JP5693974B2 - Process for producing resin composition containing ultrafine metal particles - Google Patents

Process for producing resin composition containing ultrafine metal particles Download PDF

Info

Publication number
JP5693974B2
JP5693974B2 JP2010549543A JP2010549543A JP5693974B2 JP 5693974 B2 JP5693974 B2 JP 5693974B2 JP 2010549543 A JP2010549543 A JP 2010549543A JP 2010549543 A JP2010549543 A JP 2010549543A JP 5693974 B2 JP5693974 B2 JP 5693974B2
Authority
JP
Japan
Prior art keywords
fatty acid
resin composition
metal salt
ultrafine
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010549543A
Other languages
Japanese (ja)
Other versions
JPWO2010090331A1 (en
Inventor
大橋 和彰
和彰 大橋
杏 笠井
杏 笠井
鈴木 滋
滋 鈴木
大佑 平塚
大佑 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokan Material Technology Co Ltd
Toyo Seikan Group Holdings Ltd
Original Assignee
Tokan Material Technology Co Ltd
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokan Material Technology Co Ltd, Toyo Seikan Group Holdings Ltd filed Critical Tokan Material Technology Co Ltd
Priority to JP2010549543A priority Critical patent/JP5693974B2/en
Publication of JPWO2010090331A1 publication Critical patent/JPWO2010090331A1/en
Application granted granted Critical
Publication of JP5693974B2 publication Critical patent/JP5693974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、金属超微粒子含有樹脂組成物の製造方法に関するものであり、より詳細には金属超微粒子の凝集を抑制し、優れた吸着性能を発現可能な金属超微粒子含有樹脂組成物を効率よく製造可能な方法に関する。   The present invention relates to a method for producing a resin composition containing ultrafine metal particles, and more specifically, an ultrafine metal particle-containing resin composition capable of suppressing aggregation of ultrafine metal particles and exhibiting excellent adsorption performance. It relates to a manufacturable method.

従来より、脂肪酸金属塩は電子印刷分野、粉末治金分野、化粧品分野、塗料分野、樹脂加工分野など、多くの分野において幅広く用いられており、例えば、脂肪酸のマグネシウム塩やカルシウム塩などは、化粧品分野では、皮膚への滑沢性、付着性の向上を目的として、樹脂加工分野では、顔料の分散性向上を目的として用いられている。
一方、脂肪酸の銀塩は従来、写真製版や医療用途の熱現像画像記録材料として使用されてきたが、最近では、下記特許文献1や2に記載されているように、平均粒径1〜100nmの金属超微粒子を得るための前駆体としての用途が開示されている。
Conventionally, fatty acid metal salts have been widely used in many fields such as electronic printing, powder metallurgy, cosmetics, paints, and resin processing. For example, magnesium salts and calcium salts of fatty acids are used in cosmetics. In the field, it is used for the purpose of improving the lubricity and adhesion to the skin, and in the resin processing field, it is used for the purpose of improving the dispersibility of the pigment.
On the other hand, silver salts of fatty acids have heretofore been used as heat-developable image recording materials for photoengraving and medical applications, but recently, as described in Patent Documents 1 and 2, the average particle diameter is 1 to 100 nm. The use as a precursor for obtaining ultrafine metal particles is disclosed.

すなわち、下記特許文献1においては、脂肪酸銀や脂肪酸金塩等の有機金属化合物を不活性化ガス雰囲気下で固相反応により熱分解することで、表面が脂肪酸によって保護された銀や金の平均粒径1〜100nmである金属超微粒子を合成している。一方、特許文献2においては、脂肪酸の銀や金塩と樹脂との混合物を当該脂肪酸金属塩の熱分解開始温度以上且つ樹脂の劣化温度未満の温度で加熱成形して、平均粒径1〜100nmである金属超微粒子を樹脂成形物中で生成せしめている。   That is, in the following Patent Document 1, an average of silver and gold whose surfaces are protected by fatty acids by thermally decomposing organometallic compounds such as fatty acid silver and fatty acid gold salt by solid phase reaction in an inert gas atmosphere. Metal ultrafine particles having a particle size of 1 to 100 nm are synthesized. On the other hand, in Patent Document 2, a mixture of a fatty acid silver or gold salt and a resin is heat-molded at a temperature not lower than the thermal decomposition start temperature of the fatty acid metal salt and lower than the deterioration temperature of the resin, and an average particle size of 1-100 nm The ultrafine metal particles are produced in a resin molded product.

このような金属超粒子は、バルクとは異なる特異な性質を示す為、インクジェット材料、記録材料、触媒などへの応用や、導電性ペーストなど電子デバイスの材料、さらに、プラズモン吸収を利用した色材としての利用等、様々な分野において応用が検討されている。また、これらの金属超微粒子が安定に分散された樹脂成形物は導電性材料、磁性材料や電磁波吸収材料などの幅広く検討されている。
また本出願人により、例えば特許文献2記載の手法により製造した、表面が有機酸によって修飾された金属超微粒子を含む樹脂化合物は、メチルメルカプタン等の悪臭成分、或いはホルムアルデヒド等の揮発性有機化合物(Volatile Organic Compounds 以下「VOC」という)の吸着性能を有することや、抗菌性、アレルゲン物質などの微小蛋白質を不活性化する性質を有することが明らかにされている(特許文献3及び特許文献4)。
Since these metallic ultra particles exhibit unique properties different from the bulk, they are applied to inkjet materials, recording materials, catalysts, etc., materials for electronic devices such as conductive pastes, and coloring materials using plasmon absorption. Applications are being studied in various fields such as the use of In addition, resin molded products in which these ultrafine metal particles are stably dispersed have been widely studied such as conductive materials, magnetic materials, and electromagnetic wave absorbing materials.
In addition, a resin compound containing ultrafine metal particles whose surface is modified with an organic acid, produced by the method described in Patent Document 2, for example, by the present applicant is a malodorous component such as methyl mercaptan, or a volatile organic compound such as formaldehyde ( Volatile Organic Compounds (hereinafter referred to as “VOC”) have been shown to have adsorption performance, and have antibacterial properties and properties to inactivate microproteins such as allergenic substances (Patent Documents 3 and 4) .

上述したように金属超微粒子は多様な分野における応用が検討されており、このような金属超微粒子を得るための製造方法としては、気相中に高温で蒸発させた金属の蒸気を供給し、ガス分子との衝突により急冷させて微粒子を形成する気相法や、金属イオンを含む溶液に還元剤を添加して金属イオンの還元を行う液相法等が一般的であるが、脂肪酸金属塩等の金属含有有機化合物を前駆体として樹脂と混合し、加熱成形する方法は、粒度分布が狭く分散安定性に優れた金属超微粒子を含む樹脂化合物が極めて簡便且つ汎用的な方法にて得られる生産性に富んだ製造方法である。   As described above, application of metal ultrafine particles in various fields has been studied. As a production method for obtaining such metal ultrafine particles, a vapor of metal evaporated at a high temperature in a gas phase is supplied, The gas phase method in which particles are rapidly cooled by collision with gas molecules and the liquid phase method in which a reducing agent is added to a solution containing metal ions to reduce metal ions are generally used. A resin compound containing ultrafine metal particles having a narrow particle size distribution and excellent dispersion stability can be obtained by a very simple and general method. This is a highly productive manufacturing method.

例えば、下記特許文献5には、金属含有有機化合物と熱可塑性樹脂を混合した後、該金属含有有機化合物の分解開始温度以上、完全分解温度未満の温度に加熱することにより、樹脂中で超微粒子を合成し、更に合成と同時に超微粒子の表面修飾および樹脂中への分散が実現される製造方法が提案されている。   For example, in Patent Document 5 described below, after mixing a metal-containing organic compound and a thermoplastic resin, ultrafine particles in the resin are heated by heating to a temperature not lower than the decomposition start temperature of the metal-containing organic compound and lower than the complete decomposition temperature. Further, a production method has been proposed in which ultrafine particles are surface-modified and dispersed in a resin simultaneously with the synthesis.

特開平10−183207号公報Japanese Patent Laid-Open No. 10-183207 特開2006−348213号公報JP 2006-348213 A 国際公開第2008/29932号International Publication No. 2008/29932 国際公開第2008/69034号International Publication No. 2008/69034 国際公開第2005/85358号International Publication No. 2005/85358

しかしながら、上記特許文献5に記載されたように、金属含有有機化合物の分解開始温度以上の温度で金属含有有機化合物と熱可塑性樹脂の混合加熱を行うと、樹脂中で生成される金属超微粒子が凝集してしまい、吸着性能を有する金属超微粒子を効率的に分散することができず、金属超微粒子が有する優れた性能を十分に発揮できないという問題を生じることがわかった。
更に、金属含有有機化合物の分解開始温度以上で加熱を行うと、金属含有有機化合物の分解により脱離した脂肪酸が揮発して煙を発生するという問題もある。
However, as described in Patent Document 5, when the mixed heating of the metal-containing organic compound and the thermoplastic resin is performed at a temperature equal to or higher than the decomposition start temperature of the metal-containing organic compound, the metal ultrafine particles generated in the resin are It has been found that the ultrafine metal particles having the adsorption performance cannot be efficiently dispersed due to aggregation, and the excellent performance of the ultrafine metal particles cannot be exhibited sufficiently.
Furthermore, when heating is performed at a temperature higher than the decomposition start temperature of the metal-containing organic compound, there is a problem that the fatty acid released by the decomposition of the metal-containing organic compound volatilizes and generates smoke.

従って本発明の目的は、樹脂中で金属超微粒子が凝集することなく、効率よく金属超微粒子が均一に分散された金属超微粒子含有樹脂組成物の製造方法を提供することである。
また本発明の他の目的は、金属超微粒子含有樹脂組成物が有する吸着性等の優れた特性を効果的に発現可能であり、分解により発生する煙を抑制することにより製造または作業環境を改善することが可能である金属超微粒子含有樹脂組成物の製造方法を提供することである。
Accordingly, an object of the present invention is to provide a method for producing a resin composition containing metal ultrafine particles in which the metal ultrafine particles are efficiently dispersed uniformly without aggregation of the metal ultrafine particles in the resin.
Another object of the present invention is to effectively exhibit excellent properties such as adsorptivity of the resin composition containing ultrafine metal particles, and to improve the manufacturing or working environment by suppressing smoke generated by decomposition. An object of the present invention is to provide a method for producing a resin composition containing ultrafine metal particles that can be produced.

本発明によれば、脂肪酸金属塩と熱可塑性樹脂を混合加熱することにより、熱可塑性樹脂中に平均粒径1〜100nmの金属超微粒子が生成分散されて成る金属超微粒子含有樹脂組成物の製造方法において、前記樹脂組成物はプラズモン吸収を有し、前記脂肪酸金属塩と熱可塑性樹脂の混合加熱を前記脂肪酸金属塩の分解開始温度未満の温度で行うことを特徴とする金属超微粒子含有樹脂組成物の製造方法が提供される。
本発明の金属超微粒子含有樹脂組成物の製造方法においては、前記脂肪酸金属塩を熱可塑性樹脂100重量部当たり0.001乃至5重量部の量で配合すること、及び熱可塑性樹脂中に配合した脂肪酸金属塩の金属成分が銀であって、製造された樹脂組成物中に存在する脂肪酸と、熱可塑性樹脂に配合した脂肪酸銀のモル比が0.4〜1.0であること、が好適である。
According to the present invention, production of ultrafine metal particle-containing resin composition in which ultrafine metal particles having an average particle diameter of 1 to 100 nm are produced and dispersed in a thermoplastic resin by mixing and heating a fatty acid metal salt and a thermoplastic resin. In the method, the resin composition has plasmon absorption, and the mixed heating of the fatty acid metal salt and the thermoplastic resin is performed at a temperature lower than the decomposition start temperature of the fatty acid metal salt. A method of manufacturing an article is provided.
In the production method of the ultrafine metal particles-containing resin composition of the present invention, compounding the previous SL fatty acid metal salt be blended in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the thermoplastic resin, and a thermoplastic resin The metal component of the fatty acid metal salt is silver, and the molar ratio of the fatty acid present in the produced resin composition and the fatty acid silver blended in the thermoplastic resin is 0.4 to 1.0, Ru suitable der.

本発明の金属超微粒子含有樹脂組成物の製造方法においては、脂肪酸金属塩と熱可塑性樹脂の混合加熱を前記脂肪酸金属塩の分解開始温度未満の温度で行い、樹脂組成物中に前記脂肪酸金属塩の一部を残存させることが重要な特徴である。このように金属超微粒子含有樹脂組成物中に前記脂肪酸金属塩を一部残存させることにより、得られる金属超微粒子含有樹脂組成物が吸着性、微小蛋白質不活性化効果等の金属超微粒子が有する優れた性能を効果的に発現される。
すなわち、脂肪酸金属塩の熱分解開始温度以上で加熱した場合、配合した前記脂肪酸金属塩の実質的にほぼ全量が金属に還元する。このような加熱混合条件においては、上述した通り、金属超微粒子が凝集しやすく、且つ脱離した脂肪酸は樹脂組成物外に揮発するので、作業環境上好ましくない発煙を生じる。
In the method for producing a resin composition containing ultrafine metal particles of the present invention, the fatty acid metal salt and the thermoplastic resin are mixed and heated at a temperature lower than the decomposition start temperature of the fatty acid metal salt, and the fatty acid metal salt is contained in the resin composition. It is an important feature to leave a part of In this way, by partially leaving the fatty acid metal salt in the resin composition containing ultrafine metal particles, the resulting ultrafine metal particle-containing resin composition has the ultrafine metal particles such as adsorptive and microprotein inactivation effects. Excellent performance is effectively expressed.
That is, when heated above the thermal decomposition start temperature of the fatty acid metal salt, substantially the entire amount of the fatty acid metal salt blended is reduced to metal. Under such heating and mixing conditions, as described above, the ultrafine metal particles are likely to aggregate, and the detached fatty acid volatilizes outside the resin composition, resulting in fuming that is undesirable in the working environment.

これに対して本発明の製造方法においては、脂肪酸金属塩の分解開始温度未満の温度で加熱混合することにより、前記脂肪酸金属塩の一部は、金属に還元することなく樹脂組成物中に残存する。このような加熱条件下では、残存した脂肪酸金属塩が金属超微粒子の凝集を抑制する為、凝集が進行しにくく、その結果後述の通り、吸着性、微小蛋白質不活性化効果等の金属超微粒子が有する優れた性能を効果的に発現させることを可能にする。また、脂肪酸金属塩の金属成分が銀である場合には、本発明の製造方法で得られた金属超微粒子含有樹脂組成物中の脂肪酸/混合した脂肪酸銀のmol比が0.4〜1.0になるようにすることが、粒子凝集の進行を抑制することができるので好ましい。   In contrast, in the production method of the present invention, a part of the fatty acid metal salt remains in the resin composition without being reduced to metal by heating and mixing at a temperature lower than the decomposition start temperature of the fatty acid metal salt. To do. Under such heating conditions, the remaining fatty acid metal salt suppresses the aggregation of the ultrafine metal particles, so that the aggregation is difficult to proceed. As a result, as described later, the ultrafine metal particles such as adsorptivity and microprotein inactivation effect It is possible to effectively exhibit the superior performance of the. When the metal component of the fatty acid metal salt is silver, the molar ratio of fatty acid / mixed fatty acid silver in the ultrafine metal particle-containing resin composition obtained by the production method of the present invention is 0.4 to 1. It is preferable to set it to 0 because the progress of particle aggregation can be suppressed.

本発明の製造方法により得られた、脂肪酸金属塩が残存する金属超微粒子含有樹脂組成物が、脂肪酸金属塩が残存しない金属超微粒子含有樹脂組成物に比して優れた性能を有することは後述する実施例の結果からも明らかである。
すなわち、後述する実施例においては、加熱温度及び二軸押出機中の滞留時間が異なる以外は同じ条件で製造された金属超微粒子含有樹脂組成物からフィルム成形を行い、このフィルムの吸光度を分光光度計(島津製作所製)にて測定した。銀や銅の超微粒子は、自由電子が光磁場による振動を受けて生じるプラズモン吸収に起因する発色を示すことが知られている。この吸収波長は金属の種類に固有のものであり、銀超微粒子の場合には、波長420nm付近に吸収をもっている。
図1より、実施例4のフィルムは420nm付近に銀のプラズモン吸収に起因する吸収をもつことが分かり、銀超微粒子が樹脂中に生成分散されていることが確認できる。また、比較例4のフィルムと比べ、本発明の製造方法により得られたフィルムの方が420nm付近の吸光度が高くなっており、銀超微粒子が均一に分散していることが分かる。
この結果は本発明の製造方法による金属超微粒子含有樹脂組成物から成る成形品中には、特定の粒度分布をもった銀超微粒子が凝集することなく安定分散して生成していることを示すものであり、このような成形品は、メチルメルカプタンなどの臭気物質の吸着性能においても、脂肪酸金属塩の分解開始温度以上の温度で加熱することにより得られた金属超微粒子含有樹脂組成物よりも優れていることが明らかである。
It will be described later that the ultrafine metal particle-containing resin composition in which the fatty acid metal salt remains obtained by the production method of the present invention has superior performance as compared to the ultrafine metal particle-containing resin composition in which the fatty acid metal salt does not remain. It is clear from the results of the working examples.
That is, in the examples to be described later, a film is formed from a resin composition containing ultrafine metal particles produced under the same conditions except that the heating temperature and the residence time in the twin screw extruder are different, and the absorbance of this film is measured spectrophotometrically. It was measured with a total (manufactured by Shimadzu Corporation). It is known that ultrafine particles of silver or copper exhibit a color caused by plasmon absorption caused by free electrons undergoing vibration due to an optical magnetic field. This absorption wavelength is specific to the type of metal, and in the case of silver ultrafine particles, the absorption is in the vicinity of a wavelength of 420 nm.
1 that the film of Example 4 has absorption due to silver plasmon absorption at around 420 nm, and it can be confirmed that silver ultrafine particles are produced and dispersed in the resin. In addition, compared with the film of Comparative Example 4, the film obtained by the production method of the present invention has a higher absorbance near 420 nm, and it can be seen that the silver ultrafine particles are uniformly dispersed.
This result shows that the ultrafine silver particles having a specific particle size distribution are stably dispersed without agglomeration in the molded article composed of the resin composition containing ultrafine metal particles by the production method of the present invention. Such a molded article is also superior to the resin composition containing ultrafine metal particles obtained by heating at a temperature equal to or higher than the decomposition start temperature of the fatty acid metal salt in the adsorption performance of odorous substances such as methyl mercaptan. It is clear that it is excellent.

また、押出成形の設定温度が脂肪酸金属塩の分解開始温度以上である240℃の加工条件で成形する製造方法においては、成形時の発煙が顕著に認められ、その揮発物は混合した脂肪酸銀由来の脂肪酸であることが確認された(比較例2)。成形時の発煙により、連続的に製造するには不適な製造方法であることは明白である。これに対して、本発明の製造方法おいては、成形時の発煙が全く認められず(実施例1〜10)、製造・作業環境を損なうことはなく、連続かつ効率的に樹脂組成物の製造が可能であることがわかる。
上述した結果から、本発明の製造方法は、従来の製造方法に比べ、銀超微粒子が組成物中に凝集することなく均一に分散しており、メチルメルカプタンなどの臭気物質の吸着性能に優れ、成形時の発煙がなく製造環境に優れていることを示すものである。
Moreover, in the manufacturing method in which the set temperature of the extrusion molding is performed at a processing condition of 240 ° C. which is equal to or higher than the decomposition start temperature of the fatty acid metal salt, fuming at the time of molding is remarkably observed, and the volatiles are derived from the mixed fatty acid silver (Comparative Example 2). It is obvious that this is an unsuitable production method for continuous production due to fuming during molding. On the other hand, in the production method of the present invention, no smoke was observed during molding (Examples 1 to 10), and the production / working environment was not impaired, and the resin composition was continuously and efficiently produced. It can be seen that manufacturing is possible.
From the results described above, the production method of the present invention is uniformly dispersed without aggregation of silver ultrafine particles in the composition as compared with the conventional production method, and has excellent adsorption performance for odorous substances such as methyl mercaptan, This indicates that there is no smoke during molding and that the manufacturing environment is excellent.

本発明の金属超微粒子含有樹脂組成物の製造方法によれば、樹脂中で金属超微粒子が凝集することなく、平均粒径1〜100nmの金属超微粒子が均一に分散された金属超微粒子含有樹脂組成物を効率よく得ることができる。
また本発明の製造方法により得られる金属超微粒子含有樹脂組成物は、臭気成分、VOCを効果的に吸着することができ、優れた消臭性能或いはVOC吸着性能を発現することができると共に、スギ花粉やダニ由来のアレルゲン物質や酵素、あるいはウィルス等の微小蛋白質を有効に不活性化することが可能となる。
更に、金属超微粒子含有樹脂組成物の生成の際に、従来の方法のように煙が発生することなく、製造または作業環境を損なわずに金属超微粒子含有樹脂組成物を製造することができる。
According to the method for producing a resin composition containing ultrafine metal particles of the present invention, an ultrafine metal particle-containing resin in which ultrafine metal particles having an average particle diameter of 1 to 100 nm are uniformly dispersed without aggregation of ultrafine metal particles in the resin. A composition can be obtained efficiently.
Further, the ultrafine metal particle-containing resin composition obtained by the production method of the present invention can effectively adsorb odor components and VOC, can exhibit excellent deodorizing performance or VOC adsorption performance, and It becomes possible to effectively inactivate pollen and mite-derived allergen substances, enzymes, or microproteins such as viruses.
Furthermore, when the metal ultrafine particle-containing resin composition is produced, smoke is not generated as in the conventional method, and the metal ultrafine particle-containing resin composition can be produced without impairing the production or working environment.

実施例4と比較例4のステアリン酸銀を添加した樹脂組成物の吸光度を示すグラフである。It is a graph which shows the light absorbency of the resin composition which added the silver stearate of Example 4 and Comparative Example 4.

(脂肪酸金属塩)
本発明に用いる脂肪酸金属塩における金属の種類は、Cu、Ag、Au、In、Pd、Pt、Fe、Ni、Co、Zn、Nb、Ru及びRhからなる群より選択される少なくとも1種であり、特にCu、Ag、Co、Niが消臭や抗菌等の性能が高い点から望ましい。また、含まれる金属は複数であってもよく、この場合には、Agを必須成分とし、Ag以外の他の金属を少なくとも1種組み合わせることが望ましい。
また本発明に用いる脂肪酸金属塩における脂肪酸は、炭素数3〜30の脂肪酸で、飽和、不飽和のいずれであってもよい。このようなものとしては、例えばカプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、アラキジン酸、ベヘン酸等を挙げることができる。また、含まれる脂肪酸が複数であってもよい。
(Fatty acid metal salt)
The type of metal in the fatty acid metal salt used in the present invention is at least one selected from the group consisting of Cu, Ag, Au, In, Pd, Pt, Fe, Ni, Co, Zn, Nb, Ru, and Rh. In particular, Cu, Ag, Co, and Ni are desirable because of their high deodorizing and antibacterial performance. Further, a plurality of metals may be included. In this case, it is desirable to use Ag as an essential component and to combine at least one other metal other than Ag.
Moreover, the fatty acid in the fatty acid metal salt used in the present invention is a fatty acid having 3 to 30 carbon atoms and may be either saturated or unsaturated. Examples of such include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, arachidic acid, and behenic acid. Moreover, multiple fatty acids may be contained.

(熱可塑性樹脂)
本発明において、脂肪酸金属塩を配合し得る樹脂としては、溶融成形が可能な熱可塑性樹脂であれば従来公知のものをすべて使用でき、例えば、低−,中−,高−密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、プロピレン−エチレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体等のオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタエート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10等のポリアミド樹脂、ポリカーボネート樹脂等を挙げることができ、特にポリエチレン、ポリプロピレン、ポリエステルを用いることが好適である。
また上記熱可塑性樹脂には、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って樹脂に含有することもできる。
(Thermoplastic resin)
In the present invention, as the resin that can be mixed with the fatty acid metal salt, any conventionally known resin can be used as long as it is a thermoplastic resin that can be melt-molded. For example, low-, medium-, high-density polyethylene, linear Low density polyethylene, linear ultra-low density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, Olefin resin such as ethylene-propylene-butene-1 copolymer, polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide resin such as nylon 6, nylon 6,6, nylon 6,10, polycarbonate resin, etc. In particular Ethylene, polypropylene, the use of polyester is suitable.
In addition, the above-mentioned thermoplastic resin has various compounding agents known per se, for example, a filler, a plasticizer, a leveling agent, a thickening agent, a thickening agent, a stabilizer, an antioxidant, and an ultraviolet absorber. An agent or the like can also be contained in the resin according to a known formulation.

(金属超微粒子含有樹脂組成物の製造方法)
本発明においては、脂肪酸金属塩と熱可塑性樹脂を混合加熱することにより、熱可塑性樹脂中に金属超微粒子が生成分散されて成る金属超微粒子含有樹脂組成物を製造するが、前述した通り、脂肪酸金属塩と熱可塑性樹脂の混合加熱を脂肪酸金属塩の分解開始温度未満の温度で行うことが重要である。
本発明において、脂肪酸金属塩の分解開始温度未満の温度は、生成された樹脂組成物中に金属超微粒子及び脂肪酸金属塩から脱離した脂肪酸が存在する限り、特に制限はない。
すなわち、金属超微粒子含有樹脂組成物の調製は、一般に二軸押出機で原料である脂肪酸金属塩と熱可塑性樹脂を混合加熱することにより行われており、一般に脂肪酸金属塩が分解し、金属超微粒子を形成するためには、脂肪酸金属塩の分解開始温度以上の温度で加熱することが必要である。脂肪酸金属塩の分解開始温度は、脂肪酸部分が金属部分から脱離あるいは分解し始める温度であり、一般的に開始温度はJIS K 7120により定義されている。これによれば、有機化合物(脂肪酸金属塩)の質量を計測し、熱重量測定装置を用いて不活性雰囲気下で昇温した際の重量変化を測定する熱重量測定(TG)を行う。測定により得られた熱重量曲線(TG曲線)から分解開始温度を算出する。試験加熱開始前の質量を通る横軸に平行な線とTG曲線における屈曲点間の勾配が最大になるような接線とが交わる点の温度を開始温度とすると定義づけられている。しかし、本発明は上記に定義される脂肪酸金属塩の分解開始温度以上の温度で加熱することを必要としない。なぜならば、実際には二軸押出機の設定温度以外にスクリューによる剪断発熱、或いは滞留時間等による影響を受けるため、本発明においては、脂肪酸金属塩の分解開始温度未満の温度で加熱する一方で、滞留時間や加熱時間、スクリュー回転数等の加工条件を調整することで、脂肪酸金属塩を分解し、金属超微粒子を形成する。
(Method for producing resin composition containing ultrafine metal particles)
In the present invention, a fatty acid metal salt and a thermoplastic resin are mixed and heated to produce a metal ultrafine particle-containing resin composition in which ultrafine metal particles are produced and dispersed in a thermoplastic resin. It is important that the mixed heating of the metal salt and the thermoplastic resin is performed at a temperature lower than the decomposition start temperature of the fatty acid metal salt.
In the present invention, the temperature lower than the decomposition start temperature of the fatty acid metal salt is not particularly limited as long as the fatty acid desorbed from the ultrafine metal particles and the fatty acid metal salt is present in the produced resin composition.
That is, the preparation of a resin composition containing ultrafine metal particles is generally carried out by mixing and heating a fatty acid metal salt and a thermoplastic resin as raw materials in a twin-screw extruder. In order to form fine particles, it is necessary to heat at a temperature equal to or higher than the decomposition start temperature of the fatty acid metal salt. The decomposition start temperature of the fatty acid metal salt is a temperature at which the fatty acid portion begins to desorb or decompose from the metal portion, and the start temperature is generally defined by JIS K 7120. According to this, the mass of the organic compound (fatty acid metal salt) is measured, and thermogravimetry (TG) is performed to measure the change in weight when the temperature is raised in an inert atmosphere using a thermogravimetry apparatus. The decomposition start temperature is calculated from the thermogravimetric curve (TG curve) obtained by the measurement. It is defined that the temperature at the point where the line parallel to the horizontal axis passing through the mass before the start of test heating and the tangent line at which the gradient between the bending points in the TG curve becomes maximum is the starting temperature. However, the present invention does not require heating at a temperature higher than the decomposition start temperature of the fatty acid metal salt defined above. This is because, in practice, in the present invention, while being heated at a temperature lower than the decomposition start temperature of the fatty acid metal salt, it is affected by the shear heat generation by the screw or the residence time in addition to the set temperature of the twin screw extruder. The fatty acid metal salt is decomposed to form ultrafine metal particles by adjusting processing conditions such as residence time, heating time, and screw rotation speed.

脂肪酸金属塩の加工条件は一概に限定することはできないが、例えば、JISの定義により分解開始温度が220℃であるステアリン酸を脂肪酸として有するステアリン酸銀を使用した場合で、140℃乃至220℃未満の温度で、この範囲内の温度における二軸押出機の設定温度にもよるが、5乃至1800秒、特に10乃至300秒の加熱時間で加熱混合を行うことが好適である。   The processing conditions of the fatty acid metal salt cannot be generally limited. For example, when stearic acid having a decomposition start temperature of 220 ° C. as a fatty acid is used as a fatty acid according to JIS definition, 140 ° C. to 220 ° C. It is preferable to perform heating and mixing at a temperature of less than 5 ° C., depending on the setting temperature of the twin screw extruder at a temperature within this range, with a heating time of 5 to 1800 seconds, particularly 10 to 300 seconds.

本発明の製造方法においては、熱可塑性樹脂100重量部当り脂肪酸金属塩を0.001乃至5重量部の量で配合することが好ましく、上記範囲よりも少ないと金属超微粒子が有する効果を十分に得ることができず、一方上記範囲よりも多いと金属超微粒子が凝集し、均一分散が困難になるおそれがあるので好ましくない。
本発明においては、前述したように、脂肪酸金属塩の分解開始温度未満の温度で熱可塑性樹脂及び脂肪酸金属塩を混合加熱した溶融樹脂から、二本ロール法、射出成形、押出成形、圧縮成形等の従来公知の溶融成形を経て、最終成形品の用途に応じた形状、例えば、粒状、ペレット状、繊維状、フィルム、シート、容器等の樹脂成形体を成形することができる。
また本発明により得られる、脂肪酸金属塩を含有する樹脂組成物単独で金属超微粒子含有樹脂成形品を構成することもできるが、他の樹脂との組み合わせで多層構造とすることもできる。
In the production method of the present invention, it is preferable to blend the fatty acid metal salt in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the thermoplastic resin. On the other hand, if the amount is larger than the above range, the ultrafine metal particles are aggregated and uniform dispersion may be difficult, which is not preferable.
In the present invention, as described above, from a molten resin obtained by mixing and heating a thermoplastic resin and a fatty acid metal salt at a temperature lower than the decomposition start temperature of the fatty acid metal salt, a two-roll method, injection molding, extrusion molding, compression molding, etc. Through a conventionally known melt molding, a resin molded body such as a shape, for example, a granular shape, a pellet shape, a fiber shape, a film, a sheet, or a container can be formed according to the use of the final molded product.
Moreover, although the resin composition containing a fatty acid metal salt obtained by the present invention can be used alone to form a resin molded article containing ultrafine metal particles, it can also have a multilayer structure in combination with other resins.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
(脂肪酸銀の作製)
ステアリン酸ナトリウム76.6gを90℃の水3000gに溶解させてA液を、硝酸銀40.3gを水600gに溶解させてB液をそれぞれ調整した。次に、A液を撹拌しながら、B液をA液に投入した。投入後15分撹拌し、吸引ろ過により固液分離を行いながら、脱イオン水を用いて十分に洗浄を行った。得られたステアリン酸銀を熱風乾燥機(タバイエスペック社製)にて乾燥した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(Production of fatty acid silver)
Liquid A was prepared by dissolving 76.6 g of sodium stearate in 3000 g of water at 90 ° C., and liquid B was prepared by dissolving 40.3 g of silver nitrate in 600 g of water. Next, the B liquid was thrown into the A liquid while stirring the A liquid. The mixture was stirred for 15 minutes and thoroughly washed with deionized water while performing solid-liquid separation by suction filtration. The obtained silver stearate was dried with a hot air dryer (manufactured by Tabai Espec).

(脂肪酸銀の分解開始温度の算出)
JIS K7120に従い、ステアリン酸銀の質量を計測し、熱重量測定装置(パーキンエルマー社製)を用い、窒素雰囲気下10℃/minの昇温速度で30〜600℃までの重量減少を測定した。測定により得られたTG曲線から試験加熱開始前の質量を通る横軸(温度)に平行な線と屈曲点間の勾配が最大となるような接線とが交わる点の温度を算出し、ステアリン酸銀の分解開始温度とした。
(Calculation of decomposition temperature of fatty acid silver)
In accordance with JIS K7120, the mass of silver stearate was measured, and the weight loss from 30 to 600 ° C. was measured at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere using a thermogravimetric apparatus (manufactured by PerkinElmer). From the TG curve obtained by measurement, calculate the temperature at the point where the line parallel to the horizontal axis (temperature) passing through the mass before the start of test heating and the tangent line where the gradient between the bending points is maximum intersect, and stearic acid It was set as the decomposition start temperature of silver.

(プラズモン吸収の確認)
脂肪酸銀と熱可塑性樹脂とを混合加熱して得られた樹脂組成物を分光光度計(島津製作所社製UV―3100PC)にて測定し、吸光度を求めた。なお、銀や銅などの超微粒子は、自由電子が光磁場による振動を受けて生じるプラズモン吸収に起因する発色を示すことが知られている。この吸収波長は金属の種類に固有するものであり、樹脂中に銀超微粒子が含有している場合には、波長420nm付近にプラズモン吸収は観測される。
(Confirmation of plasmon absorption)
The resin composition obtained by mixing and heating the fatty acid silver and the thermoplastic resin was measured with a spectrophotometer (UV-3100PC, manufactured by Shimadzu Corporation) to determine the absorbance. In addition, it is known that ultrafine particles such as silver and copper show a color caused by plasmon absorption caused by vibration of a free electron by an optical magnetic field. This absorption wavelength is specific to the type of metal. When the ultrafine silver particles are contained in the resin, plasmon absorption is observed near the wavelength of 420 nm.

(発煙の確認及び揮発物の分析)
樹脂組成物の成形時の発煙を目視により確認し、発生した煙を収集し揮発物を得た。揮発物をメチルエステル化、ヘキサン抽出し、GC−MSにより分析を行った。分析により得られたリテンションタイムの異なる各ピークの面積比から成分比を算出し、主成分を特定した。
(Confirmation of smoke and analysis of volatiles)
Smoke during molding of the resin composition was visually confirmed, and the generated smoke was collected to obtain volatiles. Volatiles were methyl esterified, extracted with hexane, and analyzed by GC-MS. The component ratio was calculated from the area ratio of each peak with different retention times obtained by analysis, and the main component was identified.

(消臭前メチルメルカプタン量の測定)
口部をゴム栓で密封した窒素ガス置換した500mlガラス製瓶内に、悪臭物質メチルメルカプタン5μlをマイクロシリンジにて注入し、室温(25℃)で1日放置した。1日放置後、瓶中へガステック製検知管を挿入し残存メチルメルカプタン量を測定し消臭前メチルメルカプタン量(A)とした。
(Measurement of methyl mercaptan before deodorization)
5 μl of malodorous methyl mercaptan was injected with a microsyringe into a 500 ml glass bottle replaced with nitrogen gas whose mouth was sealed with a rubber stopper, and left at room temperature (25 ° C.) for 1 day. After leaving for one day, a gas-tech detector tube was inserted into the bottle, and the amount of residual methyl mercaptan was measured to obtain the amount of methyl mercaptan (A) before deodorization.

(消臭後メチルメルカプタン量の測定)
実施例1〜10及び比較例1〜6により作成されたフィルムを5cm四方(重量0.1g)に切り出し、窒素ガス置換した500mlガラス製瓶内に入れてゴム栓で密封した後、前記瓶内に悪臭物質メチルメルカプタン5μlをマイクロシリンジにて注入し、室温(25℃)で1日放置した。1日放置後、瓶中へガステック製検知管を挿入し残存メチルメルカプタン量を測定し、消臭後メチルメルカプタン量(B)とした。
(Measurement of methyl mercaptan after deodorization)
The films prepared according to Examples 1 to 10 and Comparative Examples 1 to 6 were cut into 5 cm squares (weight 0.1 g), placed in a 500 ml glass bottle substituted with nitrogen gas, and sealed with a rubber stopper. The malodorous methyl mercaptan (5 μl) was injected into the tube with a microsyringe and left at room temperature (25 ° C.) for 1 day. After leaving for 1 day, a GASTEC detector tube was inserted into the bottle, the amount of residual methyl mercaptan was measured, and the amount of methyl mercaptan (B) after deodorization was determined.

(メチルメルカプタン消臭率の算出)
前記消臭前メチルメルカプタン量(A)から消臭後メチルメルカプタン量(B)を引いた値を消臭前メチルメルカプタン量(A)で割り百分率で表した値を消臭率とした。
(Calculation of methyl mercaptan deodorization rate)
The value obtained by subtracting the methyl mercaptan amount (B) after deodorization from the methyl mercaptan amount (A) before deodorization was divided by the methyl mercaptan amount (A) before deodorization and defined as a percentage.

(実施例1)
低密度ポリエチレン樹脂3kgに、前述の手法により作製し、分解開始温度を算出したステアリン酸銀を0.5wt%の含有率になるように配合し、押出成形機設定温度160℃、Q(吐出量)/N(スクリュー回転数)=3/150=0.02の成形条件で二軸押出機((株)東洋精機製作所製)にて押し出して厚み50μmのフィルムを作製し、前述したプラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
Example 1
Silver stearate prepared by the above-described method and calculated for decomposition start temperature is blended in 3 kg of low density polyethylene resin so as to have a content of 0.5 wt%, and the extruder setting temperature is 160 ° C., Q (discharge amount) ) / N (screw rotation speed) = 3/150 = 0.02 Extruded with a twin screw extruder (manufactured by Toyo Seiki Seisakusho) to produce a film with a thickness of 50 μm. Confirmation, confirmation of smoke generation, analysis of volatile substances, measurement of the amount of methyl mercaptan, and calculation of the amount of deodorization of methyl mercaptan were performed. The results are shown in Table 1.

(実施例2)
押出成形機設定温度を180℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 2)
A film was prepared in the same manner as in Example 1 except that the extruder set temperature was 180 ° C., confirmation of plasmon absorption, confirmation of fuming and analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(実施例3)
押出成形機設定温度を190℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 3)
A film was prepared in the same manner as in Example 1 except that the extruder set temperature was 190 ° C., confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(実施例4)
押出成形機設定温度を200℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
Example 4
A film was produced in the same manner as in Example 1 except that the temperature set for the extruder was 200 ° C., confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of the amount of methyl mercaptan, amount of deodorization of methyl mercaptan Was calculated. The results are shown in Table 1.

(実施例5)
押出成形機設定温度を210℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 5)
A film was prepared in the same manner as in Example 1 except that the extruder set temperature was 210 ° C., confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(実施例6)
樹脂をポリオレフィンに変更し、押出成形機設定温度を180℃、Q(吐出量)/N(スクリュー回転数)=3/100=0.03にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 6)
A film was produced in the same manner as in Example 1 except that the resin was changed to polyolefin and the extruder was set at 180 ° C. and Q (discharge amount) / N (screw rotation speed) = 3/100 = 0.03. Then, confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of the amount of methyl mercaptan, and calculation of the deodorizing amount of methyl mercaptan were performed. The results are shown in Table 1.

(実施例7)
ステアリン酸銀を0.2wt%にし、押出成形機設定温度を180℃、Q(吐出量)/N(スクリュー回転数)=3/50=0.06にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 7)
Example 1 except that the silver stearate was 0.2 wt%, the extruder setting temperature was 180 ° C., and Q (discharge amount) / N (screw rotation speed) = 3/50 = 0.06. A film was prepared, plasmon absorption was confirmed, smoke was confirmed and volatiles were analyzed, the amount of methyl mercaptan was measured, and the deodorization amount of methyl mercaptan was calculated. The results are shown in Table 1.

(実施例8)
ステアリン酸銀を1.5wt%にし、押出成形機設定温度を180℃、Q(吐出量)/N(スクリュー回転数)=3/100=0.03にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 8)
Example 1 except that the silver stearate was 1.5 wt%, the extruder setting temperature was 180 ° C., and Q (discharge amount) / N (screw rotation speed) = 3/100 = 0.03. A film was prepared, plasmon absorption was confirmed, smoke was confirmed and volatiles were analyzed, the amount of methyl mercaptan was measured, and the deodorization amount of methyl mercaptan was calculated. The results are shown in Table 1.

(実施例9)
ミリスチン酸銀を0.5wt%にし、押出成形機設定温度を180℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
Example 9
A film was prepared in the same manner as in Example 1 except that silver myristate was changed to 0.5 wt% and the extruder was set at 180 ° C., confirmation of plasmon absorption, confirmation of fuming and analysis of volatiles, methyl mercaptan The amount was measured and the amount of deodorization of methyl mercaptan was calculated. The results are shown in Table 1.

(実施例10)
ベヘン酸銀を0.5wt%にし、押出成形機設定温度を180℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Example 10)
A film was prepared in the same manner as in Example 1 except that silver behenate was changed to 0.5 wt% and the extruder set temperature was 180 ° C., confirmation of plasmon absorption, confirmation of fuming, analysis of volatiles, methyl mercaptan The amount was measured and the amount of deodorization of methyl mercaptan was calculated. The results are shown in Table 1.

(比較例1)
押出成形機設定温度を130℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 1)
A film was prepared in the same manner as in Example 1 except that the extruder set temperature was set to 130 ° C., confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(比較例2)
押出成形機設定温度を240℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 2)
A film was produced in the same manner as in Example 1 except that the temperature set at the extruder was 240 ° C., confirmation of plasmon absorption, confirmation of fuming and analysis of volatiles, measurement of the amount of methyl mercaptan, amount of deodorization of methyl mercaptan Was calculated. The results are shown in Table 1.

(比較例3)
押出成形機設定温度を260℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 3)
A film was produced in the same manner as in Example 1 except that the extruder set temperature was set to 260 ° C., confirmation of plasmon absorption, confirmation of smoke generation, analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(比較例4)
押出成形機設定温度を280℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 4)
A film was produced in the same manner as in Example 1 except that the extruder set temperature was 280 ° C., confirmation of plasmon absorption, confirmation of smoke generation and analysis of volatiles, measurement of methyl mercaptan amount, deodorization amount of methyl mercaptan Was calculated. The results are shown in Table 1.

(比較例5)
ミリスチン酸銀を0.5wt%にし、押出成形機設定温度を260℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 5)
A film was prepared in the same manner as in Example 1 except that silver myristate was changed to 0.5 wt% and the extruder set temperature was set to 260 ° C., confirmation of plasmon absorption, confirmation of fuming and analysis of volatiles, methyl mercaptan The amount was measured and the amount of deodorization of methyl mercaptan was calculated. The results are shown in Table 1.

(比較例6)
ベヘン酸銀を0.5wt%にし、押出成形機設定温度を260℃にした以外は、実施例1と同様にフィルムを作製し、プラズモン吸収の確認、発煙の確認及び揮発物の分析、メチルメルカプタン量の測定、メチルメルカプタンの消臭量の算出を行った。結果を表1に示す。
(Comparative Example 6)
A film was prepared in the same manner as in Example 1 except that silver behenate was changed to 0.5 wt% and the extruder set temperature was set to 260 ° C., confirmation of plasmon absorption, confirmation of fuming, analysis of volatiles, methyl mercaptan The amount was measured and the amount of deodorization of methyl mercaptan was calculated. The results are shown in Table 1.

Figure 0005693974
Figure 0005693974

本発明の金属超微粒子含有樹脂組成物の製造方法は、樹脂中で金属超微粒子が凝集することなく、効率よく金属超微粒子が均一に分散された金属超微粒子含有樹脂組成物を製造することができ、しかも製造時の発煙がなく製造環境にも優れている。このため、吸着性等の優れた特性を有する金属超微粒子含有樹脂組成物を、粒状、ペレット状、繊維状、フィルム、シート、容器等の種々の形態に効率よく製造することができ、さまざまな産業分野で利用することが可能となる。   The method for producing a resin composition containing ultrafine metal particles according to the present invention is capable of producing an ultrafine metal particle-containing resin composition in which ultrafine metal particles are efficiently dispersed without aggregation of ultrafine metal particles in the resin. In addition, there is no smoke during production, and the production environment is excellent. Therefore, the ultrafine metal particle-containing resin composition having excellent properties such as adsorptivity can be efficiently produced in various forms such as granular, pellet-like, fibrous, film, sheet, and container. It can be used in the industrial field.

Claims (3)

脂肪酸金属塩と熱可塑性樹脂を混合加熱することにより、熱可塑性樹脂中に平均粒径1〜100nmの金属超微粒子が生成分散されて成る金属超微粒子含有樹脂組成物の製造方法において、前記樹脂組成物はプラズモン吸収を有し、前記脂肪酸金属塩と熱可塑性樹脂の混合加熱を前記脂肪酸金属塩の分解開始温度未満の温度で行うことを特徴とする金属超微粒子含有樹脂組成物の製造方法。 In the method of producing a resin composition containing ultrafine metal particles, in which ultrafine metal particles having an average particle diameter of 1 to 100 nm are produced and dispersed in a thermoplastic resin by mixing and heating a fatty acid metal salt and a thermoplastic resin, the resin composition The product has a plasmon absorption, and the mixed heating of the fatty acid metal salt and the thermoplastic resin is performed at a temperature lower than the decomposition start temperature of the fatty acid metal salt. 前記脂肪酸金属塩を熱可塑性樹脂100重量部当たり0.001乃至5重量部の量で配合する請求項1記載の金属超微粒子含有樹脂組成物の製造方法。   The method for producing a resin composition containing ultrafine metal particles according to claim 1, wherein the fatty acid metal salt is blended in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the thermoplastic resin. 熱可塑性樹脂中に配合した脂肪酸金属塩の金属成分が銀であって、製造された樹脂組成物中に存在する脂肪酸と、熱可塑性樹脂に配合した脂肪酸銀のモル比が0.4〜1.0である請求項1又は2記載の金属超微粒子含有樹脂組成物の製造方法。 The metal component of the fatty acid metal salt blended in the thermoplastic resin is silver, and the molar ratio of the fatty acid present in the produced resin composition and the fatty acid silver blended in the thermoplastic resin is 0.4 to 1. The method for producing a resin composition containing ultrafine metal particles according to claim 1 or 2, wherein the composition is zero.
JP2010549543A 2009-02-09 2010-02-09 Process for producing resin composition containing ultrafine metal particles Active JP5693974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549543A JP5693974B2 (en) 2009-02-09 2010-02-09 Process for producing resin composition containing ultrafine metal particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009027266 2009-02-09
JP2009027266 2009-02-09
PCT/JP2010/051887 WO2010090331A1 (en) 2009-02-09 2010-02-09 Method for producing ultrafine metal particle-containing resin composition
JP2010549543A JP5693974B2 (en) 2009-02-09 2010-02-09 Process for producing resin composition containing ultrafine metal particles

Publications (2)

Publication Number Publication Date
JPWO2010090331A1 JPWO2010090331A1 (en) 2012-08-09
JP5693974B2 true JP5693974B2 (en) 2015-04-01

Family

ID=42542215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010549543A Active JP5693974B2 (en) 2009-02-09 2010-02-09 Process for producing resin composition containing ultrafine metal particles

Country Status (3)

Country Link
JP (1) JP5693974B2 (en)
CN (1) CN102307934B (en)
WO (1) WO2010090331A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182983A (en) * 2017-10-03 2020-05-19 东洋制罐集团控股株式会社 Metallic copper fine particles and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048031A (en) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd Antibacterial agent, antibacterial resin and antibacterial fiber
JP2005048145A (en) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd Material for imparting flame retardancy and antibacterial properties and antibacterial and flame-retardant resin
WO2005085358A1 (en) * 2004-03-03 2005-09-15 Kaneka Corporation Method for producing thermoplastic resin composition containing ultrafine particles
WO2008069034A1 (en) * 2006-12-08 2008-06-12 Toyo Seikan Kaisha, Ltd. Microprotein-inactivating ultrafine metal particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048031A (en) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd Antibacterial agent, antibacterial resin and antibacterial fiber
JP2005048145A (en) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd Material for imparting flame retardancy and antibacterial properties and antibacterial and flame-retardant resin
WO2005085358A1 (en) * 2004-03-03 2005-09-15 Kaneka Corporation Method for producing thermoplastic resin composition containing ultrafine particles
WO2008069034A1 (en) * 2006-12-08 2008-06-12 Toyo Seikan Kaisha, Ltd. Microprotein-inactivating ultrafine metal particle

Also Published As

Publication number Publication date
CN102307934B (en) 2014-04-02
JPWO2010090331A1 (en) 2012-08-09
WO2010090331A1 (en) 2010-08-12
CN102307934A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2009107721A1 (en) Fatty acid metal salt for forming ultrafine metal particle
JP4835435B2 (en) Method for producing ultrafine particle-containing thermoplastic resin composition
JP4820416B2 (en) Adsorbent containing ultrafine metal particles
JP5415784B2 (en) Adsorbent composition and adsorbent molded body
JP4948556B2 (en) Masterbatch, production method thereof, and molding method
KR101544259B1 (en) Resin composition containing ultrafine silver particles
JP5629428B2 (en) Fatty acid metal salt for forming ultrafine metal particles
JP2009209052A (en) Fatty acid metal salt for forming ultrafine metal particle
JP5693974B2 (en) Process for producing resin composition containing ultrafine metal particles
JP5629425B2 (en) Fatty acid metal salt for forming ultrafine metal particles
JP5519525B2 (en) Copper ultrafine particle production method and copper ultrafine particle-containing resin composition
JP5656541B2 (en) Silver-containing resin composition and method for producing the same
JP5656540B2 (en) Silver-containing resin composition and method for producing the same
JP2010132774A (en) Method for producing adsorbable molded product
EP4378986A1 (en) Self-migrating germicidal additives
WO2008103560A2 (en) Improved process for the manufacture of polymer additive granules containing silica antiblock agents
JP2009209200A (en) Tarnishable ultrafine metal particle-containing composition and method for determining deodorization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5693974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350