WO2010054519A1 - 一种测量运动物体六维位姿的设备和方法 - Google Patents

一种测量运动物体六维位姿的设备和方法 Download PDF

Info

Publication number
WO2010054519A1
WO2010054519A1 PCT/CN2008/073165 CN2008073165W WO2010054519A1 WO 2010054519 A1 WO2010054519 A1 WO 2010054519A1 CN 2008073165 W CN2008073165 W CN 2008073165W WO 2010054519 A1 WO2010054519 A1 WO 2010054519A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
receiver
coordinate system
theodolite
pose
Prior art date
Application number
PCT/CN2008/073165
Other languages
English (en)
French (fr)
Inventor
罗振军
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Publication of WO2010054519A1 publication Critical patent/WO2010054519A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • G01S17/875Combinations of systems using electromagnetic waves other than radio waves for determining attitude

Definitions

  • the invention relates to a device for measuring a six-dimensional pose of a moving object in a large space, in particular to a method for realizing a six-dimensional pose measurement of a motion platform based on a linear characteristic of a laser beam and a position and attitude measurement principle of a parallel mechanism.
  • Equipment and methods This can be widely used in applications where translational motion is required, and can replace expensive laser trackers and coordinate measuring machines. Background technique
  • mechanical measuring devices can be used to solve problems, such as using the device's own joint encoder for kinematic positive solutions. If the device itself does not have an encoder or the encoder and mechanical device are less precise, then the traditional The CMM and the portable articulated coordinate measuring machine perform measurements. However, the measurement range of coordinate measuring machines is generally very limited, and it is difficult to measure moving objects online.
  • a global positioning system In order to measure the six-dimensional pose of an object moving over a wide range, a global positioning system is usually employed. Depending on the level of measurement accuracy, global positioning systems can be divided into laser trackers, indoor GPS, laser-based navigation methods, laser beacon-based devices, and vision-based devices.
  • the laser tracker uses the theodolite to measure the orientation of the receiver, while the laser interference principle measures the distance between the receiver and the theodolite. It has the significant advantages of high sampling frequency and high measurement accuracy, but the equipment is very expensive.
  • the most typical one is Arc Second's solution. At least two laser emitters are installed on the ground, and each emitter produces two laser planes with fixed angles.
  • the transmitter rotates at a high speed and horizontally.
  • the rotation frequency is about 3000 rpm.
  • the sensor on the receiver can obtain the exact time when the laser plane passes.
  • the receiver calculates the receiver according to the characteristic time parameters of the light projected by the transmitter.
  • the position and angle of the point The accuracy of indoor GPS is high, and the position of a large number of receivers can be measured at the same time.
  • the position measurement accuracy of all receivers in the measurement space of lOOmx lOOm can reach the order of 0.1 mm.
  • the technology uses a periodic scanning method, different laser planes have time difference of sweeping through the same sensor, so it is more suitable for the measurement of static objects or slow moving objects. If it is to be used for measurement of high-speed moving objects, the number of laser planes must be increased. Or use a laser transmitter that rotates at an ultra-high speed.
  • the laser navigation method based device and the laser beacon method based device are mainly used for the positioning of the factory automatic moving trolley, and are mainly used for plane position and azimuth positioning.
  • a typical example of a laser navigation method is to mount a laser station that can rotate horizontally on a moving trolley, the laser station emits a laser beam, and more than three mirrors are mounted on the ground, and the mirror mounting position is known.
  • the mirror on the ground usually consists of a number of cone prisms, and the laser light projected onto the mirror can return in the incident direction but offset a small distance from the incident laser.
  • the laser station on the moving trolley keeps rotating and scanning. If there is laser return at three angles, the position of the moving trolley can be calculated and Orientation.
  • the laser beacon method is the opposite of the laser navigation method.
  • More than three sensors are installed on the trolley, and multiple laser stations that can rotate horizontally are installed on the ground. If more than three sensors can receive the laser, the mobile trolley can be calculated. Location and orientation. In order to achieve continuous measurement, the horizontal angle of the laser station usually automatically follows the movement of the trolley.
  • the laser navigation method and the laser beacon method are relatively inexpensive, and the principle can be extended to the application of spatial six-dimensional pose measurement, but it has not been reported yet.
  • the sensor is only a switch type sensor, that is, it detects only the presence or absence of a signal, and does not measure the exact position of the laser beam on the sensor, so the measurement accuracy is low.
  • the theodolite intersection method commonly used in the construction industry uses a theodolite that emits laser light and a photoelectric receiving target that can determine whether the laser hits the target. It can be used to accurately measure the position and posture of a fixed object, but this measurement system is lacking. The function of moving objects is tracked, so the pose of moving objects cannot be measured.
  • the illuminating marker usually uses a laser light emitting diode with a power greater than 100mW, and the laser illuminating diode generally has a laser divergence angle greater than 30° to ensure that the camera can receive sufficient light.
  • this technique requires a high resolution of the imaging unit, and it is currently difficult to obtain a high measurement accuracy.
  • binocular vision technology which is to install a highlight mark on a moving object, calculate the position of the mark by the binocular vision principle, and further calculate the pose of the moving object.
  • the technique is also limited by the imaging unit. The resolution of the measurement is low.
  • the object of the present invention is to provide a low-cost, high-resolution camera system that measures the six-dimensional pose of a moving object.
  • the apparatus and method for realizing global positioning can replace the expensive laser tracker, coordinate measuring machine and indoor GPS and the like by the invention.
  • the device for measuring the six-dimensional pose of a moving object is composed of a calculation processing unit, at least one receiver and at least one theodolite, the calculation processing unit and the theodolite are mounted on the fixed ground; the receiver is mounted on the moving object to be tested; the theodolite and the receiver Communicate with the computing processing unit via a communication cable or wireless communication method, and the theodolite and the receiver are connected by a laser optical path;
  • the theodolite has at least one horizontal rotation degree of freedom and at least one pitch rotation degree of freedom;
  • the theodolite includes a driving device for controlling the horizontal corner and the pitch angle; and a corner measuring device for measuring the corner;
  • each theodolite At least one laser emitter is installed; when the number of the theodolite is 1, the number of laser emitters mounted on the theodolite is at least 2; each of the laser emitters emits laser structured light, and the laser structured light is at least one a laser spot beam of light, or a laser beam of at least one strip-shaped light plane, or a laser beam of at least one fan-shaped light plane, or a laser circular beam of at least one light-cylindrical surface, or a plurality of the above-mentioned a combined beam of light with laser structured light;
  • the pitching degree of freedom of the theodolite can be fixed or disassembled to obtain a simplified structure having a degree of freedom of horizontal rotation on which at least one laser emitter is mounted, and each of the laser emitters emits a laser beam of a fan-shaped plane of light.
  • the receiver includes at least one projection panel and at least one imaging unit, and each projection panel corresponds to at least one imaging unit; the size of the projection panel and the distance between the imaging unit and the projection panel are both the maximum measurement range of the device Within a range of one order to one thousandth; assuming that the measuring range of the device is 10m, the size of the projection panel is not more than 100mmx lOOmm, and the distance between the imaging unit and the projection panel is within 100mm; wherein the projection panel is a smooth mirror surface, Or a rough reflective reflector or a diffusing transparent panel; the shape of the projection panel is selected from a plane, or a curved surface, or a combination of a plurality of planes, or a combination of a plurality of curved surfaces; the receiver is projected Forming a panel and an imaging unit, the imaging unit being below, above or inside the projection panel; the imaging unit comprising imaging electronics and an imaging lens positioned between the imaging electronics and the projection panel; wherein the imaging electronics are selected from the group consisting of position sensitive detectors
  • the receiver is composed of a projection panel and an imaging unit, the imaging unit being directly mounted on the surface of the projection panel, comprising at least one photosensitive measuring device selected from the group consisting of a position sensitive detector, a charge coupled device, a charge injection device, or based on An optical imaging device of a complementary metal oxide semiconductor.
  • the method for measuring the six-dimensional pose of a moving object by using the device is realized by an automatic tracking control method, a theodolite posture calibration method, an imaging unit image processing method, an imaging unit calibration method, and a synchronous trigger measurement method;
  • the imaging unit calibration method of the present invention is to calibrate the position and posture of the projection panel and the imaging unit relative to the receiver coordinate system by an external device;
  • the calibration of the theodolite position is performed by external calibration or self-calibration; the external calibration method is calibrated by means of an external device; the self-calibration method obtains the fixed global coordinate of the theodolite relative to the ground by fixing the receiver and rotating the theodolite.
  • the pose of the system specifically: fix the receiver, select one or more different arrays of the horizontal and pitch angles of the theodolite, and perform the following steps for each set of values selected: Fix the corner of the theodolite, the theodolite will turn the horizontal angle and
  • the pitch angle data is sent to the calculation processing unit, and the calculation processing unit calculates a mathematical equation of the laser line or the laser plane according to the pose of the theodolite relative to the global coordinate system and the horizontal rotation angle and the elevation angle data; and the receiver obtains the laser spot obtained by the receiver.
  • the local coordinate value of the receiver coordinate system is sent to the calculation processing unit; the calculation processing unit takes the six-dimensional pose of the receiver coordinate system relative to the global coordinate system as a variable, and obtains the laser spot in the global coordinate system according to the pose coordinate transformation.
  • Function expression The calculation processing unit substitutes the function expression of the laser spot in the global coordinate system into the mathematical equation of the laser line or the structured light plane according to the constraint condition that the laser spot is located above the laser line or the structured light plane, and establishes the six-dimensional pose of the theodolite as Multiple equations of unknown variables, each time performing the above steps to obtain a number of equations, the equations corresponding to all the corner arrays are combined into a system of equations, and the equations are solved to obtain the pose of all the theodolites relative to the ground fixed global coordinate system;
  • the specific step of the synchronous trigger measurement is: the calculation processing unit sends a trigger signal to the theodolite and the receiver respectively, and the theodolite sends the horizontal rotation angle and the elevation angle data of the triggering time to the calculation processing unit, and the calculation processing unit is based on the theodolite relative to the global coordinate system
  • the pose and the horizontal corner and pitch angle data calculate the mathematical equation of the laser line or the structured light plane; at the same time, the receiver sends the laser spot obtained by the trigger time calculation to the calculation processing unit with respect to the local coordinate value of the receiver coordinate system;
  • the processing unit takes a six-dimensional pose of the receiver coordinate system relative to the global coordinate system as a variable, and obtains a function expression of the laser spot in the global coordinate system according to the coordinate transformation; the calculation processing unit is located at the laser line or the structured light plane according to the laser spot.
  • the upper constraint is to substitute the function expression of the laser spot in the global coordinate system into the mathematical equation of the laser line or the structured light plane, and establish a system of equations in which the six-dimensional pose of the receiver coordinate system is an unknown variable.
  • Receiver coordinate system The three-dimensional position and attitude of the three-dimensional world coordinate system;
  • the synchronous trigger measurement mode may also be replaced by a combination of continuous measurement and measurement value interpolation, that is, the calculation processing unit does not send a trigger signal to the theodolite and the receiver, and the theodolite continuously transmits the latest data of the horizontal rotation angle and the elevation angle.
  • the receiver also continuously transmits the calculated laser spot to the calculation processing unit with respect to the latest local coordinate value of the receiver coordinate system.
  • the calculation processing unit interpolates the value corresponding to a certain fixed time according to the received value and the time when the value is received, further formulates the equation group according to the interpolated value and solves the six-dimensional position of the receiver coordinate system in the global coordinate system. posture.
  • the implementation step of the automatic tracking control is specifically: calculating, by the calculation processing unit, the position that the receiver will arrive according to the current position and the previous position of the receiver, calculating a new corner position that all the theodolites need to reach, and sending the new corner command to the position With the corresponding theodolite, the theodolite controls its horizontal and pitch angles to the new corner position that needs to be reached according to the new corner command.
  • the device of the invention has low cost and high measurement accuracy.
  • the invention realizes the parallel measurement by using two or more laser structured lights, and does not require a high-precision laser interferometer, and thus the cost is greatly reduced compared with the laser tracker which performs the series measurement by using a single laser structured light;
  • the measuring method or the polling measuring method can measure an object with a higher moving speed than the indoor GPS system adopting the periodic scanning measuring method;
  • the present invention adopts short-distance visual capturing and processing, and the distance between the projection panel and the imaging unit Only one-tenth or one-thousandth of the largest measurement range, compared to PosEye technology with long-range vision capture and processing, does not require high-resolution vision sensors, and the positioning accuracy is higher.
  • the invention can be quickly self-calibrated at the installation site, so that the theodolite and the receiver can be conveniently added, and the redundant theodolite can be conveniently removed.
  • the present invention can increase the measurement range and improve the accuracy and robustness of measurement results by increasing the number of theodolites and receivers. For example, three theodolites are arranged around the moving object to be tested according to the triangular distribution, so that the fluctuation range of the pose measurement accuracy of the moving object in a large space can be reduced.
  • the transition between different measurement grids can be realized by the coordinate switching mechanism to achieve a wide range of high-precision measurements.
  • the present invention can mount a measuring rod or a three-dimensional laser scanner on the receiver, thereby measuring where the laser beam emitted by the theodolite is difficult to reach.
  • the laser light emitted by the laser of the present invention always falls on the receiver, and the probability of being put into the human eye is very low. Even if it enters the human eye occasionally, since the laser can select the infrared band and the power is very low, it does not cause any harm to the human eye.
  • Figure 1 is a schematic diagram of the first instance of the six-dimensional pose $ device
  • Figure 2 is a schematic diagram of the workflow when the device performs actual measurement
  • Figure 3 is a schematic diagram of the second instance of the device
  • Figure 4 is a schematic diagram of the third instance of the device.
  • Figure 5 is a schematic diagram of the fourth instance of the device.
  • Figure 6 is a schematic diagram of the fifth instance of the device.
  • Figure 7 is a schematic diagram of the sixth instance of the device.
  • Figure 8 is a schematic diagram of the seventh instance of the device.
  • Figure 9 is a schematic diagram of an eighth example of a dimensional pose $ device. detailed description
  • FIG. 1 A first example of a six-dimensional pose measurement apparatus proposed by the present invention is shown in Fig. 1, which is composed of a calculation processing unit 1, a receiver 2, and three theodolites 3, 4, 5.
  • the three theodolites 3, 4, 5 are fixedly mounted on the ground and are usually arranged in a triangle.
  • the receiver 2 is mounted via a connector 7 or directly on a moving object 8 to be tested in a six-dimensional pose.
  • the receiver coordinate system 20 is 0'- ⁇ ' ⁇ ', fixed on the receiver
  • the global coordinate system 10 is 0-XYZ, fixed on the ground
  • the moving object coordinate system 80 is Om-XmYmZm, fixed in motion.
  • measuring the six-dimensional pose of the moving object 8 can be performed by measuring the receiver coordinate system 20 with respect to the global coordinates. The six-dimensional pose of the system 10 is obtained.
  • the theodolites 3, 4, and 5 have two rotational degrees of freedom of horizontal rotation and pitch rotation.
  • the horizontal rotation angle and the pitch rotation angle of each theodolite are controlled by the driving device, and the rotation angle value can be quickly measured.
  • the drive unit usually uses a servo motor or a piezoelectric ceramic motor with higher precision.
  • the angle measuring device is mounted on the theodolite. Usually, a high-precision encoder is used, and the encoder resolution and measurement repeatability are all in the order of magnitude.
  • a laser transmitter 30, 40, 50 is mounted on the theodolites 3, 4, and 5, respectively.
  • the laser emitters 30, 40, 50 each emit at least one laser beam, which is 31, 41, 51, respectively.
  • each laser emitter can emit two or more laser beams that are parallel to each other.
  • the laser is mounted on the theodolite, usually using a semiconductor laser.
  • the wavelength is usually selected in the red visible or infrared band, such as 635nm.
  • the output power of the laser is generally less than 5mW.
  • the receiver 2 mainly includes a projection panel 21 and an imaging unit 22.
  • the size of the projection panel and the distance between the imaging unit and the projection panel are all on the order of one hundredth to one thousandth of the maximum measurement range of the device; in the embodiment, the measurement range of the device is 10m, and the projection panel size is not greater than lOOmmx lOOmm, the distance between the imaging unit and the projection panel is within 100mm.
  • the projection panel 21 in this example employs a hyperbolic mirror surface similar to that in a 360 degree panoramic camera.
  • the imaging unit 22 is generally below the projection panel 21 and is attached to the projection panel 21 by a structural member 29.
  • the structural member 29 can be made of a transparent material or a hollow opaque material.
  • the imaging unit 22 includes an imaging lens 221 and an imaging electronic device 222.
  • the imaging electronics can be any optical imaging device such as PSD, CCD, CMOS, or the like.
  • PSD digital versatile disk
  • CCD compact disc-read only memory
  • CMOS complementary metal-oxide-semiconductor
  • an array of a plurality of PSDs can be used.
  • the lens center of the imaging lens 221 is usually placed on the lower focus of the hyperboloid, and light that is directed from the entire environment toward the upper focus of the hyperboloid is reflected to the lower focus, that is, the lens center of the imaging lens 221.
  • the rotation angle of the theodolite can be controlled, it is difficult to ensure that the laser beam emitted by the theodolite can be directed to the upper focus of the hyperbolic mirror. Therefore, the mirror surface is usually a scattering reflector with a certain roughness, such as a typical Langbe reflector. (Lambertian reflector)
  • the position and posture of the projection panel 21 and the imaging unit 22 with respect to the receiver coordinate system 20 can be accurately obtained by calibration.
  • the shape of the projection panel 21 may also be a plane or other curved surface.
  • the imaging unit 22 recommends a layout based on the Scheimpflug principle to obtain a clear image over a wide range.
  • the imaging lens 221 usually includes a band pass filter lens, which allows only the laser light in the laser band to pass, reducing the influence of ambient light, thereby improving the image.
  • the calculation processing unit 1 is connected to the receiver 12 and the theodolites 3, 4, 5 via communication cables 12, 13, 14, 15.
  • the azimuth of the theodolite is controlled by an automatic tracking control step so that the laser emitter of the theodolite always points to the projection panel of the receiver, and the laser emitter emits a laser line or a laser plane projected on the projection panel to generate a laser spot or a laser stripe.
  • the laser beams 31, 41, 51 emitted by the laser emitters 30, 40, 50 on the theodolites 3, 4, 5 fall on the projection panel on the receiver to form corresponding laser spots 32, 42, 52.
  • the laser spot diameter is usually less than 0.5 mm at a distance of 10 m, and the laser spot diameter is usually less than 5 mm at a distance of 100 m.
  • the pose of the theodolite relative to the global coordinate system fixed on the ground is obtained by calibrating the position of the theodolite, and the laser line emitted by the laser emitter or the mathematical equation of the laser plane in the global coordinate system is further obtained by the rotation transformation matrix of the theodolite.
  • the pose of the theodolites 3, 4, 5 relative to the absolute coordinate system 10 can be determined in advance using an external device, or can be obtained by the self-calibration method described later in this patent.
  • the equations of the three laser spot beams 31, 41, 51 in the global coordinate system 10 can be obtained, and each laser beam corresponds to two equations. Assume that the algebraic equations corresponding to the three laser spot beams 31, 41, and 51 are:
  • the laser spot or the laser stripe on the projection panel is imaged and image processed by the imaging unit to obtain the pixel coordinates of the laser spot or the image of the laser stripe in the imaging unit; the pixel on the imaging unit is obtained by calibration of the imaging unit.
  • the position of each pixel in the coordinate with respect to the receiver coordinate system is obtained by using a one-to-one correspondence between the pixel point and the receiver coordinate system to obtain a local coordinate value of the laser spot or the laser stripe relative to the receiver coordinate system.
  • FIG. 1 by processing the image taken by the imaging electronic device 222, The coordinates of the laser spot on the imaging electronics 222 are obtained.
  • the line between the laser spot and its image on the imaging electronics 222 necessarily passes through the lens center of the imaging lens 221. Since the positions of the projection panel 21, the imaging lens 221, and the imaging electronics 222 relative to the receiver coordinate system 20 are fixed, the three-dimensional position of the laser spots relative to the receiver coordinate system 20 can be obtained by the aperture imaging mathematical model; Using the direct calibration method, that is, for each pixel on the imaging electronics 222, the coordinates of its corresponding point on the projection panel 21 in the receiver coordinate system 20 are directly calibrated and recorded.
  • the field of view of the imaging unit 22 is substantially equal to the size of the projection panel, and the visual resolution of the imaging electronic device 222 is less than 0.1 mm. .
  • the laser spot or laser fringe obtained by the imaging unit calibration is obtained by assuming the receiver coordinate system with respect to the six-dimensional pose of the global coordinate system with respect to the global coordinate value in the global coordinate system. Since the pose of the receiver coordinate system 20 relative to the global coordinate system 10 is six unknown variables (x, y, ⁇ , ⁇ , ⁇ , ⁇ ), if the relative coordinates of a laser spot in the receiver coordinate system 20 are known. ( ⁇ ', ⁇ ', ⁇ '), the three-dimensional global coordinates ( ⁇ , ⁇ , ⁇ ) of the laser spot in the global coordinate system 10 can be obtained according to the following homogeneous coordinate transformation:
  • Rot , y) Rot(X, )Rot ⁇ Z, a) means to rotate the "angle" around the Z axis of the global coordinate system, then rotate the angle around the X axis, and then rotate the angle around the Z axis, ⁇ " ⁇ ⁇ , Indicates translation along the vector ⁇ , ⁇ . So you can get
  • r n cos y cos or— cos sin or sin y
  • r 22 - sin y sin a + cos ⁇ cos or cos ⁇
  • the relative coordinates (X', Y', ⁇ ') of a laser spot in the receiver coordinate system 20 are given, and the global coordinates ( ⁇ , ⁇ , ⁇ ) of the laser spot in the global coordinate system 10 correspond to three A function expression in which the six-dimensional pose (x, y, ⁇ , ⁇ , ⁇ , ⁇ ) of the receiver coordinate system 20 is a variable.
  • the synchronization triggering measurement step is used to establish a mathematical relationship between the line or the plane generated by the laser structure light in the global coordinate system and the constraint relationship between the laser spot or the laser stripe obtained by the imaging unit and the global coordinate value of the global coordinate system.
  • the constraint relationship derives the pose of the receiver coordinate system relative to the global coordinate system. Since the three spots 32, 42 and 52 must be respectively located on the corresponding lines of the three laser beams, the function expressions corresponding to the three-dimensional global coordinates of the three spots are respectively substituted into the two equations of the corresponding laser beam, and six variables can be obtained. Six equations,
  • the global coordinates of the laser spot 32 are (x 32 , y 32 , z 32 )
  • the global coordinates of the laser spot 42 are (X42, y 42 , z 42 )
  • the global coordinates of the laser spot 52 are (x 52 , y 52 , z 52 )
  • they are function expressions in which the six-dimensional pose (x, y, ⁇ , ⁇ , ⁇ , ⁇ ) of the receiver coordinate system 20 is a variable.
  • the six-dimensional pose (x, y, ⁇ , ⁇ , ⁇ , ⁇ ) of the receiver coordinate system 20 relative to the global coordinate system 10 can be obtained by solving the equations composed of the above six equations.
  • the algorithms for solving the equations can be the classical Newton-Raphson method, various optimal methods, homotopy and interval analysis, and so on.
  • the above-mentioned laser spot must be respectively located on the line corresponding to the laser beam.
  • Other constraints can be used.
  • the distance between the three spots 32, 42 and 52 and the three laser beams is equal to zero, and different.
  • the six-dimensional pose of the receiver coordinate system 20 relative to the global coordinate system 10 can also be represented by other equivalent representation methods, for example, the three-dimensional position is represented by (x, y, z), and the three-dimensional pose ( ⁇ , ⁇ , ⁇ ).
  • the quaternion is used, or the three-dimensional position and the three-dimensional posture are uniformly represented by a double quaternion.
  • Figure 2 is a schematic diagram of the workflow of the six-dimensional pose measuring device for actual measurement, including the steps of the theodolite self-calibration and the synchronous trigger measurement.
  • This workflow is explained for the first instance, but can be generalized for other examples described later. It is assumed that the receiver 2 can be placed at an initial position in which the receiver coordinate system 20 coincides with the global coordinate system 10.
  • the receiver coordinate system 20 coincides with the global coordinate system 10.
  • the specific workflow is as follows:
  • the steps of the theodolite self-calibration method are performed.
  • the three theodolites 3, 4, 5 are fixed to the ground.
  • Step 102 moves the receiver 2 to the initial position, causing the receiver coordinate system 20 to coincide with the global coordinate system 10.
  • the horizontal and pitch angles of the theodolites 3, 4, 5 are adjusted so that the laser beam falls on the projection panel 21 of the receiver 2.
  • the calculation processing unit 1 transmits a trigger signal to the theodolites 3, 4, 5 and the receiver 2, respectively.
  • the theodolites 3, 4, 5 transmit the horizontal corner and pitch angle data of the triggering time to the calculation processing unit 1, while the imaging unit 22 of the receiver 2 triggers the high speed shutter to capture the spot image on the projection panel 21,
  • the calculated laser spot is transmitted to the calculation processing unit 1 with respect to the local coordinate value of the receiver coordinate system 10.
  • the processing unit 1 calculates the functional expression of the laser spot in the global coordinate system into the mathematical equation of the laser line or the structured light plane according to the constraint relationship of the laser spot on the laser line, and establishes 18 bits of the three theodolites.
  • the pose parameter is the 1-6th equation of the unknown variable.
  • the second step 103 is performed to adjust the horizontal and pitch angles of the theodolites 3, 4, 5 to the second set of values, but still cause the laser beam to land on the projection panel of the receiver.
  • Steps 104, 105, and 106 are then performed in sequence to obtain Equations 7-12.
  • the third execution repeats step 103, adjusting the horizontal and tilt angles of the theodolites 3, 4, 5 to the third set of values, but still causing the laser beam to land on the projection panel of the receiver.
  • Steps 104, 105, and 106 are then performed in sequence to obtain the 13th-18th equation.
  • step 107 a system of equations with eighteen variables and eighteen equations is solved, and the pose parameters of the three theodolites relative to the global coordinate system 10 are obtained, and the theodolite pose is self-calibrated.
  • step 108 the receiver 2 is fixedly mounted on the moving object to be tested.
  • step 109 an automatic tracking control algorithm is initiated to control the horizontal and pitch angles of the theodolites 3, 4, 5 to track the movement of the receiver 2 such that the laser beam falls on the projection panel 21 of the receiver 2.
  • step 104, step 105 and step 106 are repeated.
  • step 110 the six equations obtained in step 106 are solved, and the six-dimensional pose of the receiver coordinate system 20 in the global coordinate system 10 is obtained.
  • steps 109, 104, 105, 106 and 110 the six-dimensional pose of the receiver coordinate system 20 in the global coordinate system 10 is continuously obtained.
  • the flow of the automatic tracking control algorithm for automatically tracking the movement of the receiver 2 by the theodolite is as follows. At each measurement, the current position of the receiver 2 is calculated by the calculation processing unit 1, and the current pose and the receiver 2 are The difference between the poses at the last measurement is divided by the sampling interval to obtain the motion speed of the receiver 2, and further based on the motion speed of the receiver 2, the pose that the receiver 2 will reach at the next measurement is estimated, and all the theodolites 3 are calculated. 4, 5 new corner positions to be reached, to ensure that the laser spots 32, 42, 52 still fall on the projection panel 21 of the receiver 2, and send the corner commands to the corresponding theodolites 32, 42, 52. Solving the motion speed of the receiver 2 can also be obtained by filtering and predicting methods using the motion trajectory before the receiver 2.
  • the above-mentioned synchronous trigger measurement method can also be replaced by a combination of continuous measurement and measurement value interpolation, that is, the calculation processing unit 1 does not have to send a trigger signal to the theodolites 3, 4, 5 and the receiver 2, and the theodolites 3, 4, 5
  • the latest data of the horizontal corner and the elevation angle are continuously transmitted to the calculation processing unit 1, and the receiver 2 also continuously transmits the calculated laser spot to the calculation processing unit 1 with respect to the latest local coordinate value of the receiver coordinate system 10.
  • the calculation processing unit 1 interpolates the value corresponding to a fixed time according to the received value and the time when the value is received, further establishes a system of equations based on the interpolated values, and solves the receiver coordinate system 20 in the global coordinate system 10 Six-dimensional pose.
  • the position measurement accuracy and attitude measurement accuracy of the device can reach the following indexes:
  • the dynamic measurement accuracy of the normal theodolite can be less than 2"
  • the static measurement accuracy of the corner can reach below ⁇ .
  • the theodolite is used.
  • the corner accuracy is 2"
  • the distance between the theodolite and the measuring object is 10m
  • the radius of the laser beam emitted by the theodolite at a distance of 10m is less than 0.1mm.
  • the image resolution of the imaging unit can easily reach 0.1 mm or less.
  • a projection panel with an area of 50 mm x 50 mm can be obtained by using an imaging electronic device of 1024 pixels x 1024 pixels, and a resolution of 0.05 mm can be obtained.
  • the transmission delay of the trigger signal and the shutter exposure time of the imaging unit can reach the order of 10 ⁇ 5 , and when the moving object speed is lm/s, the measurement deviation of the imaging unit is on the order of 0.01 mm. Since the present invention adopts multiple sets of equations to solve the problem, and has the characteristics of inverse motion of the parallel mechanism kinematics, the pointing errors of the multiple laser beams are not accumulated, so the position measurement accuracy of the device of the present invention can reach the order of 0.1 mm.
  • the attitude measurement accuracy of the apparatus of the present invention can be reached on the order of 0.1°, in which the three receivers are mounted on the moving object and the distance between the receivers is 50 mm.
  • the projection panel 21 of the present example can only receive laser beams from all sides, but cannot receive laser beams from above and below, so that the range of motion of the moving objects that can be measured is small, generally around 100°. Some receivers with a larger range of attitude measurement will be described in the examples to be described later.
  • the tracking performance of the automatic tracking control step of the device can reach the following indicators: Assume that the control period of the automatic tracking control algorithm is 100 Hz, the distance between the moving object and the theodolite is 10 m, and when the moving speed of the moving object is lm/s, in each control The prediction accuracy of the moving distance of the moving object is 10 ⁇ 2 mm. It is assumed that the horizontal angle and the pitch angle of the theodolite are controlled by the position closed loop. When the servo motor and the mechanical transmission are used, the control accuracy of the corner is ⁇ 0.05°, so the accuracy of the laser spot on the projection panel is 9 mm.
  • each control cycle can control the laser spot to fall at the center of the projection panel.
  • a piezoelectric ceramic motor or a direct drive motor can be used to improve the accuracy of the theodolite rotation angle control.
  • the accuracy of the rotation angle control can reach below lj ⁇ 0.005°, and the control cycle of the tracking control can be shortened. And measures such as increasing the size of the projection panel to ensure accurate tracking.
  • Fig. 3 shows a second example of the six-dimensional pose measuring apparatus proposed by the present invention, which consists of a computing processing unit 1, a receiver 2 and three theodolites 3, 4, 5.
  • the laser emitters 30, 40, 50 on the three theodolites 3, 4, 5 of the apparatus emit laser beams 33, 43, 53 which generate strip-shaped light planes.
  • the receiver 2 in the device adopts a hexahedron shape
  • the imaging unit in the receiver 2 also adopts another manner, that is, the imaging device based on lens imaging is not used, but the photosensitive measuring device 23 is directly mounted on the projection panel 21.
  • the sensitometric device may include one or more photosensitive sensors such as PSD, CCD, CMOS, etc.
  • the surface of the photographic measuring device usually covers the band-pass filter lens, allowing only the laser light in the laser band to pass, reducing the influence of ambient light and improving the image.
  • the thickness of the filter lens is required to be thin to avoid measurement accuracy due to refraction.
  • the working principle of this example is basically the same as that of the first example:
  • the laser beam beams 33, 43, 53 generate three light planes, which can be obtained according to the measured values of the horizontal and pitch angles of the theodolite.
  • the laser harnesses 33, 43, 53 fall on the photosensitive measuring devices 23, 24, 25 to form at least three laser stripes 26, 27, 28.
  • the photographic measuring devices 23, 24, 25, etc. can obtain the pixel coordinates of the laser strips 26, 27, 28 relative to the sensitometric measuring device reference, since the positions of the photographic measuring devices 23, 24, 25 relative to the receiver coordinate system 20 are fixed. Moreover, it can be obtained by a calibration method, so that the three-dimensional position of these laser stripes with respect to the receiver coordinate system 20 can be obtained.
  • the global coordinate of each point on the laser stripe in the global coordinate system 10 is a function representation of the receiver coordinate system 20 six-dimensional pose as a variable. Two points are selected on the laser stripes 26, 27, and 28, for a total of six points.
  • a six-dimensional pose of the receiver coordinate system 20 relative to the global coordinate system 10 can be obtained by solving a system of equations consisting of the equations.
  • the advantage of using a laser beam is that more than two points can be selected on each laser stripe to obtain more constraint equations and improve the accuracy and reliability of the equations.
  • the 4 is a third example of the six-dimensional pose measurement device proposed by the present invention, which is composed of a calculation
  • the unit 1, a receiver 2 and two theodolites 3, 4 are composed.
  • the laser emitter on the theodolite 3 emits 30 a laser beam 33 that emits a light plane
  • the laser emitter 40 on the theodolite 4 emits at least two laser beams 41, 42. According to the analysis methods of the previous two examples, it is not difficult to obtain six equations with six variables, so that the six-dimensional pose of the receiver coordinate system 20 with respect to the global coordinate system 10 can be obtained.
  • Fig. 5 shows a fourth example of the six-dimensional pose measuring apparatus proposed by the present invention, which has a feature of a small number of components.
  • the device consists of a computing processing unit 1, a receiver 2 and a theodolite 6.
  • the difference between the theodolite 6 and the aforementioned theodolites 3, 4, 5 is that a pitch rotation degree of freedom is added, and laser emitters 60, 61 are respectively mounted on the two pitch rotation degrees of freedom.
  • the laser emitter 60 emits two laser beams 62, 63, and the laser emitter 61 emits two laser beams 64, 65.
  • the laser beams 62, 63, 64, 65 fall on the projection plate 21 of the receiver 2 to form four spots.
  • the communication between the receiver 2 and the computing processing unit 1 replaces the communication cable 12 with wireless communication 12', thereby preventing the moving object 8 from interfering with the motion of the communication cable 12.
  • FIG. 6 shows a fifth example of the six-dimensional pose measurement device proposed by the present invention.
  • the projection panel 21 on the receiver 2 is a spherical surface with a thin scattering. Light transmissive material.
  • the imaging unit 22 photographs the laser spot appearing on the projection panel 21 from the inside of the projection panel 21.
  • the imaging lens 221 of the imaging unit 22 employs a wide-angle close-up lens, for example, a wide-angle close-up lens having a shortest working distance of about 10 to 200 mm.
  • the projection panel of this example can receive lasers from a wider range, and the range of motion objects that can be measured can vary by more than 270°.
  • Figure 7 shows a sixth example of the six-dimensional pose measurement device proposed by the present invention.
  • the receiver 2 has two projection panels 21 and 21', and two imaging systems. Units 22 and 22'.
  • the projection panel 21 and the projection panel 21' are both curved thin shells, wherein the projection panel 21 uses a thin diffused light transmissive material, and the projection panel 21' uses a relatively thick diffused light transmissive material, which is provided on both projection panels.
  • Part of the laser is reflected while another part of the laser passes.
  • the laser emitters 60, 61 on the theodolite 6 emit two laser spot beams 62, 64.
  • the laser spot beam 62 forms two laser spots 66, 67 on the projection panels 21 and 21', respectively, and the laser spot beams 64 form two laser spots 68, 69 on the projection panels 21 and 21', respectively.
  • the imaging unit 22 captures a laser spot on the projection panel 21, and the imaging unit 22' captures a laser spot on the projection panel 21'. According to the analysis method of the first example, it is not difficult to obtain eight equations having six variables, and thus the six-dimensional pose of the receiver coordinate system 20 with respect to the global coordinate system 10 can be obtained.
  • Fig. 8 shows a seventh example of the six-dimensional pose measurement apparatus proposed by the present invention, which consists of a calculation processing unit 1, a receiver 2, and two simplified theodolites 9, 11 having a structure.
  • the pitch degrees of freedom of the theodolites 9, 11 in the apparatus are fixed or removed, and the receiver 2 adopts a hexahedral shape.
  • the theodolites 9, 11 have only one horizontal rotation degree of freedom.
  • Laser emitters 91, 111 are mounted on the theodolites 9, 11.
  • the laser emitter 91 emits a laser beam 92 of a fan-shaped light plane
  • the laser emitter 111 emits a laser beam 112 of a fan-shaped plane
  • the laser beam 92 and the laser beam 112 are generally perpendicular to the ground.
  • the laser beam 92 is projected onto the projection panel 21 on the receiver 2 to generate two segments of laser stripes 93, 94 which are projected onto the projection panel 21 to produce two segments of laser stripes 113, 114.
  • Fig. 9 shows an eighth example of the six-dimensional pose measuring apparatus proposed by the present invention.
  • the three theodolites 3, 4, 5 are fixed on the ground and are usually arranged in a triangle.
  • Three separate receivers 20, 20a, 20b are mounted on the moving object 8, the receiver 20 is connected to the computing processing unit 1 by wireless communication 12', and the receivers 20a, 20b and the receiver 20 are wired or wirelessly connected. Communication mode is connected.
  • the receiver coordinate system 20 corresponding to the receiver 2 is 0'- ⁇ ' ⁇ '
  • the receiver coordinate system 20a corresponding to the receiver 2a is 0"- ⁇ ' ⁇ " ⁇ ”
  • the receiver coordinate system corresponding to the receiver 2b 20b is 0"'- ⁇ " ⁇ '" ⁇ "".
  • a laser emitter 30, 40, 50 is mounted on the theodolites 3, 4, 5 respectively.
  • the laser emitters 30, 40, 50 each emit at least one laser beam. They are 31, 41, 51.
  • the laser beams 31, 41, 51 fall on the projection panels 21, 21a, 21b of the receivers 2, 2a, 2b, respectively, to generate three laser spots 32, 42, 52.
  • Each theodolite preferentially projects the laser structured light onto a receiver that is closer to the theodolite and is not occluded. Since the distance between the receivers 20, 20a, 20b in this example is typically much larger than the size of the receiver, Get more accurate attitude measurements.
  • the working principle of this example is as follows: The relative pose between the receivers is calibrated before the actual measurement.
  • the receiver 2 is selected as the main receiver, so that the moving object 8 is fixed, and the six-dimensional pose of all the receiver coordinate systems 20, 20a, 20b with respect to the global coordinate system 10 is measured, and the other two can be obtained through the coordinate transformation matrix.
  • the receiver coordinate systems 20a, 20b on the receivers 2a, 2b are relative to the relative six-dimensional pose of the receiver coordinate system 20 of the main receiver 2.
  • the moving object 8 starts moving, and the receiver 2a transmits the coordinate value of the laser spot 42 obtained and processed in the present receiver coordinate system 20a to the receiver 20, and the receiver 2b will photograph and process the obtained laser light.
  • the coordinate values of the spot 52 on the present receiver coordinate system 20b are transmitted to the receiver 20, and the receiver 20 obtains the positional relationship of the receiver coordinate systems 20a, 20b with respect to the receiver coordinate system 20 to obtain the receivers 2a, 2b.
  • the local coordinates of the laser spot 42, 52 in the receiver coordinate system 20, and then the six-dimensional pose of the receiver coordinate 20 relative to the global coordinate system 10 is calculated using the equations construction method discussed in the first example. It should be noted that although only eight examples of six-dimensional pose measuring devices are given here, more examples can be obtained by combining the components of the above examples.
  • the theodolite is mounted on a fixed ground, and the receiver is mounted on the moving object to be tested, but one of the theodolite and the receiver may be mounted on the moving object to be tested, and the other is installed. On the fixed ground.

Description

一种测量运动物体六维位姿的设备和方法 技术领域
本发明涉及测量运动物体在较大空间中六维位姿的设备,具体地说是一种基于激 光束直线特性和并联机构位姿测量原理,采用图像处理技术实现运动平台六维位姿测 量的设备和方法。该可以广泛应用于需要实现平移运动的场合,可以替代昂贵的激光 跟踪仪和坐标测量机。 背景技术
对运动物体的三维位置 (x, y, z)和三维姿态 (α, β, γ)进行高精度的测量在 工业界有着广泛的需求。
在很多应用中,采用机械式测量装置就可以解决问题,例如利用设备自身的关节 编码器进行运动学正解,如果设备本身不具有编码器或者编码器和机械装置的精度较 低, 则可以采用传统的三坐标测量机和便携关节式坐标测量机进行测量。但是坐标测 量机的测量范围一般十分有限, 而且难以在线测量运动物体。
为了测量在大范围运动的物体的六维位姿,通常采用全局定位系统。根据测量精 度的高低,全局定位系统可以分为激光跟踪仪、室内 GPS、基于激光导航方法的设备、 基于激光信标方法的设备和基于视觉处理的设备。
激光跟踪仪采用经纬仪测量接收器的方位,而采用激光干涉原理测量接收器与经 纬仪之间的距离, 具有采样频率高和测量精度高的显著优点, 但是设备十分昂贵。
室内 GPS技术有多种, 最典型的一种方案美国 Arc Second公司的方案, 在地面 安装至少两个激光发射器, 每个发射器产生两个成固定夹角的激光平面。发射器不停 高速水平旋转, 旋转频率大约在 3000转 /分左右, 接收器上的传感器可获得激光平面 经过的准确时间,接收器根据发射器投射来的光线时间特征参数, 计算出接收器所在 点的位置和角度。 室内 GPS的精度较高, 而且可以同时测量大量接收器的位置, 所 有接收器在 lOOmx lOOm测量空间内的位置测量精度可以达到 0.1mm量级。不过由于 该技术采用周期扫描方式, 不同激光平面扫过同一传感器的时间有时间差, 因此更适 合静态物体或者缓慢移动物体的测量, 如果要用于高速运动物体的测量, 必须增加激 光平面的数量, 或采用超高速旋转的激光发射器。
基于激光导航方法的设备和基于激光信标方法的设备主要用于工厂自动移动小 车的定位, 目前主要用于平面位置和方位定位。激光导航方法的典型例子是在移动小 车上安装可以水平旋转的激光站,激光站发射出激光光束, 而将三个以上的反射镜安 装在地面上, 且反射镜安装位置已知。 地面上的反射镜通常由若干个锥体棱镜组成, 投射到反射镜上的激光可以沿入射方向返回,但与入射激光错开小段距离。移动小车 上激光站不停旋转扫描,如果在三个角度有激光返回, 则可计算出移动小车的位置和 方位。激光信标方法与激光导航方法相反, 在小车上安装三个以上的传感器, 而在地 面安装多个可以水平旋转的激光站,如果三个以上的传感器可以接受到激光则可计算 出移动小车的位置和方位。为了实现连续测量,激光站的水平转角通常自动跟随小车 的运动。激光导航方法和激光信标方法价格相对便宜,其原理可以扩展应用到空间六 维位姿测量, 但是目前尚未见报道。 在这类方法中, 传感器只是开关型传感器, 即只 检测信号的有无, 并不测量激光光束在传感器上的落点的准确位置, 因此测量精度较 低。另一方面,在建筑施工行业常用的经纬仪交汇法采用可发射激光的经纬仪和能够 判断激光是否打中靶心的光电接收靶,可以用于精确测量固定物体的位置和姿态,但 这种测量系统缺乏跟踪运动物体的功能, 因此无法测量运动物体的位姿。
基于视觉处理的全局定位技术有多种,最典型的是瑞典 MEEQ公司的 PosEye技 术,通过在测量环境中布置多个位置已知的发光标志物,而在运动物体上安置摄像头, 根据发光标志物在摄像头拍摄的图像中的坐标来计算运动物体的位姿。当测量距离大 于 10米时, 发光标志物通常采用功率大于 lOOmW的激光发光二极管, 激光发光二 极管的激光发散角一般大于 30°, 以保证摄像头能接收到足够的光线。 但是该技术要 求成像单元的分辨率很高, 目前还很难获得较高的测量精度。另一种常见技术是双目 视觉技术,即在移动物体上安装高亮标记物,通过双目视觉原理来计算标记物的位置, 进一步计算运动物体的位姿,该技术同样受限于成像单元的分辨率,测量的精度较低。
目前成本较低、 不需要高分辨率摄像系统的高精度全局定位设备还没见报道。 发明内容
为了克服现有技术中成本高、需要高分辨率摄像系统的全局定位设备的不足,本 发明的目的在于提出一种成本较低、不需要高分辨率摄像系统的测量运动物体六维位 姿, 从而实现全局定位的设备和方法, 采用本发明可以替代昂贵的激光跟踪仪、 坐标 测量机和室内 GPS等设备。
本发明技术方案如下:
测量运动物体六维位姿的设备, 由计算处理单元、至少一个接收器和至少一个经 纬仪组成,计算处理单元与经纬仪安装在固定地面上;接收器安装在待测运动物体上; 经纬仪和接收器通过通信线缆或者无线通信方式与计算处理单元通讯,经纬仪与接收 器通过激光光路相连;
其中: 所述经纬仪具有至少一个水平转动自由度和至少一个俯仰转动自由度; 经 纬仪包含驱动装置, 用以控制其水平转角和俯仰转角; 还包括转角测量装置, 用以测 量转角;每个经纬仪上安装有至少一个激光发射器; 所述经纬仪个数为 1 时, 经纬仪 上安装的激光发射器个数至少为 2; 所述每个激光发射器发射出激光结构光, 该激光 结构光是至少一条光线的激光点束, 或是至少一个条形光平面的激光线束, 或是至少 一个扇形光平面的激光线束, 或是至少一个光圆柱面的激光圆形束, 或是上述多种不 同激光结构光的组合光束;
另外,所述经纬仪的俯仰自由度可以被固定或者被拆卸,得到具有一个水平转动 自由度的简化结构, 上面安装有至少一个激光发射器, 每个激光发射器发射出一个扇 形光平面的激光线束;
所述接收器包括至少一块投射面板和至少一个成像单元,而且每个投射面板至少 对应一个成像单元;投射面板的尺寸以及成像单元与投射面板的距离均是所述设备最 大测量范围的百分之一量级〜千分之一量级范围内; 假设设备测量范围为 10m, 则投 射面板尺寸不大于 lOOmmx lOOmm, 成像单元与投射面板的距离在 100mm之内; 其 中投射面板是光滑的反光镜面, 或是表面粗糙的散射反光板, 或是散射透光板; 投射 面板的形状选自平面, 或是曲面, 或是多个平面的组合, 或是多个曲面的组合; 所述接收器由投射面板和成像单元组成,所述成像单元处于投射面板的下方、上 方或者内部;成像单元包括成像电子装置和位于成像电子装置与投射面板之间的成像 镜头; 其中成像电子装置选自位置敏感探测器、 电荷耦合器件、 电荷注入器件、 或基 于互补金属氧化物半导体的光学成像装置;
所述接收器由投射面板和成像单元组成, 所述成像单元直接安装在投射面板表 面,包括至少一个感光测量装置,感光测量装置选自位置敏感探测器、电荷耦合器件、 电荷注入器件、 或基于互补金属氧化物半导体的光学成像装置。
采用所述设备测量运动物体六维位姿的方法,通过自动跟踪控制方法、经纬仪位 姿标定方法、 成像单元图像处理方法、 成像单元标定方法和同步触发测量方法实现; 具体是:
-通过自动跟踪控制歩骤控制经纬仪的方位角, 使经纬仪的激光发射器始终指向 接收器的投射面板,激光发射器发射激光线条或者激光平面投射在投射面板上,产生 激光光斑或者激光条纹;
-通过对经纬仪位姿的标定获得经纬仪相对于固定在地面上的全局坐标系的位 姿,进一步通过经纬仪的旋转变换矩阵获得激光发射器发射的激光线条或者激光平面 在全局坐标系中的数学方程;
-通过成像单元对投射面板上的激光光斑或者激光条纹进行拍摄和图像处理, 获 得激光光斑或者激光条纹在成像单元中的映像的像素坐标;
-通过对成像单元的标定获得成像单元上每一个像素坐标相对于接收器坐标系的 位置,利用像素坐标与接收器坐标系位置的一一对应关系获得激光光斑或者激光条纹 相对于接收器坐标系的局部坐标值;
-通过设定接收器坐标系相对于全局坐标系的六维位姿获得成像单元标定得到的 激光光斑或者激光条纹相对于全局坐标系中的全局坐标值;
-通过同步触发测量歩骤建立激光结构光生成的直线或者平面在全局坐标系中的 数学方程和成像单元标定得到的激光光斑或者激光条纹相对于全局坐标系的全局坐 标值之间的约束关系, 求解约束关系得出接收器坐标系相对于全局坐标系的位姿; 其中: 接收器坐标系为 0'-ΧΎ'Ζ', 固定在接收器上, 全局坐标系为 0-XYZ, 固 定在地面上。
本发明所述成像单元标定方法是通过外部设备标定投射面板和成像单元相对于 接收器坐标系的位置和姿态;
所述经纬仪位姿的标定采用外部标定或是自行标定两种方式;外部标定方法借助 外部设备进行标定; 自行标定方法通过将接收器固定、让经纬仪的转动的方式获得经 纬仪相对于地面固定全局坐标系的位姿; 具体为: 将接收器固定, 使经纬仪的水平转 角和俯仰转角选取一组以上的不同数组,对于选取的每组数值均执行如下步骤: 固定 经纬仪的转角, 经纬仪将水平转角和俯仰角数据发送给计算处理单元, 计算处理单元 根据经纬仪相对于全局坐标系的位姿以及水平转角和俯仰角数据计算出激光线条或 者激光平面的数学方程;同时接收器将拍摄获得的激光光斑相对于接收器坐标系的局 部坐标值发送给计算处理单元;计算处理单元以接收器坐标系相对于全局坐标系的六 维位姿为变量,根据位姿坐标变换获得激光光斑在全局坐标系中的函数表达式; 计算 处理单元根据激光光斑位于激光线条或者结构光平面之上的约束条件,将激光光斑在 全局坐标系中的函数表达式代入激光线条或者结构光平面的数学方程,建立以经纬仪 六维位姿为未知变量的多个方程, 每次执行上述步骤获得若干个方程,将所有转角数 组对应的方程合成一个方程组,求解该方程组获得所有经纬仪相对于地面固定全局坐 标系的位姿;
所述同步触发测量的具体步骤为:计算处理单元发送触发信号分别给经纬仪和接 收器, 经纬仪将触发时刻的水平转角和俯仰角数据发送给计算处理单元, 计算处理单 元根据经纬仪相对于全局坐标系的位姿以及水平转角和俯仰角数据计算出激光线条 或者结构光平面的数学方程;同时接收器将触发时刻计算获得的激光光斑相对于接收 器坐标系的局部坐标值发送给计算处理单元;计算处理单元以接收器坐标系相对于全 局坐标系的六维位姿为变量,根据坐标变换获得激光光斑在全局坐标系中的函数表达 式; 计算处理单元根据激光光斑位于激光线条或者结构光平面之上的约束条件,将激 光光斑在全局坐标系中的函数表达式代入激光线条或者结构光平面的数学方程,建立 以接收器坐标系六维位姿为未知变量的方程组,求解该方程组获得接收器坐标系相对 于全局坐标系的三维位置和三维姿态;
所述的同步触发测量方式也可以采用连续测量和测量值插补相结合的方式代替, 即计算处理单元不发送触发信号给经纬仪和接收器,而经纬仪连续将水平转角和俯仰 角的最新数据发送给计算处理单元,接收器也连续将计算获得的激光光斑相对于接收 器坐标系的最新局部坐标值发送给计算处理单元。计算处理单元根据接收到的数值和 接收到数值的时间插补出对应某固定时刻的数值,进一步根据插补出的数值建立方程 组并求解出接收器坐标系在全局坐标系中的六维位姿。 所述自动跟踪控制的实现步骤具体为:由计算处理单元根据接收器的当前位置和 之前位置推测接收器将到达的位置, 计算出所有经纬仪需要到达的新转角位置, 并将 新转角指令发送给相应的经纬仪,经纬仪根据新转角指令控制其水平转角和俯仰转角 至需要到达的新转角位置。
本发明具有如下特点:
1 . 本发明设备成本低而测量精度高。 本发明通过两条以上的激光结构光实现采 用并联测量, 与采用单条激光结构光进行串联测量的激光跟踪仪相比, 不需要高精度 的激光干涉仪, 因此成本大大降低; 本发明采用同歩测量方式或者轮询测量方式, 与 采用周期扫描测量方式的室内 GPS系统相比, 可以测量运动速度更高的物体; 本发 明采用短距离的视觉捕捉和处理,投射面板与成像单元之间的距离只有最大测量范围 的百分之一或是千分之一, 与采用远距离视觉捕捉和处理的 PosEye技术相比, 不需 要高分辨率的视觉传感器, 而且定位精度更高。
2. 本发明可以在安装现场进行快速的自行标定, 因此可以方便的增加经纬仪和 接收器, 也可以方便的移走冗余的经纬仪。
3. 本发明可以通过增加经纬仪和接收器的数量来扩大测量范围和提高测量结果 的准确性和鲁棒性。例如将三个经纬仪按照三角形分布布置在待测运动物体周围,可 以使运动物体在较大空间内的位姿测量准确性波动幅度减小。
4. 以三个经纬仪作为一个类似蜂窝的测量网格, 可以通过坐标切换机制实现不 同测量网格之间的过渡, 实现大范围高精度测量。
5. 本发明可以在接收器上安装测杆或者三维激光扫描仪, 从而可以测量经纬仪 发射的激光光束难以达到的地方。
6. 本发明激光器发射的激光始终落在接收器上, 投入人眼的概率非常低。 即使 偶尔进入人眼, 由于激光可以选择红外波段,并且功率非常低,对人眼没有任何伤害。 附图说明
图 1为六维位姿 $ 设备的第一个实例的示意图;
图 2为; ;维位姿 $ 设备进行实际测量时的工作流程示意图;
图 3为;;维位姿 $ 设备的第二个实例的示意图
图 4为;;维位姿 $ 设备的第三个实例的示意图
图 5为;;维位姿 $ 设备的第四个实例的示意图
图 6为;;维位姿 $ 设备的第五个实例的示意图
图 7为;;维位姿 $ 设备的第六个实例的示意图
图 8为;;维位姿 $ 设备的第七个实例的示意图
图 9为;;维位姿 $ 设备的第八个实例的示意图。 具体实施方式
下面结合附图对本发明作进一步详述。
如图 1所示为本发明提出的六维位姿测量设备的第一个实例,该设备由一个计算 处理单元 1、 一个接收器 2和三个经纬仪 3、 4、 5组成。 三个经纬仪 3、 4、 5固定安 装在地面上,通常布置成三角形。接收器 2通过连接件 7或者直接安装在六维位姿待 测的运动物体 8上。 图中接收器坐标系 20为 0'-ΧΎ'Ζ', 固定在接收器上, 而全局坐 标系 10为 0-XYZ, 固定在地面上, 运动物体坐标系 80为 Om-XmYmZm, 固定在运 动物体 8上。 由于接收器坐标系 20相对于运动物体坐标系 80的位姿是始终固定的, 而且可以通过标定方法获得,因此测量运动物体 8的六维位姿可以通过测量接收器坐 标系 20相对于全局坐标系 10的六维位姿获得。
经纬仪 3、 4、 5都具有水平转动和俯仰转动两个转动自由度, 每个经纬仪的水平 转角和俯仰转角通过驱动装置进行控制, 并且转角值可以快速的测量。驱动装置通常 采用伺服电机, 也可采用精度更高的压电陶瓷电机, 转角测量装置安装在经纬仪上, 通常采用高精度编码器, 编码器分辨率和测量重复精度均达到 Γ量级。 经纬仪 3、 4、 5上分别安装有一个激光发射器 30、 40、 50。 激光发射器 30、 40、 50均发射至少一 条激光束, 分别是 31、 41、 51。 在实际应用中, 为使测量结果具有更好的准确性和 鲁棒性,可以让每个激光发射器发射两条或者更多的相互平行的激光光束。激光器安 装在经纬仪上,通常采用半导体激光器, 波长通常选择红色可见光或者红外光的波段, 如 635nm, 激光器的输出功率一般小于 5mW。
接收器 2主要包括一块投射面板 21和一个成像单元 22。投射面板的尺寸以及成 像单元与投射面板的距离均是所述设备最大测量范围的百分之一量级〜千分之一量 级; 本实施例设备测量范围为 10m, 则投射面板尺寸不大于 lOOmmx lOOmm, 成像单 元与投射面板的距离在 100mm之内。本实例中的投射面板 21采用类似 360度全景相 机中的双曲面反光镜面。 成像单元 22通常处于投射面板 21的下方, 通过结构件 29 与投射面板 21相固连。 结构件 29可以采用透明材料, 或者镂空的不透明材料。成像 单元 22包括一个成像镜头 221和一个成像电子装置 222。成像电子装置可以是 PSD、 CCD, CMOS等任意光学成像装置。 当成像电子装置采用 PSD时, 由于单个 PSD不 能同时相应两个或者多个光点, 可以采用多个 PSD组成阵列。
成像镜头 221的透镜中心通常放在双曲面的下侧焦点上,从整个环境射向双曲面 上侧焦点的光被反射到下焦点, 即成像镜头 221的透镜中心。虽然经纬仪的转角可以 控制,但是很难始终保证经纬仪发出的激光束能射向双曲面反射镜的上焦点, 因此反 光镜面通常是具有一定的粗糙度的散射反光板, 如典型的朗贝反光板 (Lambertian reflector) 投射面板 21与成像单元 22相对于接收器坐标系 20的位置和姿态可以通 过标定精确获得。
投射面板 21的形状也可以是平面或其他曲面, 当投射面板 21采用平面形状时, 成像单元 22推荐采用基于 Scheimpflug原理的布局,可以在大范围内获得清晰的图像。 成像镜头 221中通常包括带通滤光镜片, 只允许所采用激光波段的激光能通过,减少 环境光影响, 从而提高图像。
计算处理单元 1通过通信线缆 12、 13、 14、 15与接收器 12和经纬仪 3、 4、 5 相连。
本发明测量运动物体六维位姿的方法结合所述设备的基本工作过程一并描述如 下:
通过自动跟踪控制步骤控制经纬仪的方位角,使经纬仪的激光发射器始终指向接 收器的投射面板,激光发射器发射激光线条或者激光平面投射在投射面板上,产生激 光光斑或者激光条纹。 如图 1所示, 经纬仪 3、 4、 5上的激光发射器 30、 40、 50发 射的激光束 31、 41、 51落在接收器上的投射面板上, 形成相应的激光光斑 32、 42、 52。 根据目前的小型半导体激光器技术水平, 在 10m距离处, 激光光斑的直径通常 小于 0.5mm, 在 100m距离处, 激光光斑的直径通常小于 5mm。
再通过对经纬仪位姿的标定获得经纬仪相对于固定在地面上的全局坐标系的位 姿,进一步通过经纬仪的旋转变换矩阵获得激光发射器发射的激光线条或者激光平面 在全局坐标系中的数学方程。 一方面, 经纬仪 3、 4、 5相对于绝对坐标系 10的位姿 可以采用外部设备预先测定, 也可以采用本专利后面介绍的自行标定方法获得。再结 合经纬仪水平转角和俯仰转角的测量值就可以获得三条激光点束 31、 41、 51在全局 坐标系 10中的方程, 每条激光束对应两个方程。 假设三条激光点束 31、 41、 51对应 的代数方程分别为:
Figure imgf000009_0001
上述方程的系数只取决于经纬仪 3、 4、 5在全局坐标系 10中的位姿和经纬仪 3、 4、 5的转角测量值。
另一方面,通过成像单元对投射面板上的激光光斑或者激光条纹进行拍摄和图像 处理, 获得激光光斑或者激光条纹在成像单元中的映像的像素坐标; 通过对成像单元 的标定获得成像单元上像素坐标中每一个像素点相对于接收器坐标系的位置,利用像 素点与接收器坐标系的一一对应关系获得激光光斑或者激光条纹相对于接收器坐标 系的局部坐标值。 如图 1所示, 通过对成像电子装置 222拍摄的图像进行处理, 可以 获得激光光斑在成像电子装置 222上的坐标。根据小孔成像原理,激光光斑与其在成 像电子装置 222上的映像之间的连线必然经过成像镜头 221的透镜中心。由于投射面 板 21、 成像镜头 221和成像电子装置 222相对于接收器坐标系 20的位置是固定的, 因此可以通过小孔成像数学模型获得这些激光光斑相对于接收器坐标系 20的三维位 置; 或者采用直接标定方法, 即对于成像电子装置 222上的每一个像素, 直接标定并 记录下其在投射面板 21上对应点在接收器坐标系 20中的坐标。 假设投射面板 21的 大小为 lOOmmx lOOmm, 成像电子装置 222的像素阵列为 1024像素 χ 1024像素, 成 像单元 22的视场大小与投射面板大小基本相等, 则成像电子装置 222的视觉分辨率 小于 0.1mm。
再通过假设接收器坐标系相对于全局坐标系的六维位姿获得成像单元标定得到 的激光光斑或者激光条纹相对于全局坐标系中的全局坐标值。 由于接收器坐标系 20 相对于全局坐标系 10的位姿是六个未知变量 (x, y, ζ, α, β, γ), 如果已知一个激 光光斑在接收器坐标系 20中的相对坐标 (Χ', Υ', Ζ'), 可以根据以下齐次坐标变换 获得该激光光斑在全局坐标系 10中的三维全局坐标 (Χ, Υ, Ζ ) :
X X'
Υ 7 '
= Trans{x, y, z)Rot(Z, y)Rot(X, )Rot{Z, a)
Ζ
1 1 其中 Rot , y)Rot(X, )Rot{Z, a)表示先绕全局坐标系的 Z轴旋转"角度,接着绕 X轴旋转 角度, 再绕 Z轴旋转 角度, ^"^ ^, 表示沿着矢量^^,^平移。 因 此可以获得
Figure imgf000010_0001
rn = cos y cos or— cos sin or sin y
r12 = cos y sin a + cos β cos or sin γ
r13 = sin ^sin β
r2l = - sin y cos a - cos sin or cos γ
r22 = - sin y sin a + cos β cos or cos γ
r23 = cos ^sin β
Figure imgf000011_0001
r32 = - sin βο,ο^ α
r33 = cos
可见给定一个激光光斑在接收器坐标系 20中的相对坐标 (X', Y', Ζ'), 该激光 光斑在全局坐标系 10 中的全局坐标 (Χ, Υ, Ζ)分别对应三个以接收器坐标系 20 的六维位姿 (x, y, ζ, α, β, γ) 为变量的函数表达式。
最后通过同步触发测量步骤建立激光结构光生成的直线或者平面在全局坐标系 中的数学方程和成像单元标定得到的激光光斑或者激光条纹相对于全局坐标系的全 局坐标值之间的约束关系, 求解约束关系得出接收器坐标系相对于全局坐标系的位 姿。 由于三个光斑 32、 42、 52必须分别位于三条激光束对应的直线上, 将三个光斑 的三维全局坐标对应的函数表达式分别代入相应激光束的两个方程,可以获得具有六 个变量的六个方程,
= R(x,y, z, a, β, χ) = 0
= (x, y, z, , β, γ) =
= T(x, y, z, , β, γ) =
= (x, y, Z, Of, β, /) = 0
= P(X, y, Z, Of, β, /) =
Figure imgf000011_0002
= Q(x, y, z, oc, β, γ) = 0
在以上六个方程中, 假设激光光斑 32的全局坐标为 (x32, y32, z32), 激光 光斑 42的全局坐标为 (X42, y42, z42 ), 激光光斑 52的全局坐标为 (x52, y52, z52), 显然它们都是以接收器坐标系 20的六维位姿 (x, y, ζ, α, β, γ) 为变 量的函数表达式。
求解以上六个方程所组成的方程组可以获得接收器坐标系 20相对于全局坐标系 10的六维位姿(x, y, ζ, α, β, γ)。 求解方程组的算法可以是经典的牛顿-拉夫逊方 法、 各种最优方法、 同伦法和区间分析法等等。
事实上,上述激光光斑必须分别位于激光束对应的直线上的约束关系可以采用其 他表达方法, 例如三个光斑 32、 42、 52与三条激光束的距离等于零, 并获得不同的 数学方程。接收器坐标系 20相对于全局坐标系 10的六维位姿也可以采用其他等效表 示方法进行表示, 例如三维位置采用 (x, y, z)表示, 而三维姿态 (α, β, γ)采用 四元数表示, 或者三维位置和三维姿态统一采用双四元数表示。
图 2为六维位姿测量设备进行实际测量时的工作流程示意图,包括经纬仪位姿自 行标定的步骤和同步触发测量的步骤。该工作流程针对第一个实例进行解释,但是可 以推广用于后述的其他实例。假设接收器 2可放置在一个初始位置,在该初始位置时, 接收器坐标系 20与全局坐标系 10重合。 首先需要标定三个经纬仪 3、 4、 5的六维位 姿, 共有十八个未知变量, 因此需构建至少十八个方程才能得到一个确定性方程组, 从而求解出这十八个变量。 具体工作流程如下:
首先执行经纬仪位姿自行标定方法的步骤。 在歩骤 101, 将三个经纬仪 3、 4、 5 固定在地面。 步骤 102将接收器 2移动到初始位置, 使接收器坐标系 20与全局坐标 系 10重合。 在步骤 103, 调节经纬仪 3、 4、 5的水平转角和俯仰转角使激光光束落 在接收器 2的投射面板 21上。 在步骤 104, 计算处理单元 1发送触发信号分别给经 纬仪 3、 4、 5和接收器 2。 在步骤 105, 经纬仪 3、 4、 5将触发时刻的水平转角和俯 仰角数据发送给计算处理单元 1, 与此同时接收器 2的成像单元 22触发高速快门, 捕获投射面板 21 上的光斑图像, 并将计算获得的激光光斑相对于接收器坐标系 10 的局部坐标值发送给计算处理单元 1。在步骤 106计算处理单元 1根据激光光斑位于 激光直线上的约束关系,将激光光斑在全局坐标系中的函数表达式代入激光线条或者 结构光平面的数学方程, 建立以三个经纬仪的 18个位姿参数为未知变量的第 1-6个 方程。 第二次执行步骤 103, 调节经纬仪 3、 4、 5的水平转角和俯仰转角到第二组数 值, 但仍使激光光束落在接收器的投射面板上。 然后依次执行步骤 104、 105和 106, 获得第 7-12个方程。第三次执行重复步骤 103, 调节经纬仪 3、 4、 5的水平转角和俯 仰转角到第三组数值,但仍使激光光束落在接收器的投射面板上。然后依次执行步骤 104、 105和 106, 获得第 13-18个方程。 在步骤 107, 求解具有十八个变量和十八个 方程的方程组, 得出三个经纬仪相对于全局坐标系 10的位姿参数, 完成经纬仪位姿 自行标定。
然后执行同步触发测量的步骤。 在步骤 108, 将接收器 2固定安装在待测移动物 体上。 在步骤 109, 启动自动跟踪控制算法, 控制经纬仪 3、 4、 5的水平转角和俯仰 转角来跟踪接收器 2的运动, 使激光光束落在接收器 2的投射面板 21上。 然后重复 步骤 104、 步骤 105和步骤 106, 在步骤 110, 求解在步骤 106获得的六个方程, 获 得接收器坐标系 20在全局坐标系 10中的六维位姿。此后循环执行步骤 109、步骤 104、 步骤 105、 步骤 106和步骤 110, 即可连续获得接收器坐标系 20在全局坐标系 10中 的六维位姿。
上述使经纬仪自动跟踪接收器 2运动的自动跟踪控制算法的流程简介如下,在每 次测量时, 由计算处理单元 1 计算出接收器 2 的当前位姿, 将当前位姿与接收器 2 在上一次测量时的位姿之差除以采样间隔得出接收器 2的运动速度,进一步根据接收 器 2的运动速度推测接收器 2在下一次测量时将到达的位姿, 计算出所有经纬仪 3、 4、 5需要到达的新转角位置, 以保证激光光斑 32、 42、 52仍然落在接收器 2的投射 面板 21上, 并将转角指令发送给相应的经纬仪 32、 42、 52。 求解接收器 2的运动速 度还可以利用接收器 2之前的运动轨迹, 通过滤波和预测方法获得。
上述的同步触发测量方法也可以采用连续测量和测量值插补相结合的方法代替, 即计算处理单元 1不必发送触发信号给经纬仪 3、 4、 5和接收器 2, 而经纬仪 3、 4、 5连续将水平转角和俯仰角的最新数据发送给计算处理单元 1, 接收器 2也连续将计 算获得的激光光斑相对于接收器坐标系 10的最新局部坐标值发送给计算处理单元 1。 计算处理单元 1 根据接收到的数值和接收到数值的时间插补出对应某固定时刻的数 值, 进一步根据插补出的数值建立方程组并求解出接收器坐标系 20在全局坐标系 10 中的六维位姿。
本设备的位置测量精度和姿态测量精度可以达到如下指标:采用高精度角编码器 时, 普通经纬仪的转角动态测量精度可以达到 2"以下, 转角静态测量精度可以达到 Γ以下。假设所采用的经纬仪的转角精度为 2", 经纬仪与测量物体的距离为 10m, 经 纬仪发射的激光束在 10m距离处的置信区间半径小于 0.1mm。 而采用成像单元的图 像分辨率可以轻易的达到 0.1mm以下, 例如采用 1024像素 X 1024像素的成像电子装 置拍摄面积为 50mmx50mm的投射面板, 可以获得 0.05mm的分辨率。采用本发明方 案, 触发信号的传输延时和成像单元的快门曝光时间都可以达到 10μ5量级, 当运动 物体速度为 lm/s时, 成像单元的测量偏差为 0.01mm量级。 由于本发明采用多组方 程进行求解,具有类似并联机构运动学求逆解的特点,多个激光束的指向误差不累积, 因此本发明设备的位置测量精度可以达到 0.1mm量级。 已知接收器的投射面板的尺 寸为 50mmx50mm, 假设激光光斑不规则的落在投射面板上, 其中所有激光光斑与全 部激光光斑的几何重心之间的最小距离为 5mm, 则在 10m距离处, 姿态测量精度可 以达到 (0.1/5 ) X ( 180 π) =1.14°, S卩 1°量级。 在后述的第八个实例中, 在运动物 体上安装三个接收器并使接收器之间的距离达到 50mm, 本发明设备的姿态测量精度 可以达到 0. 1°量级。 本实例的投射面板 21只能接收来自四周的激光束, 而不能接收 来自上方和下方的激光束, 因此可以测量的运动物体姿态变化范围较小,一般在 100° 左右。 在后述实例中将介绍一些姿态测量范围更大的接收器。
本设备的自动跟踪控制步骤的跟踪性能可以达到如下指标: 假设自动跟踪控制算法 的控制周期为 100Hz, 运动物体与经纬仪的距离为 10m, 当运动物体运动速度为 lm/s 时, 在每个控制周期, 运动物体移动距离的预测准确度为 10±2mm。 假设经纬仪的水平 转角和俯仰转角采用位置闭环控制, 采用伺服电机和机械传动方式时, 转角的控制准确 度为 ±0.05°, 因此激光光斑在投射面板上落点的准确度为 9mm。 假设接收器的投射面板 的尺寸为 50mmx50mm, 每个控制周期都可以控制激光光斑落在以投射面板中心为圆心 而半径为 19mm的圆以内, 即激光光斑始终落在投射面板上, 因此本设备可以跟踪距离 在 10米外、 运动速度在 lm/s的运动物体。 当测量距离为 100m的运动物体时, 可以采 用压电陶瓷电机或者直接驱动电机来提高经纬仪转角控制精度, 转角控制准确度可以达 至 lj±0.005°以下,同时还可以通过缩短跟踪控制的控制周期和增大投射面板尺寸等措施来 保证准确的跟踪。
图 3所示为本发明提出的六维位姿测量设备的第二个实例,该设备由一个计算处 理单元 1、 一个接收器 2和三个经纬仪 3、 4、 5组成。 与第一个实例不同的是, 该设 备中三个经纬仪 3、 4、 5上的激光发射器 30、 40、 50发射的是生成条形光平面的激 光线束 33、 43、 53。 该设备中的接收器 2采用了六面体形状, 接收器 2中的成像单 元也采用另一种方式, 即不采用基于透镜成像的成像电子装置, 而是在投射面板 21 上直接安装感光测量装置 23、 24、 25等, 感光测量装置可以包括一个或者多个 PSD、 CCD, CMOS 等感光传感器。 感光测量装置表面通常覆盖带通滤光镜片, 只允许所 采用激光波段的激光能通过, 减少环境光影响, 从而提高图像。 滤光镜片的厚度要求 较薄, 避免由于折射影响测量精度。
本实例的工作原理与第一个实例基本相同: 激光线束 33、 43、 53生成三个光平 面, 根据经纬仪水平转角和俯仰转角的测量值就可以获得三个激光线束 33、 43、 53 对应的光平面在全局坐标系 10中的方程,每个激光线束生成的光平面对应一个方程, 假设光平面 33、 43、 53对应的代数方程分别为: a33X + ^33^ + C33 + ^33 = ^
a43x + b43y + c43z + d43 = 0
a53x + b53y + c53z + d53 = 0 上述方程的系数只取决于经纬仪 3、 4、 5在全局坐标系 10中的位姿和经纬仪 3、
4、 5的转角测量值。
激光线束 33、 43、 53落在感光测量装置 23、 24、 25上形成至少三条激光条纹 26、 27、 28。 感光测量装置 23、 24、 25等可以获得激光条纹 26、 27、 28相对于感光 测量装置基准的像素坐标, 由于感光测量装置 23、 24、 25 相对于接收器坐标系 20 的位置是固定不变而且可以通过标定方法获得,因此可以获得这些激光条纹相对于接 收器坐标系 20的三维位置。激光条纹上的每一个点在全局坐标系 10中的全局坐标都 是以接收器坐标系 20六维位姿为变量的函数表示式。在激光条纹 26、 27、 28上分别 选取两个点, 总共六个点。 这六个点分别位于光平面 33、 43、 53上, 因此可以获得 具有六个变量的六个方程。 求解该方程组成的方程组可以获得接收器坐标系 20相对 于全局坐标系 10的六维位姿。 采用激光线束的好处是可以在每条激光条纹上选取两 个以上的点, 从而获得更多的约束方程, 提高方程组求解的准确性和可靠性。
图 4所示为本发明提出的六维位姿测量设备的第三个实例,该设备由一个计算处 理单元 1、 一个接收器 2和两个经纬仪 3、 4组成。 其中经纬仪 3上的激光发射器发 射 30发射出生成光平面的激光线束 33, 而经纬仪 4上的激光发射器发射 40发射至 少两条激光束 41、 42。 根据前面两个实例的分析方法不难得到具有六个变量的六个 方程, 因此可以获得接收器坐标系 20相对于全局坐标系 10的六维位姿。
图 5所示为本发明提出的六维位姿测量设备的第四个实例,该实例具有部件数量 较少的特点。 该设备由一个计算处理单元 1、 一个接收器 2和一个经纬仪 6组成。 经 纬仪 6与前述经纬仪 3、 4、 5的不同之处是增加了一个俯仰转动自由度, 在两个俯仰 转动自由度上分别安装有激光发射器 60、 61。 激光发射器 60发射出两条激光束 62、 63, 而激光发射器 61发射出两条激光束 64、 65。 激光束 62、 63、 64、 65落在接收 器 2的投射板 21上形成四个光斑。 根据第一个实例的分析方法不难得到具有六个变 量的八个方程, 因此可以获得接收器坐标系 20相对于全局坐标系 10的六维位姿。在 此指出, 虽然三条激光束即可得到具有六个变量的六个方程,但是采用四条激光束有 利于提高系统测量结果的准确性和鲁棒性。接收器 2与计算处理单元 1之间的通信采 用无线通信 12'取代通信线缆 12, 从而避免运动物体 8与通信线缆 12的运动干涉。
图 6所示为本发明提出的六维位姿测量设备的第五个实例,该实例与第四个实例 的区别在于, 接收器 2上的投射面板 21为球面状曲面, 采用较薄的散射透光材料。 成像单元 22从投射面板 21 内部拍摄投射面板 21上出现的激光光斑。 成像单元 22 的成像镜头 221采用广角近摄镜头,例如最短工作距离在 10~200mm左右的广角近摄 镜头。根据第一个实例的分析方法不难得到具有六个变量的八个方程, 因此可以获得 接收器坐标系 20相对于全局坐标系 10的六维位姿。与第一个实例相比,本实例的投 射面板可以接收来自更大范围的激光, 可以测量的运动物体姿态变化范围可以达到 270°以上。
图 7所示为本发明提出的六维位姿测量设备的第六个实例,该实例与第四个实例 的区别在于, 接收器 2上具有两块投射面板 21和 21', 以及两个成像单元 22和 22'。 投射面板 21和投射面板 21'都是曲面薄壳, 其中投射面板 21采用较薄的散射透光材 料, 而投射面板 21'采用相对较厚的散射透光材料, 在两个投射面板上均有一部分激 光被反射, 而另一部分激光通过。 经纬仪 6上的激光发射器 60、 61发射出两个激光 点束 62、 64。 激光点束 62在投射面板 21和 21 '上分别形成两个激光光斑 66、 67, 激 光点束 64在投射面板 21和 21 '上分别形成两个激光光斑 68、 69。 成像单元 22拍摄 投射面板 21上的激光光斑, 而成像单元 22'拍摄投射面板 21'上的激光光斑。 根据第 一个实例的分析方法不难得到具有六个变量的八个方程,因此可以获得接收器坐标系 20相对于全局坐标系 10的六维位姿。 事实上, 由于投射面板 21是较薄的散射透光 材料, 投射面板 21'上的光斑也可能透过投射面板 21在成像单元 22中成像, 因此成 像单元 22'可以省略, 在这种情况下, 要求成像单元 22的图像处理算法能排除由于多 重反射形成的干扰光斑。 图 8所示为本发明提出的六维位姿测量设备的第七个实例, 该设备由一个计算处理 单元 1、 一个接收器 2和两个结构经过简化的经纬仪 9、 11组成。 该设备中的经纬仪 9、 11的俯仰自由度被固定或者被移除, 接收器 2采用了六面体形状。经纬仪 9、 11只具有 一个水平旋转自由度。 经纬仪 9、 11上安装激光发射器 91、 111。 激光发射器 91发射出 一个扇形光平面的激光线束 92,激光发射器 111发射出一个扇形光平面的激光线束 112, 而且激光线束 92和激光线束 112通常与地面垂直。激光线束 92投射到接收器 2上的投 射面板 21上生成两段激光条纹 93、 94, 激光线束 92投射到投射面板 21上生成两段激 光条纹 113、 114。根据第二个实例的分析方法不难得到具有六个变量的八个方程, 因此 可以获得接收器坐标系 20相对于全局坐标系 10的六维位姿。
图 9所示为本发明提出的六维位姿测量设备的第八个实例。 三个经纬仪 3、 4、 5 固定在地面上, 通常布置成三角形。 移动物体 8上安装三个分开放置的接收器 20、 20a、 20b, 接收器 20与计算处理单元 1通过无线通信 12'进行连接, 接收器 20a、 20b 与接收器 20之间通过有线通信或者无线通信方式进行连接。 其中接收器 2对应的接 收器坐标系 20为 0'-ΧΎ'Ζ', 接收器 2a对应的接收器坐标系 20a为 0"-Χ'Ύ "Ζ", 接收 器 2b对应的接收器坐标系 20b为 0"'-Χ"Ύ'"Ζ'"。经纬仪 3、 4、 5上分别安装有一个激 光发射器 30、 40、 50。 激光发射器 30、 40、 50均发射至少一条激光束, 分别是 31、 41、 51。 激光束 31、 41、 51分别落在接收器 2、 2a、 2b的投射面板 21、 21a、 21b上, 生成三个激光光斑 32、 42、 52。 在实际测量时, 每个经纬仪优先将激光结构光投射 到距离该经纬仪较近而且未被遮挡的接收器上。 由于本实例中的接收器 20、 20a、 20b 之间的距离通常远大于接收器的尺寸, 因此获得更准确的姿态测量结果。
本实例的工作原理如下: 在实际测量之前先标定各个接收器之间的相对位姿。选 取接收器 2为主接收器,使运动物体 8固定不动, 并测量所有接收器坐标系 20、 20a、 20b相对于全局坐标系 10的六维位姿, 通过坐标变换矩阵可以获得其他两个接收器 2a、 2b上的接收器坐标系 20a、 20b相对于主接收器 2的接收器坐标系 20的相对六 维位姿。 在实际测量时, 运动物体 8开始运动, 接收器 2a将拍摄和处理获得的激光 光斑 42在本接收器坐标系 20a上的坐标值发送给接收器 20, 接收器 2b将拍摄和处 理获得的激光光斑 52在本接收器坐标系 20b上的坐标值发送给接收器 20,接收器 20 根据接收器坐标系 20a、 20b相对于接收器坐标系 20的位姿关系, 获得接收器 2a、 2b上的激光光斑 42、 52在接收器坐标系 20中的局部坐标, 然后采用第一个实例中 论述的方程组构建方法计算得到接收器坐标 20相对于全局坐标系 10的六维位姿。 需要指出的是, 虽然这里只给出了六维位姿测量设备的八个实例,但是通过对上述实 例的部件进行组合可以得到更多的实例。此外, 在上述八个实例中, 经纬仪安装在固 定地面上,接收器安装在待测运动物体上,但是也可以将经纬仪和接收器中的一种安 装在待测运动物体上, 另一种安装在固定地面上。

Claims

权 利 要 求 书
1 . 一种测量运动物体六维位姿的设备, 其特征在于: 由计算处理单元 (1 )、 至 少一个接收器和至少一个经纬仪组成; 计算处理单元与经纬仪安装在固定地面上; 接 收器安装在待测运动物体(8 )上; 经纬仪和接收器与计算处理单元(1 )通讯, 经纬 仪与接收器通过激光光路相连。
2. 按权利要求 1所述的设备, 其特征在于: 所述经纬仪具有至少一个水平转动 自由度和至少一个俯仰转动自由度; 经纬仪包含驱动装置,用以控制其水平转角和俯 仰转角; 还包含转角测量装置, 用以测量其水平转角和俯仰转角; 经纬仪上安装有至 少一个激光发射器。
3. 按权利要求 1所述的设备, 其特征在于: 所述经纬仪具有一个水平转动自由 度, 还配有控制所述水平转动自由度的驱动装置及用以测量水平转角的转角测量装 置; 经纬仪上安装有至少一个激光发射器。
4. 按权利要求 2或 3所述的设备, 其特征在于: 所述经纬仪个数为 1时, 经纬 仪上安装的激光发射器个数至少为 2。
5. 按权利要求 2所述的设备, 其特征在于: 所述每个激光发射器发射出激光结 构光, 该激光结构光是至少一条光线的激光点束, 或是至少一个条形光平面的激光线 束, 或是至少一个扇形光平面的激光线束, 或是至少一个光圆柱面的激光圆形束, 或 是上述多种不同激光结构光的组合光束。
6. 按权利要求 3所述的设备, 其特征在于: 所述每个激光发射器发射出一个扇 形光平面的激光线束。
7. 按权利要求 1所述的设备, 其特征在于: 所述接收器包括至少一块投射面板 和至少一个成像单元, 而且每个投射面板至少对应一个成像单元; 其中投射面板是光 滑的反光镜面, 或是表面粗糙的散射反光板, 或是散射透光板; 投射面板的形状选自 平面, 或是曲面, 或是多个平面的组合, 或是多个曲面的组合。
8. 按权利要求 7所述的设备, 其特征在于: 所述接收器由投射面板和成像单元 组成, 所述成像单元处于投射面板的下方、 上方或者内部, 包括成像电子装置和位于 成像电子装置与投射面板之间的成像镜头; 其中成像电子装置选自位置敏感探测器、 电荷耦合器件、 电荷注入器件、 或基于互补金属氧化物半导体的光学成像装置。
9. 按权利要求 7所述的设备, 其特征在于: 所述接收器由投射面板和成像单元 组成, 所述成像单元直接安装在投射面板表面, 包括至少一个感光测量装置, 感光测 量装置选自位置敏感探测器、 电荷耦合器件、 电荷注入器件、 或基于互补金属氧化物 半导体的光学成像装置。
10. 一种测量运动物体六维位姿的方法, 其特征在于: 通过自动跟踪控制步骤控 制经纬仪的方位角, 使经纬仪的激光发射器始终指向接收器的投射面板,激光发射器 发射激光线条或者激光平面投射在投射面板上,产生激光光斑或者激光条纹; 再通过 对经纬仪位姿的标定获得经纬仪相对于固定在地面上的全局坐标系的位姿,进一步通 过经纬仪的旋转变换矩阵获得激光发射器发射的激光线条或者激光平面在全局坐标 系中的数学方程;通过成像单元对投射面板上的激光光斑或者激光条纹进行拍摄和图 像处理, 获得激光光斑或者激光条纹在成像单元中的映像的像素坐标; 通过对成像单 元的标定方法获得成像单元上每一个像素坐标相对于接收器坐标系的位置,利用像素 坐标与接收器坐标系位置的一一对应关系获得激光光斑或者激光条纹相对于接收器 坐标系的局部坐标值;通过设定接收器坐标系相对于全局坐标系的六维位姿获得成像 单元标定得到的激光光斑或者激光条纹相对于全局坐标系中的全局坐标值;然后通过 同步触发测量步骤建立激光结构光生成的直线或者平面在全局坐标系中的数学方程 和成像单元标定得到的激光光斑或者激光条纹相对于全局坐标系的全局坐标值之间 的约束关系, 求解约束关系得出接收器坐标系相对于全局坐标系的位姿; 其中: 接收 器坐标系为 0'-ΧΎ'Ζ', 固定在接收器上, 全局坐标系为 0-XYZ, 固定在地面上。
11 . 按权利要求 10所述的方法, 其特征在于: 所述对成像单元的标定是通过外 部设备标定投射面板和成像单元相对于接收器坐标系的位置和姿态。
12. 按权利要求 10所述的方法, 其特征在于: 所述经纬仪位姿的标定采用外部 标定或是自行标定两种方式; 外部标定方法借助外部设备进行标定; 自行标定方法通 过将接收器固定、让经纬仪的转动的方式获得经纬仪相对于地面固定全局坐标系的位 姿; 具体为: 将接收器固定, 使经纬仪的水平转角和俯仰转角选取一组以上的不同数 组, 对于选取的每组数值均执行如下步骤: 固定经纬仪的转角, 经纬仪将水平转角和 俯仰角数据发送给计算处理单元,计算处理单元根据经纬仪相对于全局坐标系的位姿 以及水平转角和俯仰角数据计算出激光线条或者激光平面的数学方程;同时接收器将 拍摄获得的激光光斑相对于接收器坐标系的局部坐标值发送给计算处理单元;计算处 理单元以接收器坐标系相对于全局坐标系的六维位姿为变量,根据位姿坐标变换获得 激光光斑在全局坐标系中的函数表达式;计算处理单元根据激光光斑位于激光线条或 者结构光平面之上的约束条件,将激光光斑在全局坐标系中的函数表达式代入激光线 条或者结构光平面的数学方程, 建立以经纬仪六维位姿为未知变量的多个方程, 每次 执行上述步骤获得若干个方程,将所有转角数组对应的方程合成一个方程组,求解该 方程组获得所有经纬仪相对于地面固定全局坐标系的位姿。
13. 按权利要求 10所述的方法, 其特征在于: 所述同步触发测量的具体歩骤为: 计算处理单元发送触发信号分别给经纬仪和接收器,经纬仪将触发时刻的水平转角和 俯仰角数据发送给计算处理单元,计算处理单元根据经纬仪相对于全局坐标系的位姿 以及水平转角和俯仰角数据计算出激光线条或者结构光平面的数学方程;同时接收器 将触发时刻计算获得的激光光斑相对于接收器坐标系的局部坐标值发送给计算处理 单元; 计算处理单元以接收器坐标系相对于全局坐标系的六维位姿为变量,根据坐标 变换获得激光光斑在全局坐标系中的函数表达式;计算处理单元根据激光光斑位于激 光线条或者结构光平面之上的约束条件,将激光光斑在全局坐标系中的函数表达式代 入激光线条或者结构光平面的数学方程,建立以接收器坐标系六维位姿为未知变量的 方程组, 求解该方程组获得接收器坐标系相对于全局坐标系的三维位置和三维姿态
14. 按权利要求 10所述的方法, 其特征在于: 所述自动跟踪控制的实现步骤具 体为: 由计算处理单元根据接收器的当前位姿和之前位姿计算接收器的运动速度,根 据接收器的运动速度推测下一采样时刻接收器将到达的位姿,计算出经纬仪需要到达 的新转角位置, 并将新转角指令发送给相应的经纬仪, 经纬仪根据新转角指令控制其 水平转角和俯仰转角至需要到达的新转角位置。
PCT/CN2008/073165 2008-11-14 2008-11-24 一种测量运动物体六维位姿的设备和方法 WO2010054519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810228799.4 2008-11-14
CN2008102287994A CN101738161B (zh) 2008-11-14 2008-11-14 一种测量运动物体六维位姿的设备和方法

Publications (1)

Publication Number Publication Date
WO2010054519A1 true WO2010054519A1 (zh) 2010-05-20

Family

ID=42169596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073165 WO2010054519A1 (zh) 2008-11-14 2008-11-24 一种测量运动物体六维位姿的设备和方法

Country Status (2)

Country Link
CN (1) CN101738161B (zh)
WO (1) WO2010054519A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168965A (zh) * 2010-12-21 2011-08-31 北京信息科技大学 螺旋曲面的轮廓度误差获取方法及装置
CN108981719A (zh) * 2018-10-12 2018-12-11 中国空气动力研究与发展中心超高速空气动力研究所 一种超高速飞行模型位姿变化测量装置及方法
CN109520418A (zh) * 2018-11-27 2019-03-26 华南农业大学 一种基于二维激光扫描仪的托盘位姿识别方法
WO2019133599A1 (en) * 2017-12-28 2019-07-04 Topcon Positioning Systems, Inc. Vision laser receiver
CN110455277A (zh) * 2019-08-19 2019-11-15 哈尔滨工业大学 基于物联网数据融合的高精度姿态测量装置与方法
CN112362028A (zh) * 2020-09-25 2021-02-12 南京信息职业技术学院 四簧平面位移式倾仰角测试器及测试方法
CN112595231A (zh) * 2020-12-10 2021-04-02 上海镭隆科技发展有限公司 一种基于智能图像识别二维随动系统动态监测装置及方法
CN112683163A (zh) * 2020-12-03 2021-04-20 中国科学院光电技术研究所 一种适用于视觉测量相机的绝对位姿测量精度评估方法
CN112710984A (zh) * 2020-12-11 2021-04-27 中国人民解放军海军航空大学 一种基于同伦延拓的无源定位方法及系统
CN113225447A (zh) * 2021-04-14 2021-08-06 杭州思看科技有限公司 三维扫描系统、数据处理方法、装置和计算机设备
CN113865539A (zh) * 2021-10-11 2021-12-31 李志伟 一种用于机构偏角及转动副间隙免拆测量的测量方法
CN113959987A (zh) * 2021-09-27 2022-01-21 湖南国天电子科技有限公司 一种机场能见度圆周运动测量方法及装置
CN114166115A (zh) * 2021-10-28 2022-03-11 北京控制工程研究所 一种试验场高精度实时定姿、定位系统及方法
EP3881153A4 (en) * 2018-11-14 2022-08-10 Fastbrick IP Pty Ltd POSITION AND ORIENTATION TRACKING SYSTEM
CN115946151A (zh) * 2023-01-09 2023-04-11 佛山市南海区质量技术监督检测所 一种工业机器人末端抖动程度测量装置及其测量方法
US11958193B2 (en) 2017-08-17 2024-04-16 Fastbrick Ip Pty Ltd Communication system for an interaction system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410836B (zh) 2011-07-26 2014-01-29 清华大学 基于二维位置敏感传感器的空间六自由度物体定位系统
CN102435140B (zh) * 2011-09-26 2013-06-05 上海大学 一种激光跟踪仪构建地理坐标系的方法
EP2847541B1 (de) * 2012-08-07 2016-05-18 Carl Zeiss Industrielle Messtechnik GmbH KOORDINATENMESSGERÄT MIT WEIßLICHTSENSOR
CN103292697B (zh) * 2013-05-27 2016-02-03 深圳先进技术研究院 一种三维扫描系统
CN103363902B (zh) * 2013-07-16 2016-03-30 清华大学 基于红外激光的粉尘环境中运动目标位姿检测装置及方法
CN104390633B (zh) * 2014-12-10 2016-08-24 四川航天计量测试研究所 一种非接触式机构空间运动测量装置及实现方法
CN106482670A (zh) * 2016-12-09 2017-03-08 中国科学院长春光学精密机械与物理研究所 一种三维角度测量系统
CN106767737A (zh) * 2017-03-02 2017-05-31 深圳前海极客船长网络科技有限公司 基于虚拟现实技术的靶标姿态测量系统及其测量方法
CN108089196B (zh) * 2017-12-14 2021-11-19 中国科学院光电技术研究所 一种光学主被动融合的非合作目标位姿测量装置
CN109373906B (zh) * 2018-09-05 2020-07-28 三英精控(天津)仪器设备有限公司 一种同时测量距离、仰俯和偏摆的方法
CN109405635B (zh) * 2018-09-17 2020-10-30 南京理工大学 相机光轴竖直正交的阴影照相站校准系统及其调试方法
CN111288891B (zh) * 2020-02-11 2021-08-31 广东博智林机器人有限公司 非接触式三维测量定位系统、方法及存储介质
CN112066859A (zh) * 2020-09-11 2020-12-11 广东博智林机器人有限公司 光斑位置的检测方法及光斑位置检测系统
CN112797956B (zh) * 2020-12-04 2022-08-26 上海理工大学 一种基于计算机视觉的光路反射机构运动测量方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771099A (en) * 1994-06-22 1998-06-23 Leica Ag Optical device for determining the location of a reflective target
CN1240270A (zh) * 1999-07-02 2000-01-05 清华大学 目标空间位置及姿态激光跟踪测量系统及其测量方法
CN2392165Y (zh) * 1999-09-30 2000-08-16 苏州一光仪器有限公司 激光经纬仪
US6384902B1 (en) * 1999-01-27 2002-05-07 Leica Geosystems Ag Surveying apparatus comprising a height measuring device
US6708414B2 (en) * 2000-04-05 2004-03-23 Joseph De Witt Clinton Apparatus for converting an optical theodolite into a laser theodolite
CN2837782Y (zh) * 2005-08-22 2006-11-15 仲阳企业有限公司 具有激光测量功能的经纬仪
CN101227235A (zh) * 2008-01-22 2008-07-23 长春理工大学 机载激光通信系统捕获模拟装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049377A (en) * 1996-08-16 2000-04-11 Cam C. Lau Five-axis/six-axis laser measuring system
JP5016245B2 (ja) * 2005-03-29 2012-09-05 ライカ・ゲオジステームス・アクチェンゲゼルシャフト 物体の六つの自由度を求めるための測定システム
CN100412503C (zh) * 2005-09-30 2008-08-20 中国海洋大学 多视角激光测头及其标定方法
CN100447528C (zh) * 2006-05-31 2008-12-31 中国科学院沈阳自动化研究所 位姿测量平面传感器
CN201285280Y (zh) * 2008-11-14 2009-08-05 中国科学院沈阳自动化研究所 一种测量运动物体六维位姿的设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771099A (en) * 1994-06-22 1998-06-23 Leica Ag Optical device for determining the location of a reflective target
US6384902B1 (en) * 1999-01-27 2002-05-07 Leica Geosystems Ag Surveying apparatus comprising a height measuring device
CN1240270A (zh) * 1999-07-02 2000-01-05 清华大学 目标空间位置及姿态激光跟踪测量系统及其测量方法
CN2392165Y (zh) * 1999-09-30 2000-08-16 苏州一光仪器有限公司 激光经纬仪
US6708414B2 (en) * 2000-04-05 2004-03-23 Joseph De Witt Clinton Apparatus for converting an optical theodolite into a laser theodolite
CN2837782Y (zh) * 2005-08-22 2006-11-15 仲阳企业有限公司 具有激光测量功能的经纬仪
CN101227235A (zh) * 2008-01-22 2008-07-23 长春理工大学 机载激光通信系统捕获模拟装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168965A (zh) * 2010-12-21 2011-08-31 北京信息科技大学 螺旋曲面的轮廓度误差获取方法及装置
US11958193B2 (en) 2017-08-17 2024-04-16 Fastbrick Ip Pty Ltd Communication system for an interaction system
WO2019133599A1 (en) * 2017-12-28 2019-07-04 Topcon Positioning Systems, Inc. Vision laser receiver
US10928196B2 (en) 2017-12-28 2021-02-23 Topcon Positioning Systems, Inc. Vision laser receiver
CN108981719A (zh) * 2018-10-12 2018-12-11 中国空气动力研究与发展中心超高速空气动力研究所 一种超高速飞行模型位姿变化测量装置及方法
CN108981719B (zh) * 2018-10-12 2024-03-01 中国空气动力研究与发展中心超高速空气动力研究所 一种超高速飞行模型位姿变化测量装置及方法
EP3881153A4 (en) * 2018-11-14 2022-08-10 Fastbrick IP Pty Ltd POSITION AND ORIENTATION TRACKING SYSTEM
US11951616B2 (en) 2018-11-14 2024-04-09 Fastbrick Ip Pty Ltd Position and orientation tracking system
CN109520418A (zh) * 2018-11-27 2019-03-26 华南农业大学 一种基于二维激光扫描仪的托盘位姿识别方法
CN110455277A (zh) * 2019-08-19 2019-11-15 哈尔滨工业大学 基于物联网数据融合的高精度姿态测量装置与方法
CN112362028A (zh) * 2020-09-25 2021-02-12 南京信息职业技术学院 四簧平面位移式倾仰角测试器及测试方法
CN112362028B (zh) * 2020-09-25 2022-08-30 南京信息职业技术学院 四簧平面位移式倾仰角测试器及测试方法
CN112683163A (zh) * 2020-12-03 2021-04-20 中国科学院光电技术研究所 一种适用于视觉测量相机的绝对位姿测量精度评估方法
CN112683163B (zh) * 2020-12-03 2022-06-28 中国科学院光电技术研究所 一种适用于视觉测量相机的绝对位姿测量精度评估方法
CN112595231A (zh) * 2020-12-10 2021-04-02 上海镭隆科技发展有限公司 一种基于智能图像识别二维随动系统动态监测装置及方法
CN112710984A (zh) * 2020-12-11 2021-04-27 中国人民解放军海军航空大学 一种基于同伦延拓的无源定位方法及系统
CN113225447A (zh) * 2021-04-14 2021-08-06 杭州思看科技有限公司 三维扫描系统、数据处理方法、装置和计算机设备
CN113225447B (zh) * 2021-04-14 2024-03-26 思看科技(杭州)股份有限公司 三维扫描系统、数据处理方法、装置和计算机设备
CN113959987A (zh) * 2021-09-27 2022-01-21 湖南国天电子科技有限公司 一种机场能见度圆周运动测量方法及装置
CN113959987B (zh) * 2021-09-27 2023-08-29 湖南国天电子科技有限公司 一种机场能见度圆周运动测量方法及装置
CN113865539B (zh) * 2021-10-11 2024-03-19 李志伟 一种用于机构偏角及转动副间隙免拆测量的测量方法
CN113865539A (zh) * 2021-10-11 2021-12-31 李志伟 一种用于机构偏角及转动副间隙免拆测量的测量方法
CN114166115B (zh) * 2021-10-28 2023-12-29 北京控制工程研究所 一种试验场高精度实时定姿、定位系统及方法
CN114166115A (zh) * 2021-10-28 2022-03-11 北京控制工程研究所 一种试验场高精度实时定姿、定位系统及方法
CN115946151B (zh) * 2023-01-09 2023-09-22 佛山市南海区质量技术监督检测所 一种工业机器人末端抖动程度测量装置及其测量方法
CN115946151A (zh) * 2023-01-09 2023-04-11 佛山市南海区质量技术监督检测所 一种工业机器人末端抖动程度测量装置及其测量方法

Also Published As

Publication number Publication date
CN101738161B (zh) 2012-11-07
CN101738161A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2010054519A1 (zh) 一种测量运动物体六维位姿的设备和方法
WO2010069160A1 (zh) 一种测量物体六维位姿的装置
US9146094B2 (en) Automatic measurement of dimensional data with a laser tracker
US9417317B2 (en) Three-dimensional measurement device having three-dimensional overview camera
JP7139052B2 (ja) 測量システム
US11402506B2 (en) Laser measuring method and laser measuring instrument
US20180135969A1 (en) System for measuring the position and movement of an object
US20150253124A1 (en) Automatic measurement of dimensional data within an acceptance region by a laser tracker
JP2016151423A (ja) 姿勢検出装置及びデータ取得装置
CN103477185A (zh) 用于确定对象表面的3d坐标的测量系统
CN104296655B (zh) 一种激光跟踪仪像旋公式初始角的标定方法
JP2019056571A (ja) 測量システム
JP2022171677A (ja) 画像取込デバイスを用いて測定ポイントを探し出すデバイス及び方法
CN112857212B (zh) 一种大型结构多点位移和转动响应同步监测系统及其数据分析方法
JP7085888B2 (ja) 測量システム
JP2018527575A5 (zh)
CN201285280Y (zh) 一种测量运动物体六维位姿的设备
CN115902816A (zh) 一种用于工程测量的自动测量系统
US11754677B2 (en) Measurement device
WO2022259538A1 (ja) 位置測定装置、位置測定システム、及び測定装置
JP2022503702A (ja) 高速lidarおよび測位アプリケーションの適応性のある方法および機構
Sherman et al. Stereo optical tracker for standoff monitoring of position and orientation
TW201740081A (zh) 具備高機動性的夜間機動地形掃瞄裝置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878079

Country of ref document: EP

Kind code of ref document: A1