WO2010055944A1 - Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles - Google Patents

Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles Download PDF

Info

Publication number
WO2010055944A1
WO2010055944A1 PCT/JP2009/069478 JP2009069478W WO2010055944A1 WO 2010055944 A1 WO2010055944 A1 WO 2010055944A1 JP 2009069478 W JP2009069478 W JP 2009069478W WO 2010055944 A1 WO2010055944 A1 WO 2010055944A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
fatty acid
resin
particles
ultrafine
Prior art date
Application number
PCT/JP2009/069478
Other languages
French (fr)
Japanese (ja)
Inventor
和彰 大橋
泰啓 小坂
滋 鈴木
大佑 平塚
Original Assignee
東洋製罐株式会社
東罐マテリアル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社, 東罐マテリアル・テクノロジー株式会社 filed Critical 東洋製罐株式会社
Priority to JP2010537828A priority Critical patent/JP5519525B2/en
Publication of WO2010055944A1 publication Critical patent/WO2010055944A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the present invention relates to a method for producing copper ultrafine particles, and more particularly to a method for producing copper ultrafine particles capable of efficiently producing copper ultrafine particles that are difficult to produce ultrafine particles. Furthermore, this invention relates to the resin composition containing a copper ultrafine particle.
  • ultra-fine metal particles exhibit unique properties different from those of bulk, they can be applied to inkjet materials, recording materials, catalysts, etc., materials for electronic devices such as conductive pastes, and color materials using plasmon absorption. Applications are being studied in various fields.
  • resin molded products in which these metal ultrafine particles are stably dispersed have been widely studied such as conductive materials, magnetic materials, and electromagnetic wave absorbing materials (Patent Document 1).
  • the resin compound containing ultrafine metal particles whose surface is modified with an organic acid by the present applicant can adsorb malodorous components such as methyl mercaptan or volatile organic compounds (hereinafter referred to as “VOC”) such as formaldehyde. It has been clarified that it has performance and has the property of inactivating microproteins such as antibacterial properties and allergens (Patent Documents 2 and 3).
  • metal ultrafine particles As described above, the application of metal ultrafine particles in various fields has been studied.
  • a production method for obtaining such metal ultrafine particles a vapor of metal evaporated at a high temperature in a gas phase is supplied.
  • the vapor phase method in which fine particles are formed by rapid cooling by collision with gas molecules, and the liquid phase method in which a reducing agent is added to a solution containing metal ions to reduce metal ions are generally used.
  • a resin compound containing ultrafine metal particles having a narrow particle size distribution and excellent dispersion stability can be obtained by a very simple and general method. This is a highly productive manufacturing method.
  • Patent Documents 4 and 5 a metal-containing organic compound and a thermoplastic resin are mixed, and then heated to a temperature not lower than the decomposition start temperature of the metal-containing organic compound and lower than the complete decomposition temperature.
  • a production method in which ultrafine metal particles are synthesized, and further, surface modification of the ultrafine metal particles and dispersion in the resin are realized simultaneously with the synthesis.
  • a resin composition in which ultrafine copper particles are dispersed has excellent adsorptivity to amine-based malodorous components such as dimethylamine and trimethylamine.
  • amine-based malodorous components such as dimethylamine and trimethylamine.
  • copper ultrafine particles are generally easily oxidized, it is difficult to stably exist in the resin composition.
  • a metal-containing organic compound such as a fatty acid metal salt as described above is mixed with a resin as a precursor and heat-molded. Therefore, it is lacking in convenience and versatility that requires heating and mixing at a high temperature for a long time.
  • An object of the present invention is to provide a method for producing copper ultrafine particles, in which copper ultrafine particles are simply and efficiently generated in view of the above-described problems of the prior art.
  • Another object of the present invention is to provide a method for producing copper ultrafine particles in which the copper ultrafine particles are less susceptible to oxidation over time in the resin and can be stably present, and a copper ultrafine particle-containing resin composition. .
  • fatty acid copper is mixed and heated with a fatty acid metal salt of at least one metal selected from silver, gold, platinum, and palladium, and the ultrafine copper particles are formed into ultrafine copper particles in the resin.
  • a manufacturing method is provided. In the method for producing copper ultrafine particles of the present invention, 1. The molar ratio of fatty acid metal copper to fatty acid metal salt is 20: 1 to 0.5: 1; 2. The temperature of mixing and heating is a temperature equal to or higher than the temperature at which the fatty acid metal salt is thermally decomposed in the resin; 3. The average particle size of the copper ultrafine particles is 1 to 100 nm, Is preferred. According to the present invention, there is also provided a copper ultrafine particle-containing resin composition characterized in that the copper ultrafine particles produced by the above production method are dispersed in a resin.
  • a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is blended together with fatty acid copper.
  • a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium it is possible to produce fatty acid copper at a lower temperature and in a shorter time than when heated in a resin alone.
  • the method for producing copper ultrafine particles of the present invention copper ultrafine particles that conventionally required heating for a long time can be efficiently generated under short heating conditions. Furthermore, since ultrafine copper particles can be obtained in a shorter time than conventional, it is possible to effectively prevent thermal degradation of the resin. Moreover, the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention can exist stably without agglomeration in the resin. Further, the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention are less susceptible to oxidation over time in the resin and can be stably present for a long time.
  • the resin composition containing the ultrafine copper particles obtained by the method of the present invention has an adsorption performance for the amine-based malodorous component of the ultrafine copper particles and an adsorption performance for the sulfur-containing malodorous component of the ultrafine silver particles. Is also possible.
  • fatty acid copper and fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium are used.
  • the fatty acid in the fatty acid copper and fatty acid metal salt in the present invention is a fatty acid having 3 to 30 carbon atoms and may be either saturated or unsaturated. Examples of such include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, arachidic acid, etc. Preferably, myristic acid is used. A plurality of fatty acids may be included.
  • a fatty acid component itself can also adsorb an odor component by using a fatty acid having a branch and a large number of carbon atoms. Deodorizing effect can be obtained.
  • a fatty acid metal salt having a water content of 200 ppm or less, and by mixing this with a resin and thermoforming it, the resin composition is particularly excellent in good color tone and malodorous substance adsorption ability. Can be obtained.
  • the method for mixing fatty acid copper and a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is not particularly limited.
  • Single fatty acid copper and fatty acid silver, gold, platinum, or a fatty acid metal salt of at least one metal of palladium may be mixed at a predetermined ratio when blended with the resin, or copper may be mixed at a predetermined ratio.
  • a fatty acid metal salt containing at least one metal selected from silver, gold, platinum and palladium may be synthesized in advance and blended with the resin.
  • the ultrafine copper particles produced by the method of the present invention preferably have a maximum diameter of the above ultrafine metal particles of 1 ⁇ m or less, particularly in the range of an average particle diameter of 1 to 100 nm. From the scanning electron micrograph of the cross section of the obtained resin composition, it is observed that the metal ultrafine particles are finely dispersed (nanodispersed).
  • the average particle diameter as used herein refers to an average value of a single particle having no gap between the metals.
  • the copper ultrafine particles are formed from the phenomenon of plasmon absorption in which the copper ultrafine particles absorb light having a wavelength near 570 nm.
  • the method for producing copper ultrafine particles of the present invention effectively reduces the decrease in the molecular weight of the resin due to decomposition of the copper ultrafine particles, etc., and thus has good moldability and can be processed into granules, pellets, films, sheets and containers And Furthermore, since the copper ultrafine particles are formed in a state of being very well dispersed in the resin, they exhibit an excellent adsorption effect for amine-based odor components such as dimethylamine.
  • fatty acid copper and fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium are blended in the resin, and the temperature is equal to or higher than the temperature at which the fatty acid metal salt is thermally decomposed in the resin.
  • the resin compounded with the fatty acid metal salt any conventionally known resin can be used as long as it is a thermoplastic resin that can be melt-molded.
  • low-, medium-, high-density polyethylene linear low density polyethylene, Linear ultra-low density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-
  • olefin resins such as butene-1 copolymer
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyamide resins such as nylon 6, nylon 6,6, and nylon 6,10, and polycarbonate resins. it can.
  • a resin having an oxygen permeability coefficient of 1.0 ⁇ 10 ⁇ 4 cc ⁇ m / m 2 ⁇ day ⁇ atm or more can be preferably used, and polyethylene can be particularly preferably used.
  • suction of the odor component by the resin composition obtained by this invention can be performed easily, and deodorizing property can be improved more.
  • various compounding agents known per se for example, fillers, plasticizers, leveling agents, thickeners, thickeners, stabilizers, antioxidants, ultraviolet absorbers, etc., depending on the application. Can be blended according to a known formulation.
  • the blending amount of fatty acid copper into the resin can be appropriately determined depending on the use.
  • the fatty acid copper when used as an adsorbent, is preferably blended in an amount of 0.01 to 20 parts by weight, particularly 0.1 to 10 parts by weight per 100 parts by weight of the resin. If the amount is less than the above range, the excellent adsorption performance of the copper ultrafine particles cannot be sufficiently exhibited. On the other hand, if the amount is more than the above range, the moldability of the resin composition may be deteriorated.
  • blended with resin with fatty acid copper is determined corresponding to the quantity of fatty acid copper which should be mix
  • the production efficiency of the copper ultrafine particles is lowered even if the amount of the fatty acid metal salt is larger or smaller than the above range.
  • the copper ultrafine particle-containing resin composition obtained by the present invention is subjected to a conventionally known melt molding such as a two-roll method, injection molding, extrusion molding, compression molding, etc., so that the shape according to the use of the final molded product,
  • a conventionally known melt molding such as a two-roll method, injection molding, extrusion molding, compression molding, etc.
  • adsorptive resin molded products such as granules, pellets, films, sheets, and containers can be molded.
  • the heat treatment conditions of the resin composition cannot be generally defined by the type of resin and fatty acid metal salt used, but the fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is contained in the resin. It is preferable to heat at a temperature not lower than the temperature at which pyrolysis occurs and within a temperature range that does not cause thermal degradation of the resin.
  • the heat treatment conditions for the production of copper ultrafine particles are affected by the heat generated by shearing by screws, etc., or the residence time, etc. in addition to the set temperature of processing machines such as extruders and molding machines. It is necessary to adjust processing conditions such as heating time, residence time, and screw rotation speed according to the temperature. Specifically, when fatty acid silver is used, the temperature is from 120 ° C.
  • the heating time here refers to the time from when a material is charged into the hopper until it is discharged.
  • the residence time refers to a time during which heat mixing is intentionally performed in a residence part provided inside or outside the extruder.
  • Copper ultrafine particles can be formed by mixing and heating fatty acid metal salt of fatty acid copper and at least one metal selected from silver, gold, platinum and palladium in the resin. Copper ultrafine particles can be formed in the coating film. Further, as in the case of the resin composition described above, a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is used in a molar ratio of fatty acid copper to fatty acid metal salt of 20: 1 to 0.00. It is desirable to add 5: 1, particularly 8: 1 to 0.5: 1.
  • the paint component containing the fatty acid copper and the fatty acid metal salt various materials can be used as long as the coating film can be formed by heating.
  • conventionally known coating compositions such as acrylic coating, epoxy coating, phenol coating, urethane coating, polyester coating, alkyd resin coating, and the like can be used.
  • the heat treatment conditions of the coating composition cannot be generally defined by the type of coating component and fatty acid metal salt used, the temperature range is such that the fatty acid metal salt is at or above the temperature at which it thermally decomposes in the coating and does not cause thermal degradation of the coating component. It is necessary to perform heat treatment for 60 to 600 seconds.
  • Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C.
  • liquid B was prepared by dissolving 60.4 g of copper nitrate trihydrate in 600 g of water.
  • the B liquid was thrown into the A liquid while stirring the A liquid.
  • the mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration.
  • the obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
  • Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C.
  • liquid B was prepared by dissolving 40.3 g of silver nitrate in 600 g of water.
  • the B liquid was thrown into the A liquid while stirring the A liquid.
  • the mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration.
  • the obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
  • the diffuse reflectance of the obtained plate was measured with a spectrophotometer (manufactured by JASCO Corporation, V-570), and the absorbance was determined from the value.
  • a noble metal and copper ultrafine particles will show the color development resulting from plasmon absorption which arises when a free electron receives the vibration by a photomagnetic field. This absorption wavelength is unique to the type of metal, and when the ultrafine copper particles are contained in the resin, plasmon absorption is observed near the wavelength of 570 nm.
  • Example 1 An injection molding machine (Japan Steel Works, JSW, J505A11) that was mixed so that the amount of copper stearate added was 0.5 wt% and the amount of silver stearate added was 0.05 wt%, and the temperature was set to 280 ° C. Was subjected to injection molding (heating time: about 30 seconds) to obtain a plate.
  • Example 2 A plate was obtained in the same manner as in Example 1 except that the mixture was mixed so that copper stearate 0.5 wt% and silver stearate 0.1 wt%.
  • Example 3 Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C., and liquid B was prepared by dissolving 28.3 g of copper nitrate trihydrate and 2.8 g of silver nitrate in 600 g of water. Next, the B liquid was thrown into the A liquid while stirring the A liquid. The mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration. The obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
  • a hot air dryer manufactured by Tabai Espec
  • the obtained copper and silver stearate is mixed with low density polyethylene so as to be 0.5 wt%, and injection molding is performed with an injection molding machine (manufactured by Nippon Steel Works, JSW, J505A11) at a temperature of 280 ° C. Heating time: about 30 seconds) to obtain a plate.
  • an injection molding machine manufactured by Nippon Steel Works, JSW, J505A11
  • Example 1 A plate was obtained in the same manner as in Example 1 except that the mixture was mixed with low-density polyethylene so that the copper stearate was 0.5 wt% and set at 280 ° C.
  • the present invention conventionally, it is possible to efficiently produce copper ultrafine particles that have been required to be heated for a long time under short heating conditions, and it is possible to effectively prevent thermal deterioration of the resin, etc. It can be used as a method for producing a resin molded product in which ultrafine copper particles such as granules, pellets, films, sheets and containers are dispersed.
  • the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention do not agglomerate in the resin, and are less susceptible to oxidation over time and can exist stably for a long time. It can be effectively used as an adsorbent resin molded product capable of developing the adsorption performance for the sulfur-containing malodorous component of the silver ultrafine particles together with the adsorption performance for the amine-based malodorous component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is a method for producing ultrafine copper particles, which is capable of efficiently producing ultrafine copper particles by simple processes. A copper fatty acid and a fatty acid salt of at least one metal selected from a group consisting of silver, gold, platinum and palladium are mixed and heated, so that the copper fatty acid are formed into ultrafine particles within the resin, thereby producing ultrafine copper particles.

Description

銅超微粒子の製造方法、及び銅超微粒子含有樹脂組成物Copper ultrafine particle production method and copper ultrafine particle-containing resin composition
 本発明は、銅超微粒子の製造方法に関し、より詳細には超微粒子の生成が困難な銅超微粒子を効率よく生成可能な銅超微粒子の製造方法に関する。
 更に本発明は、銅超微粒子を含む樹脂組成物に関する。
The present invention relates to a method for producing copper ultrafine particles, and more particularly to a method for producing copper ultrafine particles capable of efficiently producing copper ultrafine particles that are difficult to produce ultrafine particles.
Furthermore, this invention relates to the resin composition containing a copper ultrafine particle.
 金属超微粒子は、バルクとは異なる特異な性質を示す為、インクジェット材料、記録材料、触媒などへの応用や、導電性ペーストなど電子デバイスの材料、さらに、プラズモン吸収を利用した色材としての利用等、様々な分野において応用が検討されている。また、これらの金属超微粒子が安定に分散された樹脂成形物は導電性材料、磁性材料や電磁波吸収材料など幅広く検討されている(特許文献1)。
 また本出願人により、表面が有機酸によって修飾された金属超微粒子を含む樹脂化合物は、メチルメルカプタン等の悪臭成分、或いはホルムアルデヒド等の揮発性有機化合物(Volatile Organic Compounds 以下「VOC」という)の吸着性能を有することや、抗菌性、アレルゲン物質などの微小蛋白質を不活性化する性質を有することが明らかにされている(特許文献2及び3)。
Since ultra-fine metal particles exhibit unique properties different from those of bulk, they can be applied to inkjet materials, recording materials, catalysts, etc., materials for electronic devices such as conductive pastes, and color materials using plasmon absorption. Applications are being studied in various fields. In addition, resin molded products in which these metal ultrafine particles are stably dispersed have been widely studied such as conductive materials, magnetic materials, and electromagnetic wave absorbing materials (Patent Document 1).
In addition, the resin compound containing ultrafine metal particles whose surface is modified with an organic acid by the present applicant can adsorb malodorous components such as methyl mercaptan or volatile organic compounds (hereinafter referred to as “VOC”) such as formaldehyde. It has been clarified that it has performance and has the property of inactivating microproteins such as antibacterial properties and allergens (Patent Documents 2 and 3).
 上述したように金属超微粒子は多様な分野における応用が検討されており、このような金属超微粒子を得るための製造方法としては、気相中に高温で蒸発させた金属の蒸気を供給し、ガス分子との衝突により急冷させて微粒子を形成する気相法や、金属イオンを含む溶液に還元剤を添加して金属イオンの還元を行う液相法等が一般的であるが、脂肪酸金属塩等の金属含有有機化合物を前駆体として樹脂と混合し、加熱成形する方法は、粒度分布が狭く分散安定性に優れた金属超微粒子を含む樹脂化合物が極めて簡便且つ汎用的な方法にて得られる生産性に富んだ製造方法である。 As described above, the application of metal ultrafine particles in various fields has been studied. As a production method for obtaining such metal ultrafine particles, a vapor of metal evaporated at a high temperature in a gas phase is supplied. The vapor phase method in which fine particles are formed by rapid cooling by collision with gas molecules, and the liquid phase method in which a reducing agent is added to a solution containing metal ions to reduce metal ions are generally used. A resin compound containing ultrafine metal particles having a narrow particle size distribution and excellent dispersion stability can be obtained by a very simple and general method. This is a highly productive manufacturing method.
 例えば、下記特許文献4及び5には、金属含有有機化合物と熱可塑性樹脂を混合した後、該金属含有有機化合物の分解開始温度以上、完全分解温度未満の温度に加熱することにより、樹脂中で金属超微粒子を合成し、更に合成と同時に金属超微粒子の表面修飾および樹脂中への分散が実現される製造方法が提案されている。 For example, in Patent Documents 4 and 5 below, a metal-containing organic compound and a thermoplastic resin are mixed, and then heated to a temperature not lower than the decomposition start temperature of the metal-containing organic compound and lower than the complete decomposition temperature. There has been proposed a production method in which ultrafine metal particles are synthesized, and further, surface modification of the ultrafine metal particles and dispersion in the resin are realized simultaneously with the synthesis.
特開平10-183207号公報Japanese Patent Laid-Open No. 10-183207 国際公開第2008/29932号International Publication No. 2008/29932 国際公開第2008/69034号International Publication No. 2008/69034 国際公開第2005/85358号International Publication No. 2005/85358 特開2006-348213号公報JP 2006-348213 A
 銅超微粒子は低コストであることから、安定に分散した樹脂成形物が得られれば、導電性材料、磁性材料や電磁波吸収材料などの有望な材料となりうる。更に発明者らは、銅超微粒子が分散した樹脂組成物がジメチルアミンやトリメチルアミン等のアミン系の悪臭成分に対して優れた吸着性を有することを見出している。
 しかしながら一般的に銅超微粒子は酸化され易いため、安定して樹脂組成物中に存在させることは困難である。
 更に、上記の脂肪酸金属塩等の金属含有有機化合物を前駆体として樹脂と混合し、加熱成形する、金属超微粒子の製造方法において、銅超微粒子は、銀超微粒子に比してその生成が困難であり、従って高温長時間での加熱混合を必要とする利便性や汎用性に欠けるものであった。
Since copper ultrafine particles are low in cost, if a stably dispersed resin molded product is obtained, it can be a promising material such as a conductive material, a magnetic material, and an electromagnetic wave absorbing material. Furthermore, the inventors have found that a resin composition in which ultrafine copper particles are dispersed has excellent adsorptivity to amine-based malodorous components such as dimethylamine and trimethylamine.
However, since copper ultrafine particles are generally easily oxidized, it is difficult to stably exist in the resin composition.
Furthermore, in the method for producing ultrafine metal particles, a metal-containing organic compound such as a fatty acid metal salt as described above is mixed with a resin as a precursor and heat-molded. Therefore, it is lacking in convenience and versatility that requires heating and mixing at a high temperature for a long time.
 本発明の目的は、上記従来技術の問題点に鑑み、銅超微粒子を簡便に効率よく生成する、銅超微粒子の製造方法を提供することである。
 また本発明の別の目的は、樹脂中で銅超微粒子が経時による酸化を受けにくく、安定して存在可能な銅超微粒子の製造方法、及び銅超微粒子含有樹脂組成物を提供することである。
An object of the present invention is to provide a method for producing copper ultrafine particles, in which copper ultrafine particles are simply and efficiently generated in view of the above-described problems of the prior art.
Another object of the present invention is to provide a method for producing copper ultrafine particles in which the copper ultrafine particles are less susceptible to oxidation over time in the resin and can be stably present, and a copper ultrafine particle-containing resin composition. .
 本発明によれば、脂肪酸銅に、銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を混合加熱し、樹脂中で前記脂肪酸銅を銅超微粒子化する銅超微粒子の製造方法が提供される。
 本発明の銅超微粒子の製造方法においては、
1.脂肪酸金属銅と脂肪酸金属塩のモル比が、20:1乃至0.5:1であること、
2.混合加熱の温度が、前記脂肪酸金属塩が樹脂中で熱分解する温度以上の温度であること、
3.銅超微粒子の平均粒径が1乃至100nmであること、
が好適である。
 本発明によればまた、上記製造方法による銅超微粒子が樹脂中に分散して成ることを特徴とする銅超微粒子含有樹脂組成物が提供される。
According to the present invention, fatty acid copper is mixed and heated with a fatty acid metal salt of at least one metal selected from silver, gold, platinum, and palladium, and the ultrafine copper particles are formed into ultrafine copper particles in the resin. A manufacturing method is provided.
In the method for producing copper ultrafine particles of the present invention,
1. The molar ratio of fatty acid metal copper to fatty acid metal salt is 20: 1 to 0.5: 1;
2. The temperature of mixing and heating is a temperature equal to or higher than the temperature at which the fatty acid metal salt is thermally decomposed in the resin;
3. The average particle size of the copper ultrafine particles is 1 to 100 nm,
Is preferred.
According to the present invention, there is also provided a copper ultrafine particle-containing resin composition characterized in that the copper ultrafine particles produced by the above production method are dispersed in a resin.
 本発明では脂肪酸銅を樹脂中で混合加熱して、銅超微粒子を生成させるに際して、銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を脂肪酸銅と共に配合することにより、銅超微粒子を生成し得る温度を低減せしめ、且つ短時間で効率良くする生成することを可能にした。
 銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を配合することにより、脂肪酸銅を単独で樹脂中で加熱するよりも低温且つ短時間での生成が可能になる。明確な理由は明らかでないが、銀、金、白金、パラジウムのような貴金属を配合し、これらの脂肪酸金属塩が樹脂中で熱分解する温度で加熱することにより、これらの脂肪酸金属塩から金属超微粒子が先に形成され、この金属超微粒子等が銅超微粒子形成の核として作用するものと考えられる。
In the present invention, when fatty acid copper is mixed and heated in a resin to produce copper ultrafine particles, a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is blended together with fatty acid copper. Thus, it is possible to reduce the temperature at which copper ultrafine particles can be generated and to improve the efficiency in a short time.
By blending a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium, it is possible to produce fatty acid copper at a lower temperature and in a shorter time than when heated in a resin alone. Although the specific reason is not clear, by adding a precious metal such as silver, gold, platinum, and palladium and heating at a temperature at which these fatty acid metal salts are thermally decomposed in the resin, these fatty acid metal salts are transformed into metal super It is considered that the fine particles are formed first, and the metal ultrafine particles and the like act as nuclei for forming the copper ultrafine particles.
 本発明のこのような作用効果は、後述する実施例の結果から明らかである。
 すなわち、脂肪酸銅のみを樹脂に配合して樹脂成形物を得る場合、280℃で加熱した場合でも、射出成形機中で滞留させない場合にはプラズモン吸収に起因する吸収は観測されない(比較例1)。即ち、銅超微粒子は生成しない。一方280℃で30分間樹脂を射出成形機中で滞留させることにより、ピーク強度は弱いもののプラズモン吸収が観測され、即ち銅超微粒子が生成されていることが確認された(参考例1)。
 これに対して、脂肪酸銅と共に脂肪酸銀を樹脂中に配合した場合には、280℃で押出機中で滞留させることなく、加熱混合を行った場合、銅超微粒子に起因する570nm付近にプラズモン吸収が見られ、銅超微粒子が生成されていることが確認された(実施例1)。このことは脂肪酸銅と共に脂肪酸銀を配合する本発明は、銅超微粒子が従来に比べ、効率よく生成できることを示すものである。
Such operational effects of the present invention are apparent from the results of Examples described later.
That is, when only a fatty acid copper is blended in a resin to obtain a resin molded product, even when heated at 280 ° C., no absorption due to plasmon absorption is observed unless it is retained in an injection molding machine (Comparative Example 1). . That is, copper ultrafine particles are not generated. On the other hand, when the resin was retained in an injection molding machine at 280 ° C. for 30 minutes, plasmon absorption was observed although the peak intensity was weak, that is, it was confirmed that ultrafine copper particles were generated (Reference Example 1).
On the other hand, when fatty acid silver is blended in the resin together with fatty acid copper, plasmon absorption occurs around 570 nm due to ultrafine copper particles when heated and mixed without being retained in the extruder at 280 ° C. It was confirmed that copper ultrafine particles were generated (Example 1). This indicates that the present invention in which fatty acid silver is blended together with fatty acid copper can produce copper ultrafine particles more efficiently than conventional ones.
 本発明の銅超微粒子の製造方法によれば、従来、長時間での加熱が必要であった銅超微粒子を短時間の加熱条件で効率よく生成することができる。
 更に従来に比べ、短時間で銅超微粒子が得られることから、樹脂の熱劣化等を有効に防止することができる。
 また本発明の銅超微粒子の製造方法により得られた銅超微粒子は、樹脂中で凝集することなく安定して存在することができる。
 また本発明の銅超微粒子の製造方法により得られた銅超微粒子は、樹脂中で経時による酸化を受けにくく長時間安定して存在することができる。
 更に本発明の方法により得られる銅超微粒子を含有する樹脂組成物は、銅超微粒子が有するアミン系の悪臭成分に対する吸着性能と共に、銀超微粒子が有する硫黄含有悪臭成分に対する吸着性能を具備することも可能となる。
According to the method for producing copper ultrafine particles of the present invention, copper ultrafine particles that conventionally required heating for a long time can be efficiently generated under short heating conditions.
Furthermore, since ultrafine copper particles can be obtained in a shorter time than conventional, it is possible to effectively prevent thermal degradation of the resin.
Moreover, the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention can exist stably without agglomeration in the resin.
Further, the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention are less susceptible to oxidation over time in the resin and can be stably present for a long time.
Furthermore, the resin composition containing the ultrafine copper particles obtained by the method of the present invention has an adsorption performance for the amine-based malodorous component of the ultrafine copper particles and an adsorption performance for the sulfur-containing malodorous component of the ultrafine silver particles. Is also possible.
ステアリン酸銅を0.5wt%、ステアリン酸銀を0.05wt%添加し、280℃で成形した実施例1のプレートの吸光度を示すグラフである。It is a graph which shows the light absorbency of the plate of Example 1 which added 0.5 wt% of copper stearate, 0.05 wt% of silver stearate, and shape | molded at 280 degreeC. ステアリン酸銅を0.5wt%、ステアリン酸銀を0.1wt%添加し、280℃で成形した実施例2のプレートの吸光度を示すグラフである。It is a graph which shows the light absorbency of the plate of Example 2 which added 0.5 wt% of copper stearate and 0.1 wt% of silver stearate, and shape | molded at 280 degreeC. 銅と銀のステアリン酸塩を0.5wt%添加し、280℃で成形した実施例3のプレートの吸光度を示すグラフである。It is a graph which shows the light absorbency of the plate of Example 3 which added 0.5 wt% of copper and silver stearates, and shape | molded at 280 degreeC. ステアリン酸銅を0.5wt%添加し、280℃で成形した比較例1のプレートの吸光度を示すグラフである。It is a graph which shows the light absorbency of the plate of the comparative example 1 which added 0.5 wt% of copper stearate and shape | molded at 280 degreeC. ステアリン酸銅を0.5wt%添加し、280℃で30分間滞留させて成形した参考例1のプレートの吸光度を示すグラフである。It is a graph which shows the light absorbency of the plate of the reference example 1 shape | molded by adding 0.5 wt% of copper stearate and making it retain for 30 minutes at 280 degreeC.
(脂肪酸銅及び脂肪酸金属塩)
 前述した通り、本発明においては、脂肪酸銅及び銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を用いる。
 本発明における脂肪酸銅及び脂肪酸金属塩における脂肪酸は、炭素数3~30の脂肪酸で、飽和、不飽和のいずれであってもよい。このようなものとしては、例えばカプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、アラキジン酸等を挙げることができ、特にステアリン酸、ミリスチン酸であることが望ましい。また、含まれる脂肪酸は複数であってもよい。本発明の銅超微粒子含有樹脂組成物を、吸着材料として使用する場合、分岐を有すると共に炭素数の多い脂肪酸を用いることで、脂肪酸成分自体も臭気成分を吸着することができるので、より好適な消臭効果を得ることが出来る。
 本発明においては特に、含水率が200ppm以下の脂肪酸金属塩を用いることが好ましく、これを樹脂と混合し、加熱成形することにより、良好な色調や悪臭物質の吸着能力に特に優れた樹脂組成物を得ることができる。
 本発明において、脂肪酸銅と、銀,金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩の混合方法は特に限定を受けない。単独の脂肪酸銅と脂肪酸銀、金、白金、乃至はパラジウムの少なくとも1種の金属の脂肪酸金属塩を、樹脂への配合時に所定の割合となるよう混合しても良いし、所定の割合で銅と銀,金、白金及びパラジウムから選択される少なくとも1種類の金属を含むような脂肪酸金属塩を予め合成し、それを樹脂に配合しても良い。
(Fatty acid copper and fatty acid metal salt)
As described above, in the present invention, fatty acid copper and fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium are used.
The fatty acid in the fatty acid copper and fatty acid metal salt in the present invention is a fatty acid having 3 to 30 carbon atoms and may be either saturated or unsaturated. Examples of such include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, arachidic acid, etc. Preferably, myristic acid is used. A plurality of fatty acids may be included. When using the copper ultrafine particle-containing resin composition of the present invention as an adsorbing material, a fatty acid component itself can also adsorb an odor component by using a fatty acid having a branch and a large number of carbon atoms. Deodorizing effect can be obtained.
In the present invention, it is particularly preferable to use a fatty acid metal salt having a water content of 200 ppm or less, and by mixing this with a resin and thermoforming it, the resin composition is particularly excellent in good color tone and malodorous substance adsorption ability. Can be obtained.
In the present invention, the method for mixing fatty acid copper and a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is not particularly limited. Single fatty acid copper and fatty acid silver, gold, platinum, or a fatty acid metal salt of at least one metal of palladium may be mixed at a predetermined ratio when blended with the resin, or copper may be mixed at a predetermined ratio. A fatty acid metal salt containing at least one metal selected from silver, gold, platinum and palladium may be synthesized in advance and blended with the resin.
 本発明方法により製造される銅超微粒子は、上記金属超微粒子の最大径が1μm以下、特に平均粒径1乃至100nmの範囲にあることが望ましい。金属超微粒子は、得られた樹脂組成物の断面の走査型電子顕微鏡写真から、金属超微粒子(黒い部分)が微分散(ナノ分散)されることが観測される。尚、本明細書でいう平均粒径とは、金属と金属の間に隙間がないものを1つの粒子とし、その平均値をいう。
 本発明においては、銅超微粒子が570nm付近の波長の光を吸収するプラズモン吸収という現象から、銅超微粒子が形成されていることが確認できる。
 本発明の銅超微粒子の製造方法は、銅超微粒子の分解等による樹脂の分子量低下を有効に低減するため、成形性が良く、粒状、ペレット状、フィルム、シート、容器等への加工を可能とする。さらに係る銅超微粒子は樹脂中において極めて良好に分散された状態で形成される為、ジメチルアミン等のアミン系臭気成分に対し、優れた吸着効果を発現する。
The ultrafine copper particles produced by the method of the present invention preferably have a maximum diameter of the above ultrafine metal particles of 1 μm or less, particularly in the range of an average particle diameter of 1 to 100 nm. From the scanning electron micrograph of the cross section of the obtained resin composition, it is observed that the metal ultrafine particles are finely dispersed (nanodispersed). In addition, the average particle diameter as used herein refers to an average value of a single particle having no gap between the metals.
In the present invention, it can be confirmed that the copper ultrafine particles are formed from the phenomenon of plasmon absorption in which the copper ultrafine particles absorb light having a wavelength near 570 nm.
The method for producing copper ultrafine particles of the present invention effectively reduces the decrease in the molecular weight of the resin due to decomposition of the copper ultrafine particles, etc., and thus has good moldability and can be processed into granules, pellets, films, sheets and containers And Furthermore, since the copper ultrafine particles are formed in a state of being very well dispersed in the resin, they exhibit an excellent adsorption effect for amine-based odor components such as dimethylamine.
(製造方法)
 本発明においては、樹脂中に脂肪酸銅及び銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を配合し、前記脂肪酸金属塩が樹脂中で熱分解する温度以上の温度で混合加熱する。
 上記脂肪酸金属塩を配合させる樹脂としては、溶融成形が可能な熱可塑性樹脂であれば従来公知のものをすべて使用でき、例えば、低-,中-,高-密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、プロピレン-エチレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体等のオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタエート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10等のポリアミド樹脂、ポリカーボネート樹脂等を挙げることができる。
(Production method)
In the present invention, fatty acid copper and fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium are blended in the resin, and the temperature is equal to or higher than the temperature at which the fatty acid metal salt is thermally decomposed in the resin. Mix and heat.
As the resin compounded with the fatty acid metal salt, any conventionally known resin can be used as long as it is a thermoplastic resin that can be melt-molded. For example, low-, medium-, high-density polyethylene, linear low density polyethylene, Linear ultra-low density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene- Examples include olefin resins such as butene-1 copolymer, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide resins such as nylon 6, nylon 6,6, and nylon 6,10, and polycarbonate resins. it can.
 本発明においては、特に酸素透過係数が1.0×10-4cc・m/m・day・atm以上の樹脂を好適に用いることができ、特にポリエチレンを好適に用いることができる。これにより、本発明により得られた樹脂組成物による臭気成分の吸着を容易に行うことができ、消臭性をより向上することができる。
 また本発明においては、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することができる。
In the present invention, a resin having an oxygen permeability coefficient of 1.0 × 10 −4 cc · m / m 2 · day · atm or more can be preferably used, and polyethylene can be particularly preferably used. Thereby, adsorption | suction of the odor component by the resin composition obtained by this invention can be performed easily, and deodorizing property can be improved more.
In the present invention, various compounding agents known per se, for example, fillers, plasticizers, leveling agents, thickeners, thickeners, stabilizers, antioxidants, ultraviolet absorbers, etc., depending on the application. Can be blended according to a known formulation.
 本発明においては、脂肪酸銅の樹脂への配合量は用途などによって適宜決定することができる。例えば、吸着材として使用する場合には樹脂100重量部当り脂肪酸銅を0.01乃至20重量部、特に0.1乃至10重量部の量で配合することが好ましい。上記範囲よりも少ないと銅超微粒子が有する優れた吸着性能を十分に発揮することができず、一方上記範囲よりも多いと樹脂組成物の成形性が低下する恐れがあるので好ましくない。
 また脂肪酸銅と共に樹脂に配合する脂肪酸金属塩の配合量は、樹脂に配合すべき脂肪酸銅の量に対応して決定され、脂肪酸銅と脂肪酸金属塩のモル比が、20:1乃至0.5:1、特に8:1乃至0.5:1の範囲となるように配合することが望ましい。上記範囲よりも脂肪酸金属塩の配合量が多くても少なくても銅超微粒子の生成効率は低下する。
 本発明により得られる銅超微粒子含有樹脂組成物は、二本ロール法、射出成形、押出成形、圧縮成形等の従来公知の溶融成形に賦することにより、最終成形品の用途に応じた形状、例えば、粒状、ペレット状、フィルム、シート、容器等の吸着性樹脂成形品を成形することができる。
In the present invention, the blending amount of fatty acid copper into the resin can be appropriately determined depending on the use. For example, when used as an adsorbent, the fatty acid copper is preferably blended in an amount of 0.01 to 20 parts by weight, particularly 0.1 to 10 parts by weight per 100 parts by weight of the resin. If the amount is less than the above range, the excellent adsorption performance of the copper ultrafine particles cannot be sufficiently exhibited. On the other hand, if the amount is more than the above range, the moldability of the resin composition may be deteriorated.
Moreover, the compounding quantity of the fatty acid metal salt mix | blended with resin with fatty acid copper is determined corresponding to the quantity of fatty acid copper which should be mix | blended with resin, and the molar ratio of fatty acid copper and fatty acid metal salt is 20: 1 thru | or 0.5. : 1, preferably 8: 1 to 0.5: 1. The production efficiency of the copper ultrafine particles is lowered even if the amount of the fatty acid metal salt is larger or smaller than the above range.
The copper ultrafine particle-containing resin composition obtained by the present invention is subjected to a conventionally known melt molding such as a two-roll method, injection molding, extrusion molding, compression molding, etc., so that the shape according to the use of the final molded product, For example, adsorptive resin molded products such as granules, pellets, films, sheets, and containers can be molded.
 尚、樹脂組成物の加熱処理条件は、用いる樹脂及び脂肪酸金属塩の種類によって一概に規定できないが、銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩が樹脂中で熱分解する温度以上、且つ樹脂の熱劣化を生じない温度の温度範囲内の温度で加熱することが好ましい。
 銅超微粒子の生成のための加熱処理条件は、押出機や成形機等の加工機の設定温度以外にスクリュー等によるせん断による発熱、或いは滞留時間等による影響を受けるため、上記温度範囲内の設定温度に応じて加熱時間、滞留時間やスクリュー回転数等の加工条件を調整することが必要である。
 具体的には、脂肪酸銀を使用した場合で、120℃乃至300℃未満の温度で、この範囲内の温度における二軸押出機の設定温度にもよるが、0.5乃至15分、特に1乃至10分の加熱時間で加熱混合を行うことが好適である。ここでいう加熱時間とは、ホッパーに材料を投入してから吐出されるまでの時間をいう。また、滞留時間とは、押出機内或いは押出機外に設けた滞留部において意図的に加熱混合される時間をいう。
The heat treatment conditions of the resin composition cannot be generally defined by the type of resin and fatty acid metal salt used, but the fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is contained in the resin. It is preferable to heat at a temperature not lower than the temperature at which pyrolysis occurs and within a temperature range that does not cause thermal degradation of the resin.
The heat treatment conditions for the production of copper ultrafine particles are affected by the heat generated by shearing by screws, etc., or the residence time, etc. in addition to the set temperature of processing machines such as extruders and molding machines. It is necessary to adjust processing conditions such as heating time, residence time, and screw rotation speed according to the temperature.
Specifically, when fatty acid silver is used, the temperature is from 120 ° C. to less than 300 ° C., and depending on the set temperature of the twin screw extruder at a temperature within this range, 0.5 to 15 minutes, particularly 1 It is preferable to perform heating and mixing for a heating time of 10 minutes. The heating time here refers to the time from when a material is charged into the hopper until it is discharged. In addition, the residence time refers to a time during which heat mixing is intentionally performed in a residence part provided inside or outside the extruder.
 樹脂中で脂肪酸銅及び銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を混合加熱することにより、銅超微粒子を形成することができるが、樹脂を含有する塗料中でも、銅超微粒子を塗膜中に形成することが可能となる。
 また上述した樹脂組成物の場合と同様、銀,金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を、脂肪酸銅と脂肪酸金属塩のモル比が、20:1乃至0.5:1、特に8:1乃至0.5:1の範囲となるように配合することが望ましい。
Copper ultrafine particles can be formed by mixing and heating fatty acid metal salt of fatty acid copper and at least one metal selected from silver, gold, platinum and palladium in the resin. Copper ultrafine particles can be formed in the coating film.
Further, as in the case of the resin composition described above, a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium is used in a molar ratio of fatty acid copper to fatty acid metal salt of 20: 1 to 0.00. It is desirable to add 5: 1, particularly 8: 1 to 0.5: 1.
 脂肪酸銅及び脂肪酸金属塩を配合する塗料成分としては、加熱により塗膜形成が可能なものであれば種々のものを使用することができる。例えば、これに限定されないが、アクリル系塗料、エポキシ系塗料、フェノール系塗料、ウレタン系塗料、ポリエステル系塗料、アルキド樹脂塗料等の従来公知の塗料組成物を用いることができる。
 塗料組成物の熱処理条件は、用いる塗料成分及び脂肪酸金属塩の種類によって一概に規定できないが、脂肪酸金属塩が塗料中で熱分解する温度以上、且つ塗料成分の熱劣化を生じない温度の温度範囲内で、60乃至600秒間加熱処理を行うことが必要である。
As the paint component containing the fatty acid copper and the fatty acid metal salt, various materials can be used as long as the coating film can be formed by heating. For example, although not limited thereto, conventionally known coating compositions such as acrylic coating, epoxy coating, phenol coating, urethane coating, polyester coating, alkyd resin coating, and the like can be used.
Although the heat treatment conditions of the coating composition cannot be generally defined by the type of coating component and fatty acid metal salt used, the temperature range is such that the fatty acid metal salt is at or above the temperature at which it thermally decomposes in the coating and does not cause thermal degradation of the coating component. It is necessary to perform heat treatment for 60 to 600 seconds.
 以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
(ステアリン酸銅の作製)
 ステアリン酸ナトリウム76.6gを90℃の水3000gに溶解させてA液を、硝酸銅三水和物60.4gを水600gに溶解させてB液をそれぞれ調製した。次に、A液を攪拌しながら、B液をA液に投入した。投入後15分攪拌し、吸引ろ過により固液分離を行いながら、脱イオン水を用いて十分に洗浄を行った。得られた固体を設定温度100℃で24時間熱風乾燥機(タバイエスペック社製)にて乾燥した。
(Preparation of copper stearate)
Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C., and liquid B was prepared by dissolving 60.4 g of copper nitrate trihydrate in 600 g of water. Next, the B liquid was thrown into the A liquid while stirring the A liquid. The mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration. The obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
(ステアリン酸銀の作製)
 ステアリン酸ナトリウム76.6gを90℃の水3000gに溶解させてA液を、硝酸銀40.3gを水600gに溶解させてB液をそれぞれ調製した。次に、A液を攪拌しながら、B液をA液に投入した。投入後15分攪拌し、吸引ろ過により固液分離を行いながら、脱イオン水を用いて十分に洗浄を行った。得られた固体を設定温度100℃で24時間熱風乾燥機(タバイエスペック社製)にて乾燥した。
(Preparation of silver stearate)
Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C., and liquid B was prepared by dissolving 40.3 g of silver nitrate in 600 g of water. Next, the B liquid was thrown into the A liquid while stirring the A liquid. The mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration. The obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
(プレートの作製)
 得られたステアリン酸銅とステアリン酸銀を低密度ポリエチレン(住友化学社製)と混合し、射出成型機(日本製鋼所社製、JSW、J505A11)にて射出成形し、3.0cm×2.5cm×0.3cmの大きさのプレートを得た。尚、成形は常時、射出成形機の樹脂投入口に向けて窒素ガスを流した、窒素雰囲気下で実施した。
(Preparation of plate)
The obtained copper stearate and silver stearate were mixed with low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd.) and injection-molded with an injection molding machine (JSW, J505A11), 3.0 cm × 2. A plate with a size of 5 cm × 0.3 cm was obtained. Molding was always performed in a nitrogen atmosphere in which nitrogen gas was flowed toward the resin inlet of the injection molding machine.
(吸光度の測定)
 得られたプレートの拡散反射率を分光光度計(日本分光社製、V-570)にて測定し、その値から吸光度を求めた。なお、貴金属や銅超微粒子は、自由電子が光磁場による振動を受けて生じるプラズモン吸収に起因する発色を示すことが知られている。この吸収波長は金属の種類に固有のものであり、樹脂中に銅超微粒子が含有している場合には、波長570nm付近にプラズモン吸収が観測される。
(Measurement of absorbance)
The diffuse reflectance of the obtained plate was measured with a spectrophotometer (manufactured by JASCO Corporation, V-570), and the absorbance was determined from the value. In addition, it is known that a noble metal and copper ultrafine particles will show the color development resulting from plasmon absorption which arises when a free electron receives the vibration by a photomagnetic field. This absorption wavelength is unique to the type of metal, and when the ultrafine copper particles are contained in the resin, plasmon absorption is observed near the wavelength of 570 nm.
(実施例1)
 ステアリン酸銅の添加量が0.5wt%、ステアリン酸銀の添加量が0.05wt%となるように混合し、280℃に温度設定した射出成型機(日本製鋼所社製、JSW、J505A11)にて射出成形(加熱時間:約30秒)し、プレートを得た。
Example 1
An injection molding machine (Japan Steel Works, JSW, J505A11) that was mixed so that the amount of copper stearate added was 0.5 wt% and the amount of silver stearate added was 0.05 wt%, and the temperature was set to 280 ° C. Was subjected to injection molding (heating time: about 30 seconds) to obtain a plate.
(実施例2)
 ステアリン酸銅0.5wt%とステアリン酸銀0.1wt%となるように混合した以外は実施例1と同様にプレートを得た。
(Example 2)
A plate was obtained in the same manner as in Example 1 except that the mixture was mixed so that copper stearate 0.5 wt% and silver stearate 0.1 wt%.
(実施例3)
 ステアリン酸ナトリウム76.6gを90℃の水3000gに溶解させてA液を、硝酸銅三水和物28.3gと硝酸銀2.8gを水600gに溶解させてB液をそれぞれ調製した。次に、A液を攪拌しながら、B液をA液に投入した。投入後15分攪拌し、吸引ろ過により固液分離を行いながら、脱イオン水を用いて十分に洗浄を行った。得られた固体を設定温度100℃で24時間熱風乾燥機(タバイエスペック社製)にて乾燥した。
 得られた銅と銀のステアリン酸塩を0.5wt%となるよう低密度ポリエチレンと混合し、280℃に温度設定した射出成型機(日本製鋼所社製、JSW、J505A11)にて射出成形(加熱時間:約30秒)し、プレートを得た。
(Example 3)
Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C., and liquid B was prepared by dissolving 28.3 g of copper nitrate trihydrate and 2.8 g of silver nitrate in 600 g of water. Next, the B liquid was thrown into the A liquid while stirring the A liquid. The mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration. The obtained solid was dried with a hot air dryer (manufactured by Tabai Espec) at a set temperature of 100 ° C. for 24 hours.
The obtained copper and silver stearate is mixed with low density polyethylene so as to be 0.5 wt%, and injection molding is performed with an injection molding machine (manufactured by Nippon Steel Works, JSW, J505A11) at a temperature of 280 ° C. Heating time: about 30 seconds) to obtain a plate.
(比較例1)
 ステアリン酸銅が0.5wt%となるように低密度ポリエチレンと混合し、280℃に設定した以外は実施例1と同様にプレートを得た。
(Comparative Example 1)
A plate was obtained in the same manner as in Example 1 except that the mixture was mixed with low-density polyethylene so that the copper stearate was 0.5 wt% and set at 280 ° C.
(参考例1)
 射出成形機内で、意図的に30分間の滞留をさせた以外は、比較例1と同様にプレートを得た。
(Reference Example 1)
A plate was obtained in the same manner as in Comparative Example 1 except that the residence was intentionally held for 30 minutes in the injection molding machine.
 実施例1~3(図1~3)、参考例1(図5)のいずれのプレートも銅プラズモンの吸収波長である570nmに吸収をもつことが分かる。また、ステアリン酸銀を加えなかった比較例1(図4)の場合には570nm付近に吸収を示さない。この結果は、脂肪酸銅と共に脂肪酸銀を配合する本発明の製造方法により、銅超微粒子が従来に比べ、低温且つ短時間の成形条件で効率よく生成できることを示すものである。 It can be seen that the plates of Examples 1 to 3 (FIGS. 1 to 3) and Reference Example 1 (FIG. 5) have absorption at 570 nm, which is the absorption wavelength of copper plasmon. Moreover, in the case of the comparative example 1 (FIG. 4) which did not add silver stearate, it does not show absorption around 570 nm. This result shows that the ultrafine copper particles can be efficiently generated under molding conditions at a low temperature and in a short time as compared with the prior art by the production method of the present invention in which fatty acid silver is blended together with fatty acid copper.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明においては、従来、長時間での加熱が必要であった銅超微粒子を短時間の加熱条件で効率よく生成することができ、樹脂の熱劣化等を有効に防止することができることから、粒状、ペレット状、フィルム、シート、容器等の銅超微粒子が分散した樹脂成形品の製造方法として利用することができる。
 また本発明の銅超微粒子の製造方法により得られた銅超微粒子は、樹脂中で凝集することなく、しかも経時による酸化を受けにくく長時間安定して存在することができることから、銅超微粒子が有するアミン系の悪臭成分に対する吸着性能と共に、銀超微粒子が有する硫黄含有悪臭成分に対する吸着性能を長期にわたって発現可能な吸着性樹脂成形品として有効に利用することができる。
In the present invention, conventionally, it is possible to efficiently produce copper ultrafine particles that have been required to be heated for a long time under short heating conditions, and it is possible to effectively prevent thermal deterioration of the resin, etc. It can be used as a method for producing a resin molded product in which ultrafine copper particles such as granules, pellets, films, sheets and containers are dispersed.
In addition, the copper ultrafine particles obtained by the method for producing copper ultrafine particles of the present invention do not agglomerate in the resin, and are less susceptible to oxidation over time and can exist stably for a long time. It can be effectively used as an adsorbent resin molded product capable of developing the adsorption performance for the sulfur-containing malodorous component of the silver ultrafine particles together with the adsorption performance for the amine-based malodorous component.

Claims (5)

  1.  脂肪酸銅と、銀、金、白金及びパラジウムから選択される少なくとも1種類の金属の脂肪酸金属塩を混合加熱し、樹脂中で前記脂肪酸銅を銅超微粒子化する銅超微粒子の製造方法。 A method for producing copper ultrafine particles, wherein fatty acid copper and a fatty acid metal salt of at least one metal selected from silver, gold, platinum and palladium are mixed and heated, and the fatty acid copper is made into ultrafine copper particles in a resin.
  2.  前記脂肪酸金属銅と脂肪酸金属塩のモル比が、20:1乃至0.5:1である請求項1記載の銅超微粒子の製造方法。 The method for producing ultrafine copper particles according to claim 1, wherein the molar ratio of the fatty acid metal copper to the fatty acid metal salt is 20: 1 to 0.5: 1.
  3.  前記混合加熱の温度が、前記脂肪酸金属塩が樹脂中で熱分解する温度以上の温度である請求項1記載の銅超微粒子の製造方法。 The method for producing ultrafine copper particles according to claim 1, wherein the temperature of the mixed heating is a temperature equal to or higher than a temperature at which the fatty acid metal salt is thermally decomposed in a resin.
  4.  前記銅超微粒子の平均粒径が1乃至100nmである請求項1記載の銅超微粒子の製造方法。 The method for producing copper ultrafine particles according to claim 1, wherein the copper ultrafine particles have an average particle diameter of 1 to 100 nm.
  5.  請求項1記載の製造方法による銅超微粒子が樹脂中に分散して成ることを特徴とする銅超微粒子含有樹脂組成物。 A resin composition containing copper ultrafine particles, wherein the copper ultrafine particles produced by the production method according to claim 1 are dispersed in a resin.
PCT/JP2009/069478 2008-11-17 2009-11-17 Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles WO2010055944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537828A JP5519525B2 (en) 2008-11-17 2009-11-17 Copper ultrafine particle production method and copper ultrafine particle-containing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008293167 2008-11-17
JP2008-293167 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010055944A1 true WO2010055944A1 (en) 2010-05-20

Family

ID=42170073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069478 WO2010055944A1 (en) 2008-11-17 2009-11-17 Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles

Country Status (2)

Country Link
JP (1) JP5519525B2 (en)
WO (1) WO2010055944A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069942A1 (en) * 2017-10-03 2019-04-11 東洋製罐グループホールディングス株式会社 Copper metal fine particles and method for producing same
JP2019065363A (en) * 2017-10-03 2019-04-25 東洋製罐グループホールディングス株式会社 Metal copper fine particle and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693316A (en) * 1991-04-08 1994-04-05 Mitsubishi Gas Chem Co Inc Production of extremely fine copper powder
JP2005298921A (en) * 2004-04-13 2005-10-27 Masami Nakamoto Composite metal ultrafine particle and method for producing the same
JP2006348213A (en) * 2005-06-17 2006-12-28 Tokan Material Technology Co Ltd Metal ultrafine particle, resin composition or resin molded product containing the ultrafine particle, and manufacturing method of resin composition or resin molded product therefrom
JP2007056321A (en) * 2005-08-25 2007-03-08 Tokai Rubber Ind Ltd Method for producing copper hyperfine particle, and electrically conductive paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693316A (en) * 1991-04-08 1994-04-05 Mitsubishi Gas Chem Co Inc Production of extremely fine copper powder
JP2005298921A (en) * 2004-04-13 2005-10-27 Masami Nakamoto Composite metal ultrafine particle and method for producing the same
JP2006348213A (en) * 2005-06-17 2006-12-28 Tokan Material Technology Co Ltd Metal ultrafine particle, resin composition or resin molded product containing the ultrafine particle, and manufacturing method of resin composition or resin molded product therefrom
JP2007056321A (en) * 2005-08-25 2007-03-08 Tokai Rubber Ind Ltd Method for producing copper hyperfine particle, and electrically conductive paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069942A1 (en) * 2017-10-03 2019-04-11 東洋製罐グループホールディングス株式会社 Copper metal fine particles and method for producing same
JP2019065363A (en) * 2017-10-03 2019-04-25 東洋製罐グループホールディングス株式会社 Metal copper fine particle and method for producing the same
KR20200058475A (en) * 2017-10-03 2020-05-27 도요세이칸 그룹 홀딩스 가부시키가이샤 Metal copper fine particles and manufacturing method thereof
KR102313277B1 (en) 2017-10-03 2021-10-18 도요세이칸 그룹 홀딩스 가부시키가이샤 Metallic copper fine particles and manufacturing method thereof
US11452743B2 (en) 2017-10-03 2022-09-27 Toyo Seikan Group Holdings, Ltd. Metallic copper fine particles and method for producing the same

Also Published As

Publication number Publication date
JP5519525B2 (en) 2014-06-11
JPWO2010055944A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
WO2009107721A1 (en) Fatty acid metal salt for forming ultrafine metal particle
JP7254866B2 (en) Method for producing thermoplastic resin composition
JP4835435B2 (en) Method for producing ultrafine particle-containing thermoplastic resin composition
EP2835375A1 (en) Bis-salphen compounds and carbonaceous material composites comprising them
EP2248844B1 (en) Master batch, process for production thereof, and process for production of molded articles
KR101544259B1 (en) Resin composition containing ultrafine silver particles
JP5519525B2 (en) Copper ultrafine particle production method and copper ultrafine particle-containing resin composition
JPWO2014058057A1 (en) Calcium carbonate filler for resin and resin composition containing the filler
WO2009107720A1 (en) Adsorbable composition and adsorbable molded article
KR101652566B1 (en) Composite having improved conductivity and plastics comprising same
KR101923465B1 (en) High strength polymer composite comprising carbon nanotubes
Mallakpour et al. Morphological and thermal properties of nanocomposites contain poly (amide-imide) reinforced with bioactive N-trimellitylimido-l-valine modified TiO 2 nanoparticles
US7976745B2 (en) Process for the preparation of a composite polymeric material
JP5629428B2 (en) Fatty acid metal salt for forming ultrafine metal particles
JP5629425B2 (en) Fatty acid metal salt for forming ultrafine metal particles
JP5693974B2 (en) Process for producing resin composition containing ultrafine metal particles
KR100609596B1 (en) Method for the preparation of inorganic or metallic nanoparticles-polymer composite
JP4810883B2 (en) Copper ion-containing resin composition
JP2010132774A (en) Method for producing adsorbable molded product
KR20140073866A (en) Carbon nano-material solids and a method for solidifying the powder of carbon nano-material
KR101824189B1 (en) Manufacturing method of hydrate of zinc carboxylate, hydrate of zinc carboxylate manufactured therefrom and material for antimicrobial plastic comprising the hydrate of zinc carboxylate
JP2011052237A (en) Thermoplastic resin composition and resin molded article
Mehmood et al. Guar gum assisted synthesis of high‐quality silver nanoplates and their polyimide matrix nanocomposites for electromagnetic interference shielding applications
KR100928337B1 (en) Inorganic fillers with reduced gas generation and resin compositions using them
WO2008103560A2 (en) Improved process for the manufacture of polymer additive granules containing silica antiblock agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826189

Country of ref document: EP

Kind code of ref document: A1