WO2010053197A1 - Porous light-accumulating phosphor ceramic - Google Patents

Porous light-accumulating phosphor ceramic Download PDF

Info

Publication number
WO2010053197A1
WO2010053197A1 PCT/JP2009/069123 JP2009069123W WO2010053197A1 WO 2010053197 A1 WO2010053197 A1 WO 2010053197A1 JP 2009069123 W JP2009069123 W JP 2009069123W WO 2010053197 A1 WO2010053197 A1 WO 2010053197A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorescent phosphor
phosphorescent
porous
volume
ceramic
Prior art date
Application number
PCT/JP2009/069123
Other languages
French (fr)
Japanese (ja)
Inventor
木村裕司
高井康
川添博文
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2010536820A priority Critical patent/JP5551079B2/en
Publication of WO2010053197A1 publication Critical patent/WO2010053197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7407Chalcogenides
    • C09K11/7421Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/807Luminescent or fluorescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Definitions

  • the present invention relates to porous phosphorescent phosphor ceramics that can be used for evacuation route display boards, auxiliary lighting, signs, tiles, and the like, and a method for manufacturing the same.
  • Phosphorescent phosphors are usually sold as powders, and it is common to produce molded bodies and display boards by kneading them into transparent resins or dispersing them in paints (for example, Patent Documents 1 and 2). Etc.).
  • Patent Documents 5 and 6 JP-A-8-129351 JP-A-9-146482 JP 2000-319832 A JP-A-10-101371 JP-A-2005-105116, paragraph 0017, etc. JP-A-11-181420, paragraphs 0004, 0010, etc.
  • An object of the present invention is to obtain a ceramic sintered body having a high afterglow luminance that can effectively utilize a phosphor in a deep part in view of the above-described present situation.
  • the present invention is a ceramic containing a phosphorescent phosphor, preferably a ceramic consisting essentially of a phosphorescent phosphor, and the structure thereof is a porous body.
  • the afterglow luminance was several times that of the conventional product, and that fluorescence was emitted to the deep part of the sintered body, resulting in the present invention.
  • the gist of the present invention is a product comprising a ceramic containing a phosphorescent phosphor, preferably a ceramic consisting essentially of phosphorescent phosphor, and having a porous structure, and a method for producing the same.
  • the porous phosphorescent ceramic according to the present invention includes a phosphorescent phosphor, and preferably consists essentially of a phosphorescent phosphor, and has a porosity of 20% by volume or more and less than 80% by volume.
  • the method for producing a porous phosphorescent phosphor ceramic according to the present invention comprises granulating, forming, and reaction sintering a raw material mixture of phosphorescent phosphors.
  • the method for producing porous phosphorescent phosphor ceramics according to the present invention comprises granulating, molding and reaction sintering the phosphorescent phosphor.
  • a ceramic containing a phosphorescent phosphor preferably a ceramic consisting essentially of a phosphorescent phosphor, and having a porous structure, it exhibits an afterglow luminance several times that of a conventional phosphorescent product. Products can be obtained and their utility value is extremely high.
  • the phosphorescent phosphor as referred to in the present invention is a commercially available product that uses zinc sulfide or an alkaline earth metal aluminate as a crystal matrix, but has a long afterglow that can be made into ceramics containing phosphorescent phosphors by sintering. Long-lasting phosphors that can be applied to any ceramic and can be made into a ceramic consisting essentially of phosphorescent phosphors by sintering can be suitably used.
  • Essentially composed of phosphorescent phosphor means that in addition to the phosphorescent phosphor composition component, it may contain a flux component that is a reaction accelerator that may be added in a small amount during phosphor synthesis. It means that. Hereinafter, the same meaning is also expressed when expressing “innocent”.
  • the phosphorescent substance substantially contains 80 to 100 mol%, preferably 90 to 100 mol% of the phosphor component in the composition.
  • M is at least one element of Sr, Ca, Ba, and Mg, and MAl 2 O 4 : Eu, Dy, M 4 Al 14 O 25 : Eu, Dy, Sr 3 MgSi 2.
  • the porosity of the porous phosphorescent phosphor ceramic according to the present invention is preferably 20% or more and less than 80%. If it is less than 20%, the improvement in afterglow strength is insufficient, and if it is 80% or more, the ceramic strength is weak. Hateful. For the same reason, the content is more preferably 30% or more and less than 70%.
  • the porous phosphorescent phosphor ceramic according to the present invention is preferably a solid sintered body.
  • the structure is a connected structure, so that the scattering and concealment of excitation light, which is noticeable in powder-dispersed products, is reduced and penetration into the deep part becomes easy. Based on the same reason, it is considered that the generated afterglow easily reaches the outside from the deep part, which leads to the improvement of the afterglow intensity.
  • the production method of the porous phosphorescent phosphor ceramic according to the present invention is not particularly limited, but as one method, the phosphor powder raw material powder mixture (addition of a small amount of flux components makes the reaction progress uniformly and the afterglow characteristics are improved. Hereinafter, the phosphor powder is simply made into coarse particles by granulation.
  • stirring granulation As a granulation method, stirring granulation; compression granulation in which powder is filled in a cylinder and compression-molded with a piston or the like; slurry containing the raw material powder mixture or the phosphorescent phosphor powder and a solvent such as water is air or the like
  • Conventionally known methods such as spray-drying granulation for spraying, drying and granulating in a countercurrent or co-current airflow can be adopted, and in particular, the viewpoint of uniformity of particle size, good yield, etc.
  • Spray drying granulation can be suitably employed.
  • the binder may be added if necessary, and is not particularly limited.
  • conventionally known ones such as paraffin wax; acrylic resin; PVA; cellulose resin such as ethyl cellulose, methyl cellulose, carboxymethyl cellulose [CMC] can be used.
  • a solution or a powder may be used, but in spray-drying granulation, a solution is desirable.
  • the average particle size of the granulated powder is preferably 50 ⁇ m or more and less than 10 mm. If it is less than 50 ⁇ m, the porosity is low, and if it is 10 mm or more, the strength of the molded body or sintered body is weak, and handling is difficult. More preferably, it is 50 to 500 ⁇ m. A sharper particle size distribution of the granulated powder is preferable because the porosity can be easily increased.
  • the average particle diameter is a value obtained by measurement by a laser diffraction method.
  • the pores can be formed by sintering at about 800 ° C. to 1500 ° C. in a weakly reducing gas atmosphere such as.
  • a more preferable lower limit of the molding pressure is 50 g / cm 2
  • a more preferable upper limit is 500 g / cm 2 .
  • molding and reaction sintering of raw material mixture granulated powder is more preferable and cost-effective than molding and sintering phosphorescent phosphor granulated powder because the strength of ceramics tends to be higher. Is also advantageous.
  • the raw powder mixture or phosphorescent phosphor powder is mixed with carbon decomposable particles such as carbon particles, organic matter, and ice particles that disappear upon firing or drying, and then molded, and then heated and dried to heat.
  • the porous phosphorous storage according to the present invention can also be formed by forming a cavity in the place where the decomposable coarse particles were present and then sintering at a temperature of about 800 to 1500 ° C. in a reducing gas atmosphere to such an extent that the cavity does not collapse Phosphor ceramics can be manufactured.
  • various conventionally known methods for producing porous ceramics can be applied.
  • porous phosphorescent phosphor ceramic of the present invention may be impregnated or coated with a transparent resin material or a glassy glaze for the purpose of surface protection.
  • Example 1 4L of 1% carboxymethylcellulose [CMC] aqueous solution (viscosity 120 mPa ⁇ s (20 ° C)) was added to 615 g of alumina, 890 g of carbonic acid Sr 890 g, oxidized Dy 22 g, oxidized Eu 11 g, and boric acid 30 g.
  • the raw material mixture granulated powder was obtained by spray drying in a countercurrent airflow, and the average particle size of the granulated powder measured by laser diffraction method was 110 ⁇ m.
  • the obtained ceramic was irradiated with 5000 Lx D65 standard light for 10 minutes, and the afterglow luminance after 60 minutes was measured with a luminance meter (LS-100, manufactured by Konica Minolta Co., Ltd.).
  • Example 2 1300 g of a commercially available phosphorescent phosphor powder [median diameter D50: 15.2 ⁇ m (manufactured by Nemotomi Material Co., GLL300F)] 3 L of 1% CMC aqueous solution (supra) is added to the ball mill, and this is mixed with air at 200 ° C. A phosphorescent granulated powder was obtained by spray drying in an air stream. The average particle diameter of the luminous phosphor granulated powder was 130 ⁇ m. 5 g of this was molded into a tablet at a rate of 0.1 kg / cm 2 using a 30 mm ⁇ mold, placed on an alumina plate, and fired at 700 ° C.
  • Example 3 1300 g of a commercially available phosphorescent phosphor powder [median diameter D50: 15.2 ⁇ m (manufactured by Nemotomi Material Co., GLL300F)] 3 L of 1% CMC aqueous solution (supra) is added to the ball mill, and this is mixed with air at 200 ° C. A phosphorescent granulated powder was obtained by spray drying in an air stream. The average particle diameter of the luminous phosphor granulated powder was 130 ⁇ m.
  • Comparative Example 2 5 g of commercially available phosphorescent phosphor powder (GLL300F manufactured by Nemotomi Material) was molded into a tablet shape with a weak pressure of 0.1 kg / cm 2 using a 30 mm ⁇ mold, placed on an alumina plate, and 3 Sintering was performed for a time (under a nitrogen atmosphere) to obtain phosphorescent phosphor ceramics. The porosity of the obtained ceramic was 12%.
  • luminance was measured like Example 1, when the brightness
  • Example 3 A phosphorescent phosphor ceramic was obtained in the same manner as in Example 1 except that the pressure at the time of molding was 10 kg / cm 2 . The porosity of the obtained ceramic was 13%.
  • luminance was measured like Example 1, when the brightness

Abstract

A ceramic sintered body having high afterglow luminance, wherein a phosphor in a deep portion can be effectively used. Specifically disclosed is a porous light-accumulating phosphor ceramic which is essentially composed of a light-accumulating phosphor and has a porosity of 20% by volume or greater but less than 80% by volume.

Description

多孔質蓄光蛍光体セラミックスPorous phosphorescent phosphor ceramics
 本発明は、避難経路表示板や補助照明,サイン,タイル等に使用することのできる多孔質蓄光蛍光体セラミックスとその製造方法に関するものである。 The present invention relates to porous phosphorescent phosphor ceramics that can be used for evacuation route display boards, auxiliary lighting, signs, tiles, and the like, and a method for manufacturing the same.
 近年、蓄光蛍光体は災害時の対策として、地下鉄構内や高層ビルなどの避難経路表示等で需要が増加しつつある。蓄光蛍光体は通常粉体として販売されており、これを透明樹脂に練り込んだり、塗料に分散させたりして成形体や表示板を製造するのが普通である(例えば、特許文献1、2等を参照)。 In recent years, the demand for phosphorescent phosphors has been increasing as a measure against disasters by displaying evacuation routes in subway premises and high-rise buildings. Phosphorescent phosphors are usually sold as powders, and it is common to produce molded bodies and display boards by kneading them into transparent resins or dispersing them in paints (for example, Patent Documents 1 and 2). Etc.).
 また、特殊な例としては、蓄光蛍光体粉をガラス粉(フリット)と混合して数百℃でガラスを溶融して複合セラミックス体とし、耐候性や輝度を改善する方法も提案されている(例えば、特許文献3、4等を参照)。 As a special example, a method of improving the weather resistance and luminance by mixing phosphorescent phosphor powder with glass powder (frit) and melting the glass at several hundred degrees C to form a composite ceramic body has been proposed ( For example, see Patent Documents 3 and 4).
 更に、装飾品として無垢の緻密な蓄光蛍光体セラミックスを得る試みもある(例えば、特許文献5、6等を参照)。
特開平8-129351号公報 特開平9-146482号公報 特開2000-319832号公報 特開平10-101371号公報 特開2005-105116号公報、段落0017等 特開平11-181420号公報、段落0004、0010等
Furthermore, there is an attempt to obtain an innocent and dense phosphorescent phosphor ceramic as a decorative product (see, for example, Patent Documents 5 and 6).
JP-A-8-129351 JP-A-9-146482 JP 2000-319832 A JP-A-10-101371 JP-A-2005-105116, paragraph 0017, etc. JP-A-11-181420, paragraphs 0004, 0010, etc.
 しかしながら、これらの製品は製造工程が長く、高価な割にコストに見合った残光輝度が得られていないのが現状である。
 粉体を樹脂などの媒体に分散した製品は粒子表面での励起光の散乱損失が起こりやすく隠蔽性が強い為、深部の蛍光体は励起されずに無駄になることが主な原因である。緻密質の焼結体であれば、散乱損失が起きにくいために残光輝度は向上するが、緻密であるが故に、表面付近での励起光の吸収も強く、やはり深部の蛍光体が有効に活用されないという問題が残る。
 本発明は、上記現状に鑑み、深部の蛍光体を有効に活用することができる残光輝度が高いセラミックス焼結体を得ることを目的とする。
However, these products have a long manufacturing process, and at present, afterglow luminance corresponding to the cost is not obtained although it is expensive.
A product in which powder is dispersed in a medium such as a resin is likely to cause a scattering loss of excitation light on the particle surface and has a strong concealing property. In the case of a dense sintered body, the afterglow brightness is improved because scattering loss is less likely to occur, but because of the denseness, the absorption of excitation light near the surface is strong, and the deep phosphor is also effective. The problem of not being utilized remains.
An object of the present invention is to obtain a ceramic sintered body having a high afterglow luminance that can effectively utilize a phosphor in a deep part in view of the above-described present situation.
 本発明者等は上記問題を解決するために、輝度の向上を鋭意検討した結果、蓄光蛍光体を含むセラミックス、好ましくは本質的に蓄光蛍光体からなるセラミックスで、なおかつその構造を多孔質体とした場合に、従来製品の数倍の残光輝度を示し、焼結体深部まで蛍光を発することを見出し、本発明に至った。 In order to solve the above problems, the inventors of the present invention have intensively studied the improvement of luminance. As a result, the present invention is a ceramic containing a phosphorescent phosphor, preferably a ceramic consisting essentially of a phosphorescent phosphor, and the structure thereof is a porous body. In this case, it was found that the afterglow luminance was several times that of the conventional product, and that fluorescence was emitted to the deep part of the sintered body, resulting in the present invention.
 本発明の要旨は、蓄光蛍光体を含むセラミックス、好ましくは本質的に蓄光蛍光体からなるセラミックスで、なおかつその構造を多孔質体とした製品とその製造方法である。
 本発明にかかる多孔質蓄光蛍光体セラミックスは、蓄光蛍光体を含み、好ましくは本質的に蓄光蛍光体からなり、気孔率が20体積%以上、80体積%未満であるものである。
 本発明にかかる多孔質蓄光蛍光体セラミックスの製造方法は、蓄光蛍光体の原料混合物を造粒し、成形し、反応焼結することよりなる。
 本発明にかかる多孔質蓄光蛍光体セラミックスの製造方法は、蓄光蛍光体を造粒し、成形し、反応焼結することよりなる。
The gist of the present invention is a product comprising a ceramic containing a phosphorescent phosphor, preferably a ceramic consisting essentially of phosphorescent phosphor, and having a porous structure, and a method for producing the same.
The porous phosphorescent ceramic according to the present invention includes a phosphorescent phosphor, and preferably consists essentially of a phosphorescent phosphor, and has a porosity of 20% by volume or more and less than 80% by volume.
The method for producing a porous phosphorescent phosphor ceramic according to the present invention comprises granulating, forming, and reaction sintering a raw material mixture of phosphorescent phosphors.
The method for producing porous phosphorescent phosphor ceramics according to the present invention comprises granulating, molding and reaction sintering the phosphorescent phosphor.
 本発明によれば、蓄光蛍光体を含むセラミックス、好ましくは本質的に蓄光蛍光体からなるセラミックスで、なおかつその構造を多孔質体とした場合に、従来蓄光製品の数倍の残光輝度を示す製品を得ることができ、その利用価値は極めて高い。 According to the present invention, when a ceramic containing a phosphorescent phosphor, preferably a ceramic consisting essentially of a phosphorescent phosphor, and having a porous structure, it exhibits an afterglow luminance several times that of a conventional phosphorescent product. Products can be obtained and their utility value is extremely high.
 以下、本発明を詳細に説明する。
 本発明で言う蓄光蛍光体とは、市販品として硫化亜鉛やアルカリ土類金属のアルミン酸塩を結晶母体とするものがポピュラーであるが、焼結によって蓄光蛍光体を含むセラミックスにできる長残光性蛍光体であれば全て適用可能であり、焼結によって本質的に蓄光蛍光体からなるセラミックスにできる長残光性蛍光体を好適に用いることができる。「本質的に蓄光蛍光体からなる」とは、蓄光蛍光体組成成分のみであることに加えて、これに、蛍光体の合成時に少量加えることのある、反応促進剤であるフラックス成分を含みうるということを意味する。以降、「無垢の」と表現する場合も同様の意味を表す。
 実質的に蓄光蛍光体は組成中に80モル%~100モル%、好ましくは90~100モル%の蛍光体成分を含むものである。
 かかる蓄光蛍光体としては、MがSr、Ca、Ba、Mgのうち少なくともいずれか1つの元素で、MAl:Eu,Dy、MAl1425:Eu,Dy、SrMgSi:Eu,Dy,Cl、YS:Eu,Mg,Ti、ZnS:Cu、(Ca,Sr)S:Bi、(Zn,Cd)S:Cuなどが具体例として挙げられるが、これらに限定されるものではない。また、残部は、反応促進剤であり、具体的には、酸化ホウ素、NHCl、KPO、NaClやCaCl等が挙げられるが、アルミン酸塩の場合には、酸化ホウ素を用いることが好ましい。
 現状では、最も残光輝度が高く耐候性にも優れるアルカリ土類金属のアルミン酸塩が実用的で好ましい。アルカリ土類金属のアルミン酸塩は、特許第2543825号,特許第3232548号などに例示されているが、これらの文献においては粉体での蛍光を利用するに留まっている。
Hereinafter, the present invention will be described in detail.
The phosphorescent phosphor as referred to in the present invention is a commercially available product that uses zinc sulfide or an alkaline earth metal aluminate as a crystal matrix, but has a long afterglow that can be made into ceramics containing phosphorescent phosphors by sintering. Long-lasting phosphors that can be applied to any ceramic and can be made into a ceramic consisting essentially of phosphorescent phosphors by sintering can be suitably used. “Essentially composed of phosphorescent phosphor” means that in addition to the phosphorescent phosphor composition component, it may contain a flux component that is a reaction accelerator that may be added in a small amount during phosphor synthesis. It means that. Hereinafter, the same meaning is also expressed when expressing “innocent”.
The phosphorescent substance substantially contains 80 to 100 mol%, preferably 90 to 100 mol% of the phosphor component in the composition.
As such a phosphorescent phosphor, M is at least one element of Sr, Ca, Ba, and Mg, and MAl 2 O 4 : Eu, Dy, M 4 Al 14 O 25 : Eu, Dy, Sr 3 MgSi 2. Specific examples include O 8 : Eu, Dy, Cl, Y 2 O 2 S: Eu, Mg, Ti, ZnS: Cu, (Ca, Sr) S: Bi, (Zn, Cd) S: Cu, and the like. However, it is not limited to these. The balance is a reaction accelerator. Specifically, boron oxide, NH 4 Cl, K 3 PO 4 , NaCl, CaCl 2 and the like can be mentioned. In the case of aluminate, boron oxide is used. It is preferable.
At present, an alkaline earth metal aluminate having the highest afterglow brightness and excellent weather resistance is practical and preferred. Alkali earth metal aluminates are exemplified in Japanese Patent No. 2543825, Japanese Patent No. 3323548, etc., but in these documents, only fluorescence in powder is used.
 本発明にかかる多孔質蓄光蛍光体セラミックスの気孔率は、20%以上、80%未満が好ましく、20%未満では残光強度の向上が不充分で、80%以上ではセラミックスの強度が弱く、取り扱いにくい。同様の理由で、より好ましくは30%以上、70%未満であるとよい。蓄光蛍光体セラミックスの気孔率を上記範囲のように高くすることで、セラミックス深部への励起光の到達を容易とすることができる。
気孔率 の測定方法
 被測定物焼結体を樹脂中に包埋し、これを研磨して電子顕微鏡で観察し、画像解析により一定範囲内(面積(S1))の気孔部分の面積(S2)を求める。これらの値を用いて、気孔率(P)は、次の式で計算される。
P=S2/S1
The porosity of the porous phosphorescent phosphor ceramic according to the present invention is preferably 20% or more and less than 80%. If it is less than 20%, the improvement in afterglow strength is insufficient, and if it is 80% or more, the ceramic strength is weak. Hateful. For the same reason, the content is more preferably 30% or more and less than 70%. By increasing the porosity of the phosphorescent phosphor ceramic as in the above range, it is possible to easily reach the excitation light to the deep part of the ceramic.
Porosity Measurement Method Sintered object to be measured is embedded in a resin, polished and observed with an electron microscope, and the area of the pore portion within a certain range (area (S1)) (S2) by image analysis Ask for. Using these values, the porosity (P) is calculated by the following equation.
P = S2 / S1
 本発明にかかる多孔質蓄光蛍光体セラミックスは、無垢の焼結体であることが好ましい。無垢の焼結体とすると組織が連結構造となっているので、粉体分散品に顕著に見られる励起光の散乱・隠蔽が低減し深部への浸透が容易になる。同様の理屈で、発生した残光が深部から外部へ届きやすいことも残光強度の向上につながっていると考えられる。 The porous phosphorescent phosphor ceramic according to the present invention is preferably a solid sintered body. When a solid sintered body is used, the structure is a connected structure, so that the scattering and concealment of excitation light, which is noticeable in powder-dispersed products, is reduced and penetration into the deep part becomes easy. Based on the same reason, it is considered that the generated afterglow easily reaches the outside from the deep part, which leads to the improvement of the afterglow intensity.
 本発明にかかる多孔質蓄光蛍光体セラミックスの製造方法は特に限定されないが、1つの方法として、蓄光蛍光体の原料粉末混合物(少量のフラックス成分を添加すると反応が均一に進み、残光特性が向上する。以下、単に「原料粉末混合物」という)もしくは蓄光蛍光体粉末を造粒によって粗大粒子とする。 The production method of the porous phosphorescent phosphor ceramic according to the present invention is not particularly limited, but as one method, the phosphor powder raw material powder mixture (addition of a small amount of flux components makes the reaction progress uniformly and the afterglow characteristics are improved. Hereinafter, the phosphor powder is simply made into coarse particles by granulation.
 造粒方法としては、撹拌造粒;シリンダの中に粉体を充填しピストン等で圧縮成形する圧縮造粒;前記原料粉末混合物もしくは前記蓄光蛍光体粉末と水などの溶媒を含むスラリーを空気等の向流または並流気流中に噴霧、乾燥し、造粒を行う噴霧乾燥造粒等の従来公知の方法を採用することができるが、なかでも粒径の均一度、歩留まりの良さなどの観点から噴霧乾燥造粒を好適に採用することができる。 As a granulation method, stirring granulation; compression granulation in which powder is filled in a cylinder and compression-molded with a piston or the like; slurry containing the raw material powder mixture or the phosphorescent phosphor powder and a solvent such as water is air or the like Conventionally known methods such as spray-drying granulation for spraying, drying and granulating in a countercurrent or co-current airflow can be adopted, and in particular, the viewpoint of uniformity of particle size, good yield, etc. Spray drying granulation can be suitably employed.
 バインダーは必要により添加してもよく、特に限定されないが、例えば、パラフィンワックス;アクリル樹脂;PVA;エチルセルロース、メチルセルロース、カルボキシメチルセルロース[CMC]等のセルロース樹脂等従来公知のものを採用することができる。
 バインダーの提供形態としては、溶液、粉末いずれであってもよいが、噴霧乾燥造粒においては、溶液とすることが望ましい。
The binder may be added if necessary, and is not particularly limited. For example, conventionally known ones such as paraffin wax; acrylic resin; PVA; cellulose resin such as ethyl cellulose, methyl cellulose, carboxymethyl cellulose [CMC] can be used.
As a form of providing the binder, either a solution or a powder may be used, but in spray-drying granulation, a solution is desirable.
 本発明の製造方法において、造粒粉末の平均粒子径は50μm以上、10mm未満が好ましい。50μm未満では気孔率が低く、10mm以上では成形体や焼結体の強度が弱く、取扱いが困難である。より好ましくは、50~500μmである。
 また、造粒粉末の粒度分布はシャープな方が、気孔率を上げ易く好ましい。
 上記平均粒子径は、レーザー回折法にて測定し得られた値である。
In the production method of the present invention, the average particle size of the granulated powder is preferably 50 μm or more and less than 10 mm. If it is less than 50 μm, the porosity is low, and if it is 10 mm or more, the strength of the molded body or sintered body is weak, and handling is difficult. More preferably, it is 50 to 500 μm.
A sharper particle size distribution of the granulated powder is preferable because the porosity can be easily increased.
The average particle diameter is a value obtained by measurement by a laser diffraction method.
 次に、得られた造粒粉末の粒子を壊さない程度の圧力10g/cm~1000g/cmで成形し、アルゴン、窒素、一酸化炭素等の非酸化性ガス、もしくは水素を含んだ窒素等の弱還元性ガス雰囲気下、800℃~1500℃程度で焼結することによって気孔を形成することができる。成形圧力のより好ましい下限は、50g/cmであり、より好ましい上限は、500g/cmである。
 どちらかと言えば、蓄光蛍光体造粒粉末を成形・焼結する場合よりも原料混合物造粒粉末を成形・反応焼結する方が、セラミックスの強度が高い傾向があるので、より好ましく、コスト的にも有利である。
Then, molding obtained granulated enough to not break the particles of the powder pressure 10g / cm 2 ~ 1000g / cm 2, including argon, nitrogen, non-oxidizing gas such as carbon monoxide, or hydrogen nitrogen The pores can be formed by sintering at about 800 ° C. to 1500 ° C. in a weakly reducing gas atmosphere such as. A more preferable lower limit of the molding pressure is 50 g / cm 2 , and a more preferable upper limit is 500 g / cm 2 .
If anything, molding and reaction sintering of raw material mixture granulated powder is more preferable and cost-effective than molding and sintering phosphorescent phosphor granulated powder because the strength of ceramics tends to be higher. Is also advantageous.
 他法として、原料粉末混合物もしくは蓄光蛍光体粉末に対し、焼成や乾燥によって消失する炭素粒子や有機物、氷粒子などの熱分解性粗大粒子を混合して成形し、これを焼成や乾燥して熱分解性粗大粒子の存在していた場所に空洞をつくり、その後空洞が潰れない程度に還元性ガス雰囲気下で好ましくは、800~1500℃程度で焼結させることによっても本発明にかかる多孔質蓄光蛍光体セラミックスを製造可能である。他にも従来公知の多種ある多孔質セラミックスの製造方法を適用することができる。 As another method, the raw powder mixture or phosphorescent phosphor powder is mixed with carbon decomposable particles such as carbon particles, organic matter, and ice particles that disappear upon firing or drying, and then molded, and then heated and dried to heat. The porous phosphorous storage according to the present invention can also be formed by forming a cavity in the place where the decomposable coarse particles were present and then sintering at a temperature of about 800 to 1500 ° C. in a reducing gas atmosphere to such an extent that the cavity does not collapse Phosphor ceramics can be manufactured. In addition, various conventionally known methods for producing porous ceramics can be applied.
 本発明の多孔質蓄光蛍光体セラミックスは、表面保護等の目的で透明樹脂材料やガラス質釉薬などを含浸したりコートしたものであってもよい。 The porous phosphorescent phosphor ceramic of the present invention may be impregnated or coated with a transparent resin material or a glassy glaze for the purpose of surface protection.
 以下、本発明の実施例を説明するが、本発明はこれらによって限定されない。
(実施例1)
 アルミナ615gと炭酸Sr890gと酸化Dy22gと酸化Eu11gとホウ酸30gに1%カルボキシメチルセルロース[CMC]水溶液(粘度
 120mPa・s(20℃)4Lを加えてボールミル混合し、得られたスラリーを200℃の空気向流気流中で噴霧乾燥して造粒し、原料混合物造粒粉を得た。レーザー回折法にて測定した造粒粉の平均粒子径は110μmであった。
 この5gを30mmφの金型を用いて0.1kg/cmでタブレット状に成形し、アルミナ板上に置いて、大気中700℃にて1時間焼成してCMCを分解除去した後、1300℃にて3時間(窒素雰囲気下)焼結し、多孔質蓄光蛍光体セラミックスを得た。
 得られたセラミックスの組成は、SrAlEu0.01Dy0.02(XRF測定による)であり、残留フラックス成分として1.3重量%のBを含み、気孔率は43%であった(測定装置:電子顕微鏡((株)日本電子製),画像解析ソフト:Scion Imageを使用)。得られたセラミックスに5000LxのD65標準光を10分間照射した後、輝度計(コニカミノルタ社製LS-100)にて60分後の残光輝度を測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)SrAl:Eu,Dyの輝度を1とすると3.2と高く、良好であった。
Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
Example 1
4L of 1% carboxymethylcellulose [CMC] aqueous solution (viscosity 120 mPa · s (20 ° C)) was added to 615 g of alumina, 890 g of carbonic acid Sr 890 g, oxidized Dy 22 g, oxidized Eu 11 g, and boric acid 30 g. The raw material mixture granulated powder was obtained by spray drying in a countercurrent airflow, and the average particle size of the granulated powder measured by laser diffraction method was 110 μm.
5 g of this was molded into a tablet at a rate of 0.1 kg / cm 2 using a 30 mmφ mold, placed on an alumina plate, and fired at 700 ° C. in the air for 1 hour to decompose and remove CMC, and then 1300 ° C. Was sintered for 3 hours (under a nitrogen atmosphere) to obtain a porous phosphorescent phosphor ceramic.
The composition of the obtained ceramic is SrAl 2 O 4 Eu 0.01 Dy 0.02 (according to XRF measurement), and contains 1.3% by weight of B 2 O 3 as a residual flux component, and the porosity is 43%. (Measurement device: electron microscope (manufactured by JEOL Ltd.), image analysis software: using Scion Image). The obtained ceramic was irradiated with 5000 Lx D65 standard light for 10 minutes, and the afterglow luminance after 60 minutes was measured with a luminance meter (LS-100, manufactured by Konica Minolta Co., Ltd.). Lumi Material GLL300F) SrAl 2 O 4 : Eu, Dy luminance is as high as 3.2 and good.
(実施例2)
 市販の蓄光蛍光体粉[メジアン径D50:15.2μm(ネモトルミマテリアル社製、GLL300F)]1300gに1%CMC水溶液(前出)3Lを加えてボールミル混合し、これを200℃の空気向流気流中に噴霧乾燥して蓄光蛍光体造粒粉末を得た。
 蓄光蛍光体造粒粉末の平均粒子径は130μmであった。
 この5gを30mmφの金型を用いて0.1kg/cmでタブレット状に成形し、アルミナ板上に置いて、大気中700℃にて1時間焼成してCMCを分解除去した後、1300℃にて3時間(窒素雰囲気下)焼結し、多孔質蓄光蛍光体セラミックスを得た。
 得られたセラミックスの気孔率は51%であった。
 残光輝度を実施例1と同様にして測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)の輝度を1とすると2.5と高く、良好であった。
(Example 2)
1300 g of a commercially available phosphorescent phosphor powder [median diameter D50: 15.2 μm (manufactured by Nemotomi Material Co., GLL300F)] 3 L of 1% CMC aqueous solution (supra) is added to the ball mill, and this is mixed with air at 200 ° C. A phosphorescent granulated powder was obtained by spray drying in an air stream.
The average particle diameter of the luminous phosphor granulated powder was 130 μm.
5 g of this was molded into a tablet at a rate of 0.1 kg / cm 2 using a 30 mmφ mold, placed on an alumina plate, and fired at 700 ° C. in the air for 1 hour to decompose and remove CMC, and then 1300 ° C. Was sintered for 3 hours (under a nitrogen atmosphere) to obtain a porous phosphorescent phosphor ceramic.
The porosity of the obtained ceramic was 51%.
When the afterglow brightness | luminance was measured like Example 1, when the brightness | luminance of commercially available phosphorescent fluorescent substance powder (GLL300F by Nemotorumi Material) was set to 1, it was as high as 2.5 and was favorable.
(実施例3)
 市販の蓄光蛍光体粉[メジアン径D50:15.2μm(ネモトルミマテリアル社製、GLL300F)]1300gに1%CMC水溶液(前出)3Lを加えてボールミル混合し、これを200℃の空気向流気流中に噴霧乾燥して蓄光蛍光体造粒粉末を得た。
 蓄光蛍光体造粒粉末の平均粒子径は130μmであった。
 この5gに黒鉛粒子(伊藤黒鉛工業(株)製 品名:「AGB+32」)5gを混合し、30mmφの金型を用いて1t/cmでタブレット状に成形し、アルミナ板上に置いて、大気中700℃にて6時間焼成してCMCと黒鉛を分解除去した後、1300℃にて3時間(窒素雰囲気下)焼結し、多孔質蓄光蛍光体セラミックスを得た。
 得られたセラミックスの気孔率は69%であった。
 残光輝度を実施例1と同様にして測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)の輝度を1とすると2.9と高く、良好であった。
(Example 3)
1300 g of a commercially available phosphorescent phosphor powder [median diameter D50: 15.2 μm (manufactured by Nemotomi Material Co., GLL300F)] 3 L of 1% CMC aqueous solution (supra) is added to the ball mill, and this is mixed with air at 200 ° C. A phosphorescent granulated powder was obtained by spray drying in an air stream.
The average particle diameter of the luminous phosphor granulated powder was 130 μm.
5 g of graphite particles (product name: “AGB + 32”) mixed with 5 g of this were mixed, formed into a tablet shape at 1 t / cm 2 using a 30 mmφ mold, and placed on an alumina plate. CMC and graphite were decomposed and removed by firing at 700 ° C. for 6 hours in the air, and then sintered at 1300 ° C. for 3 hours (under a nitrogen atmosphere) to obtain a porous phosphorescent phosphor ceramic.
The porosity of the obtained ceramic was 69%.
When the afterglow brightness | luminance was measured like Example 1, when the brightness | luminance of commercially available phosphorescent fluorescent substance powder (GLL300F made from Nemotomi Material) was set to 1, it was as high as 2.9 and was favorable.
(比較例1)
 アルミナ615gと炭酸Sr890gと酸化Dy22gと酸化Eu11gとホウ酸30gをボールミル混合し、この5gを30mmφの金型を用いて0.1kg/cmでタブレット状に成形し、アルミナ板上に置いて、1300℃にて3時間(窒素雰囲気下)焼結し、蓄光蛍光体セラミックスを得た。
 得られたセラミックスの組成は実施例1と同等であり、気孔率は7%であった。
 残光輝度を実施例1と同様にして測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)の輝度を1とすると1.3と、ほぼ同等の性能であった。
(Comparative Example 1)
Alumina 615g and carbonate Sr890g the oxidation Dy22g and oxide Eu11g and boric acid 30g were mixed ball mill, molding the 5g into tablets at 0.1 kg / cm 2 using a mold of 30 mm?, Placed on an alumina plate, Sintering was performed at 1300 ° C. for 3 hours (under a nitrogen atmosphere) to obtain phosphorescent phosphor ceramics.
The composition of the obtained ceramic was the same as that of Example 1, and the porosity was 7%.
When the afterglow brightness | luminance was measured like Example 1, when the brightness | luminance of the commercially available phosphorescent fluorescent substance powder (GLL300F made from Nemotorumi Material) was set to 1, it was a performance substantially equivalent to 1.3.
(比較例2)
 市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)5gを30mmφの金型を用いて0.1kg/cmの弱い圧力でタブレット状に成形し、アルミナ板上に置いて、1300℃にて3時間(窒素雰囲気下)焼結し、蓄光蛍光体セラミックスを得た。
 得られたセラミックスの気孔率は12%であった。
 残光輝度を実施例1と同様にして測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)の輝度を1とすると1.1と、ほぼ同等の性能であった。
(Comparative Example 2)
5 g of commercially available phosphorescent phosphor powder (GLL300F manufactured by Nemotomi Material) was molded into a tablet shape with a weak pressure of 0.1 kg / cm 2 using a 30 mmφ mold, placed on an alumina plate, and 3 Sintering was performed for a time (under a nitrogen atmosphere) to obtain phosphorescent phosphor ceramics.
The porosity of the obtained ceramic was 12%.
When the afterglow brightness | luminance was measured like Example 1, when the brightness | luminance of commercially available phosphorescent fluorescent substance powder (GLL300F made from Nemotomi Material) was set to 1, it was the performance substantially equivalent to 1.1.
(比較例3)
 成形時の圧力を10kg/cmとしたこと以外は実施例1と同様にして蓄光蛍光体セラミックスを得た。
 得られたセラミックスの気孔率は13%であった。
 残光輝度を実施例1と同様にして測定したところ、市販の蓄光蛍光体粉(ネモトルミマテリアル製GLL300F)の輝度を1とすると1.2と、ほぼ同等の性能であった。
(Comparative Example 3)
A phosphorescent phosphor ceramic was obtained in the same manner as in Example 1 except that the pressure at the time of molding was 10 kg / cm 2 .
The porosity of the obtained ceramic was 13%.
When the afterglow brightness | luminance was measured like Example 1, when the brightness | luminance of commercially available phosphorescent fluorescent substance powder (GLL300F made from Nemotomi Material) was set to 1, it was the performance substantially equivalent to 1.2.
(比較例4)
 成形時の圧力を5g/cmとしたこと以外は実施例1と同様にして蓄光蛍光体セラミックスを得ようとしたが、成形体を金型から外す際に、崩れてしまい、セラミックスが得られなかった。
(Comparative Example 4)
Except that the pressure during molding was 5 g / cm 2 , an attempt was made to obtain phosphorescent phosphor ceramics in the same manner as in Example 1, but when the molded body was removed from the mold, it collapsed and ceramics were obtained. There wasn't.

Claims (6)

  1.  蓄光蛍光体を含み、気孔率が20体積%以上、80体積%未満である多孔質蓄光蛍光体セラミックス。 Porous phosphorescent phosphor ceramics containing phosphorescent phosphor and having a porosity of 20% by volume or more and less than 80% by volume.
  2.  本質的に蓄光蛍光体からなり、気孔率が20体積%以上、80体積%未満である請求項1に記載の多孔質蓄光蛍光体セラミックス。 2. The porous phosphorescent phosphor ceramic according to claim 1, which is essentially composed of phosphorescent phosphor and has a porosity of 20% by volume or more and less than 80% by volume.
  3.  前記蓄光蛍光体が、希土類元素を付括したアルカリ土類金属のアルミン酸塩であることを特徴とする請求項1または2に記載の多孔質蓄光蛍光体セラミックス。 The porous phosphorescent phosphor ceramic according to claim 1 or 2, wherein the phosphorescent phosphor is an alkaline earth metal aluminate with a rare earth element attached thereto.
  4.  蓄光蛍光体の原料混合物を造粒し、成形し、反応焼結することよりなる気孔率が20体積%以上、80体積%未満である多孔質蓄光蛍光体セラミックスの製造方法。 A method for producing porous phosphorescent phosphor ceramics having a porosity of 20% by volume or more and less than 80% by volume, comprising granulating, forming and reaction sintering of a phosphorescent phosphor raw material mixture.
  5.  蓄光蛍光体を造粒し、成形し、焼結することよりなる気孔率が20体積%以上、80体積%未満である多孔質蓄光蛍光体セラミックスの製造方法。 A method for producing porous phosphorescent phosphor ceramics having a porosity of 20% by volume or more and less than 80% by volume by granulating, molding and sintering phosphorescent phosphors.
  6.  前記成形に要する圧力が、10g/cm~1000g/cmである請求項4または5に記載の多孔質蓄光蛍光体セラミックスの製造方法。 6. The method for producing a porous phosphorescent phosphor ceramic according to claim 4, wherein a pressure required for the molding is 10 g / cm 2 to 1000 g / cm 2 .
PCT/JP2009/069123 2008-11-10 2009-11-10 Porous light-accumulating phosphor ceramic WO2010053197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536820A JP5551079B2 (en) 2008-11-10 2009-11-10 Porous phosphorescent phosphor ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008287764 2008-11-10
JP2008-287764 2008-11-10

Publications (1)

Publication Number Publication Date
WO2010053197A1 true WO2010053197A1 (en) 2010-05-14

Family

ID=42153002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069123 WO2010053197A1 (en) 2008-11-10 2009-11-10 Porous light-accumulating phosphor ceramic

Country Status (2)

Country Link
JP (1) JP5551079B2 (en)
WO (1) WO2010053197A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535531A (en) * 2010-07-14 2013-09-12 インテマティックス・コーポレーション Green-emitting garnet phosphors for general use and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US9359550B2 (en) 2006-10-20 2016-06-07 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9428690B2 (en) 2006-10-20 2016-08-30 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
KR20180044261A (en) * 2015-06-19 2018-05-02 파브리카 나씨오날 데 모네다 이 띰브레-레알 까사 데 라 모네다 Nanostructured phosphorescent pigments and uses thereof
JP2020023675A (en) * 2018-07-27 2020-02-13 堺化学工業株式会社 Method for manufacturing luminous material, and luminous material
CN111807825A (en) * 2020-07-20 2020-10-23 江苏师范大学 Ultrahigh-brightness light-storing ceramic with porous light channel structure and application thereof
JP2020181952A (en) * 2019-04-26 2020-11-05 株式会社ディスコ Chuck table and manufacturing method thereof
US11387391B2 (en) 2017-02-28 2022-07-12 Osram Gmbh Conversion element, optoelectronic component and method for producing a conversion element
JP2022552054A (en) * 2019-08-29 2022-12-15 シェンチェン ライティング インスティテュート Fluorescent ceramics, manufacturing method thereof, and light source device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102409A (en) * 1996-09-27 1998-04-21 Naigai Ceramics Kk Road, construction material or fluorescent inorganic artificial aggregate for ship
JPH10101371A (en) * 1996-09-27 1998-04-21 Naigai Ceramics Kk Inorganic artificial ceramics having light accumulating property and fluorescent characteristic and its production
JP2000281382A (en) * 1998-09-22 2000-10-10 Ohara Inc Luminous fluorescent glass ceramics
JP2002241184A (en) * 2001-02-13 2002-08-28 Toshio Hoshino Communicative-porous glass sintered body and its production process
JP2004333668A (en) * 2003-05-02 2004-11-25 West Japan:Kk Storage phosphor member and marking tool equipped with the same
JP2006306644A (en) * 2005-04-27 2006-11-09 Tokai Univ Porous fluorescent ceramic

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263075A (en) * 1992-03-17 1993-10-12 Toshiba Corp Stimulable thermophosphor
JP2005105116A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Method for producing sintered body of luminous fluorescent substance and method for producing raw material pellet for injection molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102409A (en) * 1996-09-27 1998-04-21 Naigai Ceramics Kk Road, construction material or fluorescent inorganic artificial aggregate for ship
JPH10101371A (en) * 1996-09-27 1998-04-21 Naigai Ceramics Kk Inorganic artificial ceramics having light accumulating property and fluorescent characteristic and its production
JP2000281382A (en) * 1998-09-22 2000-10-10 Ohara Inc Luminous fluorescent glass ceramics
JP2002241184A (en) * 2001-02-13 2002-08-28 Toshio Hoshino Communicative-porous glass sintered body and its production process
JP2004333668A (en) * 2003-05-02 2004-11-25 West Japan:Kk Storage phosphor member and marking tool equipped with the same
JP2006306644A (en) * 2005-04-27 2006-11-09 Tokai Univ Porous fluorescent ceramic

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190047B2 (en) 2006-10-20 2019-01-29 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9023242B2 (en) 2006-10-20 2015-05-05 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US9359550B2 (en) 2006-10-20 2016-06-07 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9428690B2 (en) 2006-10-20 2016-08-30 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US9458378B2 (en) 2006-10-20 2016-10-04 Intermatix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
JP2015180741A (en) * 2010-07-14 2015-10-15 インテマティックス・コーポレーションIntematix Corporation Green-emitting, garnet-based phosphors for general and backlighting applications
JP2013535531A (en) * 2010-07-14 2013-09-12 インテマティックス・コーポレーション Green-emitting garnet phosphors for general use and backlighting applications
KR20180044261A (en) * 2015-06-19 2018-05-02 파브리카 나씨오날 데 모네다 이 띰브레-레알 까사 데 라 모네다 Nanostructured phosphorescent pigments and uses thereof
JP2018521171A (en) * 2015-06-19 2018-08-02 ファブリカ、ナシオナル、デ、モネダ、イ、ティンブレ−レアル、カサ、デ、ラ、モネダFabrica Nacional De Moneda Y Timbre−Real Casa De La Moneda Nanostructured phosphorescent pigments and uses thereof
US10899960B2 (en) 2015-06-19 2021-01-26 Consejo Superior De Investigaciones Científicas Nanostructured phosphorescent pigment and uses thereof
KR102557917B1 (en) * 2015-06-19 2023-07-19 파브리카 나씨오날 데 모네다 이 띰브레-레알 까사 데 라 모네다 Nanostructured phosphorescent pigments and uses thereof
US11387391B2 (en) 2017-02-28 2022-07-12 Osram Gmbh Conversion element, optoelectronic component and method for producing a conversion element
JP2020023675A (en) * 2018-07-27 2020-02-13 堺化学工業株式会社 Method for manufacturing luminous material, and luminous material
JP7342484B2 (en) 2018-07-27 2023-09-12 堺化学工業株式会社 Method for manufacturing luminescent material and luminescent material
JP2020181952A (en) * 2019-04-26 2020-11-05 株式会社ディスコ Chuck table and manufacturing method thereof
JP7266456B2 (en) 2019-04-26 2023-04-28 株式会社ディスコ CHUCK TABLE AND CHUCK TABLE MANUFACTURING METHOD
JP2022552054A (en) * 2019-08-29 2022-12-15 シェンチェン ライティング インスティテュート Fluorescent ceramics, manufacturing method thereof, and light source device
JP7450701B2 (en) 2019-08-29 2024-03-15 深▲せん▼市繹立鋭光科技開発有限公司 Fluorescent ceramics and their manufacturing method, light source device
CN111807825A (en) * 2020-07-20 2020-10-23 江苏师范大学 Ultrahigh-brightness light-storing ceramic with porous light channel structure and application thereof

Also Published As

Publication number Publication date
JP5551079B2 (en) 2014-07-16
JPWO2010053197A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5551079B2 (en) Porous phosphorescent phosphor ceramics
EP2730636B1 (en) Persistent phosphorescent ceramic composite material and method for producing the same
JP3311254B2 (en) Inorganic artificial ceramic granular product having luminous fluorescent properties and method for producing the same
JP5300968B2 (en) Long afterglow phosphor ceramics and manufacturing method thereof
CN105018080B (en) A kind of preparation method of specular removal fluorescent material
EP1379603B1 (en) Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
EP3135746B1 (en) Method for producing nitride fluorescent material
EP1900789B1 (en) Long afterglow luminescent material with compounded substrates and its preparation method
JPS6146029B2 (en)
JPH11256151A (en) Luminous composite material and its production
JP3488602B2 (en) Blue to blue-green luminous aluminum silicate phosphor and method for producing the same
CN110139914A (en) Light storing phosphor and its manufacturing method and light storage product
JPH11199867A (en) Fluorescent body, fluorescent material containing the same and their production
JPH1036833A (en) Production of light-transmitting long-afterglow phosphor
EP3088488B1 (en) Phosphorescent phosphor
KR101256626B1 (en) Long phosphorescent phosphors and method of preparating powders of the same
JP4823649B2 (en) Luminescent phosphor and method for producing the same
JP2009096879A (en) Molding material composition for light-accumulating ceramic, molded article of light-accumulating ceramic using the composition, method for producing the same and method for producing light-accumulating pigment
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
KR101486065B1 (en) Phosphorescence phosphor composite and manufacturing method thereof
JP5389823B2 (en) Pure phosphorescent phosphor ceramics
JP5517035B2 (en) Luminescent composite material
CN202233226U (en) Light emitting cap
JP2007126618A (en) Sintered compact of luminous fluorophor and luminous fluorophor powder
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010536820

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824894

Country of ref document: EP

Kind code of ref document: A1