WO2010057951A2 - Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten - Google Patents

Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten Download PDF

Info

Publication number
WO2010057951A2
WO2010057951A2 PCT/EP2009/065481 EP2009065481W WO2010057951A2 WO 2010057951 A2 WO2010057951 A2 WO 2010057951A2 EP 2009065481 W EP2009065481 W EP 2009065481W WO 2010057951 A2 WO2010057951 A2 WO 2010057951A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
signal
signals
measuring
terminal
Prior art date
Application number
PCT/EP2009/065481
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2010057951A4 (de
WO2010057951A3 (de
Inventor
Bernhard Funck
Andreas Mitzkus
Original Assignee
Flexim Flexible Industriemesstechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flexim Flexible Industriemesstechnik Gmbh filed Critical Flexim Flexible Industriemesstechnik Gmbh
Priority to US13/130,533 priority Critical patent/US9086309B2/en
Priority to JP2011536867A priority patent/JP4979838B2/ja
Priority to EP09817083.0A priority patent/EP2356408B1/de
Publication of WO2010057951A2 publication Critical patent/WO2010057951A2/de
Publication of WO2010057951A3 publication Critical patent/WO2010057951A3/de
Publication of WO2010057951A4 publication Critical patent/WO2010057951A4/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound

Definitions

  • the transit time difference ⁇ t depends on the average flow velocity VI on the sound path, the sound input angle ⁇ in the fluid and the sound propagation time tl in the fluid. The relationship is described by the following formula:
  • a clamp-on measurement is calibrated by mounting the sensors on the measuring tube of a calibration system.
  • the measuring tube preferably has a similar nominal diameter as the tube on which the device is to be installed later.
  • the fluid mechanical conditions of the calibration so the flow profile and the tube geometry occur as an additional source of error. So you have to make sure that there is an ideal flow profile. That can, especially with big ones Diameter, very expensive.
  • the geometry of the measuring tube must also be measured very accurately. It is therefore desirable to provide a calibration method that contains only the parts of the measuring arrangement that are used unchanged in the later measuring point.
  • the known solutions require a delay generator.
  • the resolution of the thus realizable signal propagation times is always limited by the basic clock of the oscillator.
  • Another limitation of the known solutions is that the same signal shape is output in both transmission directions.
  • the signals of an ultrasonic flowmeter in and against the flow direction are not exactly identical in shape. Especially at high flow velocities, the signal shape of the signals received in and against the flow direction differ considerably.
  • an artificial replica of the measuring path which responds to the transmission signals, which the converter generates at the terminals for the two transducers, with received signals which are delayed from the transmission signals by a predetermined duration and their maturities differ from each other by a given transit time difference.
  • the artificial measuring path contains two DA transducers which are each assigned to one connection of the measuring transducer and one of which generates the signal in the flow direction and the other the signal against the flow direction. This is done by storing the digital signals in a memory and sending the transmit signal from the transmitter to the output of the signals to the two outputs of the DA converter.
  • a transmission signal at one of the two transducer connections generates a first reception signal which is delayed by a predetermined first delay compared to the transmission signal and a transmission signal at the other transducer connection a second reception signal which is delayed by a predetermined second delay time compared to the transmission signal.
  • the two response signals to the transmission signals at the terminals T1 or T2 of the transmitter are independently generated by a respective DA converter and the associated digital images of the response signals are calculated independently of each other and stored respectively in the memory of the associated DA converter that one of Zero different amplitude of the response signal after the expiration of a respective independently predetermined transit time t1 or t2 relative to the associated transmission signal on the terminal T1 or T2 is output.
  • the measurement error of the converter is generally determined by comparing the default values with the corresponding measured values.
  • the default values for the transit times between the transmission signals on the terminals T1 and T2 and the associated response signals are calculated from a default value for the volume flow. From the comparison between the default value for the volume flow and the volume flow determined by the transmitter based on the response signals, the measuring error of the transmitter is determined.
  • the two predetermined transit times between the transmission signal on terminal T1 or T2 and the associated response signal from the same measuring point parameters are calculated with which the transmitter is parameterized.
  • a correction factor is calculated and stored in the transmitter.
  • a flow calibration is avoided. Instead of a flow reference, a time reference is used. Time references can be implemented much more accurately than flow references. In addition, the cost is significantly lower than the cost associated with using a flow calibration facility.
  • Fig. 2 Transmitter with the artificial measuring path, instead of the
  • An ultrasonic flowmeter essentially consists of a transmitter and the transducers and the measuring tube.
  • the transducers are either built into the measuring tube or in the case of the Clamp-on flow meter mounted on the outside of the measuring tube.
  • the unit of sound transducers and measuring tube will be referred to below as the measuring path.
  • Flowmeter is the error of measuring the transit time and the transit time difference.
  • the task of calibrating the converter is thus to determine the measurement error of the transit time and the transit time difference.
  • the transmitter also carries out the calculation of the volume flow from the measured transit times. It therefore makes sense to include this calculation in the calibration by comparing the volumetric flow output from the transmitter with a specified volumetric flow and thus determining the measuring error of the volumetric flow.
  • the transmitter is connected to an artificial measuring path.
  • This artificial measuring path responds to the transmit signals of the transmitter with received signals, which are delayed with respect to the transmit signals by run times that exactly match the transit times of the signals of the equivalent true measuring path.
  • a 2-channel generator for arbitrary signals can be used for the generation of the signals. Generators that can generate time-limited signals with adequate runtime accuracy for this task have been offered by several companies for several years.
  • Fig. 3 shows an embodiment of the artificial measuring path consisting of signal generator, computer and signal shaping unit.
  • the signals are calculated on a computer and downloaded to the signal generator.
  • the DA converter is given this signal in the form of a time series. That is, it is digitized at discrete interpolation points.
  • the digitized time series sd_i is:
  • Ti i * Ta and DA_Max is the numerical value corresponding to the maximum amplitude that the DA converter can output.
  • Ta is the sampling interval of the DA converter.
  • Volume flow can be made with a given volume flow.
  • the mean runtime and the runtime difference are on Basis of the measuring path model and the measuring point parameters such as the geometry of the real measuring path as well as the sound velocities of the measuring medium and the pipe wall as well as the running times in the sound transducers.
  • the difference of the transit times of the two signals at the terminals T1 and T2 is calculated from the predetermined volume flow.
  • the flow causes a difference .DELTA.t between the maturities tu and td opposite or in the flow direction.
  • the relationship between the transit time tL in the fluid, the transit time difference ⁇ t and the transit times tu and td is:
  • a typical volume flow Q for the selected pipe diameter is specified. From the volumetric flow, the time difference ⁇ t results after changing over the equation (4) to:
  • the transit time t1 is calculated according to equation (10).
  • the transit times tu and td of the signals which are loaded onto the signal generator are given by Eqs. (8) and (9).
  • the transmitter now determines the transit time and the transit time difference on the signals generated by the artificial measuring path and from this according to GL (4) the volume flow. The comparison of this volume flow with the default value results in the measurement error of the volume flow to be determined.
  • Measuring device made This can be done, for example, by calculating a correction factor from the calibration result and storing it in the transmitter. Since modern ultrasonic flowmeters are equipped with microprocessors, the calculation of the adjustment can also be done by the transmitter itself. For this, the transmitter must know the default value of the volume flow.
  • An advantageous embodiment of the invention therefore provides that the transmitter retrieves or receives the default value of the volume flow from the artificial measuring path via an interface and from this default value and the measured value, the measurement error and the correction factor for the Adjustment calculated. Thus, the adjustment is integrated into the meter and no longer needs to be done in the laboratory.
  • the parameterization of the artificial measuring path can be carried out by the transmitter itself.
  • the transmitter thus takes over the tasks of the computer shown in FIG.
  • the transmitter is connected to the artificial measuring path via a suitable interface.
  • the transmitter calculates the signals on the basis of the measuring point parameters and the default value for the volume flow and loads the signals onto the artificial measuring path.
  • the measuring point parameters are the above-mentioned parameters of the physical measuring path to be simulated by the artificial measuring path, such as e.g. Pipe diameter and speed of sound.
  • the parameter sets for one or more measuring points to be used for calibrations can be stored on the transmitter.
  • the calibration is done by disconnecting the transmitter from the transducers and instead connecting the artificial measuring path and connecting the parameterization interface between the artificial measuring path and the transmitter.
  • the calibration process can be started via the control terminal of the transmitter. This embodiment of the invention is so safe to use that it can also be used in the field and is not limited to use in the calibration laboratory.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
PCT/EP2009/065481 2008-11-21 2009-11-19 Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten WO2010057951A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/130,533 US9086309B2 (en) 2008-11-21 2009-11-19 Method and device for calibrating measuring transducers of ultrasonic flow meters
JP2011536867A JP4979838B2 (ja) 2008-11-21 2009-11-19 超音波流量測定ユニットの測定変換器を校正するための方法及び装置
EP09817083.0A EP2356408B1 (de) 2008-11-21 2009-11-19 Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008058527 2008-11-21
DE102008058527.0 2008-11-21
DE102009046871A DE102009046871A1 (de) 2008-11-21 2009-11-19 Verfahren und Vorrichtung zur Kalibrierung von Messumformern von Ultraschall-Durchflussmessgeräten
DE102009046871.4 2009-11-19

Publications (3)

Publication Number Publication Date
WO2010057951A2 true WO2010057951A2 (de) 2010-05-27
WO2010057951A3 WO2010057951A3 (de) 2010-07-22
WO2010057951A4 WO2010057951A4 (de) 2010-10-07

Family

ID=42168873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065481 WO2010057951A2 (de) 2008-11-21 2009-11-19 Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten

Country Status (5)

Country Link
US (1) US9086309B2 (ja)
EP (1) EP2356408B1 (ja)
JP (1) JP4979838B2 (ja)
DE (1) DE102009046871A1 (ja)
WO (1) WO2010057951A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428777A1 (en) * 2010-09-09 2012-03-14 SICK Engineering GmbH A method of operating an ultrasonic gas flow meter and an ultrasonic gas flow meter

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979838B2 (ja) * 2008-11-21 2012-07-18 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー 超音波流量測定ユニットの測定変換器を校正するための方法及び装置
DE102011005170B4 (de) 2011-03-07 2012-10-11 Flexim Flexible Industriemesstechnik Gmbh Verfahren zur Ultraschall-Clamp-on-Durchflussmessung und Vorrichtung zur Umsetzung des Verfahrens
PL3175205T3 (pl) * 2014-07-29 2020-09-07 Gwf Messsysteme Ag Ulepszony przepływomierz typu transit time
DE102015107753A1 (de) 2015-05-18 2016-11-24 Endress + Hauser Flowtec Ag Verfahren zur Ermittlung einer charakteristischen Größe zur Bewertung einer Messanordnung umfassend ein Clamp-On-Ultraschall- Durchflussmessgerät und ein Rohr und/oder zur Bewertung des Messbetriebs dieser Messanordnung
EP3482164A1 (en) * 2016-07-08 2019-05-15 Apator Miitors ApS Ultrasonic flow meter with improved adc arrangement
DE102016119180A1 (de) 2016-10-10 2018-04-12 Endress + Hauser Flowtec Ag Gehäuse für ein Feldgerät der Mess- und Automatisierungstechnik zur Überwachung und/oder Bestimmung mindestens einer Prozessgröße eines Mediums
US20220018695A1 (en) * 2018-11-30 2022-01-20 Baker Hughes Holdings Llc In situ ultrasonic flow meter validation
WO2020186383A1 (zh) * 2019-03-15 2020-09-24 深圳市汇顶科技股份有限公司 校正电路以及相关信号处理电路及芯片
US11359950B2 (en) * 2019-12-10 2022-06-14 Johnson Controls Tyco IP Holdings LLP Reduced length valve assembly with ultrasonic flow sensor
CN112595373B (zh) * 2020-11-24 2022-12-06 宁波水表(集团)股份有限公司 一种超声水表设计方法以及系统
CN112735399B (zh) * 2020-12-01 2024-04-26 西安中星测控有限公司 一种变送器语音校准装置及方法
CN113624305B (zh) * 2021-08-27 2022-11-15 成都千嘉科技有限公司 一种超声波流量计校准方法及系统
CN114001804B (zh) * 2021-11-01 2024-04-16 成都千嘉科技有限公司 一种基于时间差法超声波计量装置的校准方法及系统
CN117073810B (zh) * 2023-08-22 2024-05-28 阿米检测技术有限公司 一种超声波流量计渡越时间测量精度检测修正方法及应用
CN116878599B (zh) * 2023-09-06 2024-01-09 青岛鼎信通讯科技有限公司 一种超声水表的流量计量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762012A (en) * 1987-01-29 1988-08-09 Manning Technologies, Inc. Universal upstream-downstream flowmeter tester
DE102005037458A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Ultraschall-Strömungssensor mit Driftkompensation
US20090000392A1 (en) * 2007-06-29 2009-01-01 General Electric Company Flow simulating circuit for testing of flowmeters

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029140C2 (de) 1980-07-31 1982-05-19 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch Eichvorrichtung für akustische Strömungsgeschwindigkeitsmeßgeräte
JPH088417Y2 (ja) * 1989-03-17 1996-03-06 株式会社カイジョー 超音波流量計校正装置
KR960013251B1 (ko) * 1993-08-25 1996-10-02 주식회사 창민물산 초음파 유량측정 방법과 장치
US6386047B2 (en) * 1998-09-03 2002-05-14 Chang Min Tech Co., Ltd. Ultrasonic flow velocity measuring method using phase difference measurements
KR100492308B1 (ko) * 2000-09-15 2005-06-02 주식회사 하이드로소닉 초음파 유량 측정 방법
DE10348083B4 (de) * 2003-10-13 2006-09-07 Flexim Flexible Industriemesstechnik Gmbh Vorrichtung zur Ankopplung eines auf einer Rohrwand anzubringenden Ultraschall-Clamp-on-Meßkopfes
DE102004031274B4 (de) * 2004-06-28 2007-07-12 Flexim Flexible Industriemesstechnik Gmbh Verfahren zur Kalibrierung von Ultraschall-Clamp-on-Durchflussmessgeräten
US7406878B2 (en) * 2005-09-27 2008-08-05 Endress + Hauser Flowtec Ag Method for measuring a medium flowing in a pipeline and measurement system therefor
US7984637B2 (en) * 2007-07-06 2011-07-26 General Electric Company System and method for field calibration of flow meters
AU2009205679B2 (en) * 2008-01-18 2013-12-05 Spinecore, Inc. Instruments and methods for inserting artificial intervertebral implants
JP4979838B2 (ja) * 2008-11-21 2012-07-18 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー 超音波流量測定ユニットの測定変換器を校正するための方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762012A (en) * 1987-01-29 1988-08-09 Manning Technologies, Inc. Universal upstream-downstream flowmeter tester
DE102005037458A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Ultraschall-Strömungssensor mit Driftkompensation
US20090000392A1 (en) * 2007-06-29 2009-01-01 General Electric Company Flow simulating circuit for testing of flowmeters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428777A1 (en) * 2010-09-09 2012-03-14 SICK Engineering GmbH A method of operating an ultrasonic gas flow meter and an ultrasonic gas flow meter
US8485046B2 (en) 2010-09-09 2013-07-16 Sick Engineering Gmbh Ultrasonic flow meter and method including a test procedure to verify the operation of the electronic

Also Published As

Publication number Publication date
EP2356408B1 (de) 2015-07-01
US20110231137A1 (en) 2011-09-22
WO2010057951A4 (de) 2010-10-07
WO2010057951A3 (de) 2010-07-22
EP2356408A2 (de) 2011-08-17
JP2012509473A (ja) 2012-04-19
DE102009046871A1 (de) 2010-06-17
JP4979838B2 (ja) 2012-07-18
US9086309B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
EP2356408B1 (de) Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten
EP1722221B1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massedurchflusses eines Messmediums
EP2684010B1 (de) Verfahren zur ultraschall-clamp-on-durchflussmessung und vorrichtung zur umsetzung des verfahrens
EP2817588B1 (de) Verfahren und vorrichtung zur bestimmung von eigenschaften einer rohrleitung, insbesondere der position eines abzweigs einer abwasserrohrleitung
WO2005064284A2 (de) Vorrichtung zur bestimmung und/oder überwachung des volumen- und/oder massendurchflusses eines messmediums
EP3030920A1 (de) Dispersionskorrektur für fmcw-radar in einem rohr
DE102013106108A1 (de) Verfahren zur Ermittlung eines kompensierten Durchflusses und/oder einer kompensierten Strömungsgeschwindigkeit, Ultraschall-Durchflussmessgerät und Computerprogrammprodukt
EP3298360A1 (de) Verfahren, computerprogrammprodukt und vorrichtung zur ermittlung einer charakteristischen grösse zur bewertung einer messanordnung umfassend ein clamp-on-ultraschall-durchflussmessgerät und ein messrohr
WO2006000546A1 (de) Verfahren zur kalibrierung von ultraschall-clamp-on-durchflussmessgeräten
DE102005037458B4 (de) Ultraschall-Strömungssensor mit Driftkompensation
EP2652465A1 (de) Bestimmung von medieneigenschaften bei der füllstandmessung
EP3314210B1 (de) Feldgerät mit kompensationsschaltung zur eliminierung von umgebungseinflüssen
DE102004035715B4 (de) Schalllaufzeitmessvorrichtung
EP1754051B1 (de) Verfahren zur korrektur des einflusses von signalübertragungsleitungen auf signallaufzeitänderungen bei ultraschallmessungen
EP3118592A1 (de) Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und diesbezügliches coriolis-massedurchflussmessgerät
WO2006125722A1 (de) Verfahren zur bestimmung und/oder überwachung einer prozessgrösse
DE102007051615B4 (de) Verfahren und Anordnung zur Bestimmung der relativen Lage von Mikrofonen sowie ein entsprechendes Computerprogramm und ein entsprechendes computerlesbares Speichermedium
WO2006056560A2 (de) Verfahren zur bestimmung des massedurchflusses eines coriolis-massedurchflussmessers
DE10062875B4 (de) Durchflussmesser
EP3517946A1 (de) Verfahren zur ermittlung eines korrigierten werts für die viskositätsabhängige schallgeschwindigkeit in einem zu untersuchenden fluid
WO2022063812A1 (de) Coriolis-durchflussmessgerät sowie verfahren zum betrieb des coriolis-durchflussmessgeräts
DE19626865A1 (de) Verfahren zur Messung der Laufzeiten von Schallsignalen in einem Fluid sowie Schaltungsanordnung zur Messung der Laufzeiten von Schallsignalen
WO2010085980A1 (de) Coriolis-massendurchflussmesser und verfahren zur berechnung des gasanteils in einer flüssigkeit
DE102013218522A1 (de) System oder ein Verfahren für das Messen einer Strömung eines Fluids oder eines Gases
EP1754026B1 (de) Verfahren und vorrichtung zum messen der strömungsgeschwindigkeit von fluiden

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011536867

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009817083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13130533

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE