WO2010064196A2 - Dispositivo para la determinación de la conductividad térmica y procesos de aplicación del mismo - Google Patents

Dispositivo para la determinación de la conductividad térmica y procesos de aplicación del mismo Download PDF

Info

Publication number
WO2010064196A2
WO2010064196A2 PCT/IB2009/055449 IB2009055449W WO2010064196A2 WO 2010064196 A2 WO2010064196 A2 WO 2010064196A2 IB 2009055449 W IB2009055449 W IB 2009055449W WO 2010064196 A2 WO2010064196 A2 WO 2010064196A2
Authority
WO
WIPO (PCT)
Prior art keywords
determination
soil
thermal conductivity
agro
pps
Prior art date
Application number
PCT/IB2009/055449
Other languages
English (en)
French (fr)
Other versions
WO2010064196A4 (es
WO2010064196A3 (es
Inventor
Orlando ZUÑIGA ESCOBAR
Original Assignee
Universidad Del Valle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Del Valle filed Critical Universidad Del Valle
Priority to MX2011005810A priority Critical patent/MX2011005810A/es
Priority to BRPI0914255A priority patent/BRPI0914255A2/pt
Priority to US13/131,353 priority patent/US9625399B2/en
Publication of WO2010064196A2 publication Critical patent/WO2010064196A2/es
Publication of WO2010064196A3 publication Critical patent/WO2010064196A3/es
Publication of WO2010064196A4 publication Critical patent/WO2010064196A4/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/245Earth materials for agricultural purposes

Definitions

  • the present invention relates to a device for the determination of thermal conductivity and its application in processes for the determination of the productive potential of the soil (PPS), nutritional quality analysis of food and agro-ecological products.
  • thermal properties of the soil vary with the water content, granulometry and soil aggregation (Porta et al. 1994) and are related to microbial activity, mineralization and the humification of organic matter (Montenegro and Malagón, 1990).
  • the thermal conductivity ( ⁇ ) or ability of the soil to transfer heat by molecular conduction is expressed in calories flowing through a floor plate with unit area and thickness, with a difference of I 0 C between the two faces (Honorate, 2000).
  • thermal conductivity
  • surface temperature variations are smaller.
  • the thermal conductivity increases with the moisture content, while affecting the changes in soil temperature; however, when there is pore saturation it does not increase in the expected proportions.
  • Thermal conductivity is considered as a sensitive characteristic to the changes that operate in the soil (Honorato, 2000; Jury et al., 1991).
  • US Patent No. US4861167 presents an apparatus for the determination of the thermal conductivity of molten polymers from the rate of change of temperature in the sample .
  • the apparatus is composed of an elongated cylindrical container that supports the sample, heating means located around the container, a temperature sensor, a probe inserted into the container that makes contact with the sample that includes a hollow needle, a heating means and a sensor housed in the needle body and means connected to the sensor to determine the temperature change in the sample that is in contact with the probe.
  • US patent US3263485 teaches an apparatus for the determination of the thermal conductivity of a solid material through a method that compares the unknown conductivity value of a sample against a material of low known thermal conductivity;
  • the apparatus comprises a receptacle covered in the inner walls by an insulating material, a cylindrical tube mounted inside the receptacle, a heat source located at one end of the tube, a plurality of heating wires wound on a helical grooved wall external tube and sensors to measure the temperature at fixed points of each of the samples.
  • the device for determining the thermal conductivity of the invention is based on the electro-thermal method, which allows to study various phenomena with a high range of reliability through the thermal behavior of the materials, solving the shortcomings of the prior art through of a device consisting of a sample carrying cylinder surrounded by a resistor that creates a radial flow of heat in the sample and a cooling system based on a spiral heat exchanger integrated into the thermal device.
  • This cooling system based on a spiral heat exchanger integrated into the device decreases the processing time of each sample, increasing the number of thermal conductivity determinations per unit of time, so increasing the efficiency in the process It also increases the number of samples analyzed for the purpose of the study, providing more information about it. Additionally, this device can be used for organic quality analysis of food and agricultural products.
  • Figure 1 shows a cross-section of the device for determining thermal quantities of the invention.
  • Figure 2 shows the device for determining thermal quantities of the invention coupled to the data storage system and the source that feeds the cooling system.
  • Figure 3 presents the differential fertilization map obtained through the process of determining the Productive Potential of the invention for a sugarcane crop in the Cauca Valley.
  • Figure 4 presents the comparative graphs for the thermal conductivity of organic coffee and conventional coffee obtained by applying the device of the invention.
  • Figure 5 presents the comparative thermal conductivity curves for organic banana and conventional banana samples obtained by applying the device of the invention.
  • the object of the invention is related to a device for the determination of thermal quantities consisting essentially of a cylinder carrying unaltered samples of soil surrounded by a resistance that creates a radial flow of heat in the soil sample and a system of cooling based on a spiral heat exchanger integrated into the thermal device.
  • Another object of the present invention is the application of the device of the invention for the determination of the productive potential of the soil (PPS) from the determination of the thermal conductivity of a sample and calculated from an indicator that involves synthetic and analytical parameters of soils.
  • PPS productive potential of the soil
  • Particularly another object of the present invention is the application of the device of the invention for the analysis of the nutritional quality of food and agro-ecological products from the determination of the thermal conductivity of a sample in the device of the invention .
  • the present invention relates to a device for the determination of thermal quantities consisting essentially of a cylinder carrying unaltered soil samples surrounded by a resistance that creates a radial flow of heat in the soil sample and a cooling system based in a spiral heat exchanger integrated into the thermal device
  • the electro-thermal technique on which the development of the device of the invention is based uses an electric resistance with direct current as a source of thermal energy that is mostly transferred as heat when the system has an approximately constant volume.
  • the thermal energy dissipated in the resistance (W nr 2 ) heats the volume of soil enclosed within a carrier cylinder according to Fourier's law
  • h is the thermal energy flux density (W nr 2 ) in the direction and direction of the vector: ⁇ ; VT is the temperature gradient vector (K m 1 ) that acts as the directing force of heat; and ⁇ is the transport coefficient called thermal conductivity (W m 1 K “ 1 ).
  • the minus sign indicates that the flow of thermal energy follows the direction of decreasing temperatures.
  • V 2 VxV is the Laplace operator defined as the scalar product of the gradient operator by itself;
  • T T (r, t) the absolute temperature in degrees Kelvin (K) at the distance r in meters (m) and at time t in seconds (s), D ⁇ the heat diffusivity
  • equation (6) is reduced to the following expression:
  • Equation (7) with transformation (8) and conditions (9) and (10) becomes the subsidiary equation
  • Ei (-x) is an exponential whose values are found in the mathematical tables.
  • the exponential can be estimated by a logarithmic function by increasing the time and clearing ⁇ is the following expression (Farouki, 1986)
  • the thermal conductivity ⁇ is an almost constant parameter in space and time resulting from the proportionality between the temperature increase (T 2 -T 1 ) and that of the logarithm of time (lnt 2 - IM 1 * ) .
  • the device for electro-thermal measurements of the invention is constituted by a cylindrical copper core (1) with cooling system (2) carrying unaltered soil samples, which is It is surrounded by an electrical resistance (3) that generates a radial flow of heat in the soil sample by means of a direct current produced by a power source.
  • the sample bearing cylinder (1) is thermally insulated within a cylinder (4) that supports the assembly.
  • the total diameter of the device for electro-thermal measurements may vary in the range of 10 to 20 cm, preferably, between 11 and 13 cm and its height is between 15 and 25 cm, preferably between 17 and 20 cm, in which determinations of unaltered soil samples of any depth can be made in cylindrical cores of 5 cm both in height and diameter.
  • the cylinder (1) with a cooling system (2), it has two receiver terminals (5,6) to which two electric cable lines (7,8) are connected to the power source.
  • the cylinder (1) is insulated by means of a ring (9) made of a thermal insulating material, supported by the outer cylinder (4) to which two terminals (10,11) are embedded to receive two connectors males from the power supply.
  • the copper carrier cylinder (1) with cooling system (2) is insulated by a cover (12) based on thermal insulating material, which serves as a guide for the location of a thermocouple (20) inside the soil sample (M), through a concentric hole (13) provided in the insulating cover (12) and a thermocouple guide (14) extended transversely.
  • FIG. 2 shows the device of the invention connected to a thermocouple (20) for the acquisition of temperature data and to a data storage device (21) that records the data in a PC.
  • the novel system of the device of the invention allows rapid measurements of thermal conductivity in soil samples, storing data, cooling the system and calibrating the device for the next measurement in an average time of 10 minutes.
  • the method for determining the thermal conductivity is developed by placing in the carrier cylinder (1) of the device for electro-thermal measurements, the unaltered soil sample (M), into which the thermocouple (20) is inserted just in the center, for data registration.
  • the electrical connectors with their respective cables that come from the power supply to supply the electric current to the resistor (3) through the power cable lines (7,8) are then connected to the terminals (10-11) .
  • the electric current and the potential difference are recorded in multimeters connected in series and in parallel respectively.
  • the carrier cylinder (1) is made of copper, this selected material for being a good heat conductor
  • the resistance (3) is made up of coated cantal wire with stainless steel
  • the insulating ring (9) and the cover (12) are made of thermal insulating material based on acrylic.
  • the device for electro-thermal measurements of the invention is activated by applying a direct current that circulates through the resistor (3), the thermal energy dissipated by the resistance generates a heat flow in the ground that allows to determine the conductivity thermal information giving information about the productive potential of the soil or its energy reserve, calculated from an indicator that involves synthetic and analytical parameters of soils.
  • Thermal conductivity is a synthetic parameter of the soil related to its energy state. The effect of soil tillage has an impact on thermal conductivity and therefore on the energy state of the soil.
  • the determination of the productive potential of the soil can be represented on maps that represent the spatial variability of the energy reserve of the soil and therefore it is possible to design a differential fertilization plan which increases efficiency and saves costs in the fertilization.
  • a device for electro-thermal measurements of this type can be used for the analysis of the nutritional quality of food and for the identification of the quality of agro-ecological or organic products.
  • the Productive Potential of Soil is a representative index of the welfare state of the soil.
  • the indices for the determination of the productive potential of the soil were classified as synthetic, such as the thermal conductivity of the soil, electrical resistivity (r), Impedance (W) and respirometry in the field (CO 2 / m 2 ); and analytical by the apparent density (Da), the microbial activity (AM), the percentage of macropores (% Macro), the gravimetric humidity (% W) and the percentage of sand (% Sand), determined in the Laboratory of Environmental Physics from the Universidad del Valle.
  • the process for determining the Productive Potential of Soil comprises the stages of:
  • Castile has allowed to reduce fertilization costs by 23%, where the investment per hectare of fertilization is $ 980000 with direct sowings of 11,000 Ha. Therefore, the process of the invention to establish the productive potential of the soil (PPS) from The determination of thermal conductivity in the device of the invention is of vital importance to increase the productivity and competitiveness of the agricultural sector in the region.
  • the process for the analysis of the nutritional quality of food and agro-ecological products based on the determination of the thermal conductivity of a sample in the device of the invention is based on the relationship between thermal conductivity and materials organic, allowing to associate the thermal behavior of products as an indicator of quality.
  • the process for the analysis of the nutritional quality of food and agro-ecological products of the invention comprises the stages of sampling of the agro-ecological product or food and the determination of the thermal conductivity in the product samples by means of the device the invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

La solicitud hace referencia a un dispositivo basado en el método electro térmico para Ia determinación de Ia conductividad térmica, el cual permite analizar diversos fenόmenos con alto rango de confiabilidad a través del estudiar del comportamiento térmico de los materiales. El dispositivo esta constituido por un cilindro portador de muestras rodeado por una resistencia que crea un flujo radial de calor en Ia muestra, un sistema de refrigeraciόn basado en un intercambiador de calor en forma de espiral integrado al dispositivo térmico, medios para el almacenamiento de un fluido y un dispositivo de almacenamiento de datos. Asimismo, Ia presente solicitud describe Ia aplicaciόn del dispositivo en procesos para Ia determinaciόn del potencial productivo del suelo (PPS) y el análisis de calidad nutricional de alimentos y productos agro-ecolόgicos.

Description

Description
Title of Invention: DISPOSITIVO PARA LA DETERMINACIÓN
DE LA CONDUCTIVIDAD TÉRMICA Y PROCESOS DE
APLICACIÓN DEL MISMO
Technical Field Technical Field [ 1 ] CAMPO DE LA INVENCIÓN
[2] La presente invención está relacionada con un dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS), análisis de calidad nutricional de alimentos y productos agro-ecológicos.
[3] ANTECEDENTES DE LA INVENCIÓN
[4] Las propiedades térmicas del suelo (capacidad calorífica, calor específico, conductividad térmica y difusividad térmica) varían con el contenido de agua, granulometría y agregación del suelo (Porta et al. 1994) y se relacionan con la actividad microbiana, la mineralización y la humificación de la materia orgánica (Montenegro y Malagón, 1990).
[5] La conductividad térmica (λ) o habilidad del suelo para transferir calor por conducción molecular se expresa en calorías que fluyen por una placa de suelo con área y espesor unitarios, con una diferencia de I0C entre las dos caras (Honorato, 2000). Cuando la conductividad térmica de un suelo es alta, las variaciones de temperatura en la superficie son menores. La conductividad térmica se incrementa con el contenido de humedad, incidiendo a la vez en los cambios de temperatura del suelo; sin embargo, cuando hay saturación de poros no aumenta en las proporciones es- perables. La conductividad térmica se considera como característica sensible a los cambios que operan en el suelo (Honorato, 2000; Jury et al., 1991).
[6] Numerosos dispositivos para la determinación de la conductividad térmica se conocen en la literatura por ejemplo 1 a patente norteamericana US4861167 presenta un aparato para la determinación de la conductividad térmica de polímeros fundidos a partir de la tasa de cambio de la temperatura en la muestra. El aparato está compuesto por un contenedor cilindrico elongado que soporta la muestra, medios de calentamiento ubicados alrededor del contenedor, un sensor de temperatura, una sonda insertable en el contenedor que hace contacto con la muestra que incluye una aguja hueca, un medio de calentamiento y un sensor alojados en el cuerpo de la aguja y medios conectados al sensor para determinar el cambio de temperatura en la muestra que está en contacto con la sonda. Así mismo, la patente americana US3263485 enseña un aparato para la determinación de la conductividad térmica de un material sólido a través de un método que compara el valor de conductividad desconocido de una muestra frente a un material de baja conductividad térmica conocida; el aparato comprende un receptáculo cubierto en las paredes internas por un material aislante, un tubo cilindrico montado dentro del receptáculo, una fuente de calor ubicada en uno de los extremos del tubo, una pluralidad de alambres de calentamiento enrollados sobre un acanalado helicoidal en la pared externa del tubo y sensores para medir la temperatura en puntos fijos de cada una de las muestras.
[7] Pese a la existencia de las anterioridades previamente descritas, aun persiste la necesidad de un dispositivo para la determinación de la conductividad térmica de una muestra sólida como el suelo de forma directa (no comparativa) en un tiempo de procesamiento relativamente corto y basado en una metodología confiable a partir de la exactitud y precisión del método.
[8] El dispositivo para determinación de la conductividad térmica de la invención está basado en el método electro térmico, el cual permite estudiar diversos fenómenos con alto rango de confiabilidad a través del comportamiento térmico de los materiales, solucionando las falencias del arte previo por medio de un dispositivo constituido por un cilindro portador de muestras rodeado por una resistencia que crea un flujo radial de calor en la muestra y un sistema de refrigeración basado en un intercambiador de calor en forma de espiral integrado al dispositivo térmico. Este sistema de refrigeración basado en un intercambiador de calor en forma de espiral integrado al dispositivo disminuye el tiempo de procesamiento de cada muestra, aumentando el número de determinaciones de conductividad térmica por unidad de tiempo, por lo que al aumentar la eficiencia en el proceso se incrementa también el número de muestras analizadas para el objeto de estudio brindando mayor información del mismo. Adicionalmente, este dispositivo puede ser utilizado para el análisis de calidad orgánica de alimentos y productos agrícolas.
[9] BREVE DESCRIPCIÓN DE LAS FIGURAS
[10] La figura 1 presenta un corte transversal del dispositivo para la determinación de magnitudes térmicas de la invención.
[11] La figura 2 presenta el dispositivo para la determinación de magnitudes térmicas de la invención acoplado al sistema de almacenamiento de datos y a la fuente que alimenta el sistema de refrigeración.
[12] La figura 3 presenta el mapa de fertilización diferencial obtenido mediante el proceso de determinación del Potencial Productivo de la invención para un cultivo de caña de azúcar en el Valle del Cauca.
[13] La figura 4 presenta las gráficas comparativas para la conductividad térmica de café orgánico y café convencional obtenidas mediante la aplicación del dispositivo de la invención.
[14] La figura 5 presenta las curvas comparativas de conductividad térmica para muestras de banano orgánico y banano convencional obtenidas mediante la aplicación del dispositivo de la invención.
[15] OBJETOS DE LA INVENCIÓN
[16] El objeto de la invención está relacionado con un dispositivo para la determinación de magnitudes térmicas constituido fundamentalmente por un cilindro portador de muestras inalteradas de suelo rodeado por una resistencia que crea un flujo radial de calor en la muestra de suelo y un sistema de refrigeración basado en un intercambiador de calor en forma de espiral integrado al dispositivo térmico.
[17] Adicionalmente otro objeto de la presente invención es la aplicación del dispositivo de la invención para la determinación del potencial productivo del suelo (PPS) a partir de la determinación de la conductividad térmica de una muestra y calculado a partir de un indicador que involucra parámetros sintéticos y analíticos de los suelos.
[18] Particularmente otro objeto de la presente invención es la aplicación del dispositivo de la invención para el análisis de la calidad nutricional de alimentos y productos agro- ecológicos a partir de la determinación de la conductividad térmica de una muestra en el dispositivo de la invención.
[19] DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[20] La presente invención se refiere a un dispositivo para la determinación de magnitudes térmicas constituido fundamentalmente por un cilindro portador de muestras inalteradas de suelo rodeado por una resistencia que crea un flujo radial de calor en la muestra de suelo y un sistema de refrigeración basado en un intercambiador de calor en forma de espiral integrado al dispositivo térmico
[21] La técnica electro térmica en la cual se basa el desarrollo del dispositivo de la invención utiliza una resistencia eléctrica con corriente continua como fuente de energía térmica que es transferida en su mayor parte como calor cuando el sistema tiene un volumen aproximadamente constante. La energía térmica disipada en la resistencia (W nr2) calienta el volumen de suelo encerrado dentro de un cilindro portador de acuerdo con la ley de Fourier
[22]
Figure imgf000005_0001
[23] donde ! h es la densidad de flujo de energía térmica ( W nr2) en la dirección y sentido del vector: ε; VT es el vector gradiente de temperatura ( K m 1 ) que actúa como fuerza directora del calor ; y λ es el coeficiente de transporte llamado conductividad térmica (W m 1 K"1 ). El signo menos indica que el flujo de energía térmica sigue el sentido de las temperaturas decrecientes.
[24] El principio de conservación de la energía se expresa en la ecuación de conductividad del flujo de energía térmica.
[25] δQ = δ^h ±s(- t) δr Ss
(2) [26] Donde Q es el contenido de energía térmica por unidad de volumen (J m 3);
es el trasiego de energía térmica por unidad de volumen (nr3); y de tiempo t en segundos (s), y ± S{ε.t) la variación del stock que es fuente o sumidero de calor por unidad de volumen y de tiempo (Wm"3) dentro del espacio considerado.
[27] El contenido de calor en la unidad de volumen varía con la temperatura, por lo que se puede definir el concepto de capacidad calorífica diferencial Ch (Jm 3 K 1)
1281 a = * dT
(3)
[29] Los parámetros ! (W m 1K Λ) y C h (J In-3K"1) son aproximadamente constantes en un suelo uniforme, pero ambos varían en el mismo sentido con la temperatura la densidad o la humedad ( Farouki, 1986), lo que sugiere su cociente
1301
Figure imgf000006_0001
(4) [31] Para definir el parámetro llamado difusividad térmica D h (m2 S"1), el cual se mantiene aproximadamente constante respecto a los cambios de temperatura. [32] Combinando (1) con (2), dividiendo por Ch y sustituyendo (3) y (4) se obtiene la ecuación general de la conducción de la energía térmica (ver Baver et al, 1973; Hillel, 1980; Nerpin & Chudnovskii, 1985; Musy & Soutter, 1991) [33]
Figure imgf000007_0001
(K5-')
(5) [35] Donde
V2 = VxV es el operador de Laplace definido como producto escalar del operador gradiante por sí mismo ; T= T(r,t) la temperatura absoluta en grados Kelvin (K) a la distancia r en metros (m) y en el tiempo t en segundos(s), DΛla difusividad de calor
(mV) ; Ch\& capacidad calorífica diferencial
y
Figure imgf000007_0002
la fuente o sumidero que se obtiene dividiendo la potencia por unidad de volumen (Wm~z) por la capacidad calorífica diferencial Ch (Jm-3K"1)
, lo que define por unidad de sección y aumento de radio (Js-ιm-2m-1) una tasa de incremento de la temperatura en Ks-1
[37] El dispositivo experimental (figura 1) sugiere resolver (5) en coordenadas cilindricas
donde r es la distancia radial desde la fuente lineal da calor, j el ángulo y z la coordenada azimutal y manteniendo la fuente de calor constante.
Figure imgf000007_0003
(6) [39] donde fuentes y sumideros quedan expresados en unidades de capacidad calórica diferencial por el cociente
S/ /C1,
[40] Considerando por razones geométricas que la temperatura es independiente de la altura del cilindro (z) y que es uniforme en su distribución respecto al ángulo φ y que la fuente es constante, la ecuación (6) se reduce a la expresión siguiente:
Figure imgf000008_0001
(7)
[42] Que es la ecuación del régimen transitorio del par de temperatura - tiempo (T,t) desde
(T0,0) hasta ( T,t).
[43] El incremento de temperatura del suelo con el tiempo desde (T0,0) hasta (T,t) viene dado por la solución de la ecuación (7) asumiendo que a partir de un instante inicial dado (T = TO t = 0) la fuente (q) que libera el calor por unidad de longitud (z) de la resistencia eléctrica dentro del cilindro es constante y el segundo miembro TO/t se desvanece al aumentar t. La solución de (7) se obtiene por procedimientos matemáticos de resolución de la ecuación de Laplace (Nerpin & Chudnovskii, 1985; Jury & Roth, 1990) sustituyendo la función T(r,t) por su función transformada
[44] oo o r (r,t)dt (8)
[45] para valores del tiempo 0
≤ t
< oo y para valores de la variable conjugada (p) dentro del dominio de existencia de la integral, con la condición inicial que define la temperatura en todo el dominio de integración de la ecuación diferencial, momento que se adopta como origen del tiempo (t =0)
[46] T (r,0) = T0 (9)
[47] y con la condición de contorno de la ley física conducción del calor (1) en todo el dominio de integración y que toma valores conocidos justo en las superficies de frontera
Figure imgf000008_0002
10)
[49] donde q( W nr2) es la fuente que libera el calor por unidad de tiempo y superficie de la fuente correspondiente a cada unidad de longitud azimutal (z = Im) del cilindro. [50] La ecuación (7) con la transformación (8) y las condiciones (9) y (10) se convierte en la ecuación subsidiaria
Figure imgf000009_0001
+ Iδf
- Ci 2T rhr = 0 (11) [52] que es una ecuación de Bessel cuya solución es conocida y se encuentra en las tablas matemáticas.
[53] Deshecha la transformación de la solución de (11) resulta la solución de (7)
Figure imgf000009_0002
(12) [55] donde Ei (-x) es una exponencial cuyos valores se encuentran en las tablas matemáticas . [56] La exponencial puede ser estimada por una función logarítmica al aumentar el tiempo y despejando λ resulta la expresión siguiente (Farouki, 1986)
Figure imgf000009_0003
(13)
[58] donde la conductividad térmica λ es un parámetro casi constante en el espacio y el tiempo que resulta de la proporcionalidad entre el incremento de temperatura (T2 -T1 ) y el del logaritmo del tiempo (lnt2 - IM1 *). El valor de q se obtiene de la intensidad I de la corriente en amperios (A) y la resistencia R en ohmios (Ω) dividida por la longitud z (m) del cilindro o de la intensidad I y la diferencia de potencial dada por la ley de Ohm (V = LR) entre los extremos de la resistencia con igual longitud que el cilindro.
[59] Con referencia a la figura 1, puede apreciarse que el dispositivo para medidas electro térmicas de la invención está constituido por un núcleo cilindrico de cobre (1) con sistema refrigerante (2) portador de muestras de suelo no alteradas, el cual se encuentra rodeado por una resistencia eléctrica (3) que genera un flujo radial de calor en la muestra de suelo por medio de una corriente continua producida por una fuente de poder. El cilindro portador de la muestra (1) se encuentra aislado térmicamente dentro de un cilindro (4) que sirve de soporte al conjunto. El diámetro total del dispositivo para medidas electro térmicas puede variar en el rango de 10 a 20 cm, preferiblemente, entre 11 y 13 cm y su altura es entre 15 y 25 cm, preferiblemente, entre 17 y 20 cm, en la cual se pueden realizar determinaciones de muestras de suelo no alteradas de cualquier profundidad en núcleos cilindricos de 5 cm tanto de altura como de diámetro.
[60] La resistencia eléctrica (3) que envuelve exteriormente el cilindro portador de cobre
(1) con sistema refrigerante (2), posee dos bornes receptores (5,6) a los cuales están conectadas dos líneas de cable eléctrico (7,8) conectaras a la fuente de potencia. El cilindro (1) se encuentra aislado por medio de un anillo (9) elaborado en un material aislante térmico, soportado por el cilindro exterior (4) al cual se tienen cajeados dos bornes (10,11) para recibir encaj adámente a dos conectares machos provenientes de la fuente de alimentación.
[61] En la parte superior el cilindro portador de cobre (1) con sistema refrigerante (2) se encuentra aislado por una tapa (12) a base de material aislante térmico, que sirve como guía para la ubicación de un termopar (20) dentro de la muestra de suelo (M), a través de un orificio concéntrico (13) provisto en la tapa aislante (12) y una guía de la termocupla (14) extendida transversalmente.
[62] Para el funcionamiento del intercambiador de calor (2) se conecta una manguera (15) desde una fuente de agua a un punto de conexión de entrada a la sonda constituida por un racor (16) y la salida (17) se conecta a una manguera (18) que desemboca en un depósito (19). En la figura 2 se presenta el dispositivo de la invención conectado a una termocupla (20) para la adquisición de los datos de temperatura y a un dispositivo de almacenamiento de datos (21) que registra los datos en un PC.
[63] El novedoso sistema del dispositivo de la invención permite realizar mediciones rápidas de la conductividad térmica en muestras de suelo, almacenar los datos, enfriar el sistema y calibrar el dispositivo para la siguiente medición en un tiempo promedio de 10 minutos.
[64] El método para la determinación de la conductividad térmica se desarrolla colocando en el cilindro portador (1) del dispositivo para medidas electro térmicas, la muestra de suelo no alterada (M), en la cual se introduce el termopar (20) justo en el centro, para el registro de datos. A continuación son enchufados en los bornes (10-11) los conectares eléctricos con sus respectivos cables que provienen de la fuente de alimentación para suministrar la corriente eléctrica a la resistencia (3) a través de las líneas (7,8) de cable eléctrico. La corriente eléctrica y la diferencia de potencial son registradas en multímetros conectados en serie y en paralelo respectivamente.
[65] Los materiales empleados para la construcción del dispositivo para medidas electro térmicas de acuerdo con la invención, vienen determinados de conformidad con la correspondientes exigencias técnicas, como se describe a continuación: el cilindro portador (1) es elaborado en cobre, seleccionado este material por ser un buen conductor de calor, la resistencia (3) está conformada por alambre cantal recubierto con acero inoxidable, mientras que el anillo aislante (9) y la tapa (12) están elaborados en material aislante térmico a base de acrílico.
[66] El dispositivo para medidas electro térmicas de la invención es accionado al aplicar una corriente continua que circula a través de la resistencia (3), la energía térmica disipada por la resistencia genera un flujo de calor en el suelo que permite determinar la conductividad térmica del mismo dando información sobre el potencial productivo del suelo o la reserva energética del mismo, calculado a partir de un indicador que involucra parámetros sintéticos y analíticos de suelos. La conductividad térmica es un parámetro sintético del suelo relacionado con su estado energético. El efecto de la labranza del suelo tiene impacto en la conductividad térmica y por tanto en el estado energético del suelo.
[67] La determinación del potencial productivo del suelo (PPS) se puede representar en mapas que representan la variabilidad espacial de la reserva energética del suelo y por tanto es posible diseñar un plan de fertilización diferencial lo cual aumenta la eficiencia y ahorra costos en la fertilización.
[68] También de manera sorprendente ha resultado de manera adicional que un dispositivo para medidas electro térmicas de este tipo puede ser utilizado para el análisis de la calidad nutricional de alimentos y para la identificación de la calidad de productos agro-ecológicos u orgánicos.
[69] Los siguientes experimentos fueron desarrollados para evaluar el dispositivo de la invención en los procesos de determinación del potencial productivo del suelo (experimento 1) y análisis de la calidad de orgánica de alimentos y productos agrícolas (experimento T).
[70] EJEMPLO 1
[71] Determinación del Potencial Productivo del Suelo
[72] El Potencial Productivo del Suelo (PPS) es un índice representativo del estado de bienestar del suelo. Los índices para la determinación del potencial productivo del suelo se clasificaron en sintéticos, tales como, la conductividad térmica del suelo, resistividad eléctrica ( r ) , Impedancia ( W ) y respirometría en campo (CO2/m2); y analíticos por la densidad aparente (Da), la actividad microbiana (AM), el porcentaje de macroporos (%Macro), la humedad gravimetríca (% W) y el porcentaje de arena (% Arena), determinados en el Laboratorio de Física Ambiental de la Universidad del Valle.
[73] El proceso para la determinación del Potencial Productivo del Suelo (PPS) comprende las etapas de:
[74] 1. a) Muestreo inicial del suelo.
[75] 1. b) Determinación de la conductividad térmica en las muestras de suelo mediante el dispositivo de la invención. [76] 1. c) Determinación de Resistividad eléctrica (Ω.m), Materia Orgánica (%),
Densidad aparente (g/cm3), Macroporos (%), Actividad Microbiana (μgC-CO2 /gSS), Relación ((Ca+Mg)/K) - Potencial de Hidrógeno (pH), Bases intercambiables (Cmol/kg) - CIC (Cmol/kg) en las muestras de suelo mediante técnicas apropiadas a cada variable.
[77] 1. d) Elaboración del mapa de potencial productivo del suelo de acuerdo a la relación de la conductividad térmica y demás variables en las muestras de suelo.
[78] 1. e) Fertilización diferencial del área.
[79] A partir de este proceso se realizo la determinación del Potencial Productivo para un cultivo de caña de azúcar en el Valle del Cauca, obteniendo los valores para la conductividad térmica en 12 muestras de suelo del área cultivable mediante el dispositivo de la invención y elaborando el mapa de fertilización diferencial para el cultivo de caña de azúcar (figura 3). A partir de este mapa se establecen tres estrategias de fertilización dependiendo del estado de bienestar del suelo, la estrategia de fertilización 100% que representa el 6.7% del área en estudio, la estrategia de fertilización 75% que se aplica al 54.2% del área y la estrategia de fertilización 50% que representa el 39.1% del área cultivable.
[80] Experiencias realizadas aplicando el proceso de la invención en el Ingenio Central
Castilla han permitido reducir los costos de fertilización en 23%, en donde la inversión por Ha de fertilización es de $980000 con siembras directas de 11.000 Ha. Por tanto, el proceso de la invención para establecer el potencial productivo del suelo (PPS) a partir de la determinación de la conductividad térmica en el dispositivo de la invención resulta de vital importancia para aumentar la productividad y competitividad del sector agrícola en la región.
[81] EJEMPLO 2
[82] Evaluación de la calidad de productos agro- ecológicos
[83] El proceso para el análisis de la calidad nutricional de alimentos y productos agro- ecológicos a partir de la determinación de la conductividad térmica de una muestra en el dispositivo de la invención se basa en la relación existente entre la conductividad térmica y los materiales orgánicos, permitiendo asociar el comportamiento térmico de los productos como indicador de calidad.
[84] El proceso para el análisis de la calidad nutricional de alimentos y productos agro- ecológicos de la invención comprende las etapas de muestreo del producto agro- ecológico o alimento y la determinación de la conductividad térmica en las muestras del producto mediante el dispositivo de la invención.
[85] Los ensayos se realizaron comparando café orgánico - café convencional y banano orgánico - banano convencional, los resultados obtenidos se observan en las figuras 4 y 5. En estas gráficas se puede observar las marcadas diferencias en la conductividad térmica para productos convencionales y orgánicos, por lo cual el dispositivo para medidas electro-térmicas de la invención puede utilizarse en el proceso de evaluación de la calidad de productos orgánicos y puede considerarse un factor cuantitativo para la obtención del sello verde en productos ecológicos de exportación.

Claims

Claims
[Claim 1] Un dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos caracterizado porque comprende: a) Un núcleo cilindrico de cobre (1). b) Una resistencia eléctrica (3). c) Un cilindro de soporte (4). d) Un elemento de termopar (20). e) Medios de entrada y salida de un fluido (15), (16), (17) y (18). f) Medios de almacenamiento de un fluido (19). g) Un dispositivo de almacenamiento de datos (21).
[Claim 2] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el núcleo cilindrico de cobre (1) presenta un sistema refrigerante integrado (2).
[Claim 3] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque la resistencia eléctrica (3) presenta medios de borne receptores (5) y (6)
[Claim 4] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de las reivindicaciones 1 y 4, caracterizado porque dichos medios de borne receptores (5) y (6) se encuentran conectados a unos medios de alimentación eléctrica (7) y (8).
[Claim 5] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el cilindro (1) se encuentra aislado por medio de un anillo (9) elaborado en un material aislante térmico.
[Claim 6] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el cilindro de soporte (4) presenta medios de borne receptores (10) y
(H).
[Claim 7] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el cilindro portador de cobre (1) con sistema refrigerante (2) se encuentra aislado por una tapa (12) a base de material aislante térmico.
[Claim 8] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de las reivindicaciones 1 y 7 donde dicha tapa (12) presenta un orificio concéntrico (13).
[Claim 9] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el elemento de termopar (20) presenta unos medios de guía (14) los cuales se extienden transversalmente.
[Claim 10] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque dichos medios de entrada y salida de un fluido (15), (16), (17) y (18) están constituidos por una manguera (15), un racor de entrada (16) y uno de salida (17), una manguera (18) que desemboca en un depósito (19).
[Claim 11] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el dispositivo de almacenamiento de datos (21) registra la información en una unidad de procesamiento de datos.
[Claim 12] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque el diámetro total del dispositivo para medidas electro térmicas puede variar en el rango de 10 a 20 cm, preferiblemente, entre 11 y 13 cm y su altura es entre 15 y 25 cm, preferiblemente, entre 17 y 20 cm.
[Claim 13] El dispositivo para la determinación de la conductividad térmica y su aplicación en procesos para la determinación del potencial productivo del suelo (PPS) y análisis de calidad nutricional de alimentos y productos agro-ecológicos de la reivindicación 1, caracterizado porque se pueden realizar determinaciones de muestras de suelo no alteradas de cualquier profundidad en núcleos cilindricos de 5 cm tanto de altura como de diámetro.
PCT/IB2009/055449 2008-12-02 2009-12-01 Dispositivo para la determinación de la conductividad térmica y procesos de aplicación del mismo WO2010064196A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2011005810A MX2011005810A (es) 2008-12-02 2009-12-01 Dispositivo para la determinacion de la conductividad termica y procesos de aplicacion del mismo.
BRPI0914255A BRPI0914255A2 (pt) 2008-12-02 2009-12-01 dispositivo para a determinação da condutividade térmica e processos de aplicação do mesmo
US13/131,353 US9625399B2 (en) 2008-12-02 2009-12-01 Device for determining thermal conductivity and methods for the use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO08-128174 2008-12-02
CO08128174 2008-12-02

Publications (3)

Publication Number Publication Date
WO2010064196A2 true WO2010064196A2 (es) 2010-06-10
WO2010064196A3 WO2010064196A3 (es) 2011-08-11
WO2010064196A4 WO2010064196A4 (es) 2011-10-27

Family

ID=42233678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/055449 WO2010064196A2 (es) 2008-12-02 2009-12-01 Dispositivo para la determinación de la conductividad térmica y procesos de aplicación del mismo

Country Status (4)

Country Link
US (1) US9625399B2 (es)
BR (1) BRPI0914255A2 (es)
MX (1) MX2011005810A (es)
WO (1) WO2010064196A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293184A (zh) * 2013-05-24 2013-09-11 哈尔滨工业大学 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN114264695A (zh) * 2022-01-28 2022-04-01 同济大学 一种微量液体导热系数的测量方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215655B (zh) * 2014-09-15 2017-04-05 中国矿业大学 一种冻土三维方向导热系数测定装置和方法
US10921273B2 (en) * 2017-08-15 2021-02-16 Qatar University Apparatus for measuring the effective thermal conductivity of packed bed of aggregates
CN107621479A (zh) * 2017-10-30 2018-01-23 长安大学 一种岩石比热容测定装置及测定方法
CN113418957B (zh) * 2020-06-17 2022-03-08 南京大学 土体的导热系数测试方法及系统
CN114295678B (zh) * 2021-12-07 2023-09-19 北京卫星制造厂有限公司 一种用于卫星承力筒的检测装备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263485A (en) 1964-01-30 1966-08-02 Minnesota Mining & Mfg Apparatus for determining thermal conductivity
US3592060A (en) * 1969-01-24 1971-07-13 Chicago Bridge & Iron Co Apparatus and method for measuring the thermal conductivity of insulating material
EP0325430B1 (en) * 1988-01-18 1996-05-01 Ishikawajima-Harima Heavy Industries Co., Ltd. An apparatus for measuring thermal conductivity
US4861167A (en) 1988-09-28 1989-08-29 Cornell Research Foundation, Inc. Line-heat-source thermal conductivity measuring system
DE4340775A1 (de) * 1993-11-30 1995-06-01 Erwin Halstrup Verfahren und Vorrichtung zum Messen des Feuchtegehaltes eines Stoffes
JPH1123503A (ja) * 1997-06-30 1999-01-29 Sumitomo Electric Ind Ltd 土壌熱抵抗測定器
US6331075B1 (en) * 1998-05-01 2001-12-18 Administrator, National Aeronautics And Space Administration Device and method for measuring thermal conductivity of thin films
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
ES2259498B1 (es) * 2003-09-25 2007-09-16 Orlando Zuñiga Escobar Dispositivo para medidas electrotermicas y los correspondientes procedimientos de medida y aplicaciones para evaluacion de la compactacion de suelos agricolas, de la reserva energetica del suelo y de la calidad de alimentos y productos agroecologicos.
US7540656B1 (en) * 2006-01-26 2009-06-02 Sierra Lobo, Inc. Apparatus for direct measurement of insulation thermal performance at cryogenic temperatures
CN100585391C (zh) * 2007-09-17 2010-01-27 中国科学院水利部水土保持研究所 一种土壤热参数自动测定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293184A (zh) * 2013-05-24 2013-09-11 哈尔滨工业大学 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN103293184B (zh) * 2013-05-24 2015-03-25 哈尔滨工业大学 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN114264695A (zh) * 2022-01-28 2022-04-01 同济大学 一种微量液体导热系数的测量方法及系统
CN114264695B (zh) * 2022-01-28 2023-08-29 同济大学 一种微量液体导热系数的测量方法及系统

Also Published As

Publication number Publication date
MX2011005810A (es) 2011-10-05
BRPI0914255A2 (pt) 2019-08-06
WO2010064196A4 (es) 2011-10-27
US20110299563A1 (en) 2011-12-08
US9625399B2 (en) 2017-04-18
WO2010064196A3 (es) 2011-08-11

Similar Documents

Publication Publication Date Title
WO2010064196A2 (es) Dispositivo para la determinación de la conductividad térmica y procesos de aplicación del mismo
Bristow et al. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity
Robinson et al. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry
Liang et al. A convenient method of measuring the thermal conductivity of biological tissue
McCracken et al. Advances in PET detection of the antitumor T cell response
ES2574665T3 (es) Procedimientos y sistemas para la medición y el control de parámetros de proceso
CN111562284A (zh) 一种测定土壤热特性和水分特征的系统和方法
US20150127294A1 (en) System and method for determining a spatial thermal property profile of a sample
CN201788161U (zh) 基于点热源法的土壤热阻系数测量探头
CN101936932B (zh) 基于点热源法的土壤热阻系数测量探头
Yu et al. Using electrical impedance detection to evaluate the viability of biomaterials subject to freezing or thermal injury
Liang et al. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor
CN109212159A (zh) 一种多参数冻土现场快速检测装置及其检测方法
Eggert COUPLES FOR BIOLOGICAL RESEARCH¹
CN207133217U (zh) 一种可同时测量土体导热系数及电阻率的装置
US9696246B2 (en) Sensor system with an exchangeable cartridge and a reader
Dang et al. Thermal conductivity probe–Part I–A theoretical error analysis
Schüppler et al. Uncertainty analysis of wireless temperature measurement (WTM) in borehole heat exchangers
Herrick et al. THE THERMO‐STROMUHR METHOD OF MEASURING BLOOD FLOW
Riche et al. Thermal conductivity of anisotropic snow measured by three independent methods
Mjanyelwa et al. Precision and accuracy of DFM soil water capacitance probes to measure temperature
ES2259498B1 (es) Dispositivo para medidas electrotermicas y los correspondientes procedimientos de medida y aplicaciones para evaluacion de la compactacion de suelos agricolas, de la reserva energetica del suelo y de la calidad de alimentos y productos agroecologicos.
JP2017036939A (ja) 土壌熱物性測定装置
Valente et al. Button heat-pulse sensor for soil water content measurements
Zhang et al. Determination of thermal conductivity of cryoprotectant solutions and cell suspensions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/005810

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13131353

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830086

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (10.08.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09830086

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: PI0914255

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110516