JP5389823B2 - Pure phosphorescent phosphor ceramics - Google Patents

Pure phosphorescent phosphor ceramics Download PDF

Info

Publication number
JP5389823B2
JP5389823B2 JP2010543016A JP2010543016A JP5389823B2 JP 5389823 B2 JP5389823 B2 JP 5389823B2 JP 2010543016 A JP2010543016 A JP 2010543016A JP 2010543016 A JP2010543016 A JP 2010543016A JP 5389823 B2 JP5389823 B2 JP 5389823B2
Authority
JP
Japan
Prior art keywords
phosphor
recess
phosphorescent phosphor
solid
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010543016A
Other languages
Japanese (ja)
Other versions
JPWO2010071203A1 (en
Inventor
裕司 木村
康 高井
博文 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010543016A priority Critical patent/JP5389823B2/en
Publication of JPWO2010071203A1 publication Critical patent/JPWO2010071203A1/en
Application granted granted Critical
Publication of JP5389823B2 publication Critical patent/JP5389823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7407Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Description


本発明は、避難経路表示板や補助照明,サイン,タイル等に使用することのできる無垢の蓄光蛍光体セラミックスに関するものである。

The present invention relates to an innocuous phosphorescent phosphor ceramic that can be used for evacuation route display boards, auxiliary lighting, signs, tiles, and the like.


近年、蓄光蛍光体は災害時の対策として、地下鉄構内や高層ビルなどの避難経路表示等で需要が増加しつつある。蓄光蛍光体は通常粉体として販売されており、これを透明樹脂に練り込んだり、塗料に分散させたりして成形体や表示板などの構造体として利用するのが普通である(例えば、特許文献1、2等を参照)。

In recent years, the demand for phosphorescent phosphors has been increasing as a measure against disasters by displaying evacuation routes in subway premises and high-rise buildings. Phosphorescent phosphors are usually sold as powders, which are usually kneaded into transparent resin or dispersed in paint to be used as structures such as molded bodies and display boards (for example, patents) (Refer to Literatures 1 and 2).


また、特殊な例としては、蓄光蛍光体粉をガラス粉(フリット)と混合して数百℃でガラスを溶融して複合セラミックス構造体として利用する方法も提案されている(特許文献3、4等を参照)。

Further, as a special example, a method has been proposed in which phosphorescent phosphor powder is mixed with glass powder (frit) and the glass is melted at several hundred degrees Celsius and used as a composite ceramic structure (Patent Documents 3 and 4). Etc.).


更に、蓄光蛍光体粉そのものを成形・焼結して、無垢の緻密な蓄光蛍光体セラミックスを得る方法も提案されている(特許文献5、6等を参照)。

Furthermore, a method has also been proposed in which the phosphorescent phosphor powder itself is molded and sintered to obtain a pure and dense phosphorescent phosphor ceramic (see Patent Documents 5 and 6, etc.).


特開平8−129351号公報JP-A-8-129351 特開平9−146482号公報JP-A-9-146482 特開2000−319832号公報JP 2000-319832 A 特開平10−101371号公報Japanese Patent Laid-Open No. 10-101371 特開2005−105116号公報、段落0017等JP 2005-105116 A, paragraph 0017, etc. 特開平11−181420号公報、段落0004、0010等JP-A-11-181420, paragraphs 0004, 0010, etc. 特開2007−118203号公報JP 2007-118203 A


しかしながら、これらの製品は製造工程が長く、高価な割にコストに見合った残光輝度が得られていないのが現状である。

However, these products have a long manufacturing process, and at present, afterglow luminance corresponding to the cost is not obtained although it is expensive.


樹脂などの有機材料中に蓄光蛍光体粒子を分散した製品は耐候性に劣り、屋外にて使用した場合、短期間で樹脂が失透したり黄ばんだりして励起光が弱められる。更に、樹脂などの有機材料は若干の吸水性がある為、雨水等が徐々に浸透して蓄光蛍光体粒子の表面に達し、蛍光体が徐々に加水分解され、蓄光性能が劣化していく。
特許文献7では、樹脂材料をシリコーン樹脂にすることにより耐候性を高めてはいるが、これとて半永久的というわけではなく、通常の樹脂材料と比較して劣化速度が数年遅くなるという程度のものである。

A product in which phosphorescent phosphor particles are dispersed in an organic material such as a resin is inferior in weather resistance, and when used outdoors, the resin is devitrified or yellowed in a short period of time, and the excitation light is weakened. Furthermore, since organic materials such as resins have some water absorption, rainwater and the like gradually permeate and reach the surface of the phosphorescent phosphor particles, and the phosphor is gradually hydrolyzed to deteriorate phosphorescent performance.
In Patent Document 7, the weather resistance is enhanced by using a silicone resin as the resin material, but this is not semi-permanent, and the deterioration rate is several years slower than that of a normal resin material. belongs to.


ガラス中に蓄光蛍光体粒子を溶融分散した複合セラミックス体の場合、耐候性については問題ないのであるが、ガラスの融点以上の高温で溶融するため、ガラスと蓄光蛍光体粒子が反応して、蓄光性能が劣化するという問題をかかえている。

In the case of a composite ceramic body in which phosphorescent phosphor particles are melt-dispersed in glass, the weather resistance is not a problem. However, since it melts at a temperature higher than the melting point of the glass, the glass and phosphorescent phosphor particles react to store the phosphor. It has a problem that performance deteriorates.


更に、蓄光蛍光体粒子を樹脂やガラスなどの媒体に分散した製品は粒子表面での励起光の散乱損失が起こりやすく隠蔽性が強い為、数百ミクロン以上の深部の蛍光体は励起されずに無駄になり、充分な残光が得られない。

In addition, products with phosphorescent phosphor particles dispersed in a medium such as resin or glass are prone to scattering loss of excitation light on the surface of the particles and have strong concealment, so phosphors in the deep part of several hundred microns or more are not excited. It is wasted and sufficient afterglow cannot be obtained.


これらに対して、蓄光蛍光体粒子そのものを焼結することによって作られる無垢の蓄光蛍光体セラミックスは、上記の媒体分散型製品と比較して耐候性が非常に高く、また、粒子同士が焼結によって緻密な連結構造となり散乱損失が起きにくいので、残光輝度も向上する。

In contrast, innocent phosphorescent phosphor ceramics made by sintering phosphorescent phosphor particles themselves have very high weather resistance compared to the above-mentioned medium-dispersed products, and the particles are sintered together. As a result, it becomes a densely connected structure and scattering loss hardly occurs, so that the afterglow brightness is also improved.


しかしながら、その場合でも励起光が侵入できる深さは数ミリ程度までであり、蛍光体自体の強力な励起光吸収性の為、数ミリ以上の深部に有効に励起光を届かせることはできない。これは透明性のある緻密質の焼結体であっても同様であり、やはり深部の蛍光体が有効に活用されないので、充分な残光輝度は得られない。
本発明は、上記現状に鑑み、深部の蛍光体を有効に活用することができる蓄光蛍光体セラミックスを得ることを目的とする。

However, even in such a case, the depth at which the excitation light can penetrate is up to several millimeters, and the excitation light cannot effectively reach a depth of several millimeters or more because of the strong excitation light absorption of the phosphor itself. This is the same even for a transparent and dense sintered body, and since the phosphor in the deep part is not effectively used, sufficient afterglow luminance cannot be obtained.
The present invention has been made in view of the above situation, and an object of the present invention is to obtain a phosphorescent phosphor ceramic that can effectively utilize a phosphor in a deep part.


本発明者等は上記問題を解決するために、輝度の向上を鋭意検討した結果、無垢の蓄光蛍光体セラミックスの表面に受光面積を高め、かつ、前記光照射表面に垂直な方向への残光放射を高めるような凹部構造を形成すると、蓄光エネルギー総量が増加し、従来の蓄光蛍光体セラミックス製品の数倍の残光輝度を示すことを発見し、本発明に至った。

In order to solve the above problems, the present inventors diligently studied to improve the luminance. As a result, the light receiving area was increased on the surface of the solid phosphor phosphor, and the afterglow in the direction perpendicular to the light irradiation surface. It was discovered that when a concave structure that enhances radiation is formed, the total amount of stored phosphorous energy increases, and the afterglow luminance is several times that of conventional phosphorescent phosphor ceramic products, leading to the present invention.


本発明の要旨は、光照射表面に凹部を備えた無垢の蓄光蛍光体セラミックスであって、該凹部の内部の表面積と該凹部を規定する凸部表面(頂面)の表面積との合計の面積が前記光照射表面の投影面積に比べて大きく、かつ、前記光照射表面に垂直な方向から測定した残光輝度を高めるように前記凹部が形成されている無垢の蓄光蛍光体セラミックスである。

The gist of the present invention is a solid phosphor fluorescent ceramic having a concave portion on the light irradiation surface, the total area of the surface area inside the concave portion and the surface area of the convex surface (top surface) defining the concave portion. Is a solid phosphor fluorescent ceramic that is larger than the projected area of the light-irradiated surface and has the recesses formed so as to increase the afterglow luminance measured from a direction perpendicular to the light-irradiated surface.


本発明によれば、焼結体中であるが故に粒子による励起光の散乱損失が無く、励起光が直接当たる表面積が増え、かつ、光照射表面に垂直な方向に従来蓄光製品の数倍の残光輝度を示す蓄光蛍光体セラミックス焼結体を得ることができ、これは屋外でも半永久的に使用できるほど耐候性が高く、その利用価値は極めて高い。

According to the present invention, since it is in the sintered body, there is no scattering loss of the excitation light by the particles, the surface area directly exposed to the excitation light is increased, and several times that of the conventional phosphorescent product in the direction perpendicular to the light irradiation surface. A phosphorescent phosphor ceramic sintered body exhibiting afterglow luminance can be obtained, which is so weatherable that it can be used semi-permanently outdoors, and its utility value is extremely high.


本発明にかかる蓄光蛍光体セラミックスの一態様の模式的斜視図(a)とそのB−B断面図(b)である。It is the typical perspective view (a) of the one aspect | mode of the luminous phosphor ceramic concerning this invention, and its BB sectional drawing (b). 種々の開口形状を有する凹部を形成した本発明にかかる蓄光蛍光体セラミックスの模式的斜視図(a)(c)(e)ならびに各斜視図に対応するB―B断面図(b)、D―D断面図(d)、F―F断面図(f)である。Schematic perspective views (a), (c) and (e) of phosphorescent phosphor ceramics according to the present invention in which recesses having various opening shapes are formed, and BB cross-sectional views (b) and D- It is D sectional drawing (d) and FF sectional drawing (f). 本発明にかかる蓄光蛍光体セラミックスの一態様の模式的斜視図(a)とそのB−B断面図(b)である。It is the typical perspective view (a) of the one aspect | mode of the luminous phosphor ceramic concerning this invention, and its BB sectional drawing (b). 本発明にかかる蓄光蛍光体セラミックスの一態様の模式的斜視図(a)とそのB−B断面図(b)である。It is the typical perspective view (a) of the one aspect | mode of the luminous phosphor ceramic concerning this invention, and its BB sectional drawing (b). 本発明にかかる蓄光蛍光体セラミックスに設けた凹部の内部の面積を算出するための寸法図である。It is a dimension figure for calculating the area inside the crevice provided in luminous phosphor ceramic concerning the present invention.


1 蓄光蛍光体セラミックス
2 凹部の開口面外周
3 凹部開口面
4 凹部の底面外周
5 凹部
6 凹部の開口面外周と底面外周とを最小距離で結ぶ直線
7 凹部底面
8 開口面に対する垂線
9 凹部内側壁面
12 縁部

DESCRIPTION OF SYMBOLS 1 Phosphorescent ceramics 2 Recessed opening surface outer periphery 3 Recessed opening surface 4 Recessed bottom surface outer periphery 5 Recessed surface 6 Recessed bottom surface outer periphery and bottom surface outer periphery with a minimum distance 7 Recessed bottom surface 8 Perpendicular to opening surface 9 Recessed inner wall surface 12 Edge


以下、本発明を詳細に説明する。
本発明の蓄光蛍光体セラミックスは、避難経路表示板や補助照明,サイン,タイル等の製品に使用されるものである。

Hereinafter, the present invention will be described in detail.
The phosphorescent phosphor ceramics of the present invention are used for products such as evacuation route display boards, auxiliary lighting, signs, tiles and the like.


本発明にかかる蓄光蛍光体セラミックスは、光(可視光)照射表面に凹部を備えた無垢の蓄光蛍光体セラミックスであって、該凹部は、形成されていない場合に比べて受光面積を高め、かつ、前記光照射表面に垂直な方向から測定した残光輝度を高めるように形成されている無垢の蓄光蛍光体セラミックスである。
蓄光性構造体の表面に凹部を形成すると、開口面に垂直な方向からの見た目が同じ面積であっても、励起光が当たる表面積は増大する。これによって、励起される蓄光蛍光体の総量が増えることになり、残光の発生量が増大する。さらに、凹部の構造を工夫することによって、光照射表面に垂直な方向への出射量を増大することができる。
更に、蓄光性構造体の材質を無垢の蓄光蛍光体セラミックスにすると、粒子による励起光の散乱損失が無いので、深さ方向に於いても励起される蓄光蛍光体の総量が増えることになり、残光輝度はより強くなる。
本明細書において、「蓄光蛍光体セラミックス」が「無垢」であるとは、実質的に蓄光蛍光体組成成分のみからなることを意味する。「実質的に蓄光蛍光体組成成分のみ」とは、蓄光蛍光体組成成分に加えて、蛍光体の合成時に少量加えることのある反応促進剤であるフラックス成分を任意成分として含みうることを意味する。
よって、本発明にかかる蓄光蛍光体セラミックスは、全組成中に80モル%〜100モル%、好ましくは90〜100モル%の蛍光体成分を含み、任意成分としてフラックス成分を全組成中0〜20モル%、好ましくは0〜10モル%含みうるものである。

The phosphorescent phosphor ceramic according to the present invention is an innocent phosphorescent phosphor ceramic provided with a concave portion on a light (visible light) irradiation surface, and the concave portion increases a light receiving area as compared with a case where the concave portion is not formed, and A solid phosphor fluorescent ceramic formed so as to increase the afterglow luminance measured from a direction perpendicular to the light irradiation surface.
When the concave portion is formed on the surface of the phosphorescent structure, the surface area to which the excitation light hits increases even if the appearance from the direction perpendicular to the opening surface is the same area. As a result, the total amount of phosphorescent phosphors to be excited increases, and the amount of afterglow generated increases. Furthermore, by devising the structure of the recess, the amount of emission in the direction perpendicular to the light irradiation surface can be increased.
Furthermore, if the material of the phosphorescent structure is a solid phosphor phosphor ceramic, there will be no scattering loss of excitation light due to particles, so the total amount of phosphor phosphor excited in the depth direction will increase. The afterglow brightness becomes stronger.
In the present specification, the phrase “solid phosphor” is “innocent” means that it is substantially composed of phosphor phosphor composition components. “Substantially only phosphorescent phosphor composition component” means that, in addition to the phosphorescent phosphor composition component, a flux component that is a reaction accelerator that may be added in a small amount during the synthesis of the phosphor may be included as an optional component. .
Therefore, the phosphorescent phosphor ceramic according to the present invention contains 80 mol% to 100 mol%, preferably 90 to 100 mol%, of the phosphor component in the total composition, and the flux component as an optional component is 0 to 20 in the total composition. It can contain mol%, preferably 0 to 10 mol%.


凹部のサイズは、形成されていない場合に比べて受光面積を高め、かつ、前記光照射表面に垂直な方向から測定した残光輝度を高めることが可能であれば特に限定されないが、ひとつの目安として、セラミックスの光照射面の面積、具体的には凹部内の表面積と凸部平面の合計の幾何学的面積をS、表面の投影面積(=平面部分の面積)をSとしたとき、(S/S)(つまり凹凸による表面積の増大率)で表すことができる。Sは表面に凹凸が無く、全く平滑であるときの面積を意味する。増大した表面積Sには、意図しない表面の単なる粗さによる増大分は含まない。この「粗さ」とは、制約するわけではないが大ざっぱに言って、粗さ計で測定して最大粗さ(Hmax)が1mm未満程度の粗面を意味する。(S/S)は1.0より大、好ましくは1.2以上、10未満が良く、より好ましくは、1.5以上8未満が好ましい。凹凸が少ない場合には効果が薄く、10以上では、効果のわりに、形成コストが高くなる場合がある。
上記凹凸による表面積の増大率(S/S)はマイクロスコープ等を用いて凹部の立体像寸法を測定し、コンピュータ等による演算処理にて得られた値である。具体例として、例えば凹部形状が逆円錐状および逆円錐柱状の場合、(S/S)は、図5に示すように3次元測定機で得られた角度値(θ)、マイクロメータで得られた開口径値(D1)、デプスメータで得られた深さ値(L2)に基づいて、凹部の底面積および円錐柱の側面積を算出し、下記計算式によって計算することができる。
d1=D1/2/SINθ
D2=D1-2*TANθ*L2
d2=D2/2/SINθ
S/Sa=[Sa-π*(D1/2)2*穴個数+{π*(D1/2*d1-D2/2*d2)+π*(D2/2)2}*穴個数]/Sa

The size of the recess is not particularly limited as long as it can increase the light receiving area as compared to the case where it is not formed and can increase the afterglow luminance measured from the direction perpendicular to the light irradiation surface. as, when the area of the light irradiation surface of the ceramic, the geometric area of the total surface area and the convex portion flat in the recess in particular S, projected area of the surface (= the area of the planar portion) was set to S a, It can be expressed by (S / S a ) (that is, the rate of increase in surface area due to unevenness). S a means an area when the surface has no irregularities and is completely smooth. The increased surface area S does not include an increase due to unintended surface roughness. This “roughness” is not limited, but roughly speaking, means a rough surface having a maximum roughness (H max ) of less than 1 mm as measured by a roughness meter. (S / S a ) is greater than 1.0, preferably 1.2 or more and less than 10, more preferably 1.5 or more and less than 8. If the unevenness is small, the effect is thin, and if it is 10 or more, the formation cost may be high instead of the effect.
The surface area increase rate (S / S a ) due to the unevenness is a value obtained by measuring the three-dimensional image size of the recess using a microscope or the like and performing arithmetic processing using a computer or the like. As a specific example, for example, when the concave shape is an inverted conical shape and an inverted conical column shape, (S / S a ) is an angle value (θ) obtained with a three-dimensional measuring machine as shown in FIG. Based on the obtained opening diameter value (D1) and the depth value (L2) obtained by the depth meter, the bottom area of the recess and the side area of the conical column can be calculated and calculated by the following formula.
d1 = D1 / 2 / SINθ
D2 = D1-2 * TANθ * L2
d2 = D2 / 2 / SINθ
S / S a = [Sa-π * (D1 / 2) 2 * hole number + {π * (D1 / 2 * d1-D2 / 2 * d2) + π * (D2 / 2) 2 } * hole number] / S a


さらに上記凹部は、底面を有し、開口面の形状、凹部底面の形状、ならびに、前記開口面に平行な凹部断面の形状が、互いに合同形状または相似形状であることが好ましい。
開口面の形状としては特に限定されないが、円形、または、多角形(四角形、六角形)であることが好ましい。
図1に蓄光蛍光体セラミックス1の一態様の模式的斜視図を示す。図1では、セラミックス表面に開口面3の形状が円形であり、底面7もまた開口面と同径の円形である凹部5が表面から垂直な方向に形成されている。
開口面の形状、凹部底面の形状、ならびに、前記開口面に平行な凹部断面の形状が、互いに合同形状または相似形状でないような形状、例えば、断面形状が不規則な起伏や、図3に示すように底面を有しない波板状の凹部形状の場合でも、残光の発生量自体は増加するものの、凹部内側壁面(側面)9で反射するときに開口面3に垂直な方向以外の方向に逃げていく残光が多く、若干効果が薄れる場合がある。

Furthermore, it is preferable that the said recessed part has a bottom face, and the shape of an opening surface, the shape of a recessed part bottom face, and the shape of a recessed cross section parallel to the said opening surface are mutually congruent shape or a similar shape.
Although it does not specifically limit as a shape of an opening surface, It is preferable that it is circular or a polygon (square, hexagon).
FIG. 1 shows a schematic perspective view of one aspect of the phosphorescent phosphor ceramic 1. In FIG. 1, the shape of the opening surface 3 is circular on the ceramic surface, and the bottom surface 7 is also formed with a recess 5 having a circular shape with the same diameter as the opening surface in a direction perpendicular to the surface.
The shape of the opening surface, the shape of the bottom surface of the recess, and the shape of the cross section of the recess parallel to the opening surface are not congruent or similar to each other, for example, undulations with irregular cross-sectional shapes, as shown in FIG. Even in the case of the corrugated concave portion having no bottom surface, the amount of afterglow generated itself increases, but in a direction other than the direction perpendicular to the opening surface 3 when reflected by the inner wall surface (side surface) 9 of the concave portion. There is much afterglow to escape, and the effect may be slightly reduced.


残光輝度を上げるために、凹部5の底面7はもちろん、凹部5の内壁(側面)9も蓄光性であることが好ましい。図2に種々の開口面形状を有する凹部断面図示す。凹部5の開口面外周2と底面外周4とを最小距離で結ぶ直線6と、凹部開口面3に対する垂線8とがなす角度は、−15°以上45°未満の範囲であることが好ましい。図2(c)および(d)に示すように−15°未満では凹部からの残光の凹部底面7に垂直な方向8への取り出し効率が悪くなる場合があり、図2(e)および(f)に示すように45°以上であると、凹部底面7に垂直な方向8以外の方向に逃げる残光が多く、効果が薄れる場合がある。このように本発明は、光照射表面に垂直な方向への残光輝度を高めるように凹部を形成するものであるので、単に受光面積を広げる構造を教示、示唆するような他分野、例えば、光触媒分野等にみられる凹部構造とは著しく相違する。

In order to increase the afterglow luminance, it is preferable that not only the bottom surface 7 of the recess 5 but also the inner wall (side surface) 9 of the recess 5 are luminous. FIG. 2 is a sectional view of a recess having various opening surface shapes. The angle formed by the straight line 6 connecting the outer periphery 2 of the opening 5 and the outer periphery 4 of the recess 5 with a minimum distance and the perpendicular 8 to the opening 3 of the recess is preferably in the range of −15 ° to less than 45 °. As shown in FIGS. 2 (c) and 2 (d), if the angle is less than −15 °, the efficiency of taking afterglow from the recess in the direction 8 perpendicular to the bottom surface 7 of the recess may be deteriorated. As shown in f), when the angle is 45 ° or more, there is a lot of afterglow that escapes in a direction other than the direction 8 perpendicular to the bottom surface 7 of the recess, and the effect may be reduced. As described above, the present invention forms the concave portion so as to increase the afterglow luminance in the direction perpendicular to the light irradiation surface. Therefore, the present invention simply teaches or suggests a structure for expanding the light receiving area, for example, This is significantly different from the concave structure found in the photocatalyst field.


凹部開口面3の円換算直径は、0.1mm以上、100mm以下であることが好ましい。0.1mm未満であると、凹部5の形成が難しくなる場合があり、100mmを超えると、表面積の増大効果が低くなる場合がある。

The circle-equivalent diameter of the concave opening surface 3 is preferably 0.1 mm or more and 100 mm or less. If it is less than 0.1 mm, the formation of the recess 5 may be difficult, and if it exceeds 100 mm, the effect of increasing the surface area may be reduced.


凹部5の深さは、凹部開口面3の円換算直径の0.3〜4倍であることが好ましく、さらに0.3〜3倍であることが好ましい。0.3倍未満であると表面積の増大割合が低いので効果が薄くなる場合があり、4倍を超えると、面積は増大するものの、励起光や残光が内壁面(側面)に反射する回数も増えるので、効果が頭打ちになる場合がある。

The depth of the recess 5 is preferably 0.3 to 4 times the circle-converted diameter of the recess opening surface 3, and more preferably 0.3 to 3 times. If the ratio is less than 0.3 times, the effect of surface area increase is low and the effect may be reduced. If the ratio exceeds 4 times, the area increases, but the number of times the excitation light or afterglow is reflected on the inner wall surface (side surface). May increase, and the effect may reach its peak.


図4は、光照射表面に開口面3の形状が正方形である、凹部5を形成した蓄光蛍光体セラミックス1を示す。図4から明らかなように、蓄光蛍光体セラミックスの表面には、凹部5が一定の間隔長さLを隔てて多数個あることが好ましい。
隣接する凹部の間隔長さLは、0.1mm〜10mmであることが好ましい。0.1mm未満であると、内壁面9の強度が弱くなる場合があり、10mmを超えると、励起面積の増大効果が低くなる場合がある。
また蓄光蛍光体セラミックスの光照射表面の投影面積(Sa)に占める開口面3以外の縁部12の面積をS1、開口面3の面積をS2として、面積比(S1/S2)が 0.1〜10 であることが好ましい。0.1未満であると、内壁面9の強度が弱くなる場合があり、10を超えると、励起面積の増大効果が低くなる場合がある。

FIG. 4 shows a phosphorescent phosphor ceramic 1 in which a concave portion 5 in which the shape of the opening surface 3 is square is formed on the light irradiation surface. As is clear from FIG. 4, it is preferable that the surface of the phosphorescent phosphor ceramic has a large number of recesses 5 with a constant interval length L.
The interval length L between adjacent recesses is preferably 0.1 mm to 10 mm. If it is less than 0.1 mm, the strength of the inner wall surface 9 may be weakened, and if it exceeds 10 mm, the effect of increasing the excitation area may be reduced.
The area ratio (S1 / S2) is 0.1, where S1 is the area of the edge 12 other than the aperture 3 and the area of the aperture 3 is S2 in the projected area (Sa) of the light-irradiated surface of the phosphor phosphor. 10 to 10 is preferable. If it is less than 0.1, the strength of the inner wall surface 9 may be weakened, and if it exceeds 10, the effect of increasing the excitation area may be reduced.


なお、本発明の蓄光蛍光体セラミックスに用いられる蓄光蛍光体としては、市販品として硫化亜鉛やアルカリ土類金属のアルミン酸塩を結晶母体とするものがポピュラーであるが、焼結によって実質的に蓄光蛍光体からなるセラミックスにできる長残光性蛍光体であれば全て適用可能である。
かかる蓄光蛍光体としては、MがSr、Ca、Ba、Mgのうち少なくともいずれか1つの元素で、MAl:Eu,Dy、MAl1425:Eu,Dy、SrMgSi :Eu,Dy,Cl、YS:Eu,Mg,Ti、ZnS:Cu、(Ca,Sr)S:Bi、(Zn,Cd)S:Cu型などが具体例として挙げられるが、これらに限定されるものではない。
現状では、最も残光輝度が高く耐候性にも優れる希土類元素を付括したアルカリ土類金属のアルミン酸塩が実用的で好ましい。アルカリ土類金属のアルミン酸塩は、特許第2543825号,特許第3232548号などに例示されているが、これらの文献においては粉体での蛍光を利用するに留まっている。

In addition, as the phosphorescent phosphor used in the phosphorescent phosphor ceramic of the present invention, a commercially available product using zinc sulfide or an alkaline earth metal aluminate as a crystal matrix is popular. All long-lasting phosphors that can be made of ceramics made of phosphorescent phosphors are applicable.
As such a phosphorescent phosphor, M is at least one element of Sr, Ca, Ba, and Mg, and MAl 2 O 4 : Eu, Dy, M 4 Al 14 O 25 : Eu, Dy, Sr 3 MgSi 2. Specific examples include O 8 : Eu, Dy, Cl, Y 2 O 2 S: Eu, Mg, Ti, ZnS: Cu, (Ca, Sr) S: Bi, (Zn, Cd) S: Cu type. However, it is not limited to these.
At present, alkaline earth metal aluminates with rare earth elements having the highest afterglow brightness and excellent weather resistance are practical and preferred. Alkaline earth metal aluminates are exemplified in Japanese Patent Nos. 2543825 and 3323548, but in these documents, only fluorescence in powder is used.


本発明の蓄光蛍光体セラミックスは、蓄光蛍光体粒子を成形・焼結することによっても製造できるが、より好ましくは、蓄光蛍光体の原料粉末混合物を所望の凹部形状を有するように成形し、蛍光体化反応と焼結を同時に行うとよい。既存の蓄光蛍光体粒子は一般的に成形性や焼結性が悪く、成形時の圧力や焼結に必要な温度が高くなるので製造コストが高くなる。これに対し、原料粉末混合物で無垢の蛍光体にすることより、焼成時の化学反応によって蓄光蛍光体組成物が生成される際に焼結が容易に進むので、比較的低い成形圧(0.1kg/cm〜500kg/cm)や比較的低い焼結温度(800℃〜1500℃、好ましくは1000℃〜1400℃)にてセラミックスを得ることが出来る。
焼結は、アルゴン、窒素、一酸化炭素等の非酸化性ガス、もしくは水素を含んだ窒素等の弱還元性ガス雰囲気下で行うことができる。
蓄光蛍光体の主原料粉末の各物質の平均粒子径は、0.1μm〜10μmであることが好ましい。上記平均粒子径は、レーザー回折法によって測定し得られる値である。

The phosphorescent phosphor ceramic of the present invention can also be produced by molding and sintering phosphorescent phosphor particles, but more preferably, the phosphor powder raw material powder mixture is molded so as to have a desired concave shape and fluorescent. It is advisable to carry out the soaking reaction and sintering at the same time. Existing phosphorescent phosphor particles generally have poor moldability and sinterability, and the manufacturing cost increases because the pressure during molding and the temperature required for sintering are high. On the other hand, by using a raw material powder mixture as a solid phosphor, sintering proceeds easily when a phosphorescent phosphor composition is produced by a chemical reaction during firing, so a relatively low molding pressure (0. 1kg / cm 2 ~500kg / cm 2 ) and a relatively low sintering temperature (800 ° C. to 1500 ° C., preferably can be obtained a ceramic at 1000 ° C. to 1400 ° C.).
Sintering can be performed in a non-oxidizing gas such as argon, nitrogen, carbon monoxide, or a weakly reducing gas atmosphere such as nitrogen containing hydrogen.
The average particle size of each substance of the main raw material powder of the phosphorescent phosphor is preferably 0.1 μm to 10 μm. The average particle diameter is a value that can be measured by a laser diffraction method.


本発明の蓄光蛍光体セラミックスにおける凹部の形成方法は特に限定しないが、凹凸を有する型による成形や、平面成形体の表面に研削や凹部形成加工等の機械加工等により、成形体として作成する時点で加工処理を施す。凹部形成は平面成形体を焼結した後にドリル加工等によって行うことも可能であり、かかる形成方法を排除するものではない。また、平面構造体を3次元的に組み合わせることによっても可能である。

The method for forming the recesses in the phosphorescent phosphor ceramic of the present invention is not particularly limited, but the time when the molded body is formed by molding with an uneven mold or by machining such as grinding or recess forming on the surface of the flat molded body Apply processing. The formation of the recess can be performed by drilling or the like after the flat molded body is sintered, and does not exclude such a forming method. It is also possible to combine the planar structures three-dimensionally.


本発明の蓄光蛍光体セラミックスは、表面保護やデザイン上の目的でその表面に透明樹脂をコーティングしたり、透明なガラスフリットを焼付けコーティングしてもよい。

The phosphorescent phosphor ceramics of the present invention may be coated with a transparent resin on the surface or baked and coated with a transparent glass frit for the purpose of surface protection or design.


以下、本発明の実施例を説明するが、本発明はこれによって限定されない。
(実施例1)(比較例1)<平面構造体の凹部形成加工>
アルミナ640g(平均粒子径:1.2μm)と炭酸Sr 890g(平均粒子径:2.2μm)と酸化Dy 22g(平均粒子径:5.7μm)と酸化Eu 11g(平均粒子径:6.5μm)とホウ酸30g(平均粒子径:500μm)をボールミルで6hr混合し、原料粉末混合物を得た。
この150gを100mm角の金型を用いて100kg/cmのプレス圧で平板状(100*100*10t)に成形した。平板状の成形体は2つ作成し、1つの上面部には直径5mm、深さ5mmの円柱状の凹部を5mm間隔で研削加工によって81個形成した。両者をアルミナ板上に置いて、1300℃にて3時間(窒素雰囲気下)焼結し、無垢の蓄光蛍光体セラミックスを得た。
セラミックスの寸法は焼結によって71*71*7tとなり凹凸サンプルの凹部穴径は平均3.6mm、深さは平均3.7mmであった。よって、(S/Sa)=(71*71+3.6*3.14*3.7*81)/(71*71)=1.67となる。
両者の上面部に5000LxのD65標準光を10分間照射し、照射をやめて60分後に、輝度計(コニカミノルタ社製LS−100)に光照射表面に垂直な方向から残光輝度を測定したところ、凹部形成加工したものは430mCd/cmと、平板サンプルの220mCd/cmと比べて、約2倍の残光輝度を示した。
なお、比較例1は、実施例1を研削加工しない無垢の蓄光蛍光体セラミックスである。

Examples of the present invention will be described below, but the present invention is not limited thereto.
(Example 1) (Comparative Example 1) <Concavity formation processing of planar structure>
640 g of alumina (average particle size: 1.2 μm), 890 g of Sr carbonate (average particle size: 2.2 μm), 22 g of oxidized Dy (average particle size: 5.7 μm), and 11 g of Eu oxide (average particle size: 6.5 μm) And 30 g of boric acid (average particle size: 500 μm) were mixed by a ball mill for 6 hours to obtain a raw material powder mixture.
150 g of this was molded into a flat plate shape (100 * 100 * 10 t) with a press pressure of 100 kg / cm 2 using a 100 mm square mold. Two flat molded bodies were prepared, and 81 cylindrical recesses having a diameter of 5 mm and a depth of 5 mm were formed on one upper surface portion by grinding at intervals of 5 mm. Both were placed on an alumina plate and sintered at 1300 ° C. for 3 hours (in a nitrogen atmosphere) to obtain a solid phosphorescent phosphor ceramic.
The size of the ceramic was 71 * 71 * 7t by sintering, and the recess hole diameter of the uneven sample was an average of 3.6 mm and the depth was an average of 3.7 mm. Therefore, (S / Sa) = (71 * 71 + 3.6 * 3.14 * 3.7 * 81) / (71 * 71) = 1.67.
After irradiating 5000 Lx D65 standard light for 10 minutes on both upper surface parts and stopping irradiation after 60 minutes, the afterglow brightness | luminance was measured from the direction perpendicular | vertical to the light irradiation surface with a luminance meter (LS-100 by Konica Minolta). , those recesses formed machining the 430mCd / cm 2, compared with 220mCd / cm 2 of flat plate samples showed afterglow luminance about twice.
Comparative Example 1 is a solid phosphor fluorescent ceramic that does not grind Example 1.


Figure 0005389823
Figure 0005389823


(実施例2〜7、実施例13)凹部の形状、寸法を変えたこと以外は実施例1と同様にして、無垢の蓄光蛍光体セラミックスを得た。セラミックスの外寸法は全て71*71*7tとなり、その他の寸法形状及び残光輝度は表1に示した通りであった。(寸法は焼結後の平均数値)
(実施例8〜11)凹部の形状、寸法と穴間隔とを変えたこと以外は実施例1と同様にして、無垢の蓄光蛍光体セラミックスを得た。凹部は400個形成した。(実施例11は81個。)セラミックスの外寸法は全て71*71*7tとなり、その他の寸法形状及び残光輝度は表1に示した通りであった。(寸法は焼結後の平均数値)
(実施例12、比較例2)<蓄光蛍光体粉を焼結した場合>
市販の蓄光蛍光体粉(根本特殊化学(株)製 商品名:GLL300F SrAl2O4:Eu,Dy)120gを76mm角の金型を用いて1t/cmの圧力で平板状にプレス成形した。平板状の成形体は2つ作成し、1つの上面部には直径3.9mm、深さ3.9mmの円柱状の凹部を3.9mm間隔で研削加工によって81個形成した。両者をアルミナ板上に置いて、1450℃にて3時間(窒素雰囲気下)焼結し、無垢の蓄光蛍光体セラミックスを得た。セラミックスの外寸法は焼結によって70*70*7tとなり凹凸サンプルの凹部穴径は平均3.7mm、深さは平均3.6mmであった。残光輝度を実施例1と同様にして測定したところ、凹部形成加工したものは340mCd/cmと、平板サンプルの180mCd/cmと比べて、約2倍の残光輝度を示した。
比較例2は、実施例12において、研削加工しない蓄光蛍光体セラミックスを用いた。

(Examples 2-7, Example 13) Solid phosphorescent phosphor ceramics were obtained in the same manner as in Example 1 except that the shape and dimensions of the recesses were changed. The outer dimensions of the ceramics were all 71 * 71 * 7t, and the other dimensions and afterglow luminance were as shown in Table 1. (Dimensions are average values after sintering)
(Examples 8 to 11) Solid phosphorescent phosphor ceramics were obtained in the same manner as in Example 1 except that the shape, size, and hole spacing of the recesses were changed. 400 concave portions were formed. (Example 11 had 81 pieces) The outer dimensions of the ceramics were all 71 * 71 * 7t, and the other dimensional shapes and afterglow luminances were as shown in Table 1. (Dimensions are average values after sintering)
(Example 12, Comparative Example 2) <When the phosphorescent phosphor powder is sintered>
120 g of commercially available phosphorescent phosphor powder (trade name: GLL300F SrAl2O4: Eu, Dy) manufactured by Nemoto Special Chemical Co., Ltd. was press-molded into a flat plate shape at a pressure of 1 t / cm 2 using a 76 mm square mold. Two flat molded bodies were prepared, and 81 cylindrical recesses having a diameter of 3.9 mm and a depth of 3.9 mm were formed on one upper surface portion by grinding at intervals of 3.9 mm. Both were placed on an alumina plate and sintered at 1450 ° C. for 3 hours (in a nitrogen atmosphere) to obtain a solid phosphorescent phosphor ceramic. The outer dimensions of the ceramics were 70 * 70 * 7t by sintering, and the concave and convex diameters of the concave and convex samples were an average of 3.7 mm and the depth was an average of 3.6 mm. When the afterglow brightness was measured in the same manner as in Example 1, the recess-formed product showed 340 mCd / cm 2 , which was about twice as long as the afterglow brightness of 180 mCd / cm 2 of the flat plate sample.
In Comparative Example 2, phosphorescent phosphor ceramics that were not ground in Example 12 were used.


(比較例3,4)<蓄光蛍光体粉をガラスに分散した場合>
市販の蓄光蛍光体粉(根本特殊化学(株)製 商品名:GLL300F 前出)47gを無鉛ガラスフリット47gと混合し、固いペースト状になるように水を加えた。得られたペーストを78mm角の金型を用いて平板状に成形・乾燥した。平板状の成形体は2つ作成し、1つの上面部には直径4.0mm、深さ4.0mmの円柱状の凹部を4.0mm間隔で研削加工によって81個形成した。両者を、アルミナ粉を塗布したアルミナ板上に置いて、700℃で60分間(窒素雰囲気下)焼成し、ガラス複合のアモルファスタイプの蓄光セラミックスを得た。セラミックスの寸法は焼成によって70*70*7tとなり凹凸サンプルの凹部穴径は平均3.6mm、深さは平均3.6mmであった。残光輝度を実施例1と同様にして測定したところ、凹部形成加工したものは110mCd/cm(比較例4)と、平板サンプルの90mCd/cm(比較例3)と比べて、若干の増大が見られたものの、無垢の結晶組織を有する実施例12の蓄光蛍光体セラミックスと比較して凹部形成による残光増大効果は非常に低いものであった。原因としては、蓄光蛍光体が分散粒子の状態で存在するために、凹部内面で起こる励起光や残光の反射において散乱等による損失が大きい為と考えられる。なお、比較例3は、比較例4において研削加工しなかった蓄光体である。

(Comparative Examples 3 and 4) <When phosphorescent phosphor powder is dispersed in glass>
47 g of commercially available phosphorescent phosphor powder (trade name: GLL300F, supra) manufactured by Nemoto Special Chemical Co., Ltd. was mixed with 47 g of lead-free glass frit, and water was added so as to form a hard paste. The obtained paste was molded into a flat plate shape using a 78 mm square mold and dried. Two flat molded bodies were prepared, and 81 cylindrical concave portions having a diameter of 4.0 mm and a depth of 4.0 mm were formed on one upper surface portion by grinding at intervals of 4.0 mm. Both were placed on an alumina plate coated with alumina powder and fired at 700 ° C. for 60 minutes (in a nitrogen atmosphere) to obtain a glass composite amorphous phosphorescent ceramic. The dimensions of the ceramic were 70 * 70 * 7t by firing, and the concave hole diameter of the concave and convex samples was an average of 3.6 mm and the depth was an average of 3.6 mm. When the afterglow brightness was measured in the same manner as in Example 1, 110 mCd / cm 2 (Comparative Example 4) and 110 mCd / cm 2 (Comparative Example 3) of the flat plate sample were slightly formed. Although an increase was observed, the afterglow increasing effect due to the formation of the recess was very low as compared with the phosphorescent phosphor ceramic of Example 12 having a pure crystal structure. This is probably because the phosphorescent phosphor is present in the form of dispersed particles, and the loss due to scattering or the like is large in the reflection of excitation light and afterglow occurring on the inner surface of the recess. In addition, the comparative example 3 is the luminous body which was not ground in the comparative example 4.


(比較例5,6)<蓄光蛍光体粉を樹脂に分散した場合>
市販の蓄光蛍光体粉(根本特殊化学(株)製 商品名:GLL300F 前出)25gを透明シリコーン樹脂(信越化学工業(株)製 商品名:KE-109A,B(1:1)混合物)50gに分散混合し、その内の50gを70mm角の金型に鋳込んで80℃で1時間加熱硬化成形した。平板状の成形体は2つ作成し、外寸法は70*70*7tであった。そして、1つの上面部には直径3.6mm、深さ3.7mmの円柱状の凹部を3.6mm間隔で研削加工によって81個形成した。
比較例5は、比較例6における研削加工をしなかった場合の蓄光蛍光体である。
残光輝度を実施例1と同様にして測定したところ、凹部形成加工したものは140mCd/cm(比較例6)と、平板サンプルの120mCd/cm(比較例5)と比べて、若干の増大が見られたものの、実施例12等の無垢の蓄光蛍光体セラミックスと比較して凹部形成による残光増大効果は非常に低いものであった。原因としては、蓄光蛍光体が分散粒子の状態で存在するために、凹部内面で起こる励起光や残光の反射において散乱等による損失が大きい為と考えられる。

(Comparative Examples 5 and 6) <When phosphorescent phosphor powder is dispersed in resin>
Commercially available phosphorescent phosphor powder (manufactured by Nemoto Special Chemical Co., Ltd., product name: GLL300F, supra) 25 g of transparent silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KE-109A, B (1: 1) mixture) 50 g Then, 50 g of the mixture was cast into a 70 mm square mold and heat-cured at 80 ° C. for 1 hour. Two flat molded bodies were prepared, and the outer dimensions were 70 * 70 * 7t. Then, 81 cylindrical recesses having a diameter of 3.6 mm and a depth of 3.7 mm were formed on one upper surface portion by grinding at intervals of 3.6 mm.
Comparative Example 5 is a phosphorescent phosphor when the grinding process in Comparative Example 6 is not performed.
When the afterglow brightness was measured in the same manner as in Example 1, it was 140 mCd / cm 2 (Comparative Example 6) that was processed to form a recess, and a little compared with 120 mCd / cm 2 (Comparative Example 5) of the flat plate sample. Although an increase was observed, the afterglow increasing effect due to the formation of the recess was very low compared with the solid phosphorescent ceramics such as Example 12. This is probably because the phosphorescent phosphor is present in the form of dispersed particles, and the loss due to scattering or the like is large in the reflection of excitation light and afterglow occurring on the inner surface of the recess.

Claims (7)

光照射表面に凹部を備えた無垢の蓄光蛍光体セラミックスであって、
該凹部は、形成されていない場合に比べて受光面積を高め、かつ、前記光照射表面に垂直な方向から測定した残光輝度を高めるように形成されている無垢の蓄光蛍光体セラミックス。
It is a solid phosphor fluorescent ceramic with a concave on the light irradiation surface,
Solid phosphorescent phosphor ceramic that is formed so as to increase the light receiving area and increase the afterglow luminance measured from the direction perpendicular to the light irradiation surface as compared with the case where the recess is not formed.
前記凹部は、底面を有し、該凹部の開口面の形状、底面の形状、ならびに、前記開口面に平行な凹部断面の形状が、互いに合同形状または相似形状であることを特徴とする請求項1に記載の無垢の蓄光蛍光体セラミックス。   The concave portion has a bottom surface, and the shape of the opening surface of the concave portion, the shape of the bottom surface, and the shape of the concave section parallel to the opening surface are congruent or similar to each other. 1. Solid phosphorescent phosphor ceramics according to 1. 前記凹部の開口面外周と底面外周とを最小距離で結ぶ直線と、前記凹部の開口面に対する垂線とがなす角度が、−15°以上45°未満の範囲であることを特徴とする請求項2に記載の無垢の蓄光蛍光体セラミックス。   The angle formed by a straight line connecting the outer periphery of the opening surface and the outer periphery of the bottom surface of the recess at a minimum distance and a perpendicular to the opening surface of the recess is in a range of -15 ° to less than 45 °. Solid phosphorescent phosphor ceramic described in 1. 該凹部の開口面から該凹部の最も深い位置までの最短距離が、前記凹部開口面の円換算直径の0.3倍以上4倍以下であることを特徴とする請求項1ないし3のいずれかに記載の無垢の蓄光蛍光体セラミックス。   4. The shortest distance from the opening surface of the concave portion to the deepest position of the concave portion is 0.3 to 4 times the circle equivalent diameter of the concave opening surface. Solid phosphorescent phosphor ceramic described in 1. 該凹部の開口面から該凹部の最も深い位置までの最短距離が、0.3倍以上3倍以下であることを特徴とする請求項4に記載の無垢の蓄光蛍光体セラミックス。   The solid phosphor phosphor ceramic according to claim 4, wherein the shortest distance from the opening surface of the recess to the deepest position of the recess is 0.3 to 3 times. 該凹部が、凹凸を有する型による成形、若しくは、平面形成体の表面に機械加工等により形成されたものである請求項1〜5のいずれかに記載の無垢の蓄光蛍光体セラミックス。The solid phosphor phosphor ceramic according to any one of claims 1 to 5, wherein the concave portion is formed by molding with a mold having concaves and convexes, or by machining or the like on the surface of a flat surface forming body. 請求項1〜6のいずれかに記載の無垢の蓄光蛍光体セラミックスを製造する方法であって、
蓄光蛍光体の原料粉末混合物を、光照射する面に凹部を形成するように成形し、反応と焼結を同時に行うことよりなる無垢の蓄光蛍光体セラミックスの製造方法。
A method for producing a solid phosphorescent phosphor ceramic according to any one of claims 1 to 6,
A method for producing an innocent phosphorescent phosphor ceramic, comprising forming a phosphor powder raw material powder mixture so as to form a recess on a surface to be irradiated with light, and simultaneously performing reaction and sintering.
JP2010543016A 2008-12-19 2009-12-18 Pure phosphorescent phosphor ceramics Expired - Fee Related JP5389823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543016A JP5389823B2 (en) 2008-12-19 2009-12-18 Pure phosphorescent phosphor ceramics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008323562 2008-12-19
JP2008323562 2008-12-19
JP2010543016A JP5389823B2 (en) 2008-12-19 2009-12-18 Pure phosphorescent phosphor ceramics
PCT/JP2009/071169 WO2010071203A1 (en) 2008-12-19 2009-12-18 Solid light-accumulating phosphor ceramic

Publications (2)

Publication Number Publication Date
JPWO2010071203A1 JPWO2010071203A1 (en) 2012-05-31
JP5389823B2 true JP5389823B2 (en) 2014-01-15

Family

ID=42268870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010543016A Expired - Fee Related JP5389823B2 (en) 2008-12-19 2009-12-18 Pure phosphorescent phosphor ceramics

Country Status (2)

Country Link
JP (1) JP5389823B2 (en)
WO (1) WO2010071203A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131912A (en) * 2014-01-14 2015-07-23 国立大学法人宇都宮大学 Transparent fluorescent substance and production method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120679A (en) * 1982-12-27 1984-07-12 Sumitomo Electric Ind Ltd High-luminace illuminant for ion beam monitor and its preparation
JPH08202301A (en) * 1995-01-30 1996-08-09 Rhythm Watch Co Ltd Light accumulation type light emitting body
JPH11180211A (en) * 1997-12-24 1999-07-06 Aisin Seiki Co Ltd Phosphor
JP2005105116A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Method for producing sintered body of luminous fluorescent substance and method for producing raw material pellet for injection molding
JP3115069U (en) * 2005-07-25 2005-11-04 岡谷電機産業株式会社 Discharge tube
JP2008047376A (en) * 2006-08-11 2008-02-28 Seikoh Giken Co Ltd Portable lighting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120679A (en) * 1982-12-27 1984-07-12 Sumitomo Electric Ind Ltd High-luminace illuminant for ion beam monitor and its preparation
JPH08202301A (en) * 1995-01-30 1996-08-09 Rhythm Watch Co Ltd Light accumulation type light emitting body
JPH11180211A (en) * 1997-12-24 1999-07-06 Aisin Seiki Co Ltd Phosphor
JP2005105116A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Method for producing sintered body of luminous fluorescent substance and method for producing raw material pellet for injection molding
JP3115069U (en) * 2005-07-25 2005-11-04 岡谷電機産業株式会社 Discharge tube
JP2008047376A (en) * 2006-08-11 2008-02-28 Seikoh Giken Co Ltd Portable lighting system

Also Published As

Publication number Publication date
WO2010071203A1 (en) 2010-06-24
JPWO2010071203A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5763683B2 (en) Luminescent ceramic laminate and method for producing the same
CN207542274U (en) Wavelength convert component and luminescent device
JP5356822B2 (en) Light emitting device having improved CaAlSiN light conversion material
US9944849B2 (en) Light emitting diode device with luminescent material
TWI538981B (en) Emissive ceramic materials having a dopant concentration gradient and methods of making and using the same
JP6140766B2 (en) Ceramic body for light emitting devices
JP5551079B2 (en) Porous phosphorescent phosphor ceramics
EP2314659A1 (en) Li-containing -sialon fluorescent substance and method for manufacturing same, illumination device, and image display device
EP3389100A1 (en) Wavelength converter, wavelength conversion member, and light-emitting device
US20130288875A1 (en) Method and apparatus for sintering flat ceramics
TW200808117A (en) Light-emitting device
JP2009530788A (en) Electroluminescent device
JP6941821B2 (en) Wavelength converter, its manufacturing method, and light emitting device using the wavelength converter
JP5153014B2 (en) Green phosphor
EP2543714B1 (en) Li-CONTAINING -SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
TW201942336A (en) Phosphor and light-emitting device using same
JP2020073993A (en) Manufacturing method of wavelength conversion member
CN112441817A (en) Fluorescent ceramic, preparation method thereof and light source device
KR20130110076A (en) Oxide ceramic fluorescent material having rare earth diffused therein
JP5389823B2 (en) Pure phosphorescent phosphor ceramics
JP6989307B2 (en) Ceramic complexes, as well as fluorescent and light-emitting devices for projectors containing them
TW201209138A (en) Carbodiimide phosphors
El Kazazz et al. Production of violet-blue emitting phosphors via solid state reaction and their uses in outdoor glass fountain
US11597875B2 (en) Wavelength converter
JP7057567B2 (en) Fluorescent material and light emitting device using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees