WO2010054724A2 - Clausius-rankine cycle - Google Patents

Clausius-rankine cycle Download PDF

Info

Publication number
WO2010054724A2
WO2010054724A2 PCT/EP2009/007162 EP2009007162W WO2010054724A2 WO 2010054724 A2 WO2010054724 A2 WO 2010054724A2 EP 2009007162 W EP2009007162 W EP 2009007162W WO 2010054724 A2 WO2010054724 A2 WO 2010054724A2
Authority
WO
WIPO (PCT)
Prior art keywords
rankine cycle
working fluid
clausius
cycle according
housing
Prior art date
Application number
PCT/EP2009/007162
Other languages
German (de)
French (fr)
Other versions
WO2010054724A3 (en
Inventor
Jan GÄRTNER
Thomas Koch
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to JP2011535890A priority Critical patent/JP5661044B2/en
Priority to EP09778849A priority patent/EP2387655A2/en
Priority to CN200980145250.1A priority patent/CN102265002B/en
Publication of WO2010054724A2 publication Critical patent/WO2010054724A2/en
Priority to US13/068,077 priority patent/US20120060502A1/en
Publication of WO2010054724A3 publication Critical patent/WO2010054724A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a Rankine cycle, in particular for mobile applications, preferably in motor vehicles, having the features of the preamble of claim 1.
  • the invention also relates to a motor vehicle having such a Rankine cycle.
  • a Clausius-Rankine circle is known. It conventionally comprises a pump for driving a liquid working fluid in the Rankine cycle and for pressurizing the working fluid. Further, a heater is provided for vaporizing the pressurized liquid working fluid. In addition, an expansion device for generating mechanical drive power by means of expansion of the hot, compressed steam is provided. By means of a condenser device, the hot, relaxed steam can be condensed and returned to the pump as a liquid working fluid. Furthermore, the known Clausius-Rankine cycle has a collecting volume for collecting and storing liquid working fluid. In the known Clausius-Rankine cycle, the collecting volume is contained in a collecting container, which can be coupled heat-transmitting with a heat exchanger in order to preheat the stored liquid working fluid.
  • the present invention is concerned with the problem of providing an improved embodiment for a Rankine cycle of the type mentioned above, which is characterized in particular by the fact that it requires comparatively little installation space thus simplifying the realization of mobile applications.
  • the invention is based on the general idea to integrate the collecting volume in the capacitor device.
  • the condenser device is provided with a corresponding housing, which contains the collecting volume for storing and for collecting the condensed working fluid. Since the Clausius-Rankine cycle anyway requires a capacitor device that must be mounted so that the liquid working fluid can be relatively easily pumped to simplify the structure of the Rankine cycle by the proposed integration of the collection volume in the housing capacitor device. On a separate collection container for accommodating the collection volume can be dispensed with. Overall, the Clausius-Rankine circle thus requires less space. Due to its compact design, the realization of such a Clausius-Rankine cycle in a mobile application, such. Ex. In a motor vehicle.
  • the housing also contains a capacitor volume in addition to the collecting volume.
  • This is open to the collecting volume and takes on a heat exchanger, which is traversed by a cooling fluid.
  • the collecting volume occupies a comparatively large proportion of the total volume of the housing in the housing of the condenser device.
  • the collecting volume and the housing are coordinated so that the collecting volume fills at least 30% or at least 50% or at least 60% of the total volume of the housing.
  • the capacitor volume in the housing of the capacitor device can thus be smaller than the collecting volume.
  • the capacitor device can be connected to a cooling circuit in which a cooling fluid circulates.
  • the Clausius-Rankine cycle expediently has a control device.
  • This can According to an advantageous embodiment be designed so that so that the amount of circulating in the Clausius-Rankine cycle working fluid can be adjusted, depending on the current operating state of the Clausius-Rankine cycle.
  • This embodiment is based on the finding that, depending on the operating state or operating point, a different amount of working fluid in the Clausius-Rankine cycle is required in order to be able to operate it optimally.
  • the optimum circulating amount of working fluid varies depending on the drive power to be applied by the expansion device and / or in dependence on the heating power available at the heating device and / or in dependence on pressures and / or temperatures.
  • the control device can now, taking into account the current operating state, for example via maps and / or calculation models, determine the amount of working fluid required for this purpose, which must circulate for optimal operation in the Clausius-Rankine cycle.
  • the efficiency of the Clausius-Rankine cycle can be improved.
  • the controller may be configured to adjust the amount of working fluid circulating in the Rankine cycle by varying the capacitor power of the capacitor device.
  • This embodiment makes use of the finding that the amount of working fluid circulating in the Rankine cycle depends on the ratio of gas phase to liquid phase in the condenser device. The higher the condensation capacity of the condenser device, the more liquid working fluid is available for circulation in the Clausius-Rankine cycle.
  • control device so that it adjusts the condensing capacity of the condenser device by changing the amount of the heat exchanger flowing through the cooling fluid in a condenser device containing a heat exchanger through which a cooling fluid.
  • the control device takes into account the correlation between cooling fluid flow and accumulating condensate in the condenser device.
  • control device adjusts the amount of working fluid circulating in the Rankine cycle, the fact that the collecting volume for liquid working fluid in the housing of the capacitor device is integrated, which simplifies the variation of the circulating amount of working fluid.
  • FIG. 1 shows a highly simplified schematic diagram-like schematic representation of a Clausius-Rankine cycle.
  • a Rankine cycle 1 includes as components a pump 2, a heater 3, an expansion device 4, and a capacitor device 5. Further, leads 6 are provided to connect the individual components 2, 3, 4, 5 to each other , Thus, a line 6a connects a pressure side of the pump 2 to an input of the heater 3. A line 6b connects an output of the heater 3 to an input of the expansion device 4. A line 6c connects an output of the expansion device 4 to an input of the capacitor device 5. A Line 6d connects an output of the capacitor device 5 to the suction side of the pump 2.
  • the Rankine cycle 1 is preferably suitable for a mobile application. Accordingly, it may, for example, be arranged in a motor vehicle.
  • Such a motor vehicle includes, for example, an exhaust system 7, which may be coupled to the heater 3 for heat transfer.
  • an exhaust gas flow through the designed as a heat exchanger heater 3 are passed.
  • the vehicle may have a cooling circuit 8, which may, for example, be coupled with the condenser device 5 in a heat-transmitting manner.
  • a heat exchanger 9 of the capacitor device 5 can be integrated into the cooling circuit 8 of the vehicle.
  • the pump 2 serves to drive a liquid working fluid in the Rankine cycle 1. At the same time, the pump 2 serves to pressurize the working fluid. The pump 2 thus promotes the working fluid in the lines 6 and through the individual components 3, 4, 5.
  • the heater 3 serves to evaporate the pressurized, liquid working fluid.
  • the working fluid is supplied with heat q.
  • the expansion device 4 drives a generator 11 via a drive shaft 10 in order to generate electrical energy.
  • the condenser device 5 serves to condense the hot, relaxed steam.
  • heat is q from purged from the working fluid. In this way, the working fluid is cooled and thus liquefied. The liquid working fluid can then be returned to the pump 2.
  • the capacitor device 5 has a housing 12 in which z. Ex.
  • the heat exchanger 9 is arranged.
  • this housing 12 also has a collecting volume 13 is integrated, which serves for collecting and storing of liquid working fluid.
  • the housing 12 may also include a capacitor volume 14 in addition to the collection volume 13.
  • the capacitor volume 14 is expediently open to the collecting volume 13.
  • the heat exchanger 9 arranged.
  • the collecting volume 13 is at least 30% or at least 50% or at least 60% of a total volume of the housing 12.
  • the capacitor volume 14 for accommodating the heat exchanger 9 is at least 35% of the total volume of the housing 12.
  • the collecting volume 13 which is provided for collecting and providing the liquid working fluid need not always be completely filled with liquid working fluid, but the amount of working fluid circulating in the Rankine cycle 1 can vary.
  • the Rankine cycle 1 may have a control device 15 with the aid of which the amount of the working fluid circulating in the Rankine cycle 1 can be adjusted.
  • the setting of the circulating amount of working fluid is carried out as a function of current operating parameters of the Rankine cycle 1, that is, as a function of a current operating state.
  • Corresponding operating parameters receives the control device 15 in the example via a corresponding signal line 16.
  • the control device 15 may be connected to an engine control unit of the vehicle.
  • the control device 15 may be connected to a suitable sensor for detecting the required operating parameters.
  • control device 15 cooperates with a control valve 17, with the aid of which the amount of cooling fluid flowing through in the heat exchanger 9 can be adjusted.
  • the control valve 17 is integrated at a suitable location in the cooling circuit 8.
  • the control valve 17 may be incorporated in a flow 18 of the cooling circuit 8 as shown. It is also possible to integrate the control valve 17 in a return line 19 of the cooling circuit 8.
  • the control valve 17 is arranged outside the housing 12 of the capacitor device 5. It is also possible to arrange the control valve 17 in the interior of the housing 12 of the capacitor device 5.
  • the control device 15 can thus set by appropriate actuation of the control valve 17, the amount of the heat exchanger 9 flowing through the cooling fluid. Since the amount of cooling fluid flowing through the heat exchanger 9 determines the condensation capacity of the condenser device 5, the control device 15 can thus indirectly set the condensing capacity of the condenser device 5.
  • the condensation capacity of the condenser device 5 in turn is decisive for the ratio of gas phase to liquid phase in the condenser device 5 and thus for the resulting amount of liquid working fluid.
  • the condensation capacity of the condenser device 5 correlates with the circulating in Clausius Rankine cycle amount of working fluid. Accordingly, the controller 15 can indirectly adjust the amount of the working fluid to be circulated in the Rankine cycle.
  • the adjustment of the amount of working fluid circulating in the Rankine cycle 1 can take place in the sense of a control or else be carried out in the sense of a regulation.
  • the control device 15 assigns to the current operating state a control signal with which the control valve 17 must be actuated in order to be able to set the desired working fluid quantity in accordance with calculations or characteristic diagrams.
  • the control device 15 compares the actual amount of working fluid currently circulating in the Clausius-Rankine cycle 1 with a desired amount of the working fluid which would have to circulate in the Rankine cycle 1 due to the current operating state. In response to a desired-actual comparison, the control valve 17 is then activated.

Abstract

The invention relates to a Clausius-Rankine cycle, in particular for mobile applications, preferably in motor vehicles, comprising a pump (2) for driving a liquid working fluid in the Clausius-Rankine cycle (1) and applying pressure to the working fluid, a heating device (3) for evaporating the pressurized liquid working medium, an expansion device (4) for generating mechanical driving power by expanding the hot, compressed vapor, a condenser device (5) for condensing the hot, expanded vapor that can be fed to the pump (2) as liquid working fluid, and a collection volume (13) for collecting and storing liquid working fluid. In order to obtain a compact arrangement of the Clausius-Rankine cycle (1), the collection volume (13) is integrated into a housing (12) of the condenser device (5).

Description

Clausius-Rankine-Kreis Rankine circle
Die vorliegende Erfindung betrifft einen Clausius-Rankine-Kreis, insbesondere für mobile Anwendungen, vorzugsweise in Kraftfahrzeugen, mit den Merkmalen des Oberbegriffs des Anspruchs 1. Die Erfindung betrifft außerdem ein Kraftfahrzeug mit einem derartigen Clausius-Rankine-Kreis.The present invention relates to a Rankine cycle, in particular for mobile applications, preferably in motor vehicles, having the features of the preamble of claim 1. The invention also relates to a motor vehicle having such a Rankine cycle.
Aus der DE 102 59 488 A1 ist ein Clausius-Rankine-Kreis bekannt. Er umfasst in üblicher Weise eine Pumpe zum Antreiben eines flüssigen Arbeitsfluids im Clausius-Rankine- Kreis und zur Druckbeaufschlagung des Arbeitsfluids. Ferner ist eine Heizeinrichtung zum Verdampfen des unter Druck stehenden flüssigen Arbeitsfluids vorgesehen. Außerdem ist eine Expansionseinrichtung zum Erzeugen von mechanischer Antriebsleistung mittels Expansion des heißen, komprimierten Dampfes vorgesehen. Mit Hilfe einer Kondensatoreinrichtung kann der heiße, entspannte Dampf kondensiert werden und der Pumpe als flüssiges Arbeitsfluid rückgeführt werden. Ferner weist der bekannte Clausius- Rankine-Kreis ein Sammelvolumen zum Sammeln und Bevorraten von flüssigem Arbeitsfluid auf. Beim bekannten Clausius-Rankine-Kreis ist das Sammelvolumen in einem Sammelbehälter enthalten, der mit einem Wärmeübertrager wärmeübertragend gekoppelt sein kann, um das bevorratete flüssige Arbeitsfluid vorzuwärmen.From DE 102 59 488 A1 a Clausius-Rankine circle is known. It conventionally comprises a pump for driving a liquid working fluid in the Rankine cycle and for pressurizing the working fluid. Further, a heater is provided for vaporizing the pressurized liquid working fluid. In addition, an expansion device for generating mechanical drive power by means of expansion of the hot, compressed steam is provided. By means of a condenser device, the hot, relaxed steam can be condensed and returned to the pump as a liquid working fluid. Furthermore, the known Clausius-Rankine cycle has a collecting volume for collecting and storing liquid working fluid. In the known Clausius-Rankine cycle, the collecting volume is contained in a collecting container, which can be coupled heat-transmitting with a heat exchanger in order to preheat the stored liquid working fluid.
Weitere Clausius-Rankine-Kreise sind bspw. aus der DE 10 2005 061 214 A1 , aus der DE 10 2006 043 518 A1 , aus der DE 10 2004 018 860 A1 und aus der JP 2008-8224 bekannt.Further Clausius-Rankine circuits are known, for example, from DE 10 2005 061 214 A1, from DE 10 2006 043 518 A1, from DE 10 2004 018 860 A1 and from JP 2008-8224.
Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Clausius-Rankine- Kreis der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass sie vergleichsweise wenig Bauraum benötigt und somit die Realisierung mobiler Anwendungen vereinfacht.The present invention is concerned with the problem of providing an improved embodiment for a Rankine cycle of the type mentioned above, which is characterized in particular by the fact that it requires comparatively little installation space thus simplifying the realization of mobile applications.
Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved according to the invention by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.
Die Erfindung beruht auf dem allgemeinen Gedanken, das Sammelvolumen in die Kondensatoreinrichtung zu integrieren. Hierzu wird die Kondensatoreinrichtung mit einem entsprechenden Gehäuse versehen, das das Sammelvolumen zur Bevorratung und zum Sammeln des kondensierten Arbeitsfluids beinhaltet. Da der Clausius-Rankine-Kreis ohnehin eine Kondensatoreinrichtung benötigt, die so montiert werden muss, dass das flüssige Arbeitsfluid vergleichsweise einfach zur Pumpe gefördert werden kann, vereinfach sich der Aufbau des Clausius-Rankine-Kreises durch die vorgeschlagene Integration des Sammelvolumens in das Gehäuse der Kondensatoreinrichtung. Auf einen separaten Sammelbehälter zur Unterbringung des Sammelvolumens kann dadurch verzichtet werden. Insgesamt benötigt der Clausius-Rankine-Kreis somit weniger Bauraum. Durch seine kompakte Bauweise vereinfacht sich die Verwirklichung eines derartigen Clausius-Rankine-Kreises in einer mobilen Anwendung, wie z. Bsp. in einem Kraftfahrzeug.The invention is based on the general idea to integrate the collecting volume in the capacitor device. For this purpose, the condenser device is provided with a corresponding housing, which contains the collecting volume for storing and for collecting the condensed working fluid. Since the Clausius-Rankine cycle anyway requires a capacitor device that must be mounted so that the liquid working fluid can be relatively easily pumped to simplify the structure of the Rankine cycle by the proposed integration of the collection volume in the housing capacitor device. On a separate collection container for accommodating the collection volume can be dispensed with. Overall, the Clausius-Rankine circle thus requires less space. Due to its compact design, the realization of such a Clausius-Rankine cycle in a mobile application, such. Ex. In a motor vehicle.
Bei einer zweckmäßigen Ausführungsform enthält das Gehäuse neben dem Sammelvolumen außerdem ein Kondensatorvolumen. Dieses ist zum Sammelvolumen hin offen und nimmt einen Wärmeübertrager auf, der von einem Kühlfluid durchströmbar ist. Das Sammelvolumen nimmt im Gehäuse der Kondensatoreinrichtung einen vergleichsweise großen Anteil des Gesamtvolumens des Gehäuses ein. Beispielsweise sind das Sammelvolumen und das Gehäuse so aufeinander abgestimmt, dass das Sammelvolumen zumindest 30% oder zumindest 50% oder zumindest 60% des Gesamtvolumens des Gehäuses ausfüllt. Je nach Ausführungsform, kann somit das Kondensatorvolumen im Gehäuse der Kondensatoreinrichtung kleiner ausfallen als das Sammelvolumen.In an expedient embodiment, the housing also contains a capacitor volume in addition to the collecting volume. This is open to the collecting volume and takes on a heat exchanger, which is traversed by a cooling fluid. The collecting volume occupies a comparatively large proportion of the total volume of the housing in the housing of the condenser device. For example, the collecting volume and the housing are coordinated so that the collecting volume fills at least 30% or at least 50% or at least 60% of the total volume of the housing. Depending on the embodiment, the capacitor volume in the housing of the capacitor device can thus be smaller than the collecting volume.
Zur Erzielung einer intensiven Kondensationsleistung kann die Kondensatoreinrichtung an einen Kühlkreis angeschlossen sein, in dem ein Kühlfluid zirkuliert.To achieve an intensive condensation performance, the capacitor device can be connected to a cooling circuit in which a cooling fluid circulates.
Zweckmäßig weist der Clausius-Rankine-Kreis eine Steuereinrichtung auf. Diese kann entsprechend einer vorteilhaften Ausführungsform so ausgestaltet sein, dass damit die Menge des im Clausius-Rankine-Kreises zirkulierenden Arbeitsfluids eingestellt werden kann, und zwar in Abhängigkeit des aktuellen Betriebszustands des Clausius-Rankine- Kreises. Diese Ausführungsform beruht auf der Erkenntnis, dass je nach Betriebszustand oder Betriebspunkt eine unterschiedliche Menge an Arbeitsfluid im Clausius-Rankine- Kreis erforderlich ist, um diesen optimal betreiben zu können. Beispielsweise variiert die optimale zirkulierende Arbeitsfluidmenge in Abhängigkeit der von der Expansionseinrichtung aufzubringenden Antriebsleistung und/oder in Abhängigkeit der an der Heizeinrichtung zur Verfügung stehenden Heizleistung und/oder in Abhängigkeit von Drücken und/oder Temperaturen. Die Steuereinrichtung kann nun unter Berücksichtigung des aktuellen Betriebszustands, bspw. über Kennfelder und/oder Berechnungsmodelle, die hierzu erforderliche Menge an Arbeitsfluid ermitteln, die für einen optimalen Betrieb im Clausius-Rankine-Kreis zirkulieren muss. Somit kann der Wirkungsgrad des Clausius- Rankine-Kreises verbessert werden.The Clausius-Rankine cycle expediently has a control device. This can According to an advantageous embodiment be designed so that so that the amount of circulating in the Clausius-Rankine cycle working fluid can be adjusted, depending on the current operating state of the Clausius-Rankine cycle. This embodiment is based on the finding that, depending on the operating state or operating point, a different amount of working fluid in the Clausius-Rankine cycle is required in order to be able to operate it optimally. For example, the optimum circulating amount of working fluid varies depending on the drive power to be applied by the expansion device and / or in dependence on the heating power available at the heating device and / or in dependence on pressures and / or temperatures. The control device can now, taking into account the current operating state, for example via maps and / or calculation models, determine the amount of working fluid required for this purpose, which must circulate for optimal operation in the Clausius-Rankine cycle. Thus, the efficiency of the Clausius-Rankine cycle can be improved.
Bei einer bevorzugten Ausführungsform kann die Steuereinrichtung so ausgestaltet sein, dass sie die Menge des im Clausius-Rankine-Kreis zirkulierenden Arbeitsfluids durch Verändern der Kondensatorleistung der Kondensatoreinrichtung einstellt. Diese Ausführungsform nutzt die Erkenntnis, dass die Menge des im Clausius-Rankine-Kreis zirkulierenden Arbeitsfluids vom Verhältnis von Gasphase zu Flüssigphase in der Kondensatoreinrichtung abhängt. Je höher die Kondensationsleistung der Kondensatoreinrichtung ist, desto mehr flüssiges Arbeitsfluid steht für die Zirkulation im Clausius-Rankine-Kreis zur Verfügung.In a preferred embodiment, the controller may be configured to adjust the amount of working fluid circulating in the Rankine cycle by varying the capacitor power of the capacitor device. This embodiment makes use of the finding that the amount of working fluid circulating in the Rankine cycle depends on the ratio of gas phase to liquid phase in the condenser device. The higher the condensation capacity of the condenser device, the more liquid working fluid is available for circulation in the Clausius-Rankine cycle.
Entsprechend einer besonders vorteilhaften Weiterbildung kann nun vorgesehen sein, die Steuereinrichtung so auszugestalten, dass sie bei einer Kondensatoreinrichtung, die einen von einem Kühlfluid durchströmten Wärmeübertrager enthält, die Kondensationsleistung der Kondensatoreinrichtung durch Verändern der Menge des den Wärmeübertrager durchströmenden Kühlfluids einstellt. Die Steuereinrichtung berücksichtigt hierbei die Korrelation zwischen Kühlfluidstrom und anfallendem Kondensat in der Kondensatoreinrichtung.According to a particularly advantageous development can now be provided to configure the control device so that it adjusts the condensing capacity of the condenser device by changing the amount of the heat exchanger flowing through the cooling fluid in a condenser device containing a heat exchanger through which a cooling fluid. The control device takes into account the correlation between cooling fluid flow and accumulating condensate in the condenser device.
Besonders vorteilhaft ist bei den vorstehend beschriebenen Ausführungsformen, bei denen die Steuereinrichtung die Menge des im Clausius-Rankine-Kreis zirkulierenden Arbeitsfluids einstellt, der Umstand, dass das Sammelvolumen für flüssiges Arbeitsfluid in das Gehäuse der Kondensatoreinrichtung integriert ist, was die Veränderung der zirkulierenden Arbeitsfluidmenge vereinfacht.It is particularly advantageous in the embodiments described above, in which the control device adjusts the amount of working fluid circulating in the Rankine cycle, the fact that the collecting volume for liquid working fluid in the housing of the capacitor device is integrated, which simplifies the variation of the circulating amount of working fluid.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der zugehörigen Figurenbeschreibung anhand der Zeichnung.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawing and from the associated description of the figures with reference to the drawing.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.
Bevorzugte Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Preferred embodiments of the invention are illustrated in the drawings and will be explained in more detail in the following description.
Die einzige Fig. 1 zeigt eine stark vereinfachte, schaltplanartige Prinzipdarstellung eines Clausius-Rankine-Kreises.The only Fig. 1 shows a highly simplified schematic diagram-like schematic representation of a Clausius-Rankine cycle.
Entsprechend Fig. 1 umfasst ein Clausius-Rankine-Kreis 1 als Komponenten eine Pumpe 2, eine Heizeinrichtung 3, eine Expansionseinrichtung 4 und eine Kondensatoreinrichtung 5. Ferner sind Leitungen 6 vorgesehen, um die einzelnen Komponenten 2, 3, 4, 5 miteinander zu verbinden. So verbindet eine Leitung 6a eine Druckseite der Pumpe 2 mit einem Eingang der Heizeinrichtung 3. Eine Leitung 6b verbindet einen Ausgang der Heizeinrichtung 3 mit einem Eingang der Expansionseinrichtung 4. Eine Leitung 6c verbindet einen Ausgang der Expansionseinrichtung 4 mit einem Eingang der Kondensatoreinrichtung 5. Eine Leitung 6d verbindet einen Ausgang der Kondensatoreinrichtung 5 mit der Saugseite der Pumpe 2. Der Clausius-Rankine-Kreis 1 ist bevorzugt für eine mobile Anwendung geeignet. Dementsprechend kann er bspw. in einem Kraftfahrzeug angeordnet sein. Ein derartiges Kraftfahrzeug umfasst bspw. eine Abgasanlage 7, die mit der Heizeinrichtung 3 zur Wärmeübertragung gekoppelt sein kann. Beispielsweise kann hierzu ein Abgasstrom durch die als Wärmeübertrager ausgestaltete Heizeinrichtung 3 hindurch geführt werden. Ferner kann das Fahrzeug einen Kühlkreis 8 aufweisen, der bspw. mit der Kondensatoreinrichtung 5 wärmeübertragend gekoppelt sein kann. Beispielsweise kann ein Wärmeübertrager 9 der Kondensatoreinrichtung 5 in den Kühlkreis 8 des Fahrzeugs eingebunden sein. Die Pumpe 2 dient zum Antreiben eines flüssigen Arbeitsfluids im Clausius-Rankine-Kreis 1. Gleichzeitig dient die Pumpe 2 zum Beaufschlagen des Arbeitsfluids mit einem Druck. Die Pumpe 2 fördert somit das Arbeitsfluid in den Leitungen 6 und durch die einzelnen Komponenten 3, 4, 5. Die Heizeinrichtung 3 dient zum Verdampfen des unter Druck stehenden, flüssigen Arbeitsfluids. Hierzu wird dem Arbeitsfluid Wärme qzu zugeführt. Hierdurch entsteht heißer, unter Druck stehender, also komprimierter Dampf bzw. heißes komprimiertes, dampfförmiges Arbeitsfluid. Die Expansionseinrichtung 5, z. Bsp. in Form einer Turbine, dient zum Erzeugen von mechanischer Antriebsleistung durch Expansion des heißen, komprimierten Dampfes. Beispielsweise treibt die Expansionseinrichtung 4 über eine Antriebswelle 10 einen Generator 11 an, um elektrische Energie zu generieren. Die Kondensatoreinrichtung 5 dient zum Kondensieren des heißen, entspannten Dampfes. Dabei wird Wärme qab aus dem Arbeitsfluid abgeführt. Auf diese Weise wird das Arbeitsfluid gekühlt und somit verflüssigt. Das flüssige Arbeitsfluid kann dann wieder der Pumpe 2 zugeführt werden.Referring to Fig. 1, a Rankine cycle 1 includes as components a pump 2, a heater 3, an expansion device 4, and a capacitor device 5. Further, leads 6 are provided to connect the individual components 2, 3, 4, 5 to each other , Thus, a line 6a connects a pressure side of the pump 2 to an input of the heater 3. A line 6b connects an output of the heater 3 to an input of the expansion device 4. A line 6c connects an output of the expansion device 4 to an input of the capacitor device 5. A Line 6d connects an output of the capacitor device 5 to the suction side of the pump 2. The Rankine cycle 1 is preferably suitable for a mobile application. Accordingly, it may, for example, be arranged in a motor vehicle. Such a motor vehicle includes, for example, an exhaust system 7, which may be coupled to the heater 3 for heat transfer. For example, for this purpose, an exhaust gas flow through the designed as a heat exchanger heater 3 are passed. Furthermore, the vehicle may have a cooling circuit 8, which may, for example, be coupled with the condenser device 5 in a heat-transmitting manner. For example, a heat exchanger 9 of the capacitor device 5 can be integrated into the cooling circuit 8 of the vehicle. The pump 2 serves to drive a liquid working fluid in the Rankine cycle 1. At the same time, the pump 2 serves to pressurize the working fluid. The pump 2 thus promotes the working fluid in the lines 6 and through the individual components 3, 4, 5. The heater 3 serves to evaporate the pressurized, liquid working fluid. For this purpose, the working fluid is supplied with heat q. This results in hot, pressurized, so compressed steam or hot compressed, vaporous working fluid. The expansion device 5, z. Ex. In the form of a turbine, is used to generate mechanical drive power by expansion of the hot, compressed steam. For example, the expansion device 4 drives a generator 11 via a drive shaft 10 in order to generate electrical energy. The condenser device 5 serves to condense the hot, relaxed steam. Here, heat is q from purged from the working fluid. In this way, the working fluid is cooled and thus liquefied. The liquid working fluid can then be returned to the pump 2.
Die Kondensatoreinrichtung 5 weist ein Gehäuse 12 auf, in dem z. Bsp. der Wärmeübertrager 9 angeordnet ist. In dieses Gehäuse 12 ist außerdem ein Sammelvolumen 13 integriert, das zum Sammeln und Bevorraten von flüssigem Arbeitsfluid dient. Das Gehäuse 12 kann neben dem Sammelvolumen 13 außerdem ein Kondensatorvolumen 14 enthalten. Das Kondensatorvolumen 14 ist zweckmäßig zum Sammelvolumen 13 hin offen. Im Kondensatorvolumen 14 ist z. Bsp. der Wärmeübertrager 9 angeordnet. Das Sammelvolumen 13 beträgt zumindest 30% oder zumindest 50% oder zumindest 60% eines Gesamtvolumens des Gehäuses 12. Beispielsweise beträgt das Kondensatorvolumen 14 zur Aufnahme des Wärmeübertragers 9 zumindest 35% des Gesamtvolumens des Gehäuses 12.The capacitor device 5 has a housing 12 in which z. Ex. The heat exchanger 9 is arranged. In this housing 12 also has a collecting volume 13 is integrated, which serves for collecting and storing of liquid working fluid. The housing 12 may also include a capacitor volume 14 in addition to the collection volume 13. The capacitor volume 14 is expediently open to the collecting volume 13. In the capacitor volume 14 z. Ex. The heat exchanger 9 arranged. The collecting volume 13 is at least 30% or at least 50% or at least 60% of a total volume of the housing 12. For example, the capacitor volume 14 for accommodating the heat exchanger 9 is at least 35% of the total volume of the housing 12.
Das zum Sammeln und Bereitstellen des flüssigen Arbeitsfluids bereitstehende Sammelvolumen 13 muss nicht immer vollständig von flüssigem Arbeitsfluid ausgefüllt sein, vielmehr kann die im Clausius-Rankine-Kreis 1 zirkulierende Menge an Arbeitsfluid variieren. Insbesondere kann der Clausius-Rankine-Kreis 1 eine Steuereinrichtung 15 aufweisen, mit deren Hilfe die Menge des im Clausius-Rankine-Kreis 1 zirkulierenden Arbeitsfluids eingestellt werden kann. Die Einstellung der zirkulierenden Arbeitsfluidmenge erfolgt dabei in Abhängigkeit aktueller Betriebsparameter des Clausius-Rankine-Kreises 1 , also in Abhängigkeit eines aktuellen Betriebszustands. Entsprechende Betriebsparameter erhält die Steuereinrichtung 15 im Beispiel über eine entsprechende Signalleitung 16. Insbesondere kann die Steuereinrichtung 15 an ein Motorsteuergerät des Fahrzeugs angeschlossen sein. Ebenso kann die Steuereinrichtung 15 an eine geeignete Sensorik zur Erfassung der erforderlichen Betriebsparameter angeschlossen sein. Im Beispiel wirkt die Steuereinrichtung 15 mit einem Steuerventil 17 zusammen, mit dessen Hilfe die Menge des im Wärmeübertrager 9 durchströmenden Kühlfluids eingestellt werden kann. Hierzu ist das Steuerventil 17 an geeigneter Stelle in den Kühlkreis 8 eingebunden. Beispielsweise kann das Steuerventil 17 wie gezeigt in einen Vorlauf 18 des Kühlkreises 8 eingebunden sein. Ebenso ist es möglich, das Steuerventil 17 in einen Rücklauf 19 des Kühlkreises 8 einzubinden. Im Beispiel ist das Steuerventil 17 außerhalb des Gehäuses 12 der Kondensatoreinrichtung 5 angeordnet. Ebenso ist es möglich, das Steuerventil 17 im Inneren des Gehäuses 12 der Kondensatoreinrichtung 5 anzuordnen.The collecting volume 13 which is provided for collecting and providing the liquid working fluid need not always be completely filled with liquid working fluid, but the amount of working fluid circulating in the Rankine cycle 1 can vary. In particular, the Rankine cycle 1 may have a control device 15 with the aid of which the amount of the working fluid circulating in the Rankine cycle 1 can be adjusted. The setting of the circulating amount of working fluid is carried out as a function of current operating parameters of the Rankine cycle 1, that is, as a function of a current operating state. Corresponding operating parameters receives the control device 15 in the example via a corresponding signal line 16. In particular, the control device 15 may be connected to an engine control unit of the vehicle. Likewise, the control device 15 may be connected to a suitable sensor for detecting the required operating parameters. In the example, the control device 15 cooperates with a control valve 17, with the aid of which the amount of cooling fluid flowing through in the heat exchanger 9 can be adjusted. For this purpose, the control valve 17 is integrated at a suitable location in the cooling circuit 8. For example, the control valve 17 may be incorporated in a flow 18 of the cooling circuit 8 as shown. It is also possible to integrate the control valve 17 in a return line 19 of the cooling circuit 8. In the example, the control valve 17 is arranged outside the housing 12 of the capacitor device 5. It is also possible to arrange the control valve 17 in the interior of the housing 12 of the capacitor device 5.
Die Steuereinrichtung 15 kann somit durch entsprechende Betätigung des Steuerventils 17 die Menge des den Wärmeübertrager 9 durchströmenden Kühlfluids einstellen. Da die Menge des den Wärmeübertrager 9 durchströmenden Kühlfluids die Kondensationsleistung der Kondensatoreinrichtung 5 bestimmt, kann die Steuereinrichtung 15 somit indirekt die Kondensationsleistung der Kondensatoreinrichtung 5 einstellen. Die Kondensationsleistung der Kondensatoreinrichtung 5 ist ihrerseits maßgeblich für das Verhältnis von Gasphase zu Flüssigphase in der Kondensatoreinrichtung 5 und somit für die anfallende flüssige Arbeitsfluidmenge. Insoweit korreliert die Kondensationsleistung der Kondensatoreinrichtung 5 mit der im Clausius-Rankine-Kreis zirkulierenden Menge an Arbeitsfluid. Dementsprechend kann die Steuereinrichtung 15 indirekt die Menge des im Clausius-Rankine-Kreis einzirkulierenden Arbeitsfluids einstellen. Die Einstellung der Menge des im Clausius-Rankine-Kreis 1 zirkulierenden Arbeitsfluids kann dabei im Sinne einer Steuerung erfolgen oder aber im Sinne einer Regelung durchgeführt werden. Bei einer Steuerung ordnet die Steuereinrichtung 15 dem aktuellen Betriebszustand ein Steuersignal zu, mit dem das Steuerventil 17 betätigt werden muss, um entsprechend Berechnungen oder Kennfeldern die gewünschte Arbeitsfluidmenge einstellen zu können. Bei einer Regelung vergleicht die Steuereinrichtung 15 die aktuell im Clausius-Rankine- Kreis 1 zirkulierende Ist-Menge des Arbeitsfluids mit einer Soll-Menge des Arbeitsfluids, die aufgrund des aktuellen Betriebszustands im Clausius-Rankine-Kreis 1 zirkulieren müsste. In Abhängigkeit eines Soll-Ist-Vergleichs wird dann das Steuerventil 17 angesteuert. The control device 15 can thus set by appropriate actuation of the control valve 17, the amount of the heat exchanger 9 flowing through the cooling fluid. Since the amount of cooling fluid flowing through the heat exchanger 9 determines the condensation capacity of the condenser device 5, the control device 15 can thus indirectly set the condensing capacity of the condenser device 5. The condensation capacity of the condenser device 5 in turn is decisive for the ratio of gas phase to liquid phase in the condenser device 5 and thus for the resulting amount of liquid working fluid. In that regard, the condensation capacity of the condenser device 5 correlates with the circulating in Clausius Rankine cycle amount of working fluid. Accordingly, the controller 15 can indirectly adjust the amount of the working fluid to be circulated in the Rankine cycle. The adjustment of the amount of working fluid circulating in the Rankine cycle 1 can take place in the sense of a control or else be carried out in the sense of a regulation. In the case of a controller, the control device 15 assigns to the current operating state a control signal with which the control valve 17 must be actuated in order to be able to set the desired working fluid quantity in accordance with calculations or characteristic diagrams. In a closed-loop control, the control device 15 compares the actual amount of working fluid currently circulating in the Clausius-Rankine cycle 1 with a desired amount of the working fluid which would have to circulate in the Rankine cycle 1 due to the current operating state. In response to a desired-actual comparison, the control valve 17 is then activated.

Claims

Patentansprüche claims
1. Clausius-Rankine-Kreis, insbesondere für mobile Anwendungen, vorzugsweise in Kraftfahrzeugen,1. Clausius-Rankine-Kreis, in particular for mobile applications, preferably in motor vehicles,
- mit einer Pumpe (2) zum Antreiben eines flüssigen Arbeitsfluids im Clausius- Rankine-Kreis (1) und zur Druckbeaufschlagung des Arbeitsfluids,- With a pump (2) for driving a liquid working fluid in the Clausius-Rankine cycle (1) and for pressurizing the working fluid,
- mit einer Heizeinrichtung (3) zum Verdampfen des unter Druck stehenden flüssigen Arbeitsfluids,with a heating device (3) for evaporating the pressurized liquid working fluid,
- mit einer Expansionseinrichtung (4) zum Erzeugen mechanischer Antriebsleistung mittels Expansion des heißen, komprimierten Dampfes,with an expansion device (4) for generating mechanical drive power by means of expansion of the hot, compressed steam,
- mit einer Kondensatoreinrichtung (5) zum Kondensieren des heißen, entspannten Dampfes, der als flüssiges Arbeitsfluid der Pumpe (2) zuführbar ist,- With a condenser device (5) for condensing the hot, relaxed steam, which can be supplied as a liquid working fluid of the pump (2),
- mit einem Sammelvolumen (13) zum Sammeln und Bevorraten von flüssigem Arbeitsfluid, dadurch gekennzeichnet, dass das Sammelvolumen (13) in ein Gehäuse (12) der Kondensatoreinrichtung (5) integriert ist.- With a collecting volume (13) for collecting and storing of liquid working fluid, characterized in that the collecting volume (13) in a housing (12) of the capacitor device (5) is integrated.
2. Clausius-Rankine-Kreis nach Anspruch 1 , dadurch gekennzeichnet, dass das Gehäuse (12) ein zum Sammelvolumen (13) offenes Kondensatorvolumen (14) enthält, in dem ein von einem Kühlfluid durchströmbarer Wärmeübertrager (9) angeordnet ist. 2. Clausius Rankine cycle according to claim 1, characterized in that the housing (12) to a collecting volume (13) open capacitor volume (14), in which a throughflow of a cooling fluid heat exchanger (9) is arranged.
3. Clausius-Rankine-Kreis nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Sammelvolumen (13) mindestens 30% oder mindestens 50% oder mindestens 60% eines Gesamtvolumens des Gehäuses (12) ausfüllt.3. Clausius Rankine cycle according to claim 1 or 2, characterized in that the collecting volume (13) fills at least 30% or at least 50% or at least 60% of a total volume of the housing (12).
4. Clausius-Rankine-Kreis nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kondensatoreinrichtung (5) an einen Kühlkreis (8) angeschlossen ist, in dem ein Kühlfluid zirkuliert.4. Rankine cycle according to one of claims 1 to 3, characterized in that the capacitor device (5) to a cooling circuit (8) is connected, in which a cooling fluid circulates.
5. Clausius-Rankine-Kreis nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Steuereinrichtung (15) zum Einstellen der Menge des im Clausius-Rankine- Kreis zirkulierenden Arbeitsfluids in Abhängigkeit des aktuellen Betriebszustands des Clausius-Rankine-Kreises (1) vorgesehen ist.5. Clausius Rankine cycle according to one of claims 1 to 4, characterized in that a control device (15) for adjusting the amount of circulating in the Clausius-Rankine cycle working fluid in dependence of the current operating state of the Rankine cycle (1 ) is provided.
6. Clausius-Rankine-Kreis nach Anspruch 5, dadurch gekennzeichnet, dass die Steuereinrichtung (15) so ausgestaltet ist, dass sie die Menge des im Clausius- Rankine-Kreis (1) zirkulierenden Arbeitsfluids durch Verändern der Kondensationsleistung der Kondensatoreinrichtung (5) einstellt.6. Rankine cycle according to claim 5, characterized in that the control device (15) is designed so that it adjusts the amount of the Rankine cycle in the Rankine cycle (1) working fluid by changing the condensation capacity of the capacitor device (5) ,
7. Clausius-Rankine-Kreis nach den Ansprüchen 4 und 6, dadurch gekennzeichnet, dass die Steuereinrichtung (15) so ausgestaltet ist, dass sie die Kondensationsleistung der Kondensatoreinrichtung (5) durch Verändern der Menge des den Wärmeübertrager (9) durchströmenden Kühlfluids einstellt.7. Rankine cycle according to claims 4 and 6, characterized in that the control device (15) is designed so that it adjusts the condensation capacity of the condenser device (5) by changing the amount of the heat exchanger (9) flowing through the cooling fluid.
8. Clausius-Rankine-Kreis nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinrichtung (15) mit einem Steuerventil (17) zum Einstellen der durch den Wärmeübertrager (9) der Kondensatoreinrichtung (5) strömenden Kühlfluidmenge zusammenwirkt. 8. Clausius Rankine cycle according to claim 7, characterized in that the control device (15) with a control valve (17) for adjusting the by the heat exchanger (9) of the condenser device (5) flowing cooling fluid quantity cooperates.
9. Clausius-Rankine-Kreis nach Anspruch 8, dadurch gekennzeichnet, dass das Steuerventil (17) in den Kühlkreis (8) und/oder in die Kondensatoreinrichtung (5) eingebaut ist, wobei das Steuerventil (17) insbesondere im Gehäuse (12) der Kondensatoreinrichtung (5) angeordnet sein kann.9. Clausius Rankine cycle according to claim 8, characterized in that the control valve (17) in the cooling circuit (8) and / or in the condenser device (5) is installed, wherein the control valve (17) in particular in the housing (12) the capacitor device (5) can be arranged.
10. Clausius-Rankine-Kreis nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Steuereinrichtung (15) die Menge des im Clausius-Rankine-Kreis (1) zirkulierenden Arbeitsfluids im Sinne einer Regelung oder im Sinne einer Steuerung einstellt.10. Clausius Rankine cycle according to one of claims 5 to 9, characterized in that the control device (15) adjusts the amount of the Rankine cycle in the Rankine (1) circulating working fluid in the sense of a regulation or in the sense of a control.
11. Kraftfahrzeug mit einem Clausius-Rankine-Kreis nach einem der Ansprüche 1 bis 10. 11. Motor vehicle with a Rankine cycle according to one of claims 1 to 10.
PCT/EP2009/007162 2008-11-13 2009-10-06 Clausius-rankine cycle WO2010054724A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011535890A JP5661044B2 (en) 2008-11-13 2009-10-06 Automotive Clausius Rankine Cycle System, Control Method for Automotive Clausius Rankine Cycle System, and Automotive
EP09778849A EP2387655A2 (en) 2008-11-13 2009-10-06 Clausius-rankine cycle
CN200980145250.1A CN102265002B (en) 2008-11-13 2009-10-06 Clausius-rankine cycle, the method controlling its work, motor vehicle
US13/068,077 US20120060502A1 (en) 2008-11-13 2011-05-02 Clausius-Rankine cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008057202A DE102008057202A1 (en) 2008-11-13 2008-11-13 Rankine circle
DE102008057202.0 2008-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/068,077 Continuation-In-Part US20120060502A1 (en) 2008-11-13 2011-05-02 Clausius-Rankine cycle

Publications (2)

Publication Number Publication Date
WO2010054724A2 true WO2010054724A2 (en) 2010-05-20
WO2010054724A3 WO2010054724A3 (en) 2011-09-15

Family

ID=42105020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/007162 WO2010054724A2 (en) 2008-11-13 2009-10-06 Clausius-rankine cycle

Country Status (6)

Country Link
US (1) US20120060502A1 (en)
EP (1) EP2387655A2 (en)
JP (1) JP5661044B2 (en)
CN (1) CN102265002B (en)
DE (1) DE102008057202A1 (en)
WO (1) WO2010054724A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781997A (en) * 2011-07-14 2014-05-07 Avl里斯脱有限公司 Method for controlling a heat recovery device in an internal combustion engine
JP2015512237A (en) * 2012-02-11 2015-04-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Device for recovering energy from exhaust heat flow of an internal combustion engine in a vehicle with a working medium circuit

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027068A1 (en) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
DE102010031561A1 (en) 2010-07-20 2012-01-26 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
DE102010042068A1 (en) 2010-10-06 2012-04-12 Behr Gmbh & Co. Kg Heat exchanger
DE102010056196B4 (en) 2010-12-24 2022-01-27 Daimler Ag Waste heat utilization device and associated operating method
DE102011115399A1 (en) 2011-10-06 2013-04-11 Daimler Ag Motor vehicle has heat exchanger that is connected with cooling circuit in the transmission region to transfer heat to cooling circuit
DE102011117054A1 (en) 2011-10-27 2012-05-03 Daimler Ag Device for energy recovery from waste heat flow of internal combustion engine in vehicle, comprises working medium-circuit, in which Clausius-Rankine circulation process is carried out
CN102505980B (en) * 2011-11-02 2014-02-12 天津大学 Classified recovery system of waste heat of engine
US9551487B2 (en) 2012-03-06 2017-01-24 Access Energy Llc Heat recovery using radiant heat
CA2778101A1 (en) * 2012-05-24 2013-11-24 Jean Pierre Hofman Power generation by pressure differential
CN102748124A (en) * 2012-07-26 2012-10-24 湖南大学 Device for realizing air inflow pressurization by utilizing waste heat of exhaust gas of internal-combustion engine
DE102013205648A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh System for energy recovery from a waste heat stream of an internal combustion engine
DE102013001569A1 (en) 2013-01-30 2014-07-31 Daimler Ag Method for operating a waste heat utilization device
US20140224469A1 (en) * 2013-02-11 2014-08-14 Access Energy Llc Controlling heat source fluid for thermal cycles
DE102014206026A1 (en) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh Cooling device for a condenser of a system for a thermodynamic cycle, system for a thermodynamic cycle, arrangement with an internal combustion engine and a system, motor vehicle, and a method for performing a thermodynamic cycle
DE102014206038A1 (en) * 2014-03-31 2015-10-01 Mtu Friedrichshafen Gmbh System for a thermodynamic cycle, control system for a system for a thermodynamic cycle, method for operating a system, and arrangement with an internal combustion engine and a system
CN104976112B (en) * 2014-04-01 2018-12-18 松下知识产权经营株式会社 liquid pump and Rankine cycle device
CN105736358B (en) * 2014-12-26 2019-08-13 松下电器产业株式会社 Liquid pump and Rankine cycle device
DE102015007104A1 (en) 2015-05-29 2015-12-17 Daimler Ag Waste heat utilization device and method for its operation
JP6599136B2 (en) * 2015-06-09 2019-10-30 パナソニック株式会社 Liquid pump and Rankine cycle system
AT518522B1 (en) * 2016-07-18 2017-11-15 Avl List Gmbh METHOD FOR DETECTING A LEAKAGE IN A HEAT RECOVERY SYSTEM
DE102016222687B4 (en) * 2016-11-17 2022-06-23 Mtu Friedrichshafen Gmbh heat supply device
US10690014B2 (en) 2017-05-12 2020-06-23 DOOSAN Heavy Industries Construction Co., LTD Cooling module, supercritical fluid power generation system including the same, and supercritical fluid supply method using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2414147A1 (en) * 1974-03-23 1975-10-09 Ewald Dipl Ing Renner Motor vehicle IC engine - has auxiliary cylinder worked by vapourised cooling fluid from main engine
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5005351A (en) * 1990-02-26 1991-04-09 Westinghouse Electric Corp. Power plant condenser control system
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US20060042249A1 (en) * 2004-08-25 2006-03-02 Kazumasa Odani Steam generator feedwater control system for power plant
US20070007771A1 (en) * 2003-08-27 2007-01-11 Ttl Dynamics Ltd. Energy recovery system
WO2009080154A2 (en) * 2007-12-22 2009-07-02 Daimler Ag Method for recovering heat dissipated by an internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788639A (en) * 1955-02-28 1957-04-16 Dole Valve Co Condenser valve
US4165616A (en) * 1978-01-19 1979-08-28 Westinghouse Electric Corp. Apparatus and method for restricting turbine exhaust velocity within a predetermined range
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
JP2003201808A (en) * 2001-10-26 2003-07-18 Mcl:Kk Cogeneration system and method to manufacture fertilizer
DE10259488A1 (en) 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Heat engine
DE102004018860A1 (en) 2003-04-22 2004-11-25 Denso Corp., Kariya fluid machine
JP4310132B2 (en) * 2003-05-13 2009-08-05 株式会社荏原製作所 Power generator
GB2405448B (en) * 2003-08-27 2006-11-08 Freepower Ltd Energy recovery system
JP4543920B2 (en) 2004-12-22 2010-09-15 株式会社デンソー Waste heat utilization equipment for heat engines
JP4738222B2 (en) * 2006-03-24 2011-08-03 大阪瓦斯株式会社 Power system
JP2007262916A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Condenser vacuum control method of condensate steam turbine
JP2008008224A (en) 2006-06-29 2008-01-17 Denso Corp Waste heat utilization device
JP2008039373A (en) * 2006-07-14 2008-02-21 Denso Corp Exhaust heat recovery device
DE102006043518A1 (en) 2006-09-12 2008-03-27 Voith Turbo Gmbh & Co. Kg Self-sufficient power generation unit for a vehicle driven by an internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2414147A1 (en) * 1974-03-23 1975-10-09 Ewald Dipl Ing Renner Motor vehicle IC engine - has auxiliary cylinder worked by vapourised cooling fluid from main engine
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5005351A (en) * 1990-02-26 1991-04-09 Westinghouse Electric Corp. Power plant condenser control system
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US20070007771A1 (en) * 2003-08-27 2007-01-11 Ttl Dynamics Ltd. Energy recovery system
US20060042249A1 (en) * 2004-08-25 2006-03-02 Kazumasa Odani Steam generator feedwater control system for power plant
WO2009080154A2 (en) * 2007-12-22 2009-07-02 Daimler Ag Method for recovering heat dissipated by an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103781997A (en) * 2011-07-14 2014-05-07 Avl里斯脱有限公司 Method for controlling a heat recovery device in an internal combustion engine
CN103781997B (en) * 2011-07-14 2015-12-09 Avl里斯脱有限公司 For regulating the method for heat-energy utilizing device in internal-combustion engine
JP2015512237A (en) * 2012-02-11 2015-04-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG Device for recovering energy from exhaust heat flow of an internal combustion engine in a vehicle with a working medium circuit

Also Published As

Publication number Publication date
JP5661044B2 (en) 2015-01-28
CN102265002A (en) 2011-11-30
DE102008057202A1 (en) 2010-05-20
CN102265002B (en) 2016-01-06
WO2010054724A3 (en) 2011-09-15
US20120060502A1 (en) 2012-03-15
EP2387655A2 (en) 2011-11-23
JP2012508842A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
WO2010054724A2 (en) Clausius-rankine cycle
DE102005049831B4 (en) Vapor compression cooling device
DE102005061214A1 (en) Waste heat utilization device for utilization of waste heat by heat engine has calcius-ranking-cycle which contains heating device for heating working fluid circulated through pump to convert working fluid in steam
DE3207656A1 (en) SORPTION APPARATUS AND METHOD FOR THEIR OPERATION
WO2014102027A2 (en) System for recuperating energy from a waste heat flow of an internal combustion engine
DE102009050068A1 (en) Internal combustion engine has cooling circuit and Clausius-Rankine cycle for waste heat recovery, where Clausius-Rankine cycle is connected with cooling circuit in heat transmitting manner by heat exchanger device
DE102010042401A1 (en) Device and method for waste heat utilization of an internal combustion engine
DE102006000787A1 (en) Vapor compression cooling device
DE102008035216A1 (en) Cooling arrangement and method for cooling a temperature-sensitive aggregate of a motor vehicle
DE102004055695A1 (en) Waste heat collection system with a Rankine cycle and a heating circuit
EP2846017A1 (en) Heat exchange device and drive unit for a motor vehicle
DE102013214267A1 (en) Heat pump system for a vehicle, in particular an electric or hybrid vehicle, and method for operating such a heat pump system
DE102012111455A1 (en) Refrigerant circuit of a vehicle air conditioning system and method for air conditioning a vehicle interior
DE102010024775A1 (en) Device for the air conditioning of vehicles
WO2010029020A1 (en) Engine-generator and method for operating an engine-generator
DE102010047520A1 (en) Method for recovering energy from exhaust stream of e.g. petrol engine for motor car, involves circulating working medium in waste heat recovery device formed as closed joule circuit, where pressure level of medium is varied in circuit
WO2011045047A2 (en) (o) rc-method for utilizing waste heat from biomass combustion for generating electricity and corresponding system
WO2008055720A2 (en) Working medium for steam circuit process
DE102010025185A1 (en) Waste heat utilization device for use in piston engine of motor vehicle, has preheater arranged between compression machine and evaporator for preheating operating medium and removing heat from cooling circuit that cools engine
EP2336680A2 (en) Air conditioning device with pressure transmitter and method for operating an air conditioning device
WO2018007432A1 (en) Waste-heat recovery system
DE102011101665A1 (en) Heat-driven power generating unit for producing power from heat, has electrical intermediate storage unit connected with electric machine, and storage tank receiving portion of liquid phase of process fluid from process chamber
DE3630546A1 (en) Instantaneous steam generator and steam recuperator
DE102008053066A1 (en) Heat recovery system for motor vehicle, has Rankine-circuit provided with working medium, which is cooled to condensation temperature by condenser, where condensation temperature is not smaller than preset degree Celsius
DE112018005818T5 (en) Device and method for volume compensation and pressure control of a working medium in a WHR system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145250.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009778849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011535890

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778849

Country of ref document: EP

Kind code of ref document: A2