JP5153014B2 - Green phosphor - Google Patents

Green phosphor Download PDF

Info

Publication number
JP5153014B2
JP5153014B2 JP2010209992A JP2010209992A JP5153014B2 JP 5153014 B2 JP5153014 B2 JP 5153014B2 JP 2010209992 A JP2010209992 A JP 2010209992A JP 2010209992 A JP2010209992 A JP 2010209992A JP 5153014 B2 JP5153014 B2 JP 5153014B2
Authority
JP
Japan
Prior art keywords
phase
content
green phosphor
luag
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010209992A
Other languages
Japanese (ja)
Other versions
JP2012062444A (en
Inventor
正樹 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010209992A priority Critical patent/JP5153014B2/en
Publication of JP2012062444A publication Critical patent/JP2012062444A/en
Application granted granted Critical
Publication of JP5153014B2 publication Critical patent/JP5153014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a green phosphor using LuAG:Ce as a material and improved in properties such as luminous intensity and life as a green phosphor. <P>SOLUTION: The green phosphor is constituted of inorganic materials having a first phase 3 composed of Al<SB POS="POST">2</SB>O<SB POS="POST">3</SB>and a second phase 5 composed of LuAG containing Ce, wherein the content of the second phase 5 is &ge;25 and &le;95 vol.% in terms of volume ratio in the whole phase containing the first and second phases; the content of Ce in LuAG is &ge;0.003 and &le;0.03 in terms of atomic ratio (Ce/Lu) to Lu; or the content of the second phase 5 is &ge;80 and &le;95 vol.% in terms of volume ratio, and the content of Ce is &ge;0.001 and &le;0.03 in terms of atomic ratio (Ce/Lu) to Lu. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、緑色蛍光体に関し、特に、発光強度や寿命等の特性を向上させることができる緑色蛍光体に関する。   The present invention relates to a green phosphor, and more particularly to a green phosphor capable of improving characteristics such as emission intensity and life.

緑色蛍光体は、FED(Field Emitter Display:電界放射型ディスプレイ)、LCD(Liquid Crystal Display:液晶ディスプレイ)やPDP(Plasma
Display Panel:プラズマディスプレイパネル)などのディスプレイ用として、青色LED(Light
Emitting Diode:発光ダイオード)を光源として用いた照明用として、また、プロジェクタに用いる光学スペクトルの緑色領域用として、様々な分野・用途に使用されている。
Green phosphors are FED (Field Emitter Display), LCD (Liquid Crystal Display) and PDP (Plasma).
Blue LED (Light LED) for displays such as Display Panel
Emitting Diode (Light Emitting Diode) is used in various fields and applications for illumination using a light source and for a green region of an optical spectrum used for a projector.

近年、緑色蛍光体は、発光強度や寿命等に優れた特性を有することが要求されており、様々な改良が行われている。
特許文献1では、波長が350〜500nmの光により励起されて発光強度が高い良好な緑色発光を示すものとして、組成式:ATbLn(1−x)(式中、AはLi、Na、K及びAgから選ばれる少なくとも1種、LnはYを含む希土類元素(Tbを除く)から選ばれる少なくとも1種、MはMo及びWから選ばれる少なくとも1種、xは0.4≦x≦1を満たす整数)で表される緑色蛍光体が開示されている。また、特許文献2には、La、Mg、Alと、Y又はCeのいずれかを必ず含み、更に、Tb、Mn、Znを任意で含み、La、Mg、Alが母材であり、他の元素が発光中心である緑色蛍光体が開示されている。
In recent years, green phosphors are required to have excellent characteristics such as emission intensity and lifetime, and various improvements have been made.
In Patent Document 1, a composition formula: ATb x Ln (1-x) M 2 O 8 (wherein A represents a good green light emission that is excited by light having a wavelength of 350 to 500 nm and has high emission intensity ) At least one selected from Li, Na, K and Ag, Ln is at least one selected from rare earth elements including Y (excluding Tb), M is at least one selected from Mo and W, and x is 0.4 An integer satisfying ≦ x ≦ 1 is disclosed. Patent Document 2 always includes La, Mg, Al, and any one of Y or Ce, further includes Tb, Mn, and Zn, La, Mg, and Al are base materials. A green phosphor whose element is the emission center is disclosed.

しかしながら、特許文献1に記載の緑色蛍光体においては、1価のAサイト(AはLi、Na、K)を3価のTb3+イオンで置換するため、結晶構造に大きな歪みが生じやすい。その結果、結晶構造的に不安定であるため、発光強度が低下するという問題が見られた。また、発光イオンとしてTb3+イオンを高濃度で含有しており、更に、Tb3+イオンの増感剤としてY3+イオン、Dy3+イオン、La3+イオン、Gd3+イオン又はLu3+イオンを含有しているため、これらが蛍光体内で析出する場合があり、発光強度等の向上には限界があるものであった。この他、特許文献1に記載の緑色蛍光体は、樹脂、ゴム等に分散させて蛍光体層として使用するものであり、樹脂の劣化による発光ダイオード等のデバイスの発光強度の劣化や短寿命化を抑制することが難しいものであった。
更に、特許文献2に記載の緑色蛍光体は、類似サイトを2価イオン(Mg2+、Mn2+、Zn2+)および3価イオン(La3+、Tb3+)で構成しているため、結晶構造的に不安定であり、歪みが生じたり、異相が析出する場合があり、発光強度等の向上には限界があるものであった。
However, in the green phosphor described in Patent Document 1, since monovalent A sites (A is Li, Na, K) are substituted with trivalent Tb 3+ ions, large distortion is likely to occur in the crystal structure. As a result, there was a problem that the emission intensity was lowered because the crystal structure was unstable. Further, it contains Tb 3+ ions at a high concentration as luminescent ions, and further contains Y 3+ ions, Dy 3+ ions, La 3+ ions, Gd 3+ ions, or Lu 3+ ions as sensitizers for Tb 3+ ions. Therefore, these may be precipitated in the phosphor, and there is a limit to improving the emission intensity. In addition, the green phosphor described in Patent Document 1 is used as a phosphor layer by being dispersed in a resin, rubber or the like, and the emission intensity of a device such as a light emitting diode is deteriorated or the life is shortened due to the deterioration of the resin. It was difficult to suppress.
Further, since the green phosphor described in Patent Document 2 is composed of a divalent ion (Mg 2+ , Mn 2+ , Zn 2+ ) and a trivalent ion (La 3+ , Tb 3+ ) in the similar structure, Instability, distortion may occur, or a heterogeneous phase may precipitate, and there is a limit to improvement in emission intensity and the like.

一方、特許文献3には、青色又は紫外光を緑色光に変換させるためにLuAG:Ceを用いた有色及び白色光を生成する照明装置が開示されている。
更に、特許文献4には、ドープされたYAGタイプの蛍光体を有する多結晶セラミック構造の蛍光体であって、前記蛍光体が、非発光多結晶アルミナを有するセラミックマトリックスに埋め込まれ、前記セラミックマトリックスが、80乃至99.99vol.%のアルミナと、0.01乃至20vol.%の蛍光体とを有し、前記蛍光体が、(Lu1−x−y−a−bYxGdy)3(Al1−zGaZ)5O12:CeaPrbの組成を持ち、0<x≦1、0≦y<1、0≦z≦0.1、0≦a≦0.2、0≦b≦0.1且つa+b>0であるドープされたYAGである多結晶セラミックス構造の蛍光体が開示されている。
On the other hand, Patent Document 3 discloses an illumination device that generates colored and white light using LuAG: Ce to convert blue or ultraviolet light into green light.
Further, Patent Document 4 discloses a phosphor having a polycrystalline ceramic structure having a doped YAG type phosphor, wherein the phosphor is embedded in a ceramic matrix having non-light emitting polycrystalline alumina. 80 to 99.99 vol. % Alumina, 0.01 to 20 vol. % Phosphor, and the phosphor has a composition of (Lu1-x-y-a-bYxGdy) 3 (Al1-zGaZ) 5O12: CeaPrb, and 0 <x ≦ 1, 0 ≦ y <1 , 0 ≦ z ≦ 0.1, 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.1 and a + b> 0, a phosphor with a polycrystalline ceramic structure is disclosed.

特開2005−68412号公報JP-A-2005-68412 特開2005−89692号公報JP 2005-89692 A 特表2009−539219号公報Special table 2009-539219 特表2008−533270号公報Special table 2008-533270 gazette

しかしながら、特許文献3には緑色光の変換材料としてLuAG:Ceを用いるという点、特許文献4には蛍光体の例として、LuAl12:Ce3+を用いるという点が開示されているに過ぎず、LuAG:Ceを素材とした緑色蛍光体として発光強度や寿命等の特性を向上させるには更なる改良が必要であった。 However, Patent Document 3 discloses that LuAG: Ce is used as a green light conversion material, and Patent Document 4 discloses that Lu 3 Al 5 O 12 : Ce 3+ is used as an example of a phosphor. However, as a green phosphor made of LuAG: Ce, further improvement is required to improve characteristics such as emission intensity and lifetime.

本発明は、上述の事情に鑑みてなされたものであり、LuAG:Ceを素材とした緑色蛍光体として発光強度や寿命等の特性を向上させることができる緑色蛍光体を提供することを目的とする。   This invention is made | formed in view of the above-mentioned situation, and it aims at providing the green fluorescent substance which can improve characteristics, such as emitted light intensity and a lifetime, as a green fluorescent substance which used LuAG: Ce as a raw material. To do.

本発明に係る緑色蛍光体は、Al23からなる第1相と、Ceを含有するLuAGからなる第2相とを有する無機材料で構成された緑色蛍光焼結体であって、前記第2相の含有量は、前記第1及び第2相を含む相全体における体積比で25vol%以上95vol%以下であり、かつ、前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.003以上0.03以下であることを特徴とする。 The green phosphor according to the present invention is a green phosphor sintered body composed of an inorganic material having a first phase made of Al 2 O 3 and a second phase made of LuAG containing Ce. The content of the two phases is 25 vol% or more and 95 vol% or less in the volume ratio in the entire phase including the first and second phases, and the content of Ce in the LuAG is an atomic ratio (Ce / Lu) is 0.003 or more and 0.03 or less.

また、本発明に係る緑色蛍光体は、Al23からなる第1相と、Ceを含有するLuAGからなる第2相とを有する無機材料で構成された緑色蛍光焼結体であって、前記第2相の含有量は、前記第1及び第2相を含む相全体における体積比で80vol%以上95vol%以下であり、かつ、前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.001以上0.03以下であることを特徴とする。 The green phosphor according to the present invention is a green phosphor sintered body composed of an inorganic material having a first phase made of Al 2 O 3 and a second phase made of LuAG containing Ce, The content of the second phase is 80 vol% or more and 95 vol% or less by volume ratio in the whole phase including the first and second phases, and the content of Ce in the LuAG is an atomic ratio with respect to Lu ( Ce / Lu) is 0.001 or more and 0.03 or less.

前記緑色蛍光体の光出射方向に平行する任意の断面で切ったときの表面において、前記光出射方向と平行する方向に任意の複数の平行直線を引いた時に、すべての平行直線上に前記第2相が接触している、又は、前記平行直線上の一部にも前記第2相に接触しない平行直線がある場合は、前記接触しない平行直線間の間隔は、青色光の発光ピーク波長未満であることが好ましい。   When a plurality of parallel straight lines are drawn in a direction parallel to the light emission direction on the surface of the green phosphor when cut in an arbitrary cross section parallel to the light emission direction, When two phases are in contact, or there is a parallel line that does not contact the second phase in part of the parallel line, the interval between the non-contact parallel lines is less than the emission peak wavelength of blue light. It is preferable that

本発明によれば、LuAG:Ceを素材とした緑色蛍光体として発光強度や寿命等の特性を向上させることができる緑色蛍光体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the green fluorescent substance which can improve characteristics, such as emitted light intensity and a lifetime, as a green fluorescent substance which used LuAG: Ce as a raw material is provided.

本発明の実施形態に係る緑色蛍光体の外観の一例を示す概念斜視図である。It is a conceptual perspective view which shows an example of the external appearance of the green fluorescent substance which concerns on embodiment of this invention. 図1に示す緑色蛍光体をA−A線で切ったときの断面SEM写真である。It is a cross-sectional SEM photograph when the green fluorescent substance shown in FIG. 1 is cut by the AA line. 緑色蛍光体1におけるより好ましい形態を説明するための図2に示す断面SEM写真を用いた説明図である。It is explanatory drawing using the cross-sectional SEM photograph shown in FIG. 2 for demonstrating the more preferable form in the green fluorescent substance 1. FIG. 本試験における緑色蛍光体の光特性の測定方法を説明する概略図である。It is the schematic explaining the measuring method of the optical characteristic of the green fluorescent substance in this test.

以下、本発明に係る緑色蛍光体を、実施の形態及び実施例を用いて詳細に説明する。
図1は、本発明の実施形態に係る緑色蛍光体の外観の一例を示す概念斜視図であり、図2は、図1に示す緑色蛍光体をA−A線で切ったときの断面SEM写真である。
Hereinafter, the green phosphor according to the present invention will be described in detail using embodiments and examples.
FIG. 1 is a conceptual perspective view showing an example of the appearance of a green phosphor according to an embodiment of the present invention, and FIG. 2 is a cross-sectional SEM photograph of the green phosphor shown in FIG. 1 taken along line AA. It is.

本発明に係る緑色蛍光体1は、図1、2に示すように、例えば板状体で構成され、Alからなる第1相3と、Ceを含有するLuAG(ルテチウム・アルミニウム・ガーネット:LuAl12)からなる第2相(蛍光体相)5とを有する無機材料で構成され、前記第2相5の含有量は、前記第1相3及び前記第2相5を含む相全体における体積比で25vol%以上95vol%以下であり、かつ、前記第2相5における前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.003以上0.03以下であることを特徴とする。
また、本発明に係る緑色蛍光体1は、前記第2相5の含有量は、前記第1相3及び前記第2相5を含む相全体における体積比で80vol%以上95vol%以下であり、かつ、前記第2相5における前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.001以上0.03以下であることを特徴とする。
Green phosphor 1 according to the present invention, as shown in FIGS. 1 and 2, for example, a plate-shaped body, a first phase 3 consisting of Al 2 O 3, LuAG containing Ce (lutetium aluminum garnet : Lu 3 Al 5 O 12 ) composed of an inorganic material having a second phase (phosphor phase) 5, and the content of the second phase 5 includes the first phase 3 and the second phase 5. The volume ratio of the entire phase to be contained is 25 vol% or more and 95 vol% or less, and the Ce content in the LuAG in the second phase 5 is 0.003 or more and 0.003 or more in terms of the atomic ratio (Ce / Lu) to Lu. 03 or less.
Moreover, as for the green fluorescent substance 1 which concerns on this invention, content of the said 2nd phase 5 is 80 vol% or more and 95 vol% or less by the volume ratio in the whole phase containing the said 1st phase 3 and the said 2nd phase 5, In addition, the content of Ce in the LuAG in the second phase 5 is 0.001 or more and 0.03 or less in terms of atomic ratio (Ce / Lu) to Lu.

本発明に係る緑色蛍光体は、上述したような構成を備えているため、LuAG:Ceを素材とした緑色蛍光体として発光強度や寿命等の特性を向上させることができる。   Since the green phosphor according to the present invention has the above-described configuration, characteristics such as emission intensity and lifetime can be improved as a green phosphor made of LuAG: Ce.

前記第2相5の含有量が体積比で25vol%未満である場合には、第2相5の体積比が低いため励起光として用いる青色光(例えば、青色LED光)の一部が第2相5で波長変換されずにそのまま第1相3を透過してしまうため、色むらが発生し好ましくない。前記含有量が体積比で95vol%を超える場合には、第2相5の体積比が大きく、光分散相となる第1相3の体積比が小さいため、緑色蛍光体1内における前記青色光の光分散が不十分となるため、緑色蛍光体1の面内で緑色光への波長変換量にばらつきが生じ、色むらが発生するため好ましくない。また、第1相3の体積比が極端に少なくなるため、熱伝導率が小さくなり、発光素子の放熱性が低下し、発光素子の寿命が低下するため好ましくない。   When the content of the second phase 5 is less than 25 vol% in volume ratio, a part of blue light (for example, blue LED light) used as excitation light is second because the volume ratio of the second phase 5 is low. Since the first phase 3 is transmitted as it is without being wavelength-converted in the phase 5, color unevenness occurs, which is not preferable. When the content exceeds 95 vol% in volume ratio, the volume ratio of the second phase 5 is large, and the volume ratio of the first phase 3 serving as the light dispersion phase is small. Since the dispersion of the light becomes insufficient, the amount of wavelength conversion to green light varies within the plane of the green phosphor 1, and color unevenness occurs, which is not preferable. Further, since the volume ratio of the first phase 3 is extremely reduced, the thermal conductivity is reduced, the heat dissipation of the light emitting element is lowered, and the life of the light emitting element is reduced, which is not preferable.

また、第2相5の含有量が体積比で25vol%以上95vol%以下である場合において、前記第2相5におけるLuAG中のCeの含有量がLuに対する原子比(Ce/Lu)で0.003未満である場合には、第2相5内のCeの含有量が少ないため、Ceによる波長変換量が少なくなり、青色光の一部が第2相5で波長変換されずにそのまま第1相3を透過してしまうため、色むらが発生し好ましくない。前記原子比(Ce/Lu)が0.030を超える場合には、Ceの含有量が高くなるためLuAGに固溶できないCeが偏析する場合があり、発光強度が低下するため好ましくない。   In addition, when the content of the second phase 5 is 25 vol% or more and 95 vol% or less by volume, the Ce content in LuAG in the second phase 5 is 0.00 by the atomic ratio (Ce / Lu) to Lu. If it is less than 003, the Ce content in the second phase 5 is small, so that the amount of wavelength conversion by Ce is reduced, and part of the blue light is not wavelength-converted in the second phase 5 and remains as it is in the first phase. Since phase 3 is transmitted, color unevenness occurs, which is not preferable. When the atomic ratio (Ce / Lu) exceeds 0.030, the Ce content is high, and Ce that cannot be dissolved in LuAG may be segregated, which is not preferable because the emission intensity decreases.

なお、前記第2相5の含有量が体積比で80vol%以上95vol%以下である場合は、前記第2相5におけるLuAG中のCeの含有量が原子比(Ce/Lu)で0.001以上であっても、本発明と同様な効果を得ることができる。
これは、第2相5内のCeの含有量は少ないものの、第2相5の体積比が大きいため、青色光のCeによる波長変換を十分に行うことができ、かつ、第2相5内でCeによって乱反射されるため、上述したような原子比(Ce/Lu)が0.003未満である場合に発生する色むらは抑制されるものと考えられる。
なお、原子比(Ce/Lu)が0.001未満である場合には、第2相5の体積比が大きくても、第2相5内のCeの含有量が極端に少なくなるため、Ceによる波長変換量が極端に少なくなり、色むらが発生するため好ましくない。
When the content of the second phase 5 is 80 vol% or more and 95 vol% or less by volume, the content of Ce in LuAG in the second phase 5 is 0.001 in terms of atomic ratio (Ce / Lu). Even if it is above, the effect similar to this invention can be acquired.
This is because although the Ce content in the second phase 5 is small, the volume ratio of the second phase 5 is large, so that wavelength conversion by Ce of blue light can be sufficiently performed, and the second phase 5 Therefore, it is considered that color unevenness generated when the atomic ratio (Ce / Lu) as described above is less than 0.003 is suppressed.
When the atomic ratio (Ce / Lu) is less than 0.001, the Ce content in the second phase 5 is extremely reduced even if the volume ratio of the second phase 5 is large. This is not preferable because the amount of wavelength conversion due to is extremely reduced and color unevenness occurs.

図3は、上述した緑色蛍光体1におけるより好ましい形態を説明するための図2に示す断面SEM写真を用いた説明図である。
上述した緑色蛍光体1は、緑色蛍光体1の光出射方向αに平行する任意の断面(例えば、図1に示すようなA−A’線)で切ったときの表面(例えば、図2に示すような断面SEM写真)において、前記光出射方向と平行する方向に任意の複数の平行直線(例えば、図3中、α1〜α16)を引いた時に、すべての平行直線上に前記第2相5が接触していること(例えば、図3参照)が好ましく、前記平行直線上の一部にも前記第2相5に接触しない平行直線がある場合は、当該接触しない平行直線間の間隔は、青色光の発光ピーク波長(450〜480nm)未満であることが好ましい。
このような構成を備えることで、青色光そのものが緑色蛍光体1を通過するおそれがないため、緑色光を発生させる際の色むらの発生を確実に抑制することができるため好ましい。
FIG. 3 is an explanatory diagram using the cross-sectional SEM photograph shown in FIG. 2 for explaining a more preferable form of the green phosphor 1 described above.
The green phosphor 1 described above has a surface (for example, shown in FIG. 2) cut along an arbitrary cross section (for example, the AA ′ line as shown in FIG. 1) parallel to the light emission direction α of the green phosphor 1. In the cross-sectional SEM photograph as shown, when a plurality of arbitrary parallel straight lines (for example, α1 to α16 in FIG. 3) are drawn in a direction parallel to the light emitting direction, the second phase is placed on all the parallel straight lines. 5 are preferably in contact with each other (see, for example, FIG. 3), and when there is a parallel straight line that does not contact the second phase 5 in a part of the parallel straight line, the interval between the parallel lines not in contact is The emission wavelength of blue light is preferably less than 450 to 480 nm.
By providing such a configuration, it is preferable that the blue light itself does not pass through the green phosphor 1, and thus it is possible to reliably suppress the occurrence of color unevenness when green light is generated.

尚、上述した含有量については、緑色蛍光体1内における不可避的な不純物成分の混入を排除するものではないが、Fe、Crなどの金属不純物の総量は100ppm以下とすることが好ましい。
これによって、発光強度の低下や色むらの発生をより抑制することができ、また、発光ピーク波長の制御がより容易となるため好ましい。
In addition, about the content mentioned above, although the inevitable mixing of the impurity component in the green fluorescent substance 1 is not excluded, it is preferable that the total amount of metal impurities, such as Fe and Cr, shall be 100 ppm or less.
As a result, the decrease in emission intensity and the occurrence of color unevenness can be further suppressed, and the emission peak wavelength can be more easily controlled, which is preferable.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は、下記実施例により限定解釈されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limitedly interpreted by the following Example.

(試験1)
平均粒径1.1μm、純度99.9%の酸化セリウム粉末、平均粒径1.2μm、純度99.9%の酸化ルテチウム粉末、平均粒径0.3μm、純度99.9%の酸化アルミニウム粉末、エタノール、アクリル系バインダーを添加し酸化アルミニウムボールを用いたボールミルによって20時間の混合を行って、得られたスラリからスプレードライヤを用いて造粒粉を作製した。この際、酸化セリウム粉末、酸化ルテチウム粉末及び酸化アルミニウム粉末の量を調整して、緑色蛍光体の相全体中のLuAG:Ce含有量の異なる造粒粉を複数作製した。
(Test 1)
Cerium oxide powder having an average particle size of 1.1 μm and a purity of 99.9%, lutetium oxide powder having an average particle size of 1.2 μm and a purity of 99.9%, aluminum oxide powder having an average particle size of 0.3 μm and a purity of 99.9% Then, ethanol and an acrylic binder were added, and the mixture was mixed for 20 hours by a ball mill using aluminum oxide balls, and granulated powder was prepared from the resulting slurry using a spray dryer. At this time, by adjusting the amounts of the cerium oxide powder, the lutetium oxide powder, and the aluminum oxide powder, a plurality of granulated powders having different LuAG: Ce contents in the whole phase of the green phosphor were produced.

次に、作製した造粒粉を10MPaで一軸金型成形、100MPaで冷間静水圧成形(CIP)を行って成形体とした。得られた成形体を、大気中600℃で脱脂後、真空雰囲気下1700℃(LuAG:Ce/Al)で焼結した。 Next, the produced granulated powder was subjected to uniaxial mold molding at 10 MPa and cold isostatic pressing (CIP) at 100 MPa to obtain a molded body. The obtained molded body was degreased at 600 ° C. in the air and then sintered at 1700 ° C. (LuAG: Ce / Al 2 O 3 ) in a vacuum atmosphere.

得られた焼結体に対して、アルキメデス法により嵩密度(JIS C 2141)を測定後、その一部を粉砕し、乾式自動密度計(島津製作所製アキュピック1330)にて、真密度を測定した。また、一部を洗浄後、Lu、Al、Ce濃度をICP発光分光分析法にて測定した。また、一部を粉末X線回析により、結晶相を調査した。焼結体の密度、Lu濃度、Al濃度およびCe濃度、結晶相の測定結果をもとに、相全体中のAlの含有量(第1相3の含有量)及びLuAG:Ceの含有量(第2相5の含有量)をそれぞれ体積比で計算し、また、第2相5におけるCe/Lu原子比を計算した。このときLuAG:Ce、Alの密度は、それぞれ6.69g/cm、3.99g/cmとして計算に使用した。 After the bulk density (JIS C 2141) was measured by the Archimedes method for the obtained sintered body, a part thereof was pulverized, and the true density was measured with a dry automatic densimeter (Accupic 1330 manufactured by Shimadzu Corporation). . Further, after cleaning a part, the concentrations of Lu, Al, and Ce were measured by ICP emission spectroscopic analysis. Moreover, a crystal phase was investigated by partly by powder X-ray diffraction. Based on the measurement results of the density, Lu concentration, Al concentration and Ce concentration, and crystal phase of the sintered body, the content of Al 2 O 3 in the entire phase (content of the first phase 3) and the LuAG: Ce The content (content of the second phase 5) was calculated by volume ratio, and the Ce / Lu atomic ratio in the second phase 5 was calculated. At this time LuAG: Ce, density of Al 2 O 3 is respectively 6.69 g / cm 3, was used to calculate as 3.99 g / cm 3.

また、得られた焼結体の一部をφ10×2mmに加工後、レーザフラッシュ法により熱伝導率を測定した。
なお、熱伝導率は放熱効果の点から10W/(m・K)以上を目標とし、15W/(m・K)以上の場合を○(良)、10W/(m・K)以上15W/(m・K)未満の場合を△(可)、10W/(m・K)未満の場合を×(不可)として判別した。
Further, after processing a part of the obtained sintered body to φ10 × 2 mm, the thermal conductivity was measured by a laser flash method.
The thermal conductivity is set to 10 W / (m · K) or more from the viewpoint of the heat radiation effect, and when it is 15 W / (m · K) or more, ○ (good), 10 W / (m · K) to 15 W / ( The case of less than m · K) was judged as Δ (possible) and the case of less than 10 W / (m · K) as x (impossible).

図4は、本試験における緑色蛍光体の光特性の測定方法を説明する概略図である。
本試験における光特性は、得られた焼結体を□1mm×0.2mmの試料20に加工後、青色LED素子(発光領域:□1mm、発光波長:@460nm)22上にシリコーン樹脂で固定した。LED前方に検出器(オーシャンオプティクス社製USB4000 ファイバマルチチャンネル分光器)24を設置し、発光スペクトルを測定した。得られたスペクトルから発光ピーク波長、発光強度を算出した。また、焼結体の前方および側方より色むらを観察し、色むらの○(良)、×(不可)を判別した。
FIG. 4 is a schematic diagram for explaining a method for measuring the optical characteristics of the green phosphor in this test.
The optical characteristics in this test were obtained by processing the obtained sintered body into a □ 1 mm × 0.2 mm sample 20 and then fixing it on a blue LED element (light emitting area: □ 1 mm, light emitting wavelength: @ 460 nm) 22 with a silicone resin. did. A detector (USB4000 fiber multichannel spectrometer manufactured by Ocean Optics) 24 was installed in front of the LED, and the emission spectrum was measured. The emission peak wavelength and emission intensity were calculated from the obtained spectrum. Further, color unevenness was observed from the front and side of the sintered body, and ○ (good) and x (impossible) of color unevenness were determined.

発光強度はLuAG:Ce蛍光体((Ce/Lu)=0.01)の測定結果を100とし、110以上の場合を○(良)、100以上110未満の場合を△(可)、100未満の場合を×(不可)とした。   Luminescence intensity is measured with LuAG: Ce phosphor ((Ce / Lu) = 0.01) as 100, ○ (good) when 110 or more, △ (good) when 100 or less and less than 110, less than 100 In the case of x, it was set as x (impossible).

また、総合評価として、発光強度、色むら、熱伝導率の各項目について、○(良)が2個以上の場合は○(良)、×(不可)が1個でもある場合は×(不可)、その他を△(可)と判別した。
以上の試験1の結果をまとめて表1に示す。
In addition, as a comprehensive evaluation, for each item of light emission intensity, color unevenness, and thermal conductivity, ○ (good) when there are two or more ○ (good), × (impossible) when there is even one x (impossible) ), And others were determined to be △ (possible).
The results of Test 1 above are summarized in Table 1.

Figure 0005153014
Figure 0005153014

表1に示すように、緑色蛍光体の相全体におけるLuAG:Ceの含有量(第2相の含有量)が体積比で25vol%以上95vol%以下とすることで、緑色光の波長領域内で発光強度及び熱伝導率が向上し、かつ、色むらが発生しない緑色蛍光体が得られることが認められる。   As shown in Table 1, the content of LuAG: Ce (content of the second phase) in the entire phase of the green phosphor is set to 25 vol% or more and 95 vol% or less in the volume ratio of green light within the wavelength range of green light. It can be seen that a green phosphor with improved emission intensity and thermal conductivity and no color unevenness can be obtained.

(試験2)
試験1の結果に基づいて、次に、酸化セリウム粉末、酸化ルテチウム粉末及び酸化アルミニウム粉末の量を調整して、緑色蛍光体中のLuAG:Ceの含有量及びCe/Lu原子比の異なる平均粒径50μmの造粒粉を複数作製した。
(Test 2)
Based on the results of Test 1, next, the amounts of cerium oxide powder, lutetium oxide powder and aluminum oxide powder were adjusted to obtain different average grains having different LuAG: Ce content and Ce / Lu atomic ratio in the green phosphor. A plurality of granulated powders having a diameter of 50 μm were prepared.

次に、試験1と同様な条件で焼結後、得られた焼結体に対して、試験1と同様な方法で、相全体中のAlの含有量(第1相3の含有量)、LuAG:Ceの含有量(第2相5の含有量)及び第2相5におけるCe/Lu原子比に対する発光ピーク波長、発光強度、色むら、熱伝導率をそれぞれ評価し、判別した。
以上の試験2の結果をまとめて表2に示す。
Next, after sintering under the same conditions as in Test 1, the obtained sintered body was subjected to the same method as in Test 1 to contain the content of Al 2 O 3 in the entire phase (inclusion of first phase 3 Amount), LuAG: Ce content (second phase 5 content) and emission peak wavelength, emission intensity, color unevenness, and thermal conductivity with respect to the Ce / Lu atomic ratio in the second phase 5 were evaluated and discriminated. .
The results of Test 2 above are summarized in Table 2.

Figure 0005153014
Figure 0005153014

表2に示すように、第2相5におけるCe/Lu原子比が0.003以上0.03以下である場合に、緑色光の波長領域内で発光強度及び熱伝導率が向上し、かつ、色むらが発生しない緑色蛍光体が得られることが認められる。また、LuAG:Ceの含有量(第2相の含有量)が体積比で80vol%以上95vol%以下である場合は、第2相5におけるCe/Lu原子比が0.001以上で、同様な効果が得られることが認められる。   As shown in Table 2, when the Ce / Lu atomic ratio in the second phase 5 is 0.003 or more and 0.03 or less, the emission intensity and thermal conductivity are improved in the wavelength region of green light, and It can be seen that a green phosphor with no color unevenness is obtained. Further, when the content of LuAG: Ce (content of the second phase) is 80 vol% or more and 95 vol% or less by volume ratio, the Ce / Lu atomic ratio in the second phase 5 is 0.001 or more, and the same It is recognized that an effect is obtained.

1 緑色蛍光体
3 第1相
5 第2相
1 Green phosphor 3 First phase 5 Second phase

Claims (3)

Al23からなる第1相と、Ceを含有するLuAGからなる第2相とを有する無機材料で構成された緑色蛍光焼結体であって、
前記第2相の含有量は、前記第1及び第2相を含む相全体における体積比で25vol%以上95vol%以下であり、かつ、前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.003以上0.03以下であることを特徴とする緑色蛍光体。
A green fluorescent sintered body composed of an inorganic material having a first phase made of Al 2 O 3 and a second phase made of LuAG containing Ce,
The content of the second phase is 25 vol% or more and 95 vol% or less in a volume ratio in the entire phase including the first and second phases, and the content of Ce in the LuAG is an atomic ratio with respect to Lu ( A green phosphor having a Ce / Lu) of 0.003 or more and 0.03 or less.
Al23からなる第1相と、Ceを含有するLuAGからなる第2相とを有する無機材料で構成された緑色蛍光焼結体であって、
前記第2相の含有量は、前記第1及び第2相を含む相全体における体積比で80vol%以上95vol%以下であり、かつ、前記LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.001以上0.03以下であることを特徴とする緑色蛍光体。
A green fluorescent sintered body composed of an inorganic material having a first phase made of Al 2 O 3 and a second phase made of LuAG containing Ce,
The content of the second phase is 80 vol% or more and 95 vol% or less by volume ratio in the whole phase including the first and second phases, and the content of Ce in the LuAG is an atomic ratio with respect to Lu ( A green phosphor having a Ce / Lu ratio of 0.001 or more and 0.03 or less.
請求項1又は2に記載の緑色蛍光体は、前記緑色蛍光体の光出射方向に平行する任意の断面で切ったときの表面において、前記光出射方向と平行する方向に任意の複数の平行直線を引いた時に、すべての平行直線上に前記第2相が接触している、又は、前記平行直線上の一部にも前記第2相に接触しない平行直線がある場合は、前記接触しない平行直線間の間隔は、青色光の発光ピーク波長未満であることを特徴とする緑色蛍光体。   3. The green phosphor according to claim 1, wherein the green phosphor has a plurality of arbitrary parallel straight lines in a direction parallel to the light emission direction on a surface of the green phosphor cut in an arbitrary cross section parallel to the light emission direction. When the second phase is in contact with all the parallel straight lines or a part of the parallel straight lines is not in contact with the second phase when A green phosphor characterized in that the distance between the straight lines is less than the emission peak wavelength of blue light.
JP2010209992A 2010-09-17 2010-09-17 Green phosphor Active JP5153014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209992A JP5153014B2 (en) 2010-09-17 2010-09-17 Green phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209992A JP5153014B2 (en) 2010-09-17 2010-09-17 Green phosphor

Publications (2)

Publication Number Publication Date
JP2012062444A JP2012062444A (en) 2012-03-29
JP5153014B2 true JP5153014B2 (en) 2013-02-27

Family

ID=46058488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209992A Active JP5153014B2 (en) 2010-09-17 2010-09-17 Green phosphor

Country Status (1)

Country Link
JP (1) JP5153014B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079373A1 (en) 2016-10-28 2018-05-03 日本特殊陶業株式会社 Light wavelength conversion member and light emission device
KR20190031531A (en) 2016-10-28 2019-03-26 니뽄 도쿠슈 도교 가부시키가이샤 Light wavelength conversion member and light emitting device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5887238B2 (en) * 2012-09-25 2016-03-16 クアーズテック株式会社 Multilayer ceramic composite
CN104736667B (en) 2012-10-16 2017-12-12 电化株式会社 Fluorophor, light-emitting device and lighting device
WO2014097802A1 (en) 2012-12-21 2014-06-26 電気化学工業株式会社 Fluorescent substance, light-emitting device, and illuminator
JP6242383B2 (en) 2013-04-16 2017-12-06 デンカ株式会社 Phosphor, light emitting device and lighting device
JP6121282B2 (en) * 2013-08-07 2017-04-26 神島化学工業株式会社 Transparent polycrystalline sintered body of lutetium aluminum garnet and method for producing the same
JP6253392B2 (en) * 2013-12-18 2017-12-27 スタンレー電気株式会社 Light emitting device and light source for projector using the same
JP6036728B2 (en) 2014-02-28 2016-11-30 信越化学工業株式会社 Lighting device
JP2017107071A (en) * 2015-12-10 2017-06-15 日本電気硝子株式会社 Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP6989307B2 (en) * 2016-07-08 2022-01-05 クアーズテック株式会社 Ceramic complexes, as well as fluorescent and light-emitting devices for projectors containing them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738781A (en) * 2003-01-20 2006-02-22 宇部兴产株式会社 Ceramic composite material for optical conversion and use thereof
JP4991026B2 (en) * 2003-02-26 2012-08-01 日亜化学工業株式会社 Light emitting device
KR100885694B1 (en) * 2004-12-17 2009-02-26 우베 고산 가부시키가이샤 Photo-conversion structure and light-emitting device using same
WO2006097876A1 (en) * 2005-03-14 2006-09-21 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
KR20100040442A (en) * 2008-10-10 2010-04-20 삼성에스디아이 주식회사 Green phosphor for plasma display panel, green phosphor composition comprising the same and plasma display panel employing the green phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079373A1 (en) 2016-10-28 2018-05-03 日本特殊陶業株式会社 Light wavelength conversion member and light emission device
KR20190031531A (en) 2016-10-28 2019-03-26 니뽄 도쿠슈 도교 가부시키가이샤 Light wavelength conversion member and light emitting device
US10665761B2 (en) 2016-10-28 2020-05-26 Ngk Spark Plug Co., Ltd. Light wavelength conversion member and light emission device

Also Published As

Publication number Publication date
JP2012062444A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5153014B2 (en) Green phosphor
Zhang et al. A high quantum efficiency CaAlSiN3: Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes
JP5206941B2 (en) Phosphor, method for producing the same, and light emitting device
KR101147560B1 (en) Fluorescent substance and light-emitting equipment
EP3438229B1 (en) Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
US9045691B2 (en) Ceramics composite
TWI384053B (en) Fluorescence material and manufacture thereof and luminaire
TWI476268B (en) Phosphor, manufacture thereof, light-emitting device, and image display device
JP5224439B2 (en) Phosphor and light emitting device using the same
EP2937315B1 (en) Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
KR101688337B1 (en) Fluorophore, method for producing same, light-emitting device using fluorophore, image display device, pigment, and ultraviolet absorbent
WO2016186057A1 (en) Phosphor, production method for same, illumination instrument, and image display device
TW201144411A (en) Phosphors
JP2006335832A (en) Phosphor and light emitting device
KR102229730B1 (en) Optical wavelength conversion member and light emitting device
JP6449963B2 (en) Light wavelength conversion member and light emitting device
US11407942B2 (en) Garnet silicate, garnet silicate phosphor, and wavelength converter and light emitting device which use the garnet silicate phosphor
EP2966149A1 (en) Rare earth-aluminum-garnet-type inorganic oxide, phosphor, and light-emitting device using said phosphor
JP2018035346A (en) Nitride phosphor, method for producing the same, and light-emitting device
JP2014172940A (en) Fluophor dispersion ceramic plate
WO2009099234A1 (en) Light emitting device and manufacturing method of same
JP5615222B2 (en) Green phosphor
CN109943333B (en) Rare earth aluminate phosphor and method for producing same
JP2013194078A (en) Phosphor, method for producing the same, light-emitting device and image display device
JP2013185011A (en) Method for manufacturing phosphor, and phosphor obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350