, the solar cell is inspected. You may transfer and memorize | store it in a computer separate from a control part or a test | inspection apparatus. This information can be obtained by using a solar cell built into a solar cell module, if a malfunction such as performance degradation occurs and the solar cell is chipped when the solar cell module is inspected. It is possible to perform feedback management such as which crack in which position of the cell is missing.
FIG. 13 is a diagram showing a light receiving surface (a) and a back surface (b) of a marked solar battery cell. With reference to FIG. 13, the information marked on a photovoltaic cell is demonstrated concretely. First, there are boundary lines 64 and 65 provided as identification lines at the boundary between a region having a defect and a region having no defect. The solar cells are cut along the boundary lines 64 and 65 so that the defect-free region can be reused as a non-defective product. If one boundary line 64, 65 is common with one end of the solar cell in the direction of the bus bar 12, one boundary line can be used.
In addition, in the area with a defect distinguished by the boundary lines 64 and 65, identification symbols 61a and 61b (indicated by x in the drawing) marked to indicate the area having the defect, and the solar battery cell The identification symbols 62a and 62b and the identification symbols 63a and 63b representing the determination class can be marked (see FIG. 13A). In the defect-free region distinguished by the boundary lines 64 and 65, the identification symbol 70 of the solar battery cell, threshold information for determining that there is no defect (the threshold value used for determining YES in S102) An identification symbol 72 representing information) and / or an identification symbol 71 representing class information associated therewith can be marked. The markings are given to the boundary lines 64 and 65 in a linear shape, and the identification symbols 70, 71 and 72 are given using a two-dimensional code such as a QR code.
The combination of the identification symbol 70 of the solar cell, the identification symbol 72 representing the threshold information, and the identification symbol 71 representing the class information indicates that the threshold value can be obtained if a chip occurs during its use. Can do. For example, when it is determined YES at the threshold of 50% in the step of S102, when a certain crack (see 32c and 32d in FIG. 11) later becomes missing during use, the currently determined defect determination When the next threshold value is readjusted and the next inspection is performed, a defect equal to such a crack (32c, 32d) can be determined as a defect to the end by the solar cell inspection apparatus. In addition to this, since a lot of information such as changes in defects and differences due to defects in the changes can be collected after use, the accuracy of the threshold and the accuracy of defect determination can be improved step by step. Can be increased.
The marking operation of these identification lines and identification symbols can be realized by using a known laser irradiation apparatus. Moreover, the marking part which consists of this laser irradiation apparatus can also be provided in the inspection apparatus of the photovoltaic cell of this invention, and can also be installed separately as the marking apparatus outside the inspection apparatus of a photovoltaic cell.
And the marking is preferably on the back electrode 13 side (opposite to the light receiving surface) in FIG. 1B in the case of a non-defective solar battery cell or a region where it is determined that there is no defect. However, in the case of a solar battery cell having a defect, the light receiving surface side in FIG. This is because it is preferable not to perform post-processing to prevent light reception as much as possible on the surface to be reused later. Further, it is preferable to mark the light receiving surface that becomes a conspicuous portion so that the portion that is likely to be discarded later is not mistakenly used as a non-defective product.
According to the embodiment described above, even if there is a defect in one solar battery cell, the reusability (utilization efficiency) is increased because only a part that can be partially used can be used. Further, it becomes possible to carry out a follow-up analysis of defects in the solar battery cells over the course of use, and the accuracy of the defect determination of the solar battery cell inspection apparatus becomes higher.
The present invention is not limited to the first embodiment and the second embodiment, and various modified embodiments can be adopted as a matter of course.
FIG. 14 is a diagram showing a modification of the first embodiment and the second embodiment. As shown in FIG. 14, the marking device 80 may be provided separately outside the solar cell inspection device. In this case, information from the defect determination unit 2A, the defect region determination unit 2B, and the quality determination unit 28 of the solar cell inspection apparatus is transferred to the marking device 80 and marked on the solar cell.
As another modification of Example 1 and Example 2, when it is necessary to wait for a plurality of solar cells that have already been inspected for defects between the solar cell inspection device and the marking device due to the tact time of the production line And the like, only a symbol for identifying the solar cell is given by the marking unit 7 in the solar cell inspection apparatus, and the remaining identification symbols and identification lines (border line between the defect-free region and the defect-free region) The information may be transferred and marked to a marking device 80 outside the solar cell inspection device.
The following embodiments can be adopted as other modifications of the first and second embodiments. For example, only the identification symbol of the solar battery cell is marked, and the determination information of the defect area is stored in a personal computer or the like with electronic information, and after setting the solar battery cell in another processing apparatus, It is also possible to read a given identification symbol, read necessary defect area determination information and boundary line information from a personal computer, and based on that information, the solar cell is cut to remove unnecessary portions. At this time, threshold information for defect determination is marked on the solar cell to be reused. Furthermore, as a method of giving identification information or the like to the solar battery cell, not only laser marking but also identification means such as an RF tag can be adopted. When the RF tag is attached to the solar battery cell, the solar cell identification symbol and the defect area determination information can be stored in the RF tag. Therefore, when a malfunction such as a decrease in performance occurs in a solar battery module incorporating a solar battery cell, the necessary information is obtained from the electronic information of the RF tag attached to the solar battery, and the threshold for determining the defect of the inspection device It is possible to improve the accuracy of defect determination by correcting the determination method.

Claims (24)

  1.  通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、
     前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、
    を含む太陽電池セルの検査装置において、
     前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セルの検査装置の外部に設けられたマーキング装置を含む太陽電池セルの検査装置。
    An image acquisition unit for acquiring a cell image representing a solar cell in an energized state;
    A defect determination unit for determining a defect of a solar battery cell from the solar battery image;
    In a solar cell inspection apparatus including
    A solar cell inspection apparatus including a marking device provided outside the solar cell inspection apparatus for marking at least identification information of the solar battery cell on the solar battery cell.
  2.  通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、
     前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、
    を含む太陽電池セルの検査装置において、
     前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セルの検査装置の内部に設けられたマーキング部を含む太陽電池セルの検査装置。
    An image acquisition unit for acquiring a cell image representing a solar cell in an energized state;
    A defect determination unit for determining a defect of a solar battery cell from the solar battery image;
    In a solar cell inspection apparatus including
    A solar cell inspection device including a marking portion provided inside the solar cell inspection device for marking at least identification information of the solar cell on the solar cell.
  3.  通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、
     前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、
    を含む太陽電池セルの検査装置において、
     前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セル検査装置の内部のマーキング部及び外部に設けられるマーキング装置を含む太陽電池セルの検査装置。
    An image acquisition unit for acquiring a cell image representing a solar cell in an energized state;
    A defect determination unit for determining a defect of a solar battery cell from the solar battery image;
    In a solar cell inspection apparatus including
    An apparatus for inspecting a solar battery cell, comprising: a marking portion inside the solar cell inspection apparatus and a marking device provided outside the solar cell in order to mark at least solar cell identification symbol information on the solar battery cell.
  4.  通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、
     前記太陽電池セルの撮影画像により、少なくともクラックとクラックによりできた欠けより明るい暗領域情報とを欠陥になる可能性があると判定し、前記撮影画像を2値化処理して得られた画像と前記クラックとクラックによりできた欠けより明るい暗領域情報とを比べて正確に欠陥を判定する欠陥判定部と、
     を含む太陽電池セルの検査装置。
    An image acquisition unit for acquiring a cell image representing a solar cell in an energized state;
    It is determined that there is a possibility that a dark area information brighter than a crack and a chip formed by the crack may be a defect by a photographed image of the solar battery cell, and an image obtained by binarizing the photographed image; A defect determination unit that accurately determines a defect by comparing the crack and the dark area information brighter than a chip formed by the crack; and
    Inspecting device for solar battery cell.
  5.  前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セルの検査装置の外部に設けられたマーキング装置を含む請求項4に記載の太陽電池セルの検査装置。 The solar cell inspection device according to claim 4, further comprising a marking device provided outside the solar cell inspection device to mark at least solar cell identification symbol information on the solar cell.
  6.  前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セルの検査装置の内部に設けられたマーキング部を含む請求項4に記載の太陽電池セルの検査装置。 The solar cell inspection device according to claim 4, further comprising a marking portion provided inside the solar cell inspection device to mark at least the solar cell identification symbol information on the solar cell.
  7.  前記太陽電池セルに、少なくとも太陽電池セルの識別記号情報をマーキングするため、前記太陽電池セル検査装置の内部のマーキング部及び外部に設けられるマーキング装置を含む請求項4に記載の太陽電池セルの検査装置。 5. The solar cell inspection according to claim 4, wherein the solar cell includes an internal marking portion of the solar cell inspection device and a marking device provided outside in order to mark at least the identification information of the solar cell on the solar cell. apparatus.
  8.  前記欠陥判定部は、少なくとも、クラックと、クラックにより生じる欠けより明るい暗領域情報とを判定するクラック判定部を含む請求項1から請求項7のいずれかに記載の太陽電池セルの検査装置。 The solar cell inspection apparatus according to any one of claims 1 to 7, wherein the defect determination unit includes at least a crack determination unit that determines a crack and dark area information brighter than a chip caused by the crack.
  9.  前記欠陥判定部は、前記太陽電池セルの撮影画像を2値化処理し、クラック位置情報生成部の出力情報と比べて撮影画像の暗領域情報を判定する暗領域判定部が含まれる請求項8に記載の太陽電池セルの検査装置。 9. The defect determination unit includes a dark region determination unit that binarizes the captured image of the solar battery cell and determines dark region information of the captured image compared to output information of the crack position information generation unit. The inspection apparatus of the photovoltaic cell described in 1.
  10. 前記暗領域判定部の判定結果及び前記クラック判定部の判定結果に基づいて太陽電池セルの品質を判定する品質判定部を含む請求項9に記載の太陽電池セルの検査装置。 The solar cell inspection apparatus according to claim 9, further comprising a quality determination unit that determines the quality of the solar cell based on the determination result of the dark region determination unit and the determination result of the crack determination unit.
  11. 通電された状態の太陽電池セルを表すセル画像を取得する画像取得部と、
     前記太陽電池セル画像により太陽電池セルの欠陥を判定する欠陥判定部と、
     前記太陽電池セルの欠陥判定結果に基づき太陽電池セルに欠陥の有る領域と欠陥の無い領域を判定して、少なくとも、前記太陽電池セルの欠陥の有る領域と欠陥の無い領域の境界とを識別できる境界線情報を含む欠陥領域の判定情報を生成する欠陥領域判定部と、
     を含む太陽電池セルの検査装置。
    An image acquisition unit for acquiring a cell image representing a solar cell in an energized state;
    A defect determination unit for determining a defect of a solar battery cell from the solar battery image;
    Based on the defect determination result of the solar battery cell, it is possible to determine a region where the solar battery cell has a defect and a region without a defect, and at least identify a boundary between the solar cell with a defect and a region without the defect. A defect region determination unit that generates determination information of a defect region including boundary line information;
    Inspecting device for solar battery cell.
  12. 前記欠陥領域の判定情報の少なくとも一部を受け、前記太陽電池セルにマーキングするため、前記太陽電池セルの検査装置の外部に設けられたマーキング装置を含む請求項11に記載の太陽電池セルの検査装置。 The solar cell inspection according to claim 11, further comprising a marking device provided outside the solar cell inspection device for receiving at least a part of the defect region determination information and marking the solar cell. apparatus.
  13. 前記欠陥領域の判定情報の少なくとも一部を受け、前記太陽電池セルにマーキングするため、前記太陽電池セルの検査装置の内部に設けられたマーキング部を含む請求項11に記載の太陽電池セルの検査装置。 The solar cell inspection according to claim 11, further comprising a marking portion provided inside the solar cell inspection apparatus for receiving at least a part of the defect region determination information and marking the solar cell. apparatus.
  14. 前記欠陥領域の判定情報の少なくとも一部を受け、前記太陽電池セルにマーキングするため、前記太陽電池セル検査装置の内部のマーキング部及び外部に設けられるマーキング装置を含む請求項11に記載の太陽電池セルの検査装置。 The solar cell according to claim 11, comprising a marking unit provided inside and an external marking device for receiving at least part of the defect area determination information and marking the solar cell. Cell inspection device.
  15. 前記欠陥領域の判定情報は、欠陥の有る領域の識別記号、欠陥の無い領域の階級記号情報及び欠陥の無い領域と判定した欠陥判定の閾値情報のうち少なくとも一つを含む請求項11から請求項14のいずれかに記載の太陽電池セルの検査装置。 The defect area determination information includes at least one of an identification symbol of an area having a defect, class symbol information of an area without a defect, and threshold information of defect determination determined to be an area without a defect. 14. The solar cell inspection apparatus according to any one of claims 14 to 14.
  16. 前記欠陥判定部は、少なくとも、クラックと、クラックにより生じる欠けより明るい暗領域情報とを判定するクラック判定部を含む請求項11から請求項15のいずれかに記載の太陽電池セルの検査装置。 The solar cell inspection apparatus according to claim 11, wherein the defect determination unit includes at least a crack determination unit that determines a crack and dark region information brighter than a chip caused by the crack.
  17. 前記欠陥判定部は、前記太陽電池セルの撮影画像を2値化処理し、クラック位置情報生成部の出力情報と比べて撮影画像の暗領域情報を判定する暗領域判定部が含まれる請求項16に記載の太陽電池セルの検査装置。 The defect determination unit includes a dark region determination unit that binarizes the captured image of the solar battery cell and determines dark region information of the captured image compared to output information of the crack position information generation unit. The inspection apparatus of the photovoltaic cell described in 1.
  18. 前記暗領域判定部の判定結果及び前記クラック判定部の判定結果に基づいて太陽電池セルの品質を判定する品質判定部を含む請求項17に記載の太陽電池セルの検査装置。 The solar cell inspection apparatus according to claim 17, further comprising a quality determination unit that determines the quality of the solar cell based on the determination result of the dark region determination unit and the determination result of the crack determination unit.
  19. 前記境界線の方向は前記太陽電池セルのバスバーの方向と垂直である請求項11から請求項18に記載の太陽電池セルの検査装置。 The solar cell inspection device according to claim 11, wherein a direction of the boundary line is perpendicular to a direction of a bus bar of the solar cell.
  20. 通電された状態の太陽電池セルを表すセル画像を取得する工程と、
     前記太陽電池セルの画像により、少なくともクランクとクラックによりできた欠けより明るい暗領域情報とを欠陥になる可能性があると判定して太陽電池セルの欠陥を判定する工程と、
     前記撮影画像を2値化して得られた画像と前記クラックとクラックによりできた欠けより明るい暗領域情報とを比べてノイズによる暗領域を削除して暗領域を判定する工程と、
     前記判定した欠陥と暗領域から得られたセル画像とを基に太陽電池セルの品質を判定する工程と
     を含む太陽電池セルの検査方法。
    Obtaining a cell image representing a solar cell in an energized state;
    The step of determining the defect of the solar battery cell by determining that there is a possibility that the image of the solar battery cell may be a defect with dark region information brighter than at least a chip formed by a crank and a crack,
    Comparing the image obtained by binarizing the captured image with the dark region information brighter than the crack and the chipped portion caused by the crack, and determining the dark region by deleting the dark region due to noise;
    A step of determining the quality of the solar battery cell based on the determined defect and the cell image obtained from the dark region.
  21. 前記欠陥に含まない結晶粒界は、前記セル画像において、その結晶粒界による境界部分の形状とその結晶粒界の形状のアスペクト比のうち、少なくともいずれか一つによって判定し、
     前記欠陥に含まれるフィンガー断線による暗領域は、その暗領域による境界部分の形状、その暗領域の形状とその暗領域の明度のうち、少なくともいずれか一つによって判定する、
     請求項20に記載の太陽電池セルの検査方法。
    The crystal grain boundary not included in the defect is determined by at least one of the shape of the boundary portion by the crystal grain boundary and the aspect ratio of the shape of the crystal grain boundary in the cell image,
    The dark region due to the finger break included in the defect is determined by at least one of the shape of the boundary portion by the dark region, the shape of the dark region and the brightness of the dark region,
    The solar cell inspection method according to claim 20.
  22. 前記判定において欠陥による暗領域を含むセル画像に、閾値を利用して閾値を越える暗部のみを欠陥と判定するセル画像の再構成を、欠陥の無い領域がある程度生じるまで前記閾値の変更を繰り返し、
     欠陥が無い領域がある程度生じると、欠陥の無い領域と欠陥の有る領域との境界線情報などの識別情報を生成する請求項20と請求項21とのいずれかに記載の太陽電池セルの検査方法。
    In the determination, the cell image including the dark region due to the defect is reconstructed in a cell image in which only the dark portion exceeding the threshold is determined as a defect by using the threshold, and the change of the threshold is repeated until a region having no defect occurs to some extent,
    The method for inspecting a solar battery cell according to any one of claims 20 and 21, wherein identification information such as boundary information between a region without a defect and a region with a defect is generated when a region without a defect is generated to some extent. .
  23. 前記識別表示には、欠陥の無い領域と欠陥の有る領域との境界線と夫々の領域に対応する識別記号とのうち、少なくともいずれか一つを含む請求項22に記載の太陽電池セルの検査方法。 The solar cell inspection according to claim 22, wherein the identification display includes at least one of a boundary line between a defect-free region and a region with a defect and an identification symbol corresponding to each region. Method.
  24. 通電された状態の太陽電池セルを表すセル画像を取得する処理と、
     前記太陽電池セル画像により欠陥を判定する処理と、
     前記撮影画像から暗領域を判定する処理と、
     前記欠陥による暗部を含むセル画像を太陽電池セルのバスバーと垂直方向で走査させ、欠陥のない領域を判定する処理と、
     をコンピュータに実行させる太陽電池セルの検査プログラムを記録した記録媒体。
    A process of obtaining a cell image representing a solar cell in an energized state;
    A process for determining a defect from the solar cell image;
    A process of determining a dark area from the captured image;
    A process of scanning a cell image including a dark part due to the defect in a direction perpendicular to the bus bar of the solar battery cell, and determining a region without a defect;
    A recording medium recording a solar cell inspection program for causing a computer to execute the above.
PCT/JP2009/070443 2008-12-03 2009-12-01 Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon WO2010064720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008308086A JP2010135446A (en) 2008-12-03 2008-12-03 Apparatus and method for inspecting solar battery cell, and recording medium having program of the method recorded thereon
JP2008-308086 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010064720A1 true WO2010064720A1 (en) 2010-06-10

Family

ID=42233366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070443 WO2010064720A1 (en) 2008-12-03 2009-12-01 Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon

Country Status (2)

Country Link
JP (1) JP2010135446A (en)
WO (1) WO2010064720A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096961A1 (en) * 2011-01-14 2012-07-19 Varian Semiconductor Equipment Associates, Inc. Substrate identification and tracking through surface reflectance
CN106230112A (en) * 2016-07-19 2016-12-14 吕世全 A kind of distributed photovoltaic power generation station intelligence control operation management apparatus
JP2021516528A (en) * 2018-06-28 2021-07-01 華南理工大学 Electrical injection annealing test equipment and methods for crystalline silicon solar cells

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008903A (en) * 2011-06-27 2013-01-10 Kyocera Corp Test device and test method for solar cell element
JP5939442B2 (en) * 2012-10-19 2016-06-22 株式会社島津製作所 Inspection apparatus and inspection method
JP6436672B2 (en) * 2014-07-25 2018-12-12 株式会社Screenホールディングス Inspection apparatus and inspection method
JPWO2016110970A1 (en) * 2015-01-07 2017-04-27 三菱電機株式会社 Method for manufacturing solar battery cell
CN106769892A (en) * 2016-08-23 2017-05-31 协鑫电力设计研究有限公司 Photovoltaic array dust recognition methods
JP6827007B2 (en) * 2018-02-13 2021-02-10 名古屋電機工業株式会社 Scratch detection device, scratch detection method and scratch detection program
JP7556536B2 (en) 2020-11-04 2024-09-26 柳井電機工業株式会社 Photovoltaic panel damage inspection device
JP6970317B1 (en) * 2021-06-02 2021-11-24 株式会社ミライト Aircraft for detecting abnormalities in solar cell modules and their flight control methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106460A (en) * 1990-08-28 1992-04-08 Toshiba Corp Detecting method of defect
JPH09186212A (en) * 1996-01-05 1997-07-15 Canon Inc Inspecting equipment of characteristics of photovoltaic element and manufacture of the element
JPH11232370A (en) * 1998-02-10 1999-08-27 Dainippon Printing Co Ltd Production process management method and substrate provided with id
WO2006059615A1 (en) * 2004-11-30 2006-06-08 National University Corporation NARA Institute of Science and Technology Method and apparatus for evaluating solar cell and use thereof
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106460A (en) * 1990-08-28 1992-04-08 Toshiba Corp Detecting method of defect
JPH09186212A (en) * 1996-01-05 1997-07-15 Canon Inc Inspecting equipment of characteristics of photovoltaic element and manufacture of the element
JPH11232370A (en) * 1998-02-10 1999-08-27 Dainippon Printing Co Ltd Production process management method and substrate provided with id
WO2006059615A1 (en) * 2004-11-30 2006-06-08 National University Corporation NARA Institute of Science and Technology Method and apparatus for evaluating solar cell and use thereof
WO2007125778A1 (en) * 2006-04-28 2007-11-08 Sharp Kabushiki Kaisha Solar battery module evaluation device, solar battery module evaluating method, and solar battery module manufacturing method
WO2007129585A1 (en) * 2006-05-02 2007-11-15 National University Corporation NARA Institute of Science and Technology Method and device for evaluating solar cell and use of the solar cell
JP2008026113A (en) * 2006-07-20 2008-02-07 Japan Aerospace Exploration Agency Defect inspection device of solar cell and method for inspecting defect of solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096961A1 (en) * 2011-01-14 2012-07-19 Varian Semiconductor Equipment Associates, Inc. Substrate identification and tracking through surface reflectance
US8768040B2 (en) 2011-01-14 2014-07-01 Varian Semiconductor Equipment Associates, Inc. Substrate identification and tracking through surface reflectance
CN106230112A (en) * 2016-07-19 2016-12-14 吕世全 A kind of distributed photovoltaic power generation station intelligence control operation management apparatus
JP2021516528A (en) * 2018-06-28 2021-07-01 華南理工大学 Electrical injection annealing test equipment and methods for crystalline silicon solar cells
JP7050363B2 (en) 2018-06-28 2022-04-08 華南理工大学 Electrical injection annealing test method for crystalline silicon solar cells

Also Published As

Publication number Publication date
JP2010135446A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2010064720A1 (en) Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon
US8355563B2 (en) Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic device
JP4915991B2 (en) Solar cell defect inspection apparatus and method
CN101960612B (en) Solar battery inspecting apparatus and method for judging solar battery defect
CN103500459B (en) Printed circuit board defect detecting method based on regularization parameters
US8750596B2 (en) System and method for identifying defects in a material
CN109540900B (en) Photovoltaic module subfissure judgment method
JP2008041749A (en) Device for inspecting image defect
JP2010164487A (en) Defect inspecting apparatus and defect inspecting method
JP2010171046A (en) Apparatus and method for inspecting solar battery, program, and inspection system of solar battery
JP5324181B2 (en) Solar cell inspection device, solar cell inspection method, program, solar cell inspection system
WO2011078374A2 (en) Solar cell inspection device, solar cell inspection method, and program
JP2009074952A (en) Visual inspection method
KR101068356B1 (en) Method for inspecting defect of the Pixels in display panel device by image
JP2010025566A (en) Foreign matter detection device of material for electrode
WO2010024453A1 (en) Solar battery inspecting apparatus, solar battery inspecting method, program and solar battery inspecting system
CN112415013A (en) Copper foil defect detection system
CN116934732A (en) Photovoltaic module detection method and device and electronic equipment
CN111598851A (en) Solar cell fragment detection method based on morphological image processing
KR101053779B1 (en) Metal mask inspection method of display means
WO2020158630A1 (en) Detecting device, learner, computer program, detecting method, and method for generating learner
JP2000121495A (en) Screen inspection method
CN117934985A (en) Semiconductor defect detection model training method and semiconductor defect detection method
KR20240071660A (en) Solar cell crack and defect detection system using deep learning
JPS63101973A (en) Formation of reference pattern for inspecting defect in pattern such as printed internal wiring pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830485

Country of ref document: EP

Kind code of ref document: A1