WO2010060294A1 - 时间同步方法和装置 - Google Patents

时间同步方法和装置 Download PDF

Info

Publication number
WO2010060294A1
WO2010060294A1 PCT/CN2009/071965 CN2009071965W WO2010060294A1 WO 2010060294 A1 WO2010060294 A1 WO 2010060294A1 CN 2009071965 W CN2009071965 W CN 2009071965W WO 2010060294 A1 WO2010060294 A1 WO 2010060294A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
network element
element node
clock
module
Prior art date
Application number
PCT/CN2009/071965
Other languages
English (en)
French (fr)
Inventor
何力
郁志勇
苏卉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/130,278 priority Critical patent/US20110221485A1/en
Priority to EP09828555A priority patent/EP2352250A4/en
Priority to RU2011121058/08A priority patent/RU2468521C1/ru
Priority to BRPI0921953A priority patent/BRPI0921953A2/pt
Publication of WO2010060294A1 publication Critical patent/WO2010060294A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0688Change of the master or reference, e.g. take-over or failure of the master

Definitions

  • the present invention relates to the field of communications, and in particular to a time synchronization method and apparatus.
  • frequency synchronization that is, the signals of the source end and the destination end maintain a certain relationship in frequency or phase, that is, the frequencies of the source end and the destination end are The same precision remains the same, the phase difference is constant, frequency synchronization is also commonly called clock synchronization, for example, synchronous Ethernet, E1 interface clock synchronization, etc.; another type of synchronization is time synchronization, that is, not only the same frequency, but also the same phase. And have the same time count ruler.
  • the above-mentioned frequency synchronization and time synchronization are two levels of time synchronization requirements of the wireless network, and the wireless system based on the Time Division Duplex (TDD) mode includes Code Division Multiple Access (Code Division Multiple Access, Referred to as CDMA) 200/Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) and the corresponding version of Worldwide Interoperability for Microwave Access (WiMAX) Strict time synchronization is required to ensure that the cell handover can be successfully completed.
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-SCDMA
  • WiMAX Worldwide Interoperability for Microwave Access
  • Strict time synchronization is required to ensure that the cell handover can be successfully completed.
  • the frequency synchronization can be solved by the ground clock signal distribution, and the time synchronization mainly tracks the coordination world by installing a Global Position System (GPS) module at the base station. Time (Universal Time Coordinated, referred to as UTC) timing implementation.
  • the frequency synchronization can be realized by sequentially locking the clock synchronization signals (such as E1, synchronous Ethernet, n-level synchronous transmission module STM-N, Synchronous Transmission Module level n, etc.) by each network element node.
  • Each network element node clock and other fixed frequency sources together form a frequency (clock) synchronization network.
  • the main implementation method is GPS timing or time synchronization protocol (such as IEEE 1588-2008, NTP, etc.) to adjust the time deviation between the master clock and the slave clock to achieve time synchronization.
  • the time synchronization protocol also enables frequency synchronization between the master clock and the slave clock.
  • the Packet Transfer Network (PTN) device implements the frequency in the network through the IEEE 1588-2008 Precision Time Protocol (PTP or 1588). Rate synchronization and time synchronization to solve the problem of base station GPS replacement.
  • the technology for the time transfer of most manufacturers to implement the PTP function is not related to the frequency synchronization network. That is to say, the current frequency synchronization network can realize network clock synchronization, but cannot achieve precise time synchronization.
  • the present invention has been made in view of the fact that the phase transfer cumulative effect in the related art causes relatively significant delay and unreliability, and the present invention is directed to a time synchronization method and apparatus for solving the above problems.
  • the present invention discloses a time synchronization method, including:
  • Each network element node locks a clock synchronization signal of its upper-level network element node through a physical channel; and establishes a clock synchronization network;
  • Each of the network element nodes performs time counting using the locked clock synchronization signal, and performs time synchronization by time compensation according to the time count.
  • performing time compensation according to the time count, and implementing time synchronization includes:
  • the time count is set as a time count scale, and time synchronization is implemented according to the time count scale.
  • the method further includes: when a clock of a network element node of each of the network element nodes is switched, the method further includes:
  • the time compensation is stopped for the network element node, and the network element node stops using the locked clock synchronization signal to perform time counting, and uses a clock synchronization signal generated by a fixed stable frequency source to perform time counting.
  • the method further includes:
  • the network element node performs time counting using the re-locked clock synchronization signal, and performs time compensation on the network element node.
  • the invention also discloses a time synchronization device, comprising a locking module, a first counting module and a supplementary module, which are sequentially connected, wherein:
  • the locking module is configured to lock a clock synchronization signal of the upper-level network element node by using a physical channel; the first counting module is configured to perform time counting using the locked clock synchronization signal; Time synchronization is implemented by time compensation according to the time counting according to the time synchronization.
  • the compensation module includes a setting sub-module and a compensation sub-module connected to each other;
  • the setting submodule is configured to set the time count as a time count scale
  • the compensation sub-module is configured to perform time compensation according to the time counting scale to implement time synchronization.
  • the method further includes a first control module connected to the compensation module;
  • the first control module is configured to control whether to perform time compensation on the network element node, where the first control module controls the compensation module to stop the network element node when the clock of the network element node is switched Time compensation.
  • the device further includes a second control module connected to the first counting module, and a second counting module connected to the second control module;
  • the second control module is configured to control whether to use the locked clock synchronization signal to perform time counting
  • the second counting module is configured to perform time counting using a clock synchronization signal generated by a fixed stable frequency source when the second control module determines that the locked clock signal is not used for time counting .
  • the method further includes: a recovery module, configured to recover a clock according to a message with time information from a higher-level network element node that cannot provide a clock synchronization signal;
  • a calibration module configured to perform calibration and operation of the local clock time signal according to a clock frequency recovered by the recovery module.
  • each network element node uses the locked clock signal to perform time counting, and performs time compensation according to the time counting to realize time synchronization, which solves the phase transfer cumulative effect in the related art, which leads to a relatively obvious phase delay.
  • the problem, which reduces phase delay, is high precision, high noise immunity and reliability.
  • FIG. 1 is a flow chart of a time synchronization method according to an embodiment of the present invention.
  • FIG. 2 is a detailed flowchart of a time synchronization method according to an embodiment of the present invention.
  • FIG. 3 is a first schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • FIG. 5 is a third schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a time synchronization apparatus according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing a specific structure of a time synchronization apparatus according to an embodiment of the present invention. Preferred embodiment of the invention
  • the embodiment of the present invention provides a time synchronization method and apparatus, which implements time network synchronization and edge nodes on the basis of a clock synchronization network. It is compatible with non-clock synchronization networks, which in turn reduces phase delay. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • a time synchronization method is provided.
  • 1 is a flow chart of a time synchronization method in accordance with an embodiment of the present invention. It should be noted that the steps described in the following methods may be performed in a computer system such as a set of computer executable instructions, and although in FIG. The logical order is shown, but in some cases the steps shown or described may be performed in an order different than that herein. As shown in FIG. 1, the method mainly includes the following steps S102 and S104, and the specific operations are as follows:
  • Step S102 The network element node transmits frequency information through a physical channel (such as a synchronous Ethernet link), and each network element node is locked to the upper-level network element node (hereinafter also referred to as a primary node or an upstream network element node) or a fixed by a phase locked loop.
  • a stable clock synchronization signal from the frequency source is output to establish a frequency synchronization network.
  • Step S104 each network element node uses the locked clock synchronization signal to perform time counting, and performs time synchronization according to time counting according to a time synchronization protocol, such as PTP, that is, setting the time count to The time counts the scale and performs time compensation based on the time count ruler to achieve time synchronization.
  • a time synchronization protocol such as PTP
  • each network element node uses the locked clock synchronization signal to perform time counting, and performs time compensation according to the time count to realize time synchronization, thereby solving the phase transfer cumulative effect in the related art, which leads to a relatively obvious phase delay.
  • the problem at the time which in turn reduces the phase delay.
  • FIG. 2 is a detailed flowchart of a time synchronization method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps S202 to S214, and the specific operations are as follows:
  • Step S202 The network element node determines whether the interface is a frequency synchronization network interface. If the determination result is yes, the process proceeds to step S204. If the determination result is negative, the process proceeds to step S212. In this step, The existing network is compatible, and the network element node determines whether the interface is a frequency synchronization network interface. When the interface of the network element node is a frequency synchronization network interface, the technical solution of the present invention is used, and when the interface of the network element node is non-frequency When the network interface is synchronized, it can be processed according to the prior art. For details, refer to steps S212 to S214.
  • Step S204 implementing frequency synchronization between the network element nodes of the synchronization network, that is, using the locking module to track the locked clock synchronization signal, to establish frequency synchronization between the network element nodes (ie, step S102 described above);
  • Step S206 enabling the PTP protocol, Achieve phase synchronization.
  • the network element node clock locks uses the locked clock synchronization signal to perform time counting, and uses a standard starting time as the reference time, and sets the time count as a time counting scale, and interacts through some time synchronization protocol, such as PTP. Perform time compensation on the local element node to implement time synchronization (ie, step S104 described above);
  • the network element node uses the locked clock synchronization information, that is, the frequency after synchronization to perform time counting, and uses a standard start time (for example, UTC epoch or TAI epoch) as the reference time to determine that the local transmission 1588 message is sent.
  • Timestamp 1 ie, the time offset between the current time and the reference time determined by the time count
  • extracting the timestamp 2 from the received 1588 message, and the timestamp 3 of the local receiving 1588 message according to these
  • the timestamp information and the time synchronization protocol perform time compensation on the local element node to implement time synchronization.
  • Step S208 When a clock of a network element node is switched, the network element enters a time hold state, and no time is transmitted;
  • the clock enters the process of relocking, and the time synchronization protocol is stopped to compensate the time of the network element node, and the time of the network element node is counted.
  • the frequency stops acquiring from the phase-locked loop and is obtained from a fixed stable frequency source, that is, the network element node stops using the locked clock synchronization signal for time counting, and uses a fixed stable frequency source for time counting, and time transmission is entered. Keep, no longer track network reference time.
  • step S206 if no network element node clock is switched, execution proceeds to step S206 to achieve time synchronization of the entire network.
  • Step S210 the clock switching of the network element node is completed, and after the clock of the network element node is re-locked, the time transfer is released, that is, the time network is released, and the network element re-uses the synchronized frequency for time counting, which is a time synchronization protocol.
  • time counting which is a time synchronization protocol.
  • the network element node uses the re-locked clock synchronization signal to perform time counting, and performs phase compensation on the network element node, and ends the process;
  • Step S212 the non-frequency synchronization network interface part recovers the clock according to the peer time protocol information (for example, 1588);
  • the clock can be recovered according to the time protocol information of the peer end according to the prior art.
  • Step S214 according to the recovered clock frequency and the local network element The node frequency relationship completes the calibration and operation of the local clock time to achieve time synchronization.
  • a downstream network element node also referred to as a lower-level network element node
  • an upstream network element node also referred to as a lower-level network element node
  • the local clock time signal is calibrated and operated with the "memanical information" of the time information and the clock frequency of the downstream network element node.
  • a 1588 time transmission method based on frequency synchronization is provided, which greatly reduces the phase transfer error between nodes, and cooperates with the non-frequency synchronized ⁇ node to effectively reduce the phase error during large-scale networking. .
  • FIG. 3 is a first schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • a network element node 1, a network element node 2, a network element node 3, and a network element node 5 are all ⁇ devices, nodes. 4 is a fixed clock source.
  • the above-mentioned network element node ⁇ device uses a locking module as a clock generator, and the locking module supports all functions of a digital phase locked loop (DPLL), including: phase-locking loop phase discrimination, Filtering, oscillating, and frequency division, and can automatically complete reference source monitoring, loop operation status detection and switching, loop parameter setting and other functions.
  • DPLL digital phase locked loop
  • the external Temperature Control Crystal Oscillator (TCXO) is the reference source for the digital phase-locked loop and is the basis for the stable operation of the entire system.
  • FIG. 4 is a second schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • a Field Programable Gate Array (FPGA) logic completes reference source selection and cooperates to complete debounce. deal with.
  • the FPGA logic and the external Voltage Control Crystal Oscillator (VCXO for short) form an analog phase-locked loop, debounce the 38.88M clock of the lock module, and send the 38.88M clock to the frequency synthesizer after debounce to generate the motherboard.
  • the 125M signal is used as the time count signal.
  • the clock synchronizing signal operates at a frequency of 125M, and each clock is a unit of length of 8 ns, which is the minimum unit of the time counter scale.
  • the time count scales of the network element nodes in the clock synchronization network are the same.
  • the working time of the network element node is composed of a register of 80 bits (10 bytes), and the counter is synchronized in the clock. Add 1 to the signal drive.
  • 1588 1588
  • the timestamp is a time offset value.
  • the time of the current time and the reference time is given by a standard start time (UTC epoch or TAI epoch). Deviation, in ns.
  • FIG. 5 is a third schematic diagram of a time synchronization method according to an embodiment of the present invention.
  • the lower 16 bits are a fractional part, that is, a portion smaller than Ins; the upper 64 bits are an integer part. That is, an integer multiple of Ins.
  • the time synchronization method according to the embodiment of the present invention includes the following steps:
  • the clocks of the network element nodes are locked to the network element node 4, that is, the clock lock network element node 4 of the network element node 1, the clock of the network element node 2 locks the network element node 1, and the clock of the network element node 3 Locking the network element node 2, after frequency synchronization, the time count scales of the network element nodes 1, 2, 3 are agreed (ie, step S102 described above), before running time 1588 to implement time compensation, the network element nodes 1 and 2 , 3 has a fixed time difference.
  • Each Ethernet interface of the network element node supports the 1588 protocol. Each port performs time extraction on the incoming 1588 and the transmitted 1588 packets. The timestamp is accurately dependent on the network element node counter. The extracted timestamp information is submitted to the protocol processing module of the 1588 of the network element node to calculate the slaves.
  • the time compensation value between the node (also referred to as the lower-level network element node) and the master node (also referred to as the upper-level network element node) compensates for the time offset of the slave node and achieves the consistency of the master-slave time (ie, step S104 described above)
  • the network element node 1 is the upper-level network element node of the network element node 2
  • the network element node 2 is the lower-level network element node of the network element node 1.
  • the clock source of the network element node When the clock source of the network element node is switched, for example, the connection between the network element nodes 2 and 1 is faulty, the clock time source of the network element node 2 needs to be provided by the network element node 5, and the lock of the network element node 2 The phase loop relocks the clock source of the network element node 5.
  • the 125M clock signal output by the lock module has a frequency fluctuation, which will result in a certain time count unit relative to 8 ns. Deviation, the time difference between the calculated network element node time and its master node is calculated, and if it continues to be transmitted to the next network element node, the time network fluctuates.
  • the node time count will switch to the frequency generated by the fixed crystal oscillator in the network element node, and the PTP protocol will be closed, and the time change of the master node will not be tracked, and the time information will not be released to the downstream node.
  • the network element node enters the hold state, and depends on the accuracy of its own crystal oscillator, starting from the time before the switch.
  • the clock is recovered according to the SYNC message of the peer 1588, and then the local clock is calibrated and run according to the recovered clock frequency and the frequency relationship of the local node. 1588 time synchronization.
  • a time synchronization method based on a synchronous network is provided, so that the synchronization frequency is the basis of the time synchronization protocol, and the phase difference of the large-scale networking time transmission can be greatly reduced.
  • a time synchronization device is provided.
  • 6 is a block diagram showing the structure of a time synchronization apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes: a locking module 62, a first counting module 64, and a compensation module 66. The above structure will be described in detail below.
  • the locking module 62 is configured to lock the clock signal of each network element node through the phase locked loop; the first counting module 64 is connected to the locking module 62 for performing time counting using the clock synchronization signal locked by the locking module 62; The module 66 is connected to the first counting module 64 for performing time compensation according to the time count of the first counting module 64 to implement time synchronization.
  • a time synchronization device that can achieve frequency and phase synchronization is provided.
  • FIG. 7 is a block diagram showing a specific structure of a time synchronization apparatus according to an embodiment of the present invention.
  • the compensation module 66 includes: a setting sub-module 662, which is used to set a time count as a time scale of a time stamp;
  • the module 664 is connected to the setting sub-module 662 for performing time compensation according to the time counting scale set by the setting sub-module 662.
  • the above apparatus further includes: a first control module 72, a second control module 74, a second counting module 76, a recovery module 78, and a calibration module 70.
  • the above structure will be described in detail below.
  • the first control module 72 is connected to the compensation module 66 for controlling whether the compensation module 66 performs time compensation on the network element node. When the clock of the network element node is switched, the control compensation module 66 stops time compensation for the network element node. .
  • the second control module 74 is connected to the first counting module 64 for controlling whether to use the clock synchronization signal for time counting. When the clock of the network element node is switched, the first counting module 64 is controlled to stop using the clock synchronization signal.
  • the second counting module 76 is connected to the second control module 74 for performing time using a fixed stable frequency source when the second control module 74 determines that the clock synchronization signal is not used for time counting. Calculate.
  • the recovery module 78 is configured to recover the clock according to the time information from the network element node that cannot lock the clock synchronization signal; the calibration module 70 is connected to the recovery module 78, and is configured to perform calibration of the clock signal according to the clock frequency recovered by the recovery module 78. And running.
  • each network element node phase-locked loop uses the locked clock synchronization signal to perform time counting, and performs time compensation according to time counting through a certain time synchronization protocol, such as PTP.
  • Time synchronization solves the problem that the phase transfer cumulative effect in the related art leads to a relatively obvious phase delay, thereby reducing the phase delay.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.
  • each network element node uses the locked clock synchronization signal to perform time counting, and performs time compensation according to time counting to realize time synchronization, thereby solving the phase transfer cumulative effect in the related art, which leads to a relatively obvious phase.
  • the delay problem reduces phase delay, with high precision, high noise immunity and reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Description

时间同步方法和装置
技术领域
本发明涉及通信领域, 具体而言, 涉及一种时间同步方法和装置。
背景技术
目前, 通信网络中设备间的同步包括两种, 一种是频率同步, 即, 源端 和目的端的信号在频率或相位上保持某种特定的关系, 也就是说, 源端和目 的端的频率在一定的精度内保持相同, 相差恒定, 频率同步通常还称为时钟 同步, 例如, 同步以太网、 E1接口时钟同步等; 另一种同步是时间同步, 即, 不仅频率相同, 而且相位也相同, 并且具有相同的时间记数标尺。
上述的频率同步和时间同步是无线网络对于时间的同步需求的两个级 别, 对基于时分双工( Time Division Duplex, 简称为 TDD )模式的无线系统, 包括码分多址( Code Division Multiple Access, 简称为 CDMA ) 200/时分同步 码分多址接入 ( Time Division- Synchronous Code Division Multiple Access, 简 称为 TD-SCDMA ) 以及微波接入全球互通 (Worldwide Interoperability for Microwave Access, 简称为 WiMAX )的相应版本, 需要严格的时间同步, 以 保证小区切换能够顺利完成, 目前频率同步可以通过地面时钟信号分配解决, 而时间同步主要通过在基站安装全球定位系统( Global Position System, 简称 为 GPS )模块跟踪协调世界时( Universal Time Coordinated, 简称为 UTC )授 时实现。
频率同步可以通过各网元节点依次锁定时钟同步信号(如 E1 , 同步以太 网, n级同步传输模块 STM-N, Synchronous Transmission Module level n等) 实现。 各网元节点时钟和其他固定频率源共同组成频率(时钟) 同步网。 对 于时间同步, 主要的实现方式有 GPS授时或者釆用时间同步协议(如 IEEE 1588-2008, NTP等 )调整主时钟与从时钟之间的时间偏差, 实现时间同步。 时间同步协议也可实现主时钟与从时钟之间的频率同步。 目前分组传送网 ( Packet Transfer Network, 简称为 PTN )设备通过 IEEE 1588-2008精确时间 传递协议( Precision Time Protocol, 以下简称 PTP或 1588 )在网络中实现频 率同步和时间同步, 解决基站 GPS的替代问题。
而目前多数厂家为了实现 PTP功能釆用的时间传递的技术与频率同步网 没有关联。 也就是说, 目前的频率同步网可以实现网络时钟同步, 但无法实 现精确时间同步。 发明内容
针对相关技术中的相位传递累积效应会导致比较明显的延时和不可靠的 问题而提出本发明, 为此, 本发明旨在提供一种时间同步方法和装置, 以解 决上述问题。
为了解决上述问题, 本发明公开了一种时间同步方法, 包括:
各网元节点通过物理通道锁定其上级网元节点的时钟同步信号; 建立时 钟同步网;
所述各网元节点使用锁定后的所述时钟同步信号进行时间记数, 并根据 所述时间记数, 通过时间同步协议进行时间补偿实现时间同步。
进一步地, 上述方法中: 根据所述时间记数进行时间补偿, 实现时间同 步包括:
将所述时间记数设置为时间记数标尺, 并根据所述时间记数标尺进行时 间补偿实现时间同步。
其中, 当所述各网元节点中的某个网元节点的时钟发生切换时, 所述方 法还包括:
停止对所述网元节点进行时间补偿, 所述网元节点停止使用所述锁定的 时钟同步信号进行时间记数, 而使用某固定稳定频率源产生的时钟同步信号 进行时间记数。
当所述网元节点的时钟切换完成时, 所述方法还包括:
所述网元节点使用重新锁定后的时钟同步信号进行时间记数, 并对所述 网元节点进行时间补偿。
进一步地, 上述方法中: 对于与不能提供时钟同步信号的上级网元节点 相连接的下级网元节点, 所述下级网元节点根据来自所述上级网元节点带有 时间信息的 4艮文, 以及所述下级网元节点的时钟频率, 进行所述下级网元节 点本地时钟时间信号的校准和运行。
本发明还公开了一种时间同步装置, 包括依次连接的锁定模块、 第一记 数模块以及补充模块, 其中:
所述锁定模块, 用于通过物理通道锁定上级网元节点的时钟同步信号; 所述第一记数模块,用于使用锁定后的所述时钟同步信号进行时间记数; 所述补偿模块, 用于根据所述时间记数, 通过时间同步协议进行时间补 偿实现时间同步。
进一步地, 上述装置中, 所述补偿模块包括相互连接的设置子模块和补 偿子模块;
所述设置子模块, 用于将所述时间记数设置为时间记数标尺;
所述补偿子模块, 用于根据所述时间记数标尺进行时间补偿实现时间同 步。
中, 还包括与所述补偿模块相连的第一控制模块;
所述第一控制模块, 用于控制是否对所述网元节点进行时间补偿, 其中, 当网元节点的时钟发生切换时, 所述第一控制模块控制所述补偿模块停止对 该网元节点进行时间补偿。
上述装置中, 还包括与所述第一记数模块相连的第二控制模块, 以及与 所述第二控制模块相连的第二记数模块;
所述第二控制模块, 用于控制是否使用所述锁定后的时钟同步信号进行 时间记数;
所述第二记数模块, 用于在所述第二控制模块确定不使用所述锁定后的 时钟信号进行时间记数的情况下, 使用某固定稳定频率源产生的时钟同步信 号进行时间记数。
进一步地, 上述装置中, 还包括: 恢复模块, 用于根据来自不能提供时钟同步信号的上级网元节点的带有 时间信息的报文恢复时钟;
校准模块, 用于根据所述恢复模块恢复的时钟频率进行本地时钟时间信 号的校准和运行。
通过本发明, 各网元节点使用锁定后的时钟信号进行时间记数, 并根据 时间记数进行时间补偿实现时间同步, 解决了相关技术中的相位传递累积效 应会导致比较明显的相位延时的问题, 进而减少了相位延时, 具有高精度、 高抗干扰性和可靠性。
附图概述
图 1是根据本发明实施例的时间同步方法的流程图;
图 2是根据本发明实施例的时间同步方法的详细流程图;
图 3是根据本发明实施例的时间同步方法的第一示意图;
图 4是才艮据本发明实施例的时间同步方法的第二示意图;
图 5是根据本发明实施例的时间同步方法的第三示意图;
图 6是根据本发明实施例的时间同步装置的结构框图;
图 7是根据本发明实施例的时间同步装置的具体结构框图。 本发明的较佳实施方式
功能概述
考虑到相关技术中的相位传递累积效应会导致比较明显的相位延时的问 题, 本发明实施例提供了一种时间同步方法和装置, 在时钟同步网基础上, 实现时间网同步, 并且边缘节点实现与非时钟同步网兼容, 进而可以减少相 位延时。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中 的特征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。
方法实施例 根据本发明的实施例, 提供了一种时间同步方法。 图 1是根据本发明实 施例的时间同步方法的流程图, 需要说明的是, 在以下方法中描述的步骤可 以在诸如一组计算机可执行指令的计算机系统中执行, 并且, 虽然在图 1 中 示出了逻辑顺序, 但是在某些情况下, 可以以不同于此处的顺序执行所示出 或描述的步骤。 如图 1所示, 该方法主要包括如下的步骤 S102和步骤 S104, 具体操作如下:
步骤 S102, 网元节点经物理通道(如同步以太网链路)传递频率信息, 各网元节点通过锁相环锁定于上级网元节点 (下文也称主节点或上游网元节 点)或某固定频率源输出的稳定的时钟同步信号, 建立频率同步网。
步骤 S104, 各网元节点使用锁定后的时钟同步信号进行时间记数, 并根 据时间记数, 通过某种时间同步协议, 如 PTP, 进行时间补偿实现时间同步, 即, 将时间记数设置为时间记数标尺, 并根据时间记数标尺进行时间补偿实 现时间同步。
通过该实施例, 各网元节点使用锁定后的时钟同步信号进行时间记数, 并根据时间记数进行时间补偿实现时间同步, 解决了相关技术中的相位传递 累积效应会导致比较明显的相位延时的问题, 进而减少了相位延时。
图 2是根据本发明实施例的时间同步方法的详细流程图, 如图 2所示, 该方法包括如下的步骤 S202至步骤 S214, 具体操作如下:
步骤 S202, 网元节点判断其接口是否为频率同步网接口, 在判断结果为 是的情况下,进行至步骤 S204,在判断结果为否的情况下,进行至步骤 S212; 该步骤中, 为了与现有其他网络相兼容, 网元节点判断其接口是否为频 率同步网接口, 当网元节点的接口为频率同步网接口时, 釆用本发明技术方 案处理, 当网元节点的接口为非频率同步网接口时, 则可以按照现有技术处 理, 详见步骤 S212至 S214。
步骤 S204, 实现同步网各网元节点间频率同步, 即, 利用锁定模块跟踪 锁定时钟同步信号, 来建立各网元节点间频率同步(即, 上述的步骤 S102 ) ; 步骤 S206, 启用 PTP协议, 实现相位同步。 具体地, 当网元节点时钟锁 定后, 网元节点使用锁定后的时钟同步信号进行时间记数, 以某标准起始时 间为基准时间, 将该时间记数设置为时间记数标尺, 通过某种时间同步协议 交互, 如 PTP, 对本网元节点进行时间补偿, 实现时间同步(即, 上述的步 骤 S104 ) ;
该步骤中, 网元节点使用锁定后的时钟同步信息, 即同步后的频率进行 时间记数, 以某标准起始时间(例如, UTC epoch或 TAI epoch )为基准时间, 确定本地发送 1588报文的时间戳 1 (即通过时间记数所确定的当前时间与基 准时间的时间偏差作 ) , 从接收到的 1588报文中提取时间戳 2 , 以及本地接 收 1588报文的时间戳 3 , 根据这些时间戳信息, 以及时间同步协议, 对本网 元节点进行时间补偿, 实现时间同步。
步骤 S208, 当某个网元节点时钟发生切换时,该网元进入时间保持状态, 不进行时间传递;
具体地, 当上述各网元节点中的某个网元节点时钟发生切换时, 时钟进 入重新锁定的过程, 停止使用时间同步协议对该网元节点行时间补偿, 该网 元节点时间的记数频率停止从锁相环获取, 转为从某固定稳定频率源获得, 即, 网元节点停止使用锁定的时钟同步信号进行时间记数, 而使用某固定稳 定频率源进行时间记数, 时间传递进入保持, 不再跟踪网络参考时间。
在其它实施例中,若没有任何网元节点时钟发生切换,则执行到步骤 S206 即已经实现整个网络的时间同步。
步骤 S210, 网元节点时钟切换完成, 该网元节点的时钟重新锁定以后, 时间传递解除保持, 即, 时间网解除保持, 网元节点重新使用同步后的频率 进行时间记数, 为时间同步协议提供时间记数标尺, 恢复时间跟踪传递。 也 就是说, 当网元节点时钟切换完成时, 网元节点使用重新锁定后的时钟同步 信号进行时间记数, 并对网元节点进行相位补偿, 结束本流程;
步骤 S212,非频率同步网接口部分,根据对端时间协议信息(例如, 1588 ) 恢复时钟;
该步骤中, 对于非频率同步网接口的网元节点, 可以按照现有技术根据 其对端的时间协议信息恢复时钟。 步骤 S214, 根据恢复出时钟频率与本网元 节点频率关系, 完成本地时钟时间的校准和运行, 实现时间同步。
也就是说, 对于与不能锁定时钟同步信号的上游网元节点 (也称上级网 元节点)相连接的下游网元节点 (也称下级网元节点) 而言, 其根据来自上 游元节点的带有时间信息的 "^文, 以及下游网元节点的时钟频率的关系进行 本地时钟时间信号的校准和运行。
通过该实施例, 提供了基于频率同步的 1588时间传送方法, 该方法大幅 减小节点间相位传递误差, 与非频率同步的 ΡΤΡ节点配合组网, 可以有效地 减少大规模组网时的相位误差。
下面将结合实例对本发明实施例的实现过程进行详细描述。
图 3是才艮据本发明实施例的时间同步方法的第一示意图, 如图 3所示, 网元节点 1、 网元节点 2、 网元节点 3、 网元节点 5均为 ΡΤΝ设备, 节点 4为 固定时钟源。
其中, 上述的网元节点 ΡΤΝ设备以锁定模块作为时钟发生器, 这里的锁 定模块支持数字锁相环( Digital Phase Locked Loop, 简称为 DPLL )的所有功 能, 包括: 锁相环路的鉴相、 滤波、 振荡以及分频, 而且可以自动完成参考 源监测、 环路运行状态检测及切换、 环路参数设定等功能。 外挂的温控晶振 ( Temperature Control Crystal Oscillator, 简称为 TCXO )是数字锁相环的参考 源, 是整个系统稳定运行的基础。
图 4是才艮据本发明实施例的时间同步方法的第二示意图, 如图 4所示, 现场可编程门阵列 (Field Programable Gate Array, 简称为 FPGA )逻辑完成 参考源选择以及配合完成去抖处理。 FPGA逻辑与外部的压控晶振(Voltage Control Crystal Oscillator, 简称为 VCXO )组成模拟锁相环, 对锁定模块的 38.88M时钟作去抖处理, 去抖后的 38.88M时钟送频率合成器, 产生主板以 同步太网接口所需的 25M和 125M时钟, 使用 125M信号为时间记数信号。
时钟同步信号的工作频率是 125M,每一个时钟就是 8ns的长度单位, 即 时间记数标尺的最小单位。 时钟同步网内各网元节点的时间记数标尺一致。 网元节点工作时间由 80位(10个字节) 的记数器构成, 记数器在时钟同步 信号驱动下进行加 1运算。本实例以 1588 ( PTP )为时间传递协议,根据 1588 协议,时间戳是一个时间偏差值,以某标准起始时间( UTC epoch或 TAI epoch ) 为基准时间, 给出当前时间和基准时间的时间偏差, 单位为 ns。
图 5是才艮据本发明实施例的时间同步方法的第三示意图, 如图 5所示, 在 80位计数器中, 低 16位为小数部分, 即小于 Ins的部分; 高 64位为整数 部分, 即, Ins的整数倍部分。
下面结合上述的图 3至图 5对本发明实施例的实现过程进行详细描述, 根据本发明实施例的时间同步方法包括如下步骤:
( 1 )配置各网元节点的时钟逐级锁定于网元节点 4, 即网元节点 1的时 钟锁定网元节点 4 , 网元节点 2的时钟锁定网元节点 1 , 网元节点 3的时钟锁 定网元节点 2, 在频率同步后, 网元节点 1 , 2, 3 的时间记数尺度达成一致 (即, 上述的步骤 S 102 ) , 在运行 1588实现时间补偿之前, 网元节点 1 , 2, 3存在固定的时间差。
( 2 ) 以中间节点为边界模式为例, 配置网元节点 1为 1588时间源, 网 元节点 1的端口 1为 1588的主(master )端口, 网元节点 2的端口 1为 1588 的从( slave )端口, 网元节点 2的端口 2为 1588的 master端口, 网元节点 3 的端口 3为 1588的 slave端口, 即网元节点 3追踪网元节点 2的时间, 网元 节点 2追踪网元节点 1的时间。
( 3 )网元节点的每个以太网接口支持 1588协议。每个端口对到达的 1588 和发送的 1588报文进行时间提取, 时间戳的准确依赖于网元节点计数器, 提 取后的时间戳信息提交给网元节点的 1588的协议处理模块,计算出各从节点 (也称为下级网元节点)和主节点 (也称为上级网元节点)之间的时间补偿 值, 补偿从节点的时间偏差, 实现主从时间的一致(即, 上述的步骤 S104 ) , 如图 3所示, 网元节点 1为网元节点 2的上级网元节点, 网元节点 2则为网 元节点 1的下级网元节点。
( 4 )当网元节点的时钟源发生切换时, 例如, 网元节点 2和 1之间连线 故障, 网元节点 2的时钟时间源需要由网元节点 5提供, 网元节点 2的锁相 环重新锁定网元节点 5 的时钟源, 在捕捉锁定的过程里, 锁定模块输出的 125M时钟信号存在频率波动,将导致一个时间记数单位相对 8ns存在一定的 偏差, 以此计算的网元节点时间相对其主节点的就存在时间上的差异, 如果 继续传递给下个网元节点导致时间网的波动。 因此, 当时钟发生切换时, 节 点时间记数将切换到网元节点内固定晶振产生的频率, 同时关闭 PTP协议, 不再跟踪主节点的时间变化, 同时不再向下游节点发布时间信息。 网元节点 时间进入保持状态, 依赖自身晶振的精度, 从切换前的时间开始计时。
( 5 )网元节点时钟切换完成, 从节点重新锁定, 系统频率恢复稳定, 网 元节点重新使用同步后的频率进行时间记数, 为时间同步协议提供时间记数 标尺, 恢复时间跟踪传递, 同时向下游节点发布时间信息。
( 6 ) 当网元节点对接不支持非频率同步网的节点时, 根据对端 1588的 SYNC报文恢复时钟, 然后根据恢复出时钟频率与本节点频率关系, 完成本 地时钟的校准和运行, 实现 1588时间同步。
( 7 )如中间节点为透传模式, 时间传递的精度将会得到进一步的提高。
通过上述实施例, 提供了一种基于同步网的时间同步方法, 使同步频率 为时间同步协议的基础, 可以大幅地降低大规模组网时间传递的相差。
装置实施例
根据本发明的实施例, 提供了一种时间同步装置。 图 6是根据本发明实 施例的时间同步装置的结构框图, 如图 6所示, 该装置包括: 锁定模块 62、 第一记数模块 64、 补偿模块 66, 下面将对上述结构进行详细描述。
锁定模块 62, 用于通过锁相环锁定各网元节点的时钟信号; 第一记数模 块 64, 连接至锁定模块 62, 用于使用锁定模块 62锁定后的时钟同步信号进 行时间记数; 补偿模块 66, 连接至第一记数模块 64, 用于根据第一记数模块 64的时间记数进行时间补偿实现时间同步。
通过该实施例, 提供了可以实现频率和相位同步的时间同步装置。
图 7是根据本发明实施例的时间同步装置的具体结构框图,如图 7所示: 补偿模块 66包括: 设置子模块 662, 用于将时间记数设置为时间戳的记 数标尺; 补偿子模块 664, 连接至设置子模块 662, 用于根据设置子模块 662 设置的时间记数标尺, 进行时间补偿实现时间同步。 上述装置还包括: 第一控制模块 72、 第二控制模块 74、 第二记数模块 76、 恢复模块 78、 校准模块 70, 下面对上述结构进行详细描述。
第一控制模块 72, 连接至补偿模块 66, 用于控制补偿模块 66是否对网 元节点进行时间补偿, 当网元节点的时钟发生切换时, 控制补偿模块 66停止 对该网元节点进行时间补偿。
第二控制模块 74, 连接至第一记数模块 64, 用于控制是否使用时钟同步 信号进行时间记数, 当网元节点的时钟发生切换时, 控制第一记数模块 64停 止使用时钟同步信号进行时间记数; 第二记数模块 76, 连接至第二控制模块 74, 用于在第二控制模块 74确定不使用时钟同步信号进行时间记数的情况 下, 使用某固定稳定频率源进行时间记数。
恢复模块 78, 用于才艮据来自不能锁定时钟同步信号的网元节点的时间信 息恢复时钟; 校准模块 70, 连接至恢复模块 78, 用于根据恢复模块 78恢复 的时钟频率进行时钟信号的校准和运行。
综上, 通过本发明的上述实施例, 各网元节点锁相环使用锁定后的时钟 同步信号进行时间记数, 并根据时间记数, 通过某种时间同步协议, 如 PTP, 进行时间补偿实现时间同步, 解决了相关技术中的相位传递累积效应会导致 比较明显的相位延时的问题, 进而减少了相位延时。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 工业实用性
本发明技术方案中, 各网元节点使用锁定后的时钟同步信号进行时间记 数, 并根据时间记数进行时间补偿实现时间同步, 解决了相关技术中的相位 传递累积效应会导致比较明显的相位延时的问题, 减少了相位延时, 具有高 精度、 高抗干扰性和可靠性。

Claims

权 利 要 求 书
1、 一种时间同步方法, 包括:
各网元节点通过物理通道锁定其上级网元节点的时钟同步信号; 建立时 钟同步网;
所述各网元节点使用锁定后的所述时钟同步信号进行时间记数, 并根据 所述时间记数, 通过时间同步协议进行时间补偿实现时间同步。
2、 根据权利要求 1所述的方法,其中: 根据所述时间记数进行时间补 偿, 实现时间同步包括:
将所述时间记数设置为时间记数标尺, 并根据所述时间记数标尺进行时 间补偿实现时间同步。
3、 根据权利要求 1或 2所述的方法,其中, 当所述各网元节点中的某 个网元节点的时钟发生切换时, 所述方法还包括:
停止对所述网元节点进行时间补偿, 所述网元节点停止使用所述锁定的 时钟同步信号进行时间记数, 而使用某固定稳定频率源产生的时钟同步信号 进行时间记数。
4、 根据权利要求 3所述的方法,其中, 当所述网元节点的时钟切换完 成时, 所述方法还包括:
所述网元节点使用重新锁定后的时钟同步信号进行时间记数, 并对所述 网元节点进行时间补偿。
5、 根据权利要求 1所述的方法, 其中:
对于与不能提供时钟同步信号的上级网元节点相连接的下级网元节点, 所述下级网元节点根据来自所述上级网元节点带有时间信息的报文, 以及所 述下级网元节点的时钟频率, 进行所述下级网元节点本地时钟时间信号的校 准和运行。
6 一种时间同步装置, 包括依次连接的锁定模块、第一记数模块以及 补充模块, 其中:
所述锁定模块, 用于通过物理通道锁定上级网元节点的时钟同步信号; 所述第一记数模块,用于使用锁定后的所述时钟同步信号进行时间记数; 所述补偿模块, 用于根据所述时间记数, 通过时间同步协议进行时间补 偿实现时间同步。
7、 根据权利要求 6所述的装置,其中, 所述补偿模块包括相互连接的 设置子模块和补偿子模块;
所述设置子模块, 用于将所述时间记数设置为时间记数标尺;
所述补偿子模块, 用于根据所述时间记数标尺进行时间补偿实现时间同 步。
8、 根据权利要求 6或 7所述的装置,其中,还包括与所述补偿模块相 连的第一控制模块;
所述第一控制模块, 用于控制是否对所述网元节点进行时间补偿, 其中, 当网元节点的时钟发生切换时, 所述第一控制模块控制所述补偿模块停止对 该网元节点进行时间补偿。
9、 根据权利要求 6或 7所述的装置,其中,还包括与所述第一记数模 块相连的第二控制模块, 以及与所述第二控制模块相连的第二记数模块; 所述第二控制模块, 用于控制是否使用所述锁定后的时钟同步信号进行 时间记数;
所述第二记数模块, 用于在所述第二控制模块确定不使用所述锁定后的 时钟信号进行时间记数的情况下, 使用某固定稳定频率源产生的时钟同步信 号进行时间记数。
10、 根据权利要求 6所述的装置, 其中, 还包括:
恢复模块, 用于根据来自不能提供时钟同步信号的上级网元节点的带有 时间信息的报文恢复时钟;
校准模块, 用于根据所述恢复模块恢复的时钟频率进行本地时钟时间信 号的校准和运行。
PCT/CN2009/071965 2008-11-29 2009-05-25 时间同步方法和装置 WO2010060294A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/130,278 US20110221485A1 (en) 2008-11-29 2009-05-25 Time synchronization method and apparatus
EP09828555A EP2352250A4 (en) 2008-11-29 2009-05-25 METHOD AND APPARATUS FOR TIME SYNCHRONIZATION
RU2011121058/08A RU2468521C1 (ru) 2008-11-29 2009-05-25 Способ и устройство временной синхронизации
BRPI0921953A BRPI0921953A2 (pt) 2008-11-29 2009-05-25 método e aparelho para sincronização de tempo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810179540A CN101431795B (zh) 2008-11-29 2008-11-29 时间同步方法和装置
CN200810179540.5 2008-11-29

Publications (1)

Publication Number Publication Date
WO2010060294A1 true WO2010060294A1 (zh) 2010-06-03

Family

ID=40646894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071965 WO2010060294A1 (zh) 2008-11-29 2009-05-25 时间同步方法和装置

Country Status (6)

Country Link
US (1) US20110221485A1 (zh)
EP (1) EP2352250A4 (zh)
CN (1) CN101431795B (zh)
BR (1) BRPI0921953A2 (zh)
RU (1) RU2468521C1 (zh)
WO (1) WO2010060294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460404A (zh) * 2019-08-06 2019-11-15 武汉晟联智融微电子科技有限公司 一种适用于时分复用载波传输体制总线的时间同步方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431795B (zh) * 2008-11-29 2012-10-10 中兴通讯股份有限公司 时间同步方法和装置
CN102082653B (zh) * 2009-11-26 2013-07-03 中兴通讯股份有限公司 一种时钟同步的方法、系统及装置
CN102098194B (zh) * 2009-12-10 2014-02-05 中兴通讯股份有限公司 一种在局域网络中实现时间同步的方法及系统
WO2011072881A1 (en) * 2009-12-17 2011-06-23 Telefonaktiebolaget L M Ericsson (Publ) Configuration of synchronisation network having synchronization trails for time sync and frequency sync
US8923341B2 (en) * 2010-01-12 2014-12-30 Vitesse Semiconductor Corporation Method for switching master/slave timing in a 1000BASE-T link without traffic disruption
CN101771461A (zh) * 2010-01-18 2010-07-07 北京东方信联科技有限公司 一种td-scdma系统中保持信号同步的方法、装置及系统
CN101986595A (zh) * 2010-11-01 2011-03-16 中兴通讯股份有限公司 时间同步方法及节点
CN102694694B (zh) * 2011-03-23 2017-10-13 中兴通讯股份有限公司 非对称性检测方法及装置
FI123504B (fi) * 2011-05-25 2013-06-14 Tellabs Oy Menetelmä ja laite taajuustahdistuksen ohjaamiseksi
IL217232A0 (en) * 2011-12-27 2012-03-29 Eci Telecom Ltd Technique for monitoring and management of data networks
CN102647224B (zh) * 2012-03-30 2015-06-10 上海鸿晔电子科技有限公司 卫星授时系统的网络时钟守时模块高阶调整方法
CN102664725B (zh) * 2012-04-26 2015-09-16 成都交大光芒科技股份有限公司 客运专线综合监控系统中时钟同步子系统实现方法
US8861664B2 (en) * 2012-06-15 2014-10-14 Smsc Holdings S.A.R.L. Communication system and method for synchronizing a plurality of network nodes after a network lock condition occurs
US9173181B1 (en) * 2013-07-24 2015-10-27 Sprint Communications Company L.P. Adapter that converts precision time protocol (PTP) to global positioning system (GPS)
CN104660359B (zh) * 2013-11-21 2019-01-11 中兴通讯股份有限公司 一种时钟频偏检测的方法、装置和设备
CN103715766B (zh) * 2013-12-18 2015-12-30 南京国电南自电网自动化有限公司 一种环网分布式母线保护同步方法
CN105873207B (zh) * 2015-01-20 2020-06-09 中兴通讯股份有限公司 空口同步系统及其方法
CN108028792B (zh) * 2015-09-17 2020-10-23 株式会社安川电机 工业设备通信系统、通信方法和工业设备
CN105553594B (zh) * 2015-12-09 2018-02-16 沈阳东软医疗系统有限公司 一种pet时钟同步方法和装置
CN106301657B (zh) * 2016-09-07 2018-10-19 合肥更鼓电子科技有限公司 高时间精度大空间信道同步采集系统
CN106899401B (zh) * 2017-02-10 2020-11-17 武汉虹信科技发展有限责任公司 一种万兆同步以太网的时钟同步方法
CN107765217A (zh) * 2017-09-14 2018-03-06 清华大学 基于高精度时钟同步技术的uwb室内定位系统
CN110581743B (zh) * 2018-06-11 2021-01-22 京东方科技集团股份有限公司 电子设备、时间同步系统及时间同步方法
CN111107620B (zh) * 2018-10-25 2023-02-21 中兴通讯股份有限公司 基准定时的确定方法及装置、存储介质和电子装置
CN111756593B (zh) * 2019-03-28 2023-01-17 北京米文动力科技有限公司 时间同步系统的同步精度的自测方法以及测试方法
EP3873009A1 (de) * 2020-02-28 2021-09-01 Siemens Aktiengesellschaft Verfahren zur synchronisation von steuerungsanwendungen über ein kommunikationsnetz zur übermittlung zeitkritischer daten, netzinfrastrukturgerät und kommunikationsendgerät
CN111984059B (zh) * 2020-07-31 2022-08-26 许继集团有限公司 一种授时模块进行对时的pps跳变侦测方法及系统
CN112637444A (zh) * 2020-11-19 2021-04-09 合肥市卓迩无人机科技服务有限责任公司 多路4k拼接系统NTP毫秒时钟同步算法
CN112886951B (zh) * 2021-01-15 2023-08-04 西安微电子技术研究所 一种高精度守时设备的多时钟源无缝切换电路及方法
CN113377060B (zh) * 2021-08-13 2021-11-09 成都博宇利华科技有限公司 信号采集系统中获取每个采样点采样时刻的方法
CN114124616B (zh) * 2022-01-25 2022-05-27 浙江中控研究院有限公司 基于epa总线结构的时钟同步优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667997A (zh) * 2004-03-10 2005-09-14 朗迅科技公司 网络终端时钟同步的方法和系统
WO2008025978A1 (en) * 2006-08-29 2008-03-06 Ubiquisys Limited Synchronising base stations
CN101431795A (zh) * 2008-11-29 2009-05-13 中兴通讯股份有限公司 时间同步方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849458A1 (de) * 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Drahtloses Netzwerk mit einer Taktsynchronisation
DE19937245A1 (de) * 1999-08-06 2001-02-15 Siemens Ag Synchronisierungsverfahren und -system für Taktquellen bei insbesondere paketvermittelnden Kommunikationssystemen
US6557872B1 (en) * 2000-10-31 2003-05-06 Ingalls Engineering Company, Inc. Replacement apparatus providing selectable camber/caster correction
US6914914B1 (en) * 2001-05-22 2005-07-05 Rockwell Automation Technologies, Inc. System and method for multi-chassis configurable time synchronization
EP1635493A1 (en) * 2004-09-14 2006-03-15 Broadcom Corporation Synchronization of distributed cable modem network components
US20070260906A1 (en) * 2006-05-08 2007-11-08 Corredoura Paul L Clock synchronization method and apparatus
GB2441375B (en) * 2006-08-29 2011-03-02 Ubiquisys Ltd Basestation for cellular communication system
WO2008103170A1 (en) * 2007-02-20 2008-08-28 Symmetricom, Inc. Assisted wall-clock
KR100876776B1 (ko) * 2007-04-17 2009-01-09 삼성전자주식회사 통신 시스템에서 gps 정보를 이용한 시간 동기화 방법및 장치
US8473638B2 (en) * 2008-05-02 2013-06-25 James Aweya Method and apparatus for time and frequency transfer in communication networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667997A (zh) * 2004-03-10 2005-09-14 朗迅科技公司 网络终端时钟同步的方法和系统
WO2008025978A1 (en) * 2006-08-29 2008-03-06 Ubiquisys Limited Synchronising base stations
CN101431795A (zh) * 2008-11-29 2009-05-13 中兴通讯股份有限公司 时间同步方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460404A (zh) * 2019-08-06 2019-11-15 武汉晟联智融微电子科技有限公司 一种适用于时分复用载波传输体制总线的时间同步方法

Also Published As

Publication number Publication date
US20110221485A1 (en) 2011-09-15
EP2352250A4 (en) 2012-11-14
BRPI0921953A2 (pt) 2016-01-05
CN101431795B (zh) 2012-10-10
CN101431795A (zh) 2009-05-13
EP2352250A1 (en) 2011-08-03
RU2468521C1 (ru) 2012-11-27

Similar Documents

Publication Publication Date Title
WO2010060294A1 (zh) 时间同步方法和装置
US9178637B2 (en) Method and devices for synchronization using linear programming
CN102104475B (zh) 基于ieee1588的同步系统及其同步方法
US9444470B2 (en) Double phase-locked loop with frequency stabilization
EP2740228B1 (en) Method and system for frequency synchronization
US9609610B2 (en) Synchronization distribution in microwave backhaul networks
EP1940086B1 (en) Method, ethernet device and ethernet for solving the clock synchronization
CN101083523B (zh) 一种实现集成时间戳时钟同步锁相环的方法及装置
CN102013931B (zh) 时间同步方法及系统、从属定时设备及主定时设备
CN101977104A (zh) 基于ieee1588精确时钟同步协议系统及其同步方法
WO2010111963A1 (zh) 时间同步装置、方法和系统
WO2008098450A1 (fr) Procédé, système et dispositif pour la mise en oeuvre de synchronisation temporelle dans un réseau de communications
CN102237941A (zh) 时间同步系统及方法
Magee Synchronization in next-generation mobile backhaul networks
JP2013106329A (ja) 通信装置
WO2012155663A1 (zh) 基于ieee 1588协议调整频率的方法及网络装置
WO2018082665A1 (zh) 频率同步的方法以及从时钟
US20160072619A1 (en) Method and Apparatus for Implementing Clock Holdover
Schüngel et al. Heterogeneous synchronization in converged wired and wireless time-sensitive networks
JP2018088646A (ja) 時刻同期装置及び時刻同期方法
CN114389735A (zh) 一种基于ieee802.1as冗余主时钟的时钟同步方法
EP3080933B1 (en) Method and devices for synchronization using linear programming
CN116346272A (zh) 一种基于Xilinx的PS端和PL端协同的IEEE802.1AS时钟同步系统
Subrahmanyan Timing recovery for IEEE 1588 applications in telecommunications
CN102780554A (zh) 一种通过1588协议实现同步的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828555

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13130278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009828555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011121058

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2239/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0921953

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110527