JP2013194078A - Phosphor, method for producing the same, light-emitting device and image display device - Google Patents

Phosphor, method for producing the same, light-emitting device and image display device Download PDF

Info

Publication number
JP2013194078A
JP2013194078A JP2012059998A JP2012059998A JP2013194078A JP 2013194078 A JP2013194078 A JP 2013194078A JP 2012059998 A JP2012059998 A JP 2012059998A JP 2012059998 A JP2012059998 A JP 2012059998A JP 2013194078 A JP2013194078 A JP 2013194078A
Authority
JP
Japan
Prior art keywords
phosphor
crystal
light
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059998A
Other languages
Japanese (ja)
Other versions
JP5920773B2 (en
Inventor
Naoto Hirosaki
尚登 広崎
Takashi Takeda
隆史 武田
Shiro Funabashi
司朗 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012059998A priority Critical patent/JP5920773B2/en
Publication of JP2013194078A publication Critical patent/JP2013194078A/en
Application granted granted Critical
Publication of JP5920773B2 publication Critical patent/JP5920773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor that has a high emission intensity and is chemically and thermally stable when combined with an LED having ≤470 nm.SOLUTION: A phosphor comprises an inorganic compound which contains elements of A, D, E and X (A is at least one element selected from Mg, Ca, Sr and Ba, D is at least one element selected from Si, Ge, Sn, Ti, Zr and Hf, E is at least one element selected from Al, Ga, In, Sc, Y and La an X is at least one element selected from O, N and F) and in which M (M is at least one element of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb) forms a solid solution in any crystal of an N crystal containing a structure of AB(D, E)X, a structure of A(D, E)Xor a structure of (1-x)AB(D, E)X+xA(D, E)X(0≤x≤1), an inorganic crystal having the same crystal structure as the N crystal and a solid solution crystal of these crystals.

Description

本発明は、(1−x)A(D,E)+xA(D,E)(ただし、xは0以上1以下の数値であり、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示される結晶(以下N結晶と呼ぶ)、あるいは、N結晶と同一の結晶構造を有する無機結晶、あるいはこれらの結晶の固溶体結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体とその製造方法、およびその用途に関する。 In the present invention, (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (where x is a numerical value of 0 or more and 1 or less, and A is Mg, One or more elements selected from Ca, Sr, Ba, D is one or more elements selected from Si, Ge, Sn, Ti, Zr, Hf, E is Al, Ga, One or two or more elements selected from In, Sc, Y, and La, and X is one or more elements selected from O, N, and F) (hereinafter referred to as N crystal) Or an inorganic crystal having the same crystal structure as the N crystal, or a solid solution crystal of these crystals, M element (where M is selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb) Phosphors made of inorganic compounds in which one or more elements are dissolved and their production Methods, and uses thereof.

蛍光体は、蛍光表示管(VFD(Vacuum−Fluorescent Display))、フィールドエミッションディスプレイ(FED(Field Emission Display)またはSED(Surface−Conduction Electron−Emitter Display))、プラズマディスプレイパネル(PDP(Plasma Display Panel))、陰極線管(CRT(Cathode−Ray Tube))、液晶ディスプレイバックライト(Liquid−Crystal Display Backlight)、白色発光ダイオード(LED(Light−Emitting Diode))などに用いられている。これらのいずれの用途においても、蛍光体を発光させるためには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光体は真空紫外線、紫外線、電子線、青色光などの高いエネルギーを有した励起源により励起されて、青色光、緑色光、黄色光、橙色光、赤色光等の可視光線を発する。しかしながら、蛍光体は前記のような励起源に曝される結果、蛍光体の輝度が低下し易く、輝度低下のない蛍光体が求められている。そのため、従来のケイ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、硫化物蛍光体などの蛍光体に代わり、高エネルギーの励起においても輝度低下の少ない蛍光体として、サイアロン蛍光体、酸窒化物蛍光体、窒化物蛍光体などの、結晶構造に窒素を含有する無機結晶を母体とする蛍光体が提案されている。   The phosphor is a fluorescent display tube (VFD (Vacuum-Fluorescent Display)), a field emission display (FED (Field Emission Display)), or a SED (Surface-Condition Electron display-Pl (Panel Display) (P panel). ), Cathode ray tube (CRT (Cathode-Ray Tube)), liquid crystal display backlight (Liquid-Crystal Display Backlight), white light emitting diode (LED (Light-Emitting Diode)), and the like. In any of these applications, in order to make the phosphor emit light, it is necessary to supply the phosphor with energy for exciting the phosphor, and the phosphor is not limited to vacuum ultraviolet rays, ultraviolet rays, electron beams, blue light, etc. When excited by an excitation source having high energy, visible light such as blue light, green light, yellow light, orange light, and red light is emitted. However, as a result of exposure of the phosphor to the excitation source as described above, there is a demand for a phosphor that is liable to lower the luminance of the phosphor and has no luminance reduction. Therefore, instead of conventional phosphors such as silicate phosphors, phosphate phosphors, aluminate phosphors and sulfide phosphors, sialon phosphors can be used as phosphors with little reduction in luminance even when excited with high energy. There have been proposed phosphors based on inorganic crystals containing nitrogen in the crystal structure, such as oxynitride phosphors and nitride phosphors.

このサイアロン蛍光体の一例は、概略以下に述べるような製造プロセスによって製造される。まず、窒化ケイ素(Si)、窒化アルミニウム(AlN)、酸化ユーロピウム(Eu)を所定のモル比に混合し、1気圧(0.1MPa)の窒素中において1700℃の温度で1時間保持してホットプレス法により焼成して製造される(例えば、特許文献1参照)。このプロセスで得られるEu2+イオンを付活したαサイアロンは、450から500nmの青色光で励起されて550から600nmの黄色の光を発する蛍光体となることが報告されている。また、αサイアロンの結晶構造を保ったまま、SiとAlの割合や酸素と窒素の割合を変えることにより、発光波長が変化することが知られている(例えば、特許文献2および特許文献3参照)。 An example of this sialon phosphor is manufactured by a manufacturing process generally described below. First, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and europium oxide (Eu 2 O 3 ) are mixed at a predetermined molar ratio, and the temperature is 1700 ° C. in nitrogen at 1 atm (0.1 MPa). It is manufactured by holding for 1 hour and firing by a hot press method (see, for example, Patent Document 1). It has been reported that α sialon activated by Eu 2+ ions obtained by this process becomes a phosphor that emits yellow light of 550 to 600 nm when excited by blue light of 450 to 500 nm. Further, it is known that the emission wavelength changes by changing the ratio of Si and Al and the ratio of oxygen and nitrogen while maintaining the crystal structure of α sialon (see, for example, Patent Document 2 and Patent Document 3). ).

サイアロン蛍光体の別の例として、β型サイアロンにEu2+を付活した緑色の蛍光体が知られている(特許文献4参照)。この蛍光体では、結晶構造を保ったまま酸素含有量を変化させることにより発光波長が短波長に変化することが知られている(例えば、特許文献5参照)。また、Ce3+を付活すると青色の蛍光体となることが知られている(例えば、特許文献6参照)。 As another example of the sialon phosphor, a green phosphor obtained by activating Eu 2+ to a β-type sialon is known (see Patent Document 4). In this phosphor, it is known that the emission wavelength changes to a short wavelength by changing the oxygen content while maintaining the crystal structure (see, for example, Patent Document 5). Further, it is known that when Ce 3+ is activated, a blue phosphor is obtained (for example, see Patent Document 6).

酸窒化物蛍光体の一例は、JEM相(LaAl(Si6−zAl)N10−z)を母体結晶としてCeを付活させた青色蛍光体(特許文献7参照)が知られている。この蛍光体では、結晶構造を保ったままLaの一部をCaで置換することにより、励起波長が長波長化するとともに発光波長が長波長化することが知られている。 An example of an oxynitride phosphor, JEM phase (LaAl (Si 6-z Al z) N 10-z O z) blue phosphor were activated with Ce as host crystals (see Patent Document 7) are known ing. In this phosphor, it is known that by exchanging a part of La with Ca while maintaining the crystal structure, the excitation wavelength becomes longer and the emission wavelength becomes longer.

酸窒化物蛍光体の別の例として、La−N結晶LaSi11を母体結晶としてCeを付活させた青色蛍光体(特許文献8参照)が知られている。 As another example of the oxynitride phosphor, a blue phosphor in which Ce is activated using a La—N crystal La 3 Si 8 N 11 O 4 as a base crystal (see Patent Document 8) is known.

窒化物蛍光体の一例は、CaAlSiNを母体結晶としてEu2+を付活させた赤色蛍光体(特許文献9参照)が知られている。この蛍光体を用いることにより、白色LEDの演色性を向上させる効果がある。光学活性元素としてCeを添加した蛍光体は橙色の蛍光体と報告されている。 As an example of a nitride phosphor, a red phosphor in which Eu 2+ is activated using CaAlSiN 3 as a base crystal (see Patent Document 9) is known. By using this phosphor, there is an effect of improving the color rendering properties of the white LED. A phosphor added with Ce as an optically active element has been reported as an orange phosphor.

このように、蛍光体は、母体となる結晶と、それに固溶させる金属イオン(付活イオン)の組み合わせで、発光色が決まる。さらに、母体結晶と付活イオンの組み合わせは、発光スペクトル、励起スペクトルなどの発光特性や、化学的安定性、熱的安定性を決めるため、母体結晶が異なる場合や付活イオンが異なる場合は、異なる蛍光体と見なされる。また、化学組成が同じであっても結晶構造が異なる材料は、母体結晶が異なることにより発光特性や安定性が異なるため、異なる蛍光体と見なされる。   As described above, the emission color of the phosphor is determined by a combination of a crystal serving as a base and a metal ion (activated ion) to be dissolved therein. Furthermore, the combination of the base crystal and the activated ion determines the emission characteristics such as emission spectrum and excitation spectrum, chemical stability, and thermal stability, so when the base crystal is different or the activated ion is different, Considered as a different phosphor. In addition, even if the chemical composition is the same, materials having different crystal structures are regarded as different phosphors because their emission characteristics and stability differ due to different host crystals.

さらに、多くの蛍光体においては母体結晶の結晶構造を保ったまま、構成する元素の種類を置換することが可能であり、これにより発光色を変化させることが行われている。例えば、YAGにCeを添加した蛍光体は緑色発光をするが、YAG結晶中のYの一部をGdで、Alの一部をGaで置換した蛍光体は黄色発光を呈する。さらに、CaAlSiNにEuを添加した蛍光体においては、Caの一部をSrで置換することにより結晶構造を保ったまま組成が変化し、発光波長が短波長化することが知られている。このように、結晶構造を保ったまま元素置換を行った蛍光体は、同じグループの材料と見なされる。 Furthermore, in many phosphors, it is possible to replace the type of constituent elements while maintaining the crystal structure of the host crystal, thereby changing the emission color. For example, a phosphor obtained by adding Ce to YAG emits green light, but a phosphor obtained by substituting a part of Y in the YAG crystal with Gd and a part of Al with Ga exhibits yellow light emission. Furthermore, it is known that in a phosphor obtained by adding Eu to CaAlSiN 3 , the composition changes while maintaining a crystal structure by substituting part of Ca with Sr, and the emission wavelength is shortened. In this way, the phosphors that have undergone element substitution while maintaining the crystal structure are regarded as the same group of materials.

これらのことから、新規蛍光体の開発においては、新規の結晶構造を持つ母体結晶を見つけることが重要であり、このような母体結晶に発光を担う金属イオンを付活して蛍光特性を発現させることにより、新規の蛍光体を提案することができる。   For these reasons, in the development of new phosphors, it is important to find a host crystal having a new crystal structure, and activate the metal ions responsible for light emission in such a host crystal to express fluorescence characteristics. Thus, a novel phosphor can be proposed.

特許第3668770号明細書Japanese Patent No. 3668770 特許第3837551号明細書Japanese Patent No. 3837551 特許第4524368号明細書Japanese Patent No. 4524368 特許第3921545号明細書Japanese Patent No. 3921545 国際公開第2007/066733号公報International Publication No. 2007/066673 国際公開第2006/101096号公報International Publication No. 2006/101096 国際公開第2005/019376号公報International Publication No. 2005/019376 特開2005−112922号公報JP 2005-112922 A 特許第3837588号明細書Japanese Patent No. 3837588

本発明はこのような要望に応えようとするものであり、目的のひとつは、従来の蛍光体とは異なる発光特性(発光色や励起特性、発光スペクトル)を有し、かつ、470nm以下のLEDと組み合わせた場合でも発光強度が高く、化学的および熱的に安定な無機蛍光体を提供することにある。本発明のもうひとつの目的として、係る蛍光体を用いた耐久性に優れた発光装置および耐久性に優れる画像表示装置を提供することにある。   The present invention is intended to meet such a demand, and one of the objects is an LED having emission characteristics (emission color, excitation characteristics, emission spectrum) different from those of conventional phosphors and having a wavelength of 470 nm or less. It is an object to provide an inorganic phosphor having high emission intensity even when combined with the above and chemically and thermally stable. Another object of the present invention is to provide a light emitting device with excellent durability and an image display device with excellent durability using such a phosphor.

本発明者らにおいては、かかる状況の下で、窒素を含む新しい結晶およびこの結晶構造中の金属元素や窒素を他の元素で置換した結晶を母体とする蛍光体について詳細な研究を行い、N結晶、あるいはN結晶と同一の結晶構造を持つ結晶を母体とする無機蛍光体が、高輝度の蛍光を発することを見いだした。また、特定の組成では、黄色から赤色の発光を示すことを見いだした。   Under these circumstances, the present inventors have conducted detailed research on a new crystal containing nitrogen and a phosphor based on a crystal obtained by substituting a metal element or nitrogen in the crystal structure with another element. It has been found that inorganic phosphors based on crystals or crystals having the same crystal structure as N crystals emit high-luminance fluorescence. It was also found that a specific composition shows yellow to red light emission.

さらに、この蛍光体を用いることにより、高い発光効率を有し温度変動が小さい白色発光ダイオード(発光装置)や、それを用いた照明器具や、鮮やかな発色の画像表示装置が得られることを見いだした。   Furthermore, by using this phosphor, it has been found that a white light emitting diode (light emitting device) having high luminous efficiency and small temperature fluctuation, a lighting apparatus using the same, and a vivid color image display device can be obtained. It was.

本発明者は、上記実情に鑑み鋭意研究を重ねた結果、以下に記載する構成を講ずることによって特定波長領域で高い輝度の発光現象を示す蛍光体を提供することに成功した。また、以下の方法を用いて優れた発光特性を持つ蛍光体を製造することに成功した。さらに、この蛍光体を使用し、以下に記載する構成を講ずることによって優れた特性を有する発光装置、照明器具、画像表示装置、顔料、紫外線吸収材を提供することにも成功したもので、その構成は、以下に記載のとおりである。   As a result of intensive studies in view of the above circumstances, the present inventor has succeeded in providing a phosphor exhibiting a high luminance light emission phenomenon in a specific wavelength region by adopting the configuration described below. Moreover, it succeeded in manufacturing the fluorescent substance with the outstanding luminescent property using the following method. Furthermore, by using this phosphor, it has succeeded in providing a light emitting device, a lighting apparatus, an image display device, a pigment, and an ultraviolet absorber having excellent characteristics by adopting the configuration described below. The configuration is as described below.

(1)少なくともA元素とD元素とE元素とX元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、必要に応じてB元素(ホウ素)を含み、
(a)結晶の単位格子中に、A(D,E)で示される構造、または、
(D,E)で示される構造、または、(1−x)A(D,E)+xA(D、E)(ただし、xは0以上1以下の数値)で示される構造を含む結晶(以下N結晶と呼ぶ)、
(b)N結晶と同一の結晶構造を有する無機結晶、
(c)これらの結晶の固溶体結晶、
のいずれかの結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体。
(2)前記N結晶は、単位格子の平均構造が、
(1−x)A(D,E)+xA(D,E)
(ただし、xは0以上1以下の数値)で示される、前記(1)に記載の蛍光体。
(3)A元素にSrを含み、D元素にSiを含み、E元素にAlを含み、X元素にNを含む、前記(1)に記載の蛍光体。
(4)xが0.02≦x≦0.2の範囲の数値である、前記(1)に記載の蛍光体。
(5)前記N結晶が、SrSi2.30Al1.908.101.80である、前記(1)に記載の蛍光体。
(6)N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系の結晶でありP62cの対称性を持つ、前記(1)に記載の蛍光体。
(7)N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系の結晶であり、
格子定数a、b、cが、
a = 0.47965±0.05 nm
b = 0.47965±0.05 nm
c = 0.97932±0.05 nm
の範囲の値である前記(1)に記載の蛍光体。
(8)前記無機化合物は、組成式B(ただし、式中c+d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータc、d、e、f、g、hが、
0.1≦ c ≦0.25
0.00001≦ d ≦0.05
0.08≦ e ≦0.16
0.08≦ f ≦ 0.2
0 ≦ g ≦ 0.2
0.45 ≦ h ≦ 0.55
の条件を全て満たす範囲の組成で表される前記(1)に記載の蛍光体。
(9)前記無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である前記(1)に記載の蛍光体。
(10)前記(1)に記載の無機化合物からなる蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、蛍光体の含有量が20質量%以上である前記(1)に記載の蛍光体。
(11)前記他の結晶相あるいはアモルファス相が導電性を持つ無機物質である先記(10)に記載の蛍光体。
(12)M元素にEuを含み、励起源を照射することにより550nmから650nmの範囲の波長にピークを持つ蛍光を発光する前記(1)に記載の蛍光体。
(13)前記励起源が100nm以上520nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線である前記(12)に記載の蛍光体。
(14)金属化合物の混合物であって焼成することにより、請求項1に記載の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成する、前記(1)に記載の蛍光体の製造方法。
(15)前記金属化合物の混合物が、Bを含有する化合物と、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)とからなる前記(14)に記載の蛍光体の製造方法。
(16)前記Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物である前記(15)に記載の蛍光体の製造方法。
(17)少なくとも発光体と蛍光体とから構成される発光装置において、少なくとも前記(1)に記載の蛍光体を用いることを特徴とする発光装置。
(18)前記発光体が330〜500nmの波長の光を発する発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、または有機EL発光体(OLED)である前記(17)に記載の発光装置。
(19)前記発光装置が、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライトである前記(17)に記載の発光装置。
(20)前記発光体がピーク波長300〜500nmの紫外または可視光を発し、請求項1に記載の蛍光体が発する黄色から赤色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発することを特徴とする前記(17)に記載の発光装置。
(21)前記蛍光体は、前記発光体によりピーク波長420nm〜500nm以下の光を発する青色蛍光体をさらに含む前記(17)に記載の発光装置。
(22)前記青色蛍光体が、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α−サイアロン:Ce、JEM:Ceから選ばれる前記(21)に記載の発光装置。
(23)前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含む前記(17)に記載の発光装置。
(24)前記緑色蛍光体が、β−サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euから選ばれる前記(23)に記載の発光装置。
(25)前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含む前記(17)に記載の発光装置。
(26)前記黄色蛍光体が、YAG:Ce、α−サイアロン:Eu、CaAlSiN:Ce、LaSi11:Ceから選ばれる前記(25)に記載の発光装置。
(27)前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含む前記(17)に記載の発光装置。
(28)前記赤色蛍光体が、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euから選ばれる前記(27)に記載の発光装置。
(29)前記発光体が320〜500nmの波長の光を発するLEDである前記(42)に記載の発光装置。
(30)励起源と蛍光体から構成される画像表示装置において、少なくとも前記(1)に記載の蛍光体を用いることを特徴とする画像表示装置。
(31)前記画像表示装置が、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、液晶ディスプレイ(LCD)のいずれかである前記(30)に記載の画像表示装置。
(32)前記(1)に記載の無機化合物からなる顔料。
(33)前記(1)に記載の無機化合物からなる紫外線吸収剤。
(1) At least A element, D element, E element, and X element (where A is one or more elements selected from Mg, Ca, Sr, Ba, and D is Si, Ge, Sn, Ti) , Zr, Hf, one or more elements selected from E, E is one or more elements selected from Al, Ga, In, Sc, Y, La, X is O, N, F 1 type or 2 or more types of elements selected from), and if necessary, B element (boron)
(A) a structure represented by A 2 B 2 (D, E) 4 X 8 in the unit cell of the crystal, or
A structure represented by A 2 (D, E) 6 X 9 or (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (where x is 0 A crystal including a structure represented by the above (numerical value of 1 or less) (hereinafter referred to as N crystal),
(B) an inorganic crystal having the same crystal structure as the N crystal,
(C) a solid solution crystal of these crystals,
From an inorganic compound in which M element (where M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) is dissolved in any of the crystals A phosphor.
(2) The N crystal has an average unit cell structure of
(1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9
(However, x is a numerical value of 0 or more and 1 or less) The phosphor according to (1) above.
(3) The phosphor according to (1), wherein the A element contains Sr, the D element contains Si, the E element contains Al, and the X element contains N.
(4) The phosphor according to (1), wherein x is a numerical value in a range of 0.02 ≦ x ≦ 0.2.
(5) The phosphor according to (1), wherein the N crystal is Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 .
(6) The phosphor according to (1) above, wherein the N crystal or the inorganic crystal having the same crystal structure as the N crystal is a hexagonal crystal and has P62c symmetry.
(7) N crystal or an inorganic crystal having the same crystal structure as N crystal is a hexagonal crystal,
Lattice constants a, b, c are
a = 0.47965 ± 0.05 nm
b = 0.47965 ± 0.05 nm
c = 0.97932 ± 0.05 nm
The phosphor according to (1), which has a value in the range of
(8) the inorganic compound, formula B c M d A e D f E g X h ( proviso that wherein c + d + e + f + g + h = 1, M is, Mn, Ce, Pr, Nd , Sm, Eu, Tb, One or more elements selected from Dy and Yb, A is one or more elements selected from Mg, Ca, Sr and Ba, D is Si, Ge, Sn, Ti, Zr, One or more elements selected from Hf, E is one or more elements selected from Al, Ga, In, Sc, Y, and La, and X is selected from O, N, and F One or more elements) and the parameters c, d, e, f, g, h are
0.1 ≦ c ≦ 0.25
0.00001 ≦ d ≦ 0.05
0.08 ≦ e ≦ 0.16
0.08 ≦ f ≦ 0.2
0 ≤ g ≤ 0.2
0.45 ≤ h ≤ 0.55
The phosphor according to (1), which is represented by a composition in a range that satisfies all of the above conditions.
(9) The phosphor according to (1), wherein the inorganic compound is a single crystal particle or an aggregate of single crystals having an average particle size of 0.1 μm or more and 20 μm or less.
(10) The phosphor according to (1), which is composed of a mixture of the phosphor composed of the inorganic compound according to (1) and another crystal phase or an amorphous phase, and the phosphor content is 20% by mass or more. Phosphor.
(11) The phosphor according to (10), wherein the other crystalline phase or amorphous phase is an inorganic substance having conductivity.
(12) The phosphor according to (1), wherein Eu is included in the M element and emits fluorescence having a peak in a wavelength range of 550 nm to 650 nm by irradiating an excitation source.
(13) The phosphor according to (12), wherein the excitation source is vacuum ultraviolet light, ultraviolet light, visible light, electron beam, or X-ray having a wavelength of 100 nm to 520 nm.
(14) A mixture of metal compounds, which is baked to produce a raw material mixture capable of constituting the phosphor according to claim 1 in a temperature range of 1200 ° C. to 2200 ° C. in an inert atmosphere containing nitrogen. The method for producing a phosphor according to (1), wherein the phosphor is fired.
(15) The mixture of metal compounds is a compound containing B, a compound containing M, a compound containing A, a compound containing D, a compound containing E, and a compound containing X (However, M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb, and A is one selected from Mg, Ca, Sr, and Ba. Or two or more elements, D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf, and E is selected from Al, Ga, In, Sc, Y, and La. The method for producing a phosphor according to the above (14), comprising one or two or more elements, wherein X is one or two or more elements selected from O, N, and F).
(16) The compound containing M is a simple substance or two kinds selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides containing M The above-mentioned mixture, wherein the compound containing A is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides containing A Or a mixture of two or more kinds, wherein the compound containing D is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides, or The method for producing a phosphor according to (15), which is a mixture of two or more kinds.
(17) A light emitting device comprising at least a light emitter and a phosphor, wherein the phosphor according to (1) is used at least.
(18) The light emitting device according to (17), wherein the light emitter is a light emitting diode (LED), a laser diode (LD), a semiconductor laser, or an organic EL light emitter (OLED) that emits light having a wavelength of 330 to 500 nm. .
(19) The light emitting device according to (17), wherein the light emitting device is a white light emitting diode, a lighting fixture including a plurality of white light emitting diodes, or a backlight for a liquid crystal panel.
(20) The phosphor emits ultraviolet or visible light having a peak wavelength of 300 to 500 nm, and mixes yellow to red light emitted from the phosphor according to claim 1 and light having a wavelength of 450 nm or more emitted from another phosphor. The light-emitting device according to (17), which emits white light or light other than white light.
(21) The light emitting device according to (17), wherein the phosphor further includes a blue phosphor that emits light having a peak wavelength of 420 nm to 500 nm or less by the light emitter.
(22) The blue phosphor is AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, α-sialon: Ce, JEM: The light emitting device according to (21), selected from Ce.
(23) The light emitting device according to (17), wherein the phosphor further includes a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by the light emitter.
(24) The green phosphor is selected from β-sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu 23).
(25) The light emitting device according to (17), wherein the phosphor further includes a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by the light emitter.
(26) The light emitting device according to (25), wherein the yellow phosphor is selected from YAG: Ce, α-sialon: Eu, CaAlSiN 3 : Ce, and La 3 Si 6 N 11 : Ce.
(27) The light emitting device according to (17), wherein the phosphor further includes a red phosphor that emits light having a peak wavelength of 600 nm to 700 nm by the light emitter.
(28) In the above (27), the red phosphor is selected from CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, and Sr 2 Si 5 N 8 : Eu. Light-emitting device.
(29) The light emitting device according to (42), wherein the light emitter is an LED that emits light having a wavelength of 320 to 500 nm.
(30) An image display device comprising an excitation source and a phosphor, wherein at least the phosphor described in (1) is used.
(31) The image display device is any one of a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), and a liquid crystal display (LCD). The image display device described in 1.
(32) A pigment comprising the inorganic compound according to (1).
(33) An ultraviolet absorber comprising the inorganic compound according to (1).

本発明の蛍光体は、2価元素と3価元素と4価元素とを含む多元窒化物、または多元酸窒化物、なかでもN結晶、および、N結晶と同一の結晶構造を持つ他の結晶を主成分として含有していることにより、従来の酸化物蛍光体や酸窒化物蛍光体より高輝度の発光を示し、特定の組成では黄色から赤色の蛍光体として優れている。励起源に曝された場合でも、この蛍光体は、輝度が低下しないため、白色発光ダイオード等の発光装置、照明器具、液晶用バックライト光源、VFD、FED、PDP、CRTなどに好適に使用される有用な蛍光体を提供するものである。また、この蛍光体は、紫外線を吸収することから顔料および紫外線吸収剤に好適である。   The phosphor of the present invention includes a multi-element nitride containing a divalent element, a trivalent element, and a tetravalent element, or a multi-element oxynitride, particularly an N crystal and other crystals having the same crystal structure as the N crystal. Is contained as a main component, it emits light with higher luminance than conventional oxide phosphors and oxynitride phosphors, and is excellent as a yellow to red phosphor in a specific composition. Even when exposed to an excitation source, this phosphor does not decrease in luminance, so it is suitably used for light emitting devices such as white light emitting diodes, lighting fixtures, backlight sources for liquid crystals, VFD, FED, PDP, CRT, etc. The present invention provides a useful phosphor. Moreover, since this fluorescent substance absorbs an ultraviolet-ray, it is suitable for a pigment and a ultraviolet absorber.

N結晶の結晶構造を示す図。The figure which shows the crystal structure of N crystal | crystallization. N結晶の結晶構造から計算したCuKα線を用いた粉末X線回折を示す図。The figure which shows the powder X-ray diffraction using the CuK alpha ray computed from the crystal structure of N crystal | crystallization. 本発明による照明器具(砲弾型LED照明器具)を示す概略図。Schematic which shows the lighting fixture (bullet type LED lighting fixture) by this invention. 本発明による照明器具(基板実装型LED照明器具)を示す概略図。Schematic which shows the lighting fixture (board-mounting type LED lighting fixture) by this invention. 本発明による画像表示装置(プラズマディスプレイパネル)を示す概略図。Schematic which shows the image display apparatus (plasma display panel) by this invention. 本発明による画像表示装置(フィールドエミッションディスプレイパネル)を示す概略図。Schematic which shows the image display apparatus (field emission display panel) by this invention.

以下、本発明の蛍光体を、図面を参照して詳しく説明する。
本発明の蛍光体は、少なくともA元素とD元素とE元素とX元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、必要に応じてB元素(ホウ素)を含み、
(1)結晶の単位格子中に、A(D,E)で示される構造、または、
(D,E)で示される構造、または、(1−x)A(D,E)+xA(D,E)(ただし、xは0以上1以下の数値)で示される構造を含む結晶(以下N結晶と呼ぶ)、
(2)N結晶と同一の結晶構造を有する無機結晶、
(3)これらの結晶の固溶体結晶、
のいずれかの結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる。
Hereinafter, the phosphor of the present invention will be described in detail with reference to the drawings.
The phosphor of the present invention includes at least an A element, a D element, an E element, and an X element (where A is one or more elements selected from Mg, Ca, Sr, and Ba, and D is Si, Ge. One or more elements selected from Sn, Ti, Zr, and Hf, E is one or more elements selected from Al, Ga, In, Sc, Y, and La, and X is O , One or more elements selected from N and F), and optionally B element (boron),
(1) A structure represented by A 2 B 2 (D, E) 4 X 8 in the unit cell of the crystal, or
A structure represented by A 2 (D, E) 6 X 9 or (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (where x is 0) A crystal including a structure represented by the above (numerical value of 1 or less) (hereinafter referred to as N crystal),
(2) an inorganic crystal having the same crystal structure as the N crystal,
(3) solid solution crystals of these crystals,
From an inorganic compound in which M element (where M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) is dissolved in any of the crystals Become.

(1−x)A(D,E)+xA(D,E)で示される結晶であるN結晶は、本発明者が新たに合成し、結晶構造解析により新規結晶であると確認した、本発明より以前において報告されていない結晶である。 The N crystal, which is a crystal represented by (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 , was newly synthesized by the present inventor and analyzed by crystal structure analysis. It is a crystal that has been confirmed as a new crystal and has not been reported before the present invention.

図1は、N結晶の結晶構造を示す図である。   FIG. 1 is a diagram showing a crystal structure of an N crystal.

本発明者が合成したSrSi230Al1.908.101.80はN結晶のひとつであり、SrSi230Al1.908.101.80について行った単結晶構造解析によれば、この結晶は六方晶系に属し、P62c空間群(International Tables for Crystallographyの190番の空間群)に属し、表1に示す結晶パラメータおよび原子座標位置を占める。
表1において、格子定数a、b、cは単位格子の軸の長さを示し、α、β、γは単位格子の軸間の角度を示す。原子座標は単位格子中の各原子の位置を、単位格子を単位とした0から1の間の値で示す。この結晶中には、Sr、Si、Al、O、N、Bの各原子が存在し、Srは1種類の席(Sr(1))に存在する解析結果を得た。また、SiとAlは2種類の席(Si,Al(1)とSi,Al(2))に存在する解析結果を得た。また、OとNは3種類の同じ席(O,N(1)からO,N(3))に存在する解析結果を得た。さらに、Bは1種類の同じ席(B(1))に存在する解析結果を得た。
Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 synthesized by the present inventor is one of the N crystals, and the single Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 was obtained. According to the crystal structure analysis, this crystal belongs to the hexagonal system, belongs to the P62c space group (International Tables for Crystallography No. 190 space group), and occupies the crystal parameters and atomic coordinate positions shown in Table 1.
In Table 1, lattice constants a, b, and c indicate the lengths of the unit cell axes, and α, β, and γ indicate the angles between the unit cell axes. The atomic coordinates indicate the position of each atom in the unit cell as a value between 0 and 1 with the unit cell as a unit. In this crystal, each atom of Sr, Si, Al, O, N, and B was present, and Sr was obtained in one kind of seat (Sr (1)). In addition, Si and Al were obtained in two types of seats (Si, Al (1) and Si, Al (2)). Moreover, O and N obtained the analysis result which exists in three types of the same seats (O, N (1) to O, N (3)). Furthermore, B obtained an analysis result existing in one type of the same seat (B (1)).


表1のデータを使った解析の結果、SrSi230Al1.908.101.80結晶は図1に示す構造であり、SiまたはAlと、OまたはNとの結合で構成される4面体が連なった骨格中にSr元素が含有された構造を持つことが分かった。この結晶中にはEu等の付活イオンとなるM元素はSr元素の一部を置換する形で結晶中に取り込まれる。 As a result of the analysis using the data in Table 1, the Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal has the structure shown in FIG. 1 and is composed of a combination of Si or Al and O or N. It was found that the structure has a structure in which a Sr element is contained in a skeleton in which tetrahedrons are connected. In this crystal, the M element that becomes an activating ion such as Eu is incorporated into the crystal in a form that replaces a part of the Sr element.

合成および構造解析したSrSi230Al1.908.101.80 結晶と同一の結晶構造をとる結晶として、
(1−x)A(D,E)+xA(D,E)
(ただし、xは0以上1以下の数値)で示される結晶がある。この結晶は、結晶の単位格子中が、A(D,E)で示される構造、または、A(D,E)で示される構造からなり、xの値によりA(D,E)で示される構造とA(D,E)で示される構造の混合割合が変化する。これにより、結晶全体では平均値として、(1−x)A(D,E)+xA(D,E)
の組成をとる。
As a crystal having the same crystal structure as the synthesized and structurally analyzed Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal,
(1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9
There is a crystal represented by (where x is a numerical value of 0 or more and 1 or less). This crystal has a structure in which the unit lattice of the crystal is represented by A 2 B 2 (D, E) 4 X 8 or a structure represented by A 2 (D, E) 6 X 9 , and the value of x Changes the mixing ratio of the structure represented by A 2 B 2 (D, E) 4 X 8 and the structure represented by A 2 (D, E) 6 X 9 . Thus, as an average value in the entire crystal, (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9
The composition is taken.

本発明のN結晶は、X線回折や中性子線回折により同定することができる。本発明で示すSrSi230Al1.908.101.80結晶のX線回折結果と同一の回折を示す物質として、(1−x)A(D,E)+xA(D,E)で示される結晶がある。さらに、N結晶において構成元素が他の元素と置き換わることにより格子定数や原子位置が変化した結晶がある。 The N crystal of the present invention can be identified by X-ray diffraction or neutron diffraction. As a substance showing the same diffraction as the X-ray diffraction result of the Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal shown in the present invention, (1-x) A 2 B 2 (D, E) 4 There is a crystal represented by X 8 + xA 2 (D, E) 6 X 9 . Furthermore, there is a crystal whose lattice constant or atomic position is changed by replacing a constituent element in the N crystal with another element.

N結晶は、その構成元素成分の選択や、Euなどの付活元素が固溶することによって格子定数は変化するが、結晶構造と原子が占めるサイトとその座標によって与えられる原子位置は骨格原子間の化学結合が切れるほどには大きく変わることはない。本発明では、X線回折や中性子線回折の結果をP62cの空間群でリートベルト解析して求めた格子定数および原子座標から計算されたAl−N、Al−O、Si−N、Si−Oの化学結合の長さ(近接原子間距離)が、表1に示す結晶の格子定数と原子座標から計算された化学結合の長さと比べて±5%以内の場合は同一の結晶構造と定義してN結晶かどうかの判定を行う。この判定基準は、実験によればN結晶において化学結合の長さが±5%を越えて変化すると化学結合が切れて別の結晶となることが確認されたためである。   The lattice constant of the N crystal varies depending on the selection of its constituent element components and the activation element such as Eu, but the atomic position given by the crystal structure, the site occupied by the atom, and its coordinates is between the skeletal atoms. It does not change so much that the chemical bond of is broken. In the present invention, Al-N, Al-O, Si-N, Si-O calculated from lattice constants and atomic coordinates obtained by Rietveld analysis of the X-ray diffraction and neutron diffraction results in the P62c space group. If the chemical bond length (distance between adjacent atoms) is within ± 5% of the chemical bond length calculated from the crystal lattice constants and atomic coordinates shown in Table 1, it is defined as the same crystal structure. To determine whether it is an N crystal. This criterion is because, according to experiments, it has been confirmed that when the length of the chemical bond in the N crystal changes beyond ± 5%, the chemical bond is broken and another crystal is formed.

さらに、固溶量が小さい場合は、N系晶の簡便な判定方法として次の方法がある。新たな物質について測定したX線回折結果から計算した格子定数と表1の結晶構造データを用いて計算した回折のピーク位置(2θ)が主要ピークについて一致したときに当該結晶構造が同じものと特定することができる。   Furthermore, when the amount of solid solution is small, there is the following method as a simple determination method of N-based crystals. When the lattice constant calculated from the X-ray diffraction results measured for a new substance and the diffraction peak position (2θ) calculated using the crystal structure data shown in Table 1 match for the main peak, the crystal structure is identified as the same. can do.

図2は、SrSi230Al1.908.101.80結晶の結晶構造から計算したCuKα線を用いた粉末X線回折を示す図である。実際の合成では粉末形態の合成品が得られるため、得られた合成品と図2のスペクトルを比較することによりN結晶の合成物が得られたかどうかの判定を行うことができる。 FIG. 2 is a diagram showing powder X-ray diffraction using CuKα rays calculated from the crystal structure of Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal. In the actual synthesis, a synthetic product in a powder form is obtained. Therefore, by comparing the obtained synthetic product with the spectrum shown in FIG. 2, it is possible to determine whether or not a synthetic product of N crystals has been obtained.

図2と比較対象となる物質を比べることにより、N結晶かどうかの簡易的な判定ができる。N結晶の主要ピークとしては、回折強度の強い10本程度で判定すると良い。表1は、その意味でN結晶を特定する上において基準となるもので重要である。また、N結晶の結晶構造を六方晶の他の晶系を用いても近似的な構造を定義することができ、その場合異なった空間群と格子定数および面指数を用いた表現となるが、X線回折結果(例えば図2)および結晶構造(例えば図1)に変わりはなく、それを用いた同定方法や同定結果も同一の物となる。このため、本発明では、六方晶系としてX線回折の解析を行うものとする。この表1に基づく物質の同定方法については、後述実施例において具体的に述べることとし、ここでは概略的な説明に留める。   By comparing the substance to be compared with FIG. 2, it is possible to easily determine whether or not the substance is an N crystal. As the main peak of the N crystal, it is preferable to determine about 10 with strong diffraction intensity. Table 1 is important because it serves as a reference in specifying the N crystal in that sense. In addition, an approximate structure can be defined by using another hexagonal crystal system for the crystal structure of the N crystal, and in that case, it is expressed using different space groups, lattice constants, and plane indices. There is no change in the X-ray diffraction result (for example, FIG. 2) and the crystal structure (for example, FIG. 1), and the identification method and identification result using the result are the same. For this reason, in the present invention, X-ray diffraction analysis is performed as a hexagonal system. The substance identification method based on Table 1 will be specifically described in the examples described later, and is only a brief description here.

N結晶に、M元素として、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybから選ばれる1種または2種以上の元素を付活すると蛍光体が得られる。N結晶の組成、付活元素の種類および量により、励起波長、発光波長、発光強度等の発光特性が変化するので、用途に応じて選択するとよい。M元素がEuであるものは、特に発光強度が高い。   A phosphor is obtained by activating one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb as an M element in an N crystal. It is done. Since the emission characteristics such as the excitation wavelength, emission wavelength, and emission intensity vary depending on the composition of the N crystal and the type and amount of the activation element, it may be selected according to the application. Those in which the M element is Eu have particularly high emission intensity.

N結晶において、単位格子の平均構造が、
(1−x)A(D,E)+xA(D,E)
(ただし、xは0以上1以下の数値)で示される結晶は発光強度が高い。なかでも特に輝度が高いのは、A元素にSrを含み、D元素にSiを含み、E元素にAlを含み、X元素にNを含む結晶を母体とする蛍光体である。
In the N crystal, the average structure of the unit cell is
(1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9
A crystal represented by (where x is a numerical value of 0 or more and 1 or less) has high emission intensity. In particular, a phosphor having a particularly high luminance is a phosphor having, as a base, a crystal containing Sr in the A element, Si in the D element, Al in the E element, and N in the X element.

xは、A(D,E)とA(D,E)の結晶構造が含まれる割合を示す値であり、0.02≦x≦0.2の範囲が特に結晶構造が安定であり、蛍光体の発光強度が高い。 x is a value indicating the ratio of the crystal structures of A 2 B 2 (D, E) 4 X 8 and A 2 (D, E) 6 X 9 included, and a range of 0.02 ≦ x ≦ 0.2 However, the crystal structure is particularly stable and the emission intensity of the phosphor is high.

N結晶が、SrSi230Al1.908.101.80である結晶、即ち、
SrSi230Al1.908.101.80結晶、または、SrSi230Al1.908.101.80結晶と同一の結晶構造を持つ結晶、または、SrSi230Al1.908.101.80 結晶の固溶体は特に発光強度が高い。
A crystal in which the N crystal is Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 , ie
Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal, or crystal having the same crystal structure as Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal, or Sr 2 The solid solution of Si 230 Al 1.90 N 8.10 B 1.80 crystal has particularly high emission intensity.

N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系である結晶は特に安定であり、これらをホスト結晶とする蛍光体は発光強度が高い。さらに、P62cの対称性を持つ結晶は特に安定であり、これらをホスト結晶とする蛍光体は発光強度が高い。   A crystal in which an N crystal or an inorganic crystal having the same crystal structure as the N crystal is a hexagonal crystal is particularly stable, and a phosphor using these as a host crystal has high emission intensity. Furthermore, crystals having symmetry of P62c are particularly stable, and phosphors using these as host crystals have high emission intensity.

さらに、N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系の結晶であり、
格子定数a、b、cが、
a = 0.47965±0.05 nm
b = 0.47965±0.05 nm
c = 0.97932±0.05 nm
の範囲の値である結晶は特に安定であり、これらをホスト結晶とする蛍光体は発光強度が高い。この範囲を外れると結晶が不安定となり発光強度が低下することがある。
Further, the N crystal or the inorganic crystal having the same crystal structure as the N crystal is a hexagonal crystal,
Lattice constants a, b, c are
a = 0.47965 ± 0.05 nm
b = 0.47965 ± 0.05 nm
c = 0.97932 ± 0.05 nm
Crystals having values in the range are particularly stable, and phosphors using these as host crystals have high emission intensity. Outside this range, the crystal becomes unstable and the light emission intensity may decrease.

組成式B(ただし、式中c+d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータc、d、e、f、g、hが、
0.1≦ c ≦0.25
0.00001≦ d ≦0.05
0.08≦ e ≦0.16
0.08≦ f ≦ 0.2
0 ≦ g ≦ 0.2
0.45 ≦ h ≦ 0.55
の条件を全て満たす範囲の組成で表される蛍光体は特に発光強度が高い。
Composition formula B c M d A e D f E g X h (where c + d + e + f + g + h = 1, where M is one selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb) Or two or more elements, A is one or more elements selected from Mg, Ca, Sr, and Ba, and D is one or two elements selected from Si, Ge, Sn, Ti, Zr, and Hf More than one element, E is one or more elements selected from Al, Ga, In, Sc, Y and La, and X is one or more elements selected from O, N and F ) And parameters c, d, e, f, g, h are
0.1 ≦ c ≦ 0.25
0.00001 ≦ d ≦ 0.05
0.08 ≦ e ≦ 0.16
0.08 ≦ f ≦ 0.2
0 ≤ g ≤ 0.2
0.45 ≤ h ≤ 0.55
A phosphor expressed by a composition in a range that satisfies all of the above conditions has particularly high emission intensity.

パラメータcは、B元素の添加量であり、0.1より少ないか0.25より多いと結晶構造が不安定になることがあり、発光強度が低下する恐れがある。パラメータdは、付活元素の添加量であり、0.00001より少ないと発光イオンの量が不十分で輝度が低下する。0.05より多いと発光イオン間の相互作用による濃度消光のため発光強度が低下する恐れがある。パラメータeは、Sr等のアルカリ土類元素の組成を表すパラメータであり、0.08より少ないか0.16より高いと結晶構造が不安定になり発光強度が低下する。パラメータfは、Si等のD元素の組成を表すパラメータであり、0.08より少ないか0.2より高いと結晶構造が不安定になり発光強度が低下する。パラメータgは、Al等のE元素の組成を表すパラメータであり、0.2より高いと結晶構造が不安定になり発光強度が低下する。パラメータhは、O、N、F等のX元素の組成を表すパラメータであり、0.45より少ないか0.55より高いと結晶構造が不安定になり発光強度が低下する。X元素はアニオンであり、B、A、M、D、E元素のカチオンと中性の電荷が保たれるようにO、N、F比の組成が決まる。   The parameter c is the amount of element B added, and if it is less than 0.1 or more than 0.25, the crystal structure may become unstable and the light emission intensity may be lowered. The parameter d is the addition amount of the activating element, and if it is less than 0.00001, the amount of luminescent ions is insufficient and the luminance is lowered. If it exceeds 0.05, the emission intensity may decrease due to concentration quenching due to the interaction between luminescent ions. The parameter e is a parameter representing the composition of an alkaline earth element such as Sr, and if it is less than 0.08 or higher than 0.16, the crystal structure becomes unstable and the emission intensity decreases. The parameter f is a parameter representing the composition of the D element such as Si, and if it is less than 0.08 or higher than 0.2, the crystal structure becomes unstable and the emission intensity decreases. The parameter g is a parameter representing the composition of the E element such as Al, and if it is higher than 0.2, the crystal structure becomes unstable and the emission intensity decreases. The parameter h is a parameter representing the composition of the X element such as O, N, F, etc. If it is less than 0.45 or higher than 0.55, the crystal structure becomes unstable and the light emission intensity decreases. The X element is an anion, and the composition of the O, N, and F ratio is determined so that the cation of the B, A, M, D, and E elements and the neutral charge are maintained.

無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である蛍光体は発光効率が高く、LEDに実装する場合の操作性がよいため、この範囲の粒径に制御するのがよい。   A phosphor that is a single crystal particle or an aggregate of single crystals having an average particle diameter of 0.1 μm or more and 20 μm or less has high luminous efficiency and good operability when mounted on an LED. It is better to control.

本発明の実施形態の1つとして、N結晶を母体とする蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、N結晶の蛍光体の含有量が20質量%以上である蛍光体がある。N結晶の蛍光体単体では目的の特性が得られない場合や導電性等の機能を付加する場合に本実施形態を用いると良い。N結晶蛍光体の含有量は目的とする特性により調整するとよいが、20質量%以下では発光強度が低くなる恐れがある。   As one embodiment of the present invention, a phosphor composed of a mixture of a phosphor having an N crystal as a base and another crystal phase or an amorphous phase, wherein the content of the phosphor of the N crystal is 20% by mass or more. There is. This embodiment may be used when the target characteristics cannot be obtained with a single phosphor of N crystal or when a function such as conductivity is added. The content of the N crystal phosphor may be adjusted according to the intended characteristics, but if it is 20% by mass or less, the emission intensity may be lowered.

電子線励起の用途など蛍光体に導電性が必要とされる場合は、他の結晶相あるいはアモルファス相として導電性を持つ無機物質を添加すると良い。   When the phosphor is required to have conductivity such as for electron beam excitation, an inorganic substance having conductivity as another crystal phase or amorphous phase may be added.

導電性を持つ無機物質としては、Zn、Al、Ga、In、Snから選ばれる1種または2種以上の元素を含む酸化物、酸窒化物、または窒化物、あるいはこれらの混合物を挙げることができる例えば、酸化亜鉛、窒化アルミニウム、窒化インジウム、酸化スズなどを挙げることができる。   Examples of the inorganic substance having conductivity include an oxide, an oxynitride, a nitride, or a mixture thereof containing one or more elements selected from Zn, Al, Ga, In, and Sn. Examples thereof include zinc oxide, aluminum nitride, indium nitride, and tin oxide.

本発明の実施形態の1つとして、励起源を照射することにより550nmから650nmの範囲の波長にピークを持つ蛍光体がある。例えば、Euを付活したN結晶やSrSi230Al1.908.101.80結晶の蛍光体はこの範囲に発光ピークを持つ。 As one embodiment of the present invention, there is a phosphor having a peak at a wavelength in the range of 550 nm to 650 nm when irradiated with an excitation source. For example, a phosphor of N crystal activated with Eu or Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 crystal has an emission peak in this range.

本発明の実施形態の1つとして、励起源が100nm以上520nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線で発光する蛍光体がある。これらの励起源を用いることにより効率よく発光させることができる。   As one embodiment of the present invention, there is a phosphor that emits light with vacuum ultraviolet light, ultraviolet light, visible light, electron beam, or X-ray whose excitation source has a wavelength of 100 nm to 520 nm. By using these excitation sources, light can be emitted efficiently.

このような本発明の蛍光体の製造方法は特に規定されないが、例えば、金属化合物の混合物であって、焼成することにより、N結晶の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成することにより得ることができる。本発明の主結晶は六方晶で空間群P62cに属するが、焼成温度等の合成条件により、これと異なる結晶系や空間群を持つ結晶が混入する場合がありうるが、この場合においても、発光特性の変化は僅かであるため高輝度蛍光体として使用することができる。   The method for producing the phosphor of the present invention is not particularly defined. For example, a raw material mixture that can form an N crystal phosphor by firing is a mixture of metal compounds. It can be obtained by firing in a temperature range of 1200 ° C. or higher and 2200 ° C. or lower in an active atmosphere. Although the main crystal of the present invention is a hexagonal crystal and belongs to the space group P62c, crystals having a different crystal system or space group may be mixed depending on the synthesis conditions such as the firing temperature. Since the change in characteristics is slight, it can be used as a high-luminance phosphor.

出発原料としては、例えば、金属化合物の混合物が、Bを含有する化合物と、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)とからなる原料を用いると良い。   As a starting material, for example, a mixture of metal compounds is a compound containing B, a compound containing M, a compound containing A, a compound containing D, a compound containing E, and X. Compound to be contained (where M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb, A is selected from Mg, Ca, Sr, Ba) One or two or more elements, D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf, E is Al, Ga, In, Sc, Y, La It is preferable to use a raw material consisting of one or two or more elements selected from: X is one or two or more elements selected from O, N, and F).

出発原料として、Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であるものは、原料が入手しやすく安定性に優れるため好ましい。   As a starting material, the compound containing M is a simple substance or two kinds selected from metals containing M, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides The above-mentioned mixture, wherein the compound containing A is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides containing A Or a mixture of two or more kinds, wherein the compound containing D is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides, or A mixture of two or more types is preferable because the raw materials are easily available and excellent in stability.

焼成に用いる炉は、焼成温度が高温であり、また焼成雰囲気が窒素を含有する不活性雰囲気であることから、金属抵抗加熱方式又は黒鉛抵抗加熱方式で、炉の高温部の材料として炭素を用いた電気炉が好適である。窒素を含有する不活性雰囲気が0.1MPa以上100MPa以下の圧力範囲では、出発原料や生成物である窒化物や酸窒化物の熱分解が抑えられるため好ましい。焼成雰囲気中の酸素分圧は0.0001%以下が出発原料や生成物である窒化物や酸窒化物の酸化反応を抑制するために好ましい。なお、焼成時間は焼成温度によっても異なるが、通常1〜10時間程度である。   The furnace used for firing has a high firing temperature, and the firing atmosphere is an inert atmosphere containing nitrogen. Therefore, carbon is used as a material for the high-temperature part of the furnace in a metal resistance heating method or a graphite resistance heating method. A suitable electric furnace is preferred. The inert atmosphere containing nitrogen is preferably in the pressure range of 0.1 MPa or more and 100 MPa or less because thermal decomposition of nitrides and oxynitrides which are starting materials and products is suppressed. The oxygen partial pressure in the firing atmosphere is preferably 0.0001% or less in order to suppress the oxidation reaction of nitrides and oxynitrides as starting materials and products. In addition, although baking time changes also with baking temperatures, it is about 1 to 10 hours normally.

蛍光体を粉体または凝集体形状で製造するには、原料を嵩密度40%以下の充填率に保持した状態で容器に充填した後に焼成する方法をとるとよい。嵩密度を40%以下の充填率にすることにより、粒子同士の強固な接着をさけることができる。ここで、相対嵩密度とは、容器に充填された粉体の質量を容器の容積で割った値(嵩密度)と粉体の物質の真密度との比である。   In order to manufacture the phosphor in the form of powder or agglomerate, it is preferable to take a method in which the raw material is filled in a container in a state where the bulk density is kept at 40% or less and then fired. By setting the bulk density to 40% or less, it is possible to avoid strong adhesion between particles. Here, the relative bulk density is a ratio of a value (bulk density) obtained by dividing the mass of the powder filled in the container by the volume of the container and the true density of the substance of the powder.

原料混合物の焼成に当って、原料化合物を保持する容器としては種々の耐熱性材料が使用しうるが、本発明に使用する金属窒化物に対する材質劣化の悪影響が低いことから、学術雑誌Journal of the American Ceramic Society 2002年85巻5号1229ページないし1234ページに記載の、α−サイアロンの合成に使用された窒化ホウ素をコートしたグラファイトるつぼに示されるように窒化ホウ素をコートした容器や、あるいは窒化ホウ素焼結体が適している。   In the firing of the raw material mixture, various heat-resistant materials can be used as a container for holding the raw material compound. However, since the adverse effect of material deterioration on the metal nitride used in the present invention is low, the academic journal Journal of the. American Ceramic Society 2002 Vol. 85, No. 5, p. 1229 to p. 1234, as shown in the boron crucible-coated graphite crucible used for the synthesis of α-sialon, or a boron nitride-coated container, or boron nitride A sintered body is suitable.

蛍光体を粉体または凝集体形状で製造するには、原料の粉体粒子または凝集体の平均粒径は500μm以下とすると、反応性と操作性に優れるので好ましい。粒子または凝集体の粒径を500μm以下にする方法として、スプレイドライヤ、ふるい分け、または風力分級を用いると作業効率と操作性にすぐれるので好ましい。   In order to produce the phosphor in the form of powder or aggregate, it is preferable that the average particle diameter of the raw material powder particles or aggregate is 500 μm or less because of excellent reactivity and operability. Use of a spray dryer, sieving, or air classification as a method for setting the particle size of the particles or aggregates to 500 μm or less is preferable because of excellent work efficiency and operability.

焼成の手法は、ホットプレスによることなく、常圧焼結法やガス圧焼結法などの外部から機械的な加圧を施さない焼結手法が、粉体または凝集体の製品を得る手法として好ましい。   The firing method is not a hot press, but a sintering method that does not apply mechanical pressure from the outside, such as an atmospheric pressure sintering method or a gas pressure sintering method, is a method for obtaining a powder or aggregate product. preferable.

蛍光体粉末の平均粒径は、体積基準のメディアン径(d50)で50nm以上200μm以下のものが、発光強度が高いので好ましい。体積基準の平均粒径の測定は、例えば、マイクロトラックやレーザ散乱法によって測定できる。粉砕、分級、酸処理から選ばれる1種ないし複数の手法を用いることにより、焼成により合成した蛍光体粉末の平均粒径を50nm以上200μm以下に粒度調整するとよい。   The average particle diameter of the phosphor powder is preferably 50 nm or more and 200 μm or less in terms of volume-based median diameter (d50) because the emission intensity is high. The volume-based average particle diameter can be measured by, for example, a microtrack or a laser scattering method. By using one or more methods selected from pulverization, classification, and acid treatment, the average particle size of the phosphor powder synthesized by firing may be adjusted to 50 nm to 200 μm.

焼成後の蛍光体粉末、あるいは粉砕処理後の蛍光体粉末、もしくは粒度調整後の蛍光体粉末を、1000℃以上で焼成温度以下の温度で熱処理することにより、粉末に含まれる欠陥や粉砕による損傷が回復することがある。欠陥や損傷は発光強度の低下の要因となることがあり、この場合熱処理により発光強度が回復する。   Defects in the powder or damage due to pulverization by heat-treating the phosphor powder after firing, phosphor powder after pulverization treatment, or phosphor powder after particle size adjustment at a temperature of 1000 ° C. or more and below the firing temperature May recover. Defects and damage may cause a decrease in emission intensity. In this case, the emission intensity is recovered by heat treatment.

蛍光体の合成のための焼成時に、焼成温度以下の温度で液相を生成する無機化合物を添加して焼成することによりフラックスとして働き、反応や粒成長が促進されて安定な結晶が得られることがあり、これによって発光強度が向上することがある。焼成温度以下の温度で液相を生成する無機化合物として、Li、Na、K、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩の1種または2種以上の混合物を挙げることができる。これらの無機化合物はそれぞれ融点が異なるため、合成温度によって使い分けると良い。   At the time of firing for phosphor synthesis, an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature is added and fired, which acts as a flux and promotes reaction and grain growth to obtain stable crystals. This may improve the emission intensity. Fluoride, chloride, iodide, bromide of one or more elements selected from Li, Na, K, Mg, Ca, Sr, Ba as an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature Or a mixture of one or more phosphates. Since these inorganic compounds have different melting points, they may be used properly depending on the synthesis temperature.

さらに、焼成後に溶剤で洗浄することにより、焼成温度以下の温度で液相を生成する無機化合物の含有量を低減させることにより、蛍光体の発光強度が高くなることがある。   Furthermore, by washing with a solvent after firing, the emission intensity of the phosphor may be increased by reducing the content of an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature.

本発明の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態で用いることが好ましい。また、本発明の蛍光体を含有する蛍光体混合物として用いることもできる。本発明の蛍光体を液体媒体中に分散させたものを、蛍光体含有組成物と呼ぶものとする。本発明の蛍光体含有組成物に使用可能な液体媒体としては、所望の使用条件下において液状の性質を示し、本発明の蛍光体を好適に分散させると共に、好ましくない反応等を生じないものであれば、任意のものを目的等に応じて選択することが可能である。液体媒体の例としては、硬化前の付加反応型シリコーン樹脂、縮合反応型シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等が挙げられる。これらの液体媒体は一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。   When the phosphor of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium. Moreover, it can also be used as a phosphor mixture containing the phosphor of the present invention. The phosphor of the present invention dispersed in a liquid medium is called a phosphor-containing composition. The liquid medium that can be used in the phosphor-containing composition of the present invention is a liquid medium that exhibits liquid properties under the desired use conditions, suitably disperses the phosphor of the present invention, and does not cause undesirable reactions. If there is, it is possible to select an arbitrary one according to the purpose. Examples of the liquid medium include addition-reactive silicone resins, condensation-reactive silicone resins, modified silicone resins, epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, and polyester resins before curing. These liquid media may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

液状媒体の使用量は、用途等に応じて適宜調整すればよいが、一般的には、本発明の蛍光体に対する液状媒体の重量比で、通常3重量%以上、好ましくは5重量%以上、また、通常30重量%以下、好ましくは15重量%以下の範囲である。   The amount of the liquid medium used may be appropriately adjusted according to the application, etc., but in general, the weight ratio of the liquid medium to the phosphor of the present invention is usually 3% by weight or more, preferably 5% by weight or more, Moreover, it is 30 weight% or less normally, Preferably it is the range of 15 weight% or less.

また、本発明の蛍光体含有組成物は、本発明の蛍光体及び液状媒体に加え、その用途等に応じて、その他の任意の成分を含有していてもよい。その他の成分としては、拡散剤、増粘剤、増量剤、干渉剤等が挙げられる。具体的には、アエロジル等のシリカ系微粉、アルミナ等が挙げられる。   In addition to the phosphor of the present invention and the liquid medium, the phosphor-containing composition of the present invention may contain other optional components depending on its use and the like. Examples of other components include a diffusing agent, a thickener, a bulking agent, and an interference agent. Specifically, silica-based fine powder such as Aerosil, alumina and the like can be mentioned.

本発明の発光装置は、少なくとも発光体または発光光源と本発明の蛍光体とを用いて構成される。   The light emitting device of the present invention is configured using at least a light emitter or a light emitting light source and the phosphor of the present invention.

発光体または発光光源としては、LED発光器具、レーザダイオード発光器具、EL発光器具、蛍光ランプなどがある。LED発光装置では、本発明の蛍光体を用いて、特開平5−152609、特開平7−99345、特許公報第2927279号などに記載されているような公知の方法により製造することができる。この場合、発光体または発光光源は330〜500nmの波長の光を発するものが望ましく、中でも330〜420nmの紫外(または紫)LED発光素子または420〜500nmの青色LED発光素子が好ましい。これらのLED発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより、所定の波長の光を発する発光光源となり得る。   Examples of the light emitter or light source include an LED light emitting device, a laser diode light emitting device, an EL light emitting device, and a fluorescent lamp. The LED light emitting device can be manufactured by using the phosphor of the present invention by a known method as described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, and the like. In this case, it is desirable that the light emitter or the light source emits light having a wavelength of 330 to 500 nm, and among them, an ultraviolet (or purple) LED light emitting element of 330 to 420 nm or a blue LED light emitting element of 420 to 500 nm is preferable. Some of these LED light-emitting elements are made of a nitride semiconductor such as GaN or InGaN. By adjusting the composition, the LED light-emitting element can be a light-emitting light source that emits light of a predetermined wavelength.

本発明の発光装置としては、本発明の蛍光体を含む、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライト等がある。   Examples of the light emitting device of the present invention include a white light emitting diode including the phosphor of the present invention, a lighting fixture including a plurality of white light emitting diodes, and a backlight for a liquid crystal panel.

本発明の発光装置の一形態として、発光体または発光光源がピーク波長300〜500nmの紫外または可視光を発し、本発明の蛍光体が発する黄色から赤色光と、本発明の他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発する発光装置がある。   As one form of the light emitting device of the present invention, the light emitting body or light emitting light source emits ultraviolet or visible light having a peak wavelength of 300 to 500 nm, and the phosphor of the present invention emits yellow to red light, and the other phosphor of the present invention includes There is a light-emitting device that emits white light or light other than white light by mixing light having a wavelength of 450 nm or more.

本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長420nm〜500nm以下の光を発する青色蛍光体を含むことができる。このような、青色蛍光体としては、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α−サイアロン:Ce、JEM:Ceなどがある。 As one form of the light-emitting device of the present invention, in addition to the phosphor of the present invention, a blue phosphor that emits light having a peak wavelength of 420 nm to 500 nm or less by a light emitter or a light source can be included. As such a blue phosphor, AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, α-sialon: Ce, JEM : Ce and the like.

本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体を含むことができる。このような、緑色蛍光体としては、例えば、β−サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euなどがある。 As one form of the light emitting device of the present invention, in addition to the phosphor of the present invention, a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by a light emitting body or a light emitting light source can be included. Examples of such green phosphors include β-sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, and the like. is there.

本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体を含むことができる。このような黄色蛍光体としては、YAG:Ce、α−サイアロン:Eu、CaAlSiN:Ce、LaSi11:Ceなどがある。 As one form of the light emitting device of the present invention, in addition to the phosphor of the present invention, a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by a light emitter or a light source can be included. Examples of such a yellow phosphor include YAG: Ce, α-sialon: Eu, CaAlSiN 3 : Ce, La 3 Si 6 N 11 : Ce.

本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体を含むことができる。このような赤色蛍光体としては、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euなどがある。 As one form of the light emitting device of the present invention, in addition to the phosphor of the present invention, a red phosphor that emits light having a peak wavelength of 600 nm or more and 700 nm or less by a light emitter or a light source can be included. Examples of such red phosphor include CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, and Sr 2 Si 5 N 8 : Eu.

本発明の発光装置の一形態として、発光体または発光光源が320〜500nmの波長の光を発するLEDを用いると発光効率が高いため、高効率の発光装置を構成することができる。   As an embodiment of the light-emitting device of the present invention, when an LED that emits light having a wavelength of 320 to 500 nm is used as the light emitter or the light-emitting light source, the light-emitting efficiency is high, so that a highly efficient light-emitting device can be configured.

本発明の画像表示装置は少なくも励起源と本発明の蛍光体とから構成され、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)などがある。本発明の蛍光体は、100〜190nmの真空紫外線、190〜380nmの紫外線、電子線などの励起で発光することが確認されており、これらの励起源と本発明の蛍光体との組み合わせで、上記のような画像表示装置を構成することができる。   The image display device of the present invention is composed of at least an excitation source and the phosphor of the present invention, and includes a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT) and the like. is there. The phosphor of the present invention has been confirmed to emit light by excitation of vacuum ultraviolet rays of 100 to 190 nm, ultraviolet rays of 190 to 380 nm, electron beams, etc., and in combination of these excitation sources and the phosphor of the present invention, An image display apparatus as described above can be configured.

特定の化学組成を有する無機化合物結晶相よりなる本発明の蛍光体は、黄色の物体色を持つことから顔料又は蛍光顔料として使用することができる。すなわち、本発明の蛍光体に太陽光や蛍光灯などの照明を照射すると黄色の物体色が観察されるが、その発色がよいこと、そして長期間に渡り劣化しないことから、本発明の蛍光体は無機顔料に好適である。このため、塗料、インキ、絵の具、釉薬、プラスチック製品に添加する着色剤などに用いると長期間に亘って良好な発色を高く維持することができる。   Since the phosphor of the present invention comprising an inorganic compound crystal phase having a specific chemical composition has a yellow object color, it can be used as a pigment or a fluorescent pigment. That is, when the phosphor of the present invention is irradiated with illumination such as sunlight or a fluorescent lamp, a yellow object color is observed, but since the color is good and does not deteriorate over a long period of time, the phosphor of the present invention Is suitable for inorganic pigments. For this reason, when used for paints, inks, paints, glazes, colorants added to plastic products, etc., good color development can be maintained high over a long period of time.

本発明の窒化物蛍光体は、紫外線を吸収するため紫外線吸収剤としても好適である。このため、塗料として用いたり、プラスチック製品の表面に塗布したり内部に練り込んだりすると、紫外線の遮断効果が高く、製品を紫外線劣化から効果的に保護することができる。   Since the nitride phosphor of the present invention absorbs ultraviolet rays, it is also suitable as an ultraviolet absorber. For this reason, when used as a paint, applied to the surface of a plastic product, or kneaded into a plastic product, the effect of blocking ultraviolet rays is high, and the product can be effectively protected from ultraviolet degradation.

本発明を以下に示す実施例によってさらに詳しく説明するが、これはあくまでも本発明を容易に理解するための一助として開示したものであって、本発明は、これらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, which are disclosed only as an aid for easily understanding the present invention, and the present invention is not limited to these examples. Absent.

[合成に使用した原料]
合成に使用した原料粉末は、比表面積11.2m/gの粒度の、酸素含有量1.29重量%、α型含有量95%の窒化ケイ素粉末(宇部興産(株)製のSN−E10グレード)と、酸素含有量0.82重量%の窒化アルミニウム粉末((株)トクヤマ製のEグレード)と、比表面積13.2m/gの粒度の酸化アルミニウム粉末(大明化学工業製タイミクロン)と、窒化マグネシウム(Mg;高純度化学研究所製)と、窒化カルシウム(Ca;高純度化学研究所製)と、純度99.5%の窒化ストロンチウム(Sr;セラック製)と、純度99.7%の窒化バリウム(Ba;セラック製)と、酸化ユーロピウム(Eu;純度99.9%信越化学工業(株)製)と、窒化ユーロピウム(EuN;金属ユーロピウムをアンモニア気流中で800℃で10時間加熱することにより、金属を窒化して得たもの)と、窒化ホウ素(電気化学工業製)と、希土類酸化物(純度99.9%信越化学工業製)とであった。
[Raw materials used for synthesis]
The raw material powder used for the synthesis was a silicon nitride powder having a specific surface area of 11.2 m 2 / g, an oxygen content of 1.29 wt%, and an α-type content of 95% (SN-E10 manufactured by Ube Industries, Ltd.). Grade), aluminum nitride powder having an oxygen content of 0.82% by weight (E grade made by Tokuyama Corporation), and aluminum oxide powder having a specific surface area of 13.2 m 2 / g (Taimicron, manufactured by Daimei Chemical Co., Ltd.) And magnesium nitride (Mg 3 N 2 ; manufactured by High Purity Chemical Laboratory), calcium nitride (Ca 3 N 2 ; manufactured by High Purity Chemical Laboratory), and 99.5% pure strontium nitride (Sr 3 N 2 ; Manufactured by Shellac), barium nitride having a purity of 99.7% (Ba 3 N 2 ; manufactured by Shellac), europium oxide (Eu 2 O 3 ; manufactured by Shin-Etsu Chemical Co., Ltd.), and europium nitride ( E N: Metal europium was obtained by nitriding a metal by heating at 800 ° C. for 10 hours in an ammonia stream, boron nitride (manufactured by Denki Kagaku Kogyo), and rare earth oxide (purity 99.9% Shin-Etsu) Made by Chemical Industries).

[結晶SrSi2.30Al1.908.101.80の合成と構造解析]
窒化ストロンチウム(Sr)、窒化ケイ素(Si)、窒化アルミニウム(AlN)、窒化ホウ素(BN)をカチオン比がSr:Si:Al:B=2:2.3:1.90:1.80となるような割合で混合組成を設計した。これらの原料粉末を、上記混合組成となるように秤量し、酸素1ppm以下の雰囲気のグローブボックス中で、窒化ケイ素焼結体製乳棒と乳鉢を用いて5分間混合を行なった。次いで、得られた混合粉末を、窒化ホウ素焼結体製のるつぼに投入した。混合粉末(粉体)の嵩密度は約33%であった。
[Synthesis and Structural Analysis of Crystalline Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 ]
Strontium nitride (Sr 3 N 2 ), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and boron nitride (BN) have a cation ratio of Sr: Si: Al: B = 2: 2.3: 1.90. : The mixed composition was designed at a ratio of 1.80. These raw material powders were weighed so as to have the above mixed composition and mixed for 5 minutes in a glove box having an atmosphere of oxygen of 1 ppm or less using a silicon nitride sintered pestle and mortar. Next, the obtained mixed powder was put into a crucible made of a boron nitride sintered body. The bulk density of the mixed powder (powder) was about 33%.

混合粉末が入ったるつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を1×10−1Pa以下圧力の真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して炉内の圧力を1MPaとし、毎時500℃で1800℃まで昇温し、その温度で2時間保持した。 The crucible containing the mixed powder was set in a graphite resistance heating type electric furnace. The firing operation is as follows. First, the firing atmosphere is evacuated at a pressure of 1 × 10 −1 Pa or less by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 800.degree. Nitrogen was introduced to bring the pressure in the furnace to 1 MPa, the temperature was raised to 1800 ° C. at 500 ° C. per hour, and the temperature was maintained for 2 hours.

合成物を光学顕微鏡で観察し、合成物中から22.8μm×20.3μm×6.5μmの大きさの結晶粒子を採取した。この粒子をエネルギー分散型元素分析器(EDS;ブルカー・エイエックスエス社製QUANTAX)を備えた走査型電子顕微鏡(SEM;日立ハイテクノロジーズ社製のSU1510)を用いて、結晶粒子に含まれる元素の分析を行った。その結果、Sr、Si、Al、N、B元素の存在が確認された。   The synthesized product was observed with an optical microscope, and crystal grains having a size of 22.8 μm × 20.3 μm × 6.5 μm were collected from the synthesized product. The particles were analyzed using a scanning electron microscope (SEM; SU1510 manufactured by Hitachi High-Technologies Corporation) equipped with an energy dispersive element analyzer (EDS; QUANTAX manufactured by Bruker AXS). Analysis was carried out. As a result, the presence of Sr, Si, Al, N, and B elements was confirmed.

次にこの結晶をガラスファイバーの先端に有機系接着剤で固定した。これをMoKα線の回転対陰極付きの単結晶X線回折装置(ブルカー・エイエックスエス社製のSMART APEXII Ultra)を用いて、X線源の出力が50kV50mAの条件でX線回折測定を行った。その結果、この結晶粒子が単結晶であることを確認した。   Next, this crystal was fixed to the tip of the glass fiber with an organic adhesive. This was measured using a single crystal X-ray diffractometer with a rotating counter cathode of MoKα rays (SMART APEX II Ultra manufactured by Bruker AXS) under the condition that the output of the X-ray source was 50 kV 50 mA. . As a result, it was confirmed that the crystal particles were a single crystal.

次に、X線回折測定結果から単結晶構造解析ソフトウエア(ブルカー・エイエックスエス社製のAPEX2)を用いて結晶構造を求めた。得られた結晶構造データを表1に、結晶構造の図を図1に示す。表1には、結晶系、空間群、格子定数、原子の種類と原子位置が記述してあり、このデータを用いて、単位格子の形および大きさとその中の原子の並びを決めることができる。なお、SiとAlは同じ原子位置にある割合で入り、全体として平均化したときにその結晶の組成割合となる。   Next, the crystal structure was obtained from the X-ray diffraction measurement result using single crystal structure analysis software (APEX2 manufactured by Bruker AXS). The obtained crystal structure data is shown in Table 1, and a diagram of the crystal structure is shown in FIG. Table 1 describes the crystal system, space group, lattice constant, atom type and atom position, and this data can be used to determine the shape and size of the unit cell and the arrangement of atoms in it. . Si and Al enter at the same atomic position and become the composition ratio of the crystal when averaged as a whole.

この結晶は、六方晶系(hexagonal)に属し、空間群P−62c、(International Tables for Crystallographyの190番の空間群)に属し、格子定数a,b,cが、
a = 0.47965nm、b = 0.47965nm、c = 0.97932nmであり、角度α、β、γが、α=90°、β=90°、γ=120°であった。また原子位置は表1に示す通りであった。なお、表中、SiとAlは同じ原子位置に組成によって決まるある割合で存在する。また、一般的にサイアロン系の結晶においてXが入る席には酸素と窒素が入ることができるが、Srは+2価、Alは+3価、Siは+4価であるので、原子位置とSrとAlとSiの比がわかれば、(O、N)位置を占めるOとNの比は結晶の電気的中性の条件から求められる。なお、出発原料組成と結晶組成が異なるのは、少量の第二相としてSrSi2.30Al1.908.101.80以外の組成物が生成したことによるが、本測定は単結晶を用いているので解析結果は純粋なSrSi2.30Al1.908.101.80構造を示している。
This crystal belongs to the hexagonal system (hexagonal), belongs to the space group P-62c, (International Tables for Crystallography No. 190 space group), and the lattice constants a, b, c are
a = 0.47965 nm, b = 0.47965 nm, c = 0.97932 nm, and the angles α, β, and γ were α = 90 °, β = 90 °, and γ = 120 °. The atomic positions are as shown in Table 1. In the table, Si and Al are present in the same atomic position at a certain ratio determined by the composition. In general, oxygen and nitrogen can enter the seat where X enters in a sialon-based crystal. However, since Sr is +2, Al is +3, and Si is +4, the atomic position, Sr and Al If the ratio of Si to Si is known, the ratio of O to N occupying the (O, N) position can be obtained from the electrical neutrality condition of the crystal. The difference between the starting material composition and the crystal composition is that a composition other than Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 was produced as a small amount of the second phase. Since a single crystal is used, the analysis result shows a pure Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 structure.

詳細な結晶構造の検討を行ったところ、SrSi2.30Al1.908.101.80結晶は、同じ単位格子を持つSrSiAlとSrSiAlとの結晶構造の平均構造であることがわかった。さらに、2種類の結晶構造の割合は、SrSiAl:SrSiAl=9:1と解析された。すなわち、この結晶は結晶系、空間群、格子定数が等しく原子組成と原子位置が異なる2種類の結晶構造の平均構造をとることがわかった。 When the detailed crystal structure was examined, the Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 crystal had Sr 2 Si 2 Al 2 N 8 B 2 and Sr 2 having the same unit cell. It was found to be an average structure of crystal structure with Si 5 Al 1 N 9 . Furthermore, the ratio of the two types of crystal structures was analyzed as Sr 2 Si 2 Al 2 N 8 B 2 : Sr 2 Si 5 Al 1 N 9 = 9: 1. That is, this crystal was found to have an average structure of two types of crystal structures having the same crystal system, space group, and lattice constant but different atomic composition and atomic position.

類似構造を持つ結晶の検討を行ったところ、解析で得られたSrSi2.30Al1.908.101.80結晶の結晶構造は、一般式(1−x)A(D,E)+xA(D,E)(xは0≦x≦1の数値)として記述できる結晶のひとつであることがわかった。ここで、Aは、Mg、Ca、Sr、Baから選ばれる元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる元素、Xは、O、N、Fから選ばれる元素である。これらの元素は1種でもよく、2種以上の混合でもよい。 When a crystal having a similar structure was examined, the crystal structure of the Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 crystal obtained by the analysis is represented by the general formula (1-x) A 2. It was found to be one of the crystals that can be described as B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (x is a numerical value of 0 ≦ x ≦ 1). Here, A is an element selected from Mg, Ca, Sr, and Ba, D is an element selected from Si, Ge, Sn, Ti, Zr, and Hf, and E is Al, Ga, In, Sc, Y, An element selected from La, X is an element selected from O, N, and F. These elements may be one kind or a mixture of two or more kinds.

(1−x)A(D,E)+xA(D,E)(xは0≦x≦1の数値)で表される結晶は、SrSi2.30Al1.908.101.80結晶と同一の結晶構造を持ち、六方晶の結晶系で、P−62cの対称性を持つ。A、B、D、E、Xの元素は、それぞれ、表1に示したSrSi2.30Al1.908.101.80におけるSr、B、Si、Al、Nの座標位置を占める。ただし、占有率は組成とx値により、表1の値から変化することもある。 A crystal represented by (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (x is a numerical value of 0 ≦ x ≦ 1) is Sr 2 Si 2. It has the same crystal structure as 30 Al 1.90 N 8.10 B 1.80 crystal, is a hexagonal crystal system, and has symmetry of P-62c. The elements A, B, D, E, and X are coordinates of Sr, B, Si, Al, and N in Sr 2 Si 2.30 Al 1.90 N 8.10 B 1.80 shown in Table 1, respectively. Occupy position. However, the occupation ratio may vary from the values in Table 1 depending on the composition and the x value.

結晶構造データからこの結晶は今まで報告されていない新規の物質であることが確認された。結晶構造データから計算した粉末X線回折パターンを図2に示す。今後は、合成物の粉末X回折測定を行い、測定された粉末パターンが図2と同じであれば図1のN結晶が生成していると判定できる。さらに、N結晶として結晶構造を保ったまま格子定数等が変化したものは、粉末X線回折測定により得られた格子定数の値と表1の結晶構造データから計算により粉末X線パターンを計算できるので、計算パターンと比較することによりN結晶が生成していると判定できる。   From the crystal structure data, it was confirmed that this crystal was a novel substance that had not been reported so far. The powder X-ray diffraction pattern calculated from the crystal structure data is shown in FIG. From now on, the powder X diffraction measurement of the synthesized product will be performed, and if the measured powder pattern is the same as in FIG. 2, it can be determined that the N crystal of FIG. 1 is formed. In addition, when the crystal structure of the N crystal is changed while maintaining the crystal structure, the powder X-ray pattern can be calculated by calculation from the value of the lattice constant obtained by powder X-ray diffraction measurement and the crystal structure data of Table 1. Therefore, it can be determined that an N crystal is generated by comparing with the calculation pattern.

[蛍光体実施例および比較例;例1から例10]
表2および表3に示す設計組成に従って、原料を表4の混合組成(モル比)となるように秤量した。使用する原料の種類によっては表2の設計組成と表4の混合組成で組成が異なる場合が生じるが、この場合は金属イオンの量が合致するように混合組成を決定した。秤量した原料粉末を窒化ケイ素焼結体製乳棒と乳鉢を用いて5分間混合を行なった。その後、混合粉末を窒化ホウ素焼結体製のるつぼに投入した。粉体の嵩密度は約20%から30%であった。
[Phosphor Examples and Comparative Examples; Examples 1 to 10]
According to the design composition shown in Table 2 and Table 3, the raw materials were weighed so as to have the mixed composition (molar ratio) shown in Table 4. Depending on the type of raw material used, the composition may differ between the design composition in Table 2 and the mixed composition in Table 4. In this case, the mixed composition was determined so that the amount of metal ions matched. The weighed raw material powders were mixed for 5 minutes using a silicon nitride sintered pestle and mortar. Thereafter, the mixed powder was put into a crucible made of a boron nitride sintered body. The bulk density of the powder was about 20% to 30%.

混合粉末が入ったるつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を1×10−1Pa以下圧力の真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して炉内の圧力を1MPaとし、毎時500℃で表5に示す設定温度まで昇温し、その温度で表5に示す時間保持した。 The crucible containing the mixed powder was set in a graphite resistance heating type electric furnace. The firing operation is as follows. First, the firing atmosphere is evacuated at a pressure of 1 × 10 −1 Pa or less by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 800.degree. Nitrogen was introduced to set the pressure in the furnace to 1 MPa, the temperature was raised to 500 ° C. per hour to the set temperature shown in Table 5, and the temperature was maintained for the time shown in Table 5.


次に、合成した化合物をメノウの乳鉢を用いて粉砕し、CuのKα線を用いた粉末X線回折測定を行った。主な生成相を表6に示す。その結果、N結晶と同じ結晶構造を持つ相が主な生成相であることが確認された。また、EDSの測定より、合成物は希土類元素、アルカリ土類金属、Si、Al、Bを含むことが確認された。即ち、合成物はN結晶に希土類発光イオンMが固溶した蛍光体であることが確認された。 Next, the synthesized compound was pulverized using an agate mortar, and powder X-ray diffraction measurement was performed using Cu rays. The main product phase is shown in Table 6. As a result, it was confirmed that the phase having the same crystal structure as that of the N crystal was the main product phase. Moreover, it was confirmed from the measurement of EDS that the composite contains rare earth elements, alkaline earth metals, Si, Al, and B. That is, it was confirmed that the synthesized product was a phosphor in which rare earth luminescent ions M were dissolved in N crystal.

焼成後、この得られた焼成体を粗粉砕の後、窒化ケイ素焼結体製のるつぼと乳鉢を用いて手で粉砕し、30μmの目のふるいを通した。粒度分布を測定したところ、平均粒径は3〜8μmであった。   After firing, the obtained fired body was coarsely pulverized and then ground by hand using a crucible made of a silicon nitride sintered body and a mortar, and passed through a 30 μm sieve. When the particle size distribution was measured, the average particle size was 3 to 8 μm.

これらの粉末に、波長365nmの光を発するランプで照射した結果、青色から赤色に発光することを確認した。この粉末の発光スペクトルおよび励起スペクトルを、蛍光分光光度計を用いて測定した。励起スペクトルのピーク波長と発光スペクトルのピーク波長を表7に示す。この蛍光体は、300nm〜380nmの紫外線、380nm〜500nmの紫色または青色光で励起することが可能であり、青色から赤色発光する蛍光体であることが確認された。また、Srを添加した実施例2、3、8、9、10においては、黄色から赤色発光する蛍光体であることが確認された。   As a result of irradiating these powders with a lamp emitting light having a wavelength of 365 nm, it was confirmed that light was emitted from blue to red. The emission spectrum and excitation spectrum of this powder were measured using a fluorescence spectrophotometer. Table 7 shows the peak wavelength of the excitation spectrum and the peak wavelength of the emission spectrum. This phosphor can be excited by ultraviolet rays of 300 nm to 380 nm, violet or blue light of 380 nm to 500 nm, and was confirmed to be a phosphor emitting blue to red light. Further, in Examples 2, 3, 8, 9, and 10 to which Sr was added, it was confirmed that the phosphor emits yellow to red light.


なお、混合原料組成と合成物の化学組成が異なっている部分は、不純物第二相として合成物中に微量混在していると考えられる。   In addition, it is thought that the part in which the chemical composition of a mixed raw material composition and a synthetic | combination compound differs in a small amount in a synthetic | combination as an impurity 2nd phase.

合成した蛍光体の粉末X線回折結果は、構造解析の結果(図2)と良い一致を示し、N結晶とX線回折パターンが同じであり、N結晶と同一の結晶構造を持つ結晶が主成分であることが確認された。例えば、実施例10では、紫外線や可視光で効率よく励起できることがわかり、Srを添加した実施例2、3、8、9、10においては発光スペクトルは550〜650nmにピークを持つ発光を呈することがわかった   The powder X-ray diffraction result of the synthesized phosphor shows good agreement with the result of structural analysis (Fig. 2), the N crystal and X-ray diffraction pattern are the same, and the crystal with the same crystal structure as the N crystal is the main. It was confirmed to be an ingredient. For example, in Example 10, it can be seen that excitation can be efficiently performed with ultraviolet light or visible light, and in Examples 2, 3, 8, 9, and 10 to which Sr is added, the emission spectrum exhibits light emission having a peak at 550 to 650 nm. I understood

[発光装置および画像表示装置の実施例;実施例11から14]
次ぎに、本発明の蛍光体を用いた発光装置について説明する。
[Examples of Light Emitting Device and Image Display Device; Examples 11 to 14]
Next, a light emitting device using the phosphor of the present invention will be described.

[実施例11]
図5は、本発明による照明器具(砲弾型LED照明器具)を示す概略図である。
[Example 11]
FIG. 5 is a schematic view showing a lighting fixture (bullet type LED lighting fixture) according to the present invention.

図3に示すいわゆる砲弾型白色発光ダイオードランプ(1)を製作した。2本のリードワイヤ(2、3)があり、そのうち1本(2)には、凹部があり、365nmに発光ピークを持つ紫外発光ダイオード素子(4)が載置されている。紫外発光ダイオード素子(4)の下部電極と凹部の底面とが導電性ペーストによって電気的に接続されており、上部電極ともう1本のリードワイヤ(3)とが金細線(5)によって電気的に接続されている。蛍光体(7)が樹脂に分散され、発光ダイオード素子(4)近傍に実装されている。この蛍光体を分散した第一の樹脂(6)は、透明であり、紫外発光ダイオード素子(4)の全体を被覆している。凹部を含むリードワイヤの先端部、青色発光ダイオード素子、蛍光体を分散した第一の樹脂は、透明な第二の樹脂(8)によって封止されている。透明な第二の樹脂(8)は全体が略円柱形状であり、その先端部がレンズ形状の曲面となっていて、砲弾型と通称されている。   A so-called bullet-type white light-emitting diode lamp (1) shown in FIG. 3 was produced. There are two lead wires (2, 3), one of which (2) has a recess, and an ultraviolet light-emitting diode element (4) having an emission peak at 365 nm is placed thereon. The lower electrode of the ultraviolet light emitting diode element (4) and the bottom surface of the recess are electrically connected by a conductive paste, and the upper electrode and the other lead wire (3) are electrically connected by a gold wire (5). It is connected to the. The phosphor (7) is dispersed in the resin and mounted in the vicinity of the light emitting diode element (4). The first resin (6) in which the phosphor is dispersed is transparent and covers the entire ultraviolet light emitting diode element (4). The tip of the lead wire including the recess, the blue light emitting diode element, and the first resin in which the phosphor is dispersed are sealed with a transparent second resin (8). The transparent second resin (8) has a substantially cylindrical shape as a whole, and has a lens-shaped curved surface at the tip, which is commonly called a shell type.

本実施例では、実施例7で作製した黄色蛍光体とJEM:Ce青色蛍光体を質量比で7:3に混合した蛍光体粉末を37重量%の濃度でエポキシ樹脂に混ぜ、これをディスペンサを用いて適量滴下して、蛍光体を混合したもの(7)を分散した第一の樹脂(6)を形成した。得られた発光装置の発色は、x=0.33、y=0.33であり、白色であった。   In this example, the phosphor powder prepared by mixing the yellow phosphor prepared in Example 7 and the JEM: Ce blue phosphor at a mass ratio of 7: 3 was mixed in an epoxy resin at a concentration of 37% by weight, and this was added to a dispenser. The first resin (6) in which the appropriate amount (7) mixed with the phosphor was dispersed was formed by dropping an appropriate amount. The color of the obtained light emitting device was x = 0.33, y = 0.33, and was white.

[実施例12]
図4は、本発明による照明器具(基板実装型LED照明器具)を示す概略図である。
[Example 12]
FIG. 4 is a schematic view showing a lighting fixture (substrate mounted LED lighting fixture) according to the present invention.

図4に示す基板実装用チップ型白色発光ダイオードランプ(11)を製作した。可視光線反射率の高い白色のアルミナセラミックス基板(19)に2本のリードワイヤ(12、13)が固定されており、それらワイヤの片端は基板のほぼ中央部に位置し、他端はそれぞれ外部に出ていて電気基板への実装時ははんだづけされる電極となっている。リードワイヤのうち1本(12)は、その片端に、基板中央部となるように発光ピーク波長450nmの青発光ダイオード素子(14)が載置され固定されている。青色発光ダイオード素子(14)の下部電極と下方のリードワイヤとは導電性ペーストによって電気的に接続されており、上部電極ともう1本のリードワイヤ(13)とが金細線(15)によって電気的に接続されている。   A chip-type white light emitting diode lamp (11) for mounting on a substrate shown in FIG. 4 was produced. Two lead wires (12, 13) are fixed to a white alumina ceramic substrate (19) having a high visible light reflectivity, and one end of each of these wires is located at a substantially central portion of the substrate, and the other end is external. It is an electrode that is soldered when mounted on an electric board. One of the lead wires (12) has a blue light emitting diode element (14) having an emission peak wavelength of 450 nm placed and fixed at one end of the lead wire so as to be at the center of the substrate. The lower electrode of the blue light emitting diode element (14) and the lower lead wire are electrically connected by a conductive paste, and the upper electrode and the other lead wire (13) are electrically connected by a gold thin wire (15). Connected.

第一の樹脂(16)と実施例で作製した蛍光体とCaAlSiN:Eu赤色蛍光体を質量比で9:1に混合した蛍光体(17)を混合したものが、発光ダイオード素子近傍に実装されている。この蛍光体を分散した第一の樹脂は、透明であり、青色発光ダイオード素子(14)の全体を被覆している。また、セラミック基板上には中央部に穴の開いた形状である壁面部材(20)が固定されている。壁面部材(20)は、その中央部が青色発光ダイオード素子(14)及び蛍光体(17)を分散させた樹脂(16)がおさまるための穴となっていて、中央に面した部分は斜面となっている。この斜面は光を前方に取り出すための反射面であって、その斜面の曲面形は光の反射方向を考慮して決定される。また、少なくとも反射面を構成する面は白色または金属光沢を持った可視光線反射率の高い面となっている。本実施例では、該壁面部材(20)を白色のシリコーン樹脂によって構成した。壁面部材の中央部の穴は、チップ型発光ダイオードランプの最終形状としては凹部を形成するが、ここには青色発光ダイオード素子(14)及び蛍光体(17)を分散させた第一の樹脂(16)のすべてを封止するようにして透明な第二の樹脂(18)を充填している。本実施例では、第一の樹脂(16)と第二の樹脂(18)とには同一のエポキシ樹脂を用いた。 A mixture of the first resin (16), the phosphor prepared in the example, and the phosphor (17) in which the CaAlSiN 3 : Eu red phosphor is mixed at a mass ratio of 9: 1 is mounted in the vicinity of the light emitting diode element. Has been. The first resin in which the phosphor is dispersed is transparent and covers the entire blue light emitting diode element (14). A wall surface member (20) having a shape with a hole in the center is fixed on the ceramic substrate. The wall member (20) has a central portion serving as a hole for holding the resin (16) in which the blue light emitting diode element (14) and the phosphor (17) are dispersed, and the portion facing the center is a slope. It has become. This slope is a reflection surface for extracting light forward, and the curved surface shape of the slope is determined in consideration of the light reflection direction. Further, at least the surface constituting the reflecting surface is a surface having a high visible light reflectance having white or metallic luster. In the present embodiment, the wall member (20) is made of a white silicone resin. The hole at the center of the wall member forms a recess as the final shape of the chip-type light-emitting diode lamp. Here, the first resin in which the blue light-emitting diode element (14) and the phosphor (17) are dispersed ( A transparent second resin (18) is filled so as to seal all of 16). In this example, the same epoxy resin was used for the first resin (16) and the second resin (18).

次ぎに、本発明の蛍光体を用いた画像表示装置の設計例について説明する。   Next, a design example of an image display device using the phosphor of the present invention will be described.

[実施例13]
図5は、本発明による画像表示装置(プラズマディスプレイパネル)を示す概略図である。
[Example 13]
FIG. 5 is a schematic view showing an image display device (plasma display panel) according to the present invention.

本発明の実施例10の赤色蛍光体(31)と緑色蛍光体(β−サイアロン:Eu2+)(32)および青色蛍光体(BAM:Eu2+)(33)が、ガラス基板(44)上に電極(37、38、39)および誘電体層(41)を介して配置されたそれぞれのセル(34、35、36)の内面に塗布されている。電極(37、38、39、40)に通電するとセル中でXe放電により真空紫外線が発生し、これにより蛍光体が励起されて、赤、緑、青の可視光を発し、この光が保護層(43)、誘電体層(42)、ガラス基板(45)を介して外側から観察され、画像表示装置として機能する。 The red phosphor (31), the green phosphor (β-sialon: Eu 2+ ) (32) and the blue phosphor (BAM: Eu 2+ ) (33) of Example 10 of the present invention are placed on the glass substrate (44). It is apply | coated to the inner surface of each cell (34, 35, 36) arrange | positioned through an electrode (37, 38, 39) and a dielectric material layer (41). When the electrodes (37, 38, 39, 40) are energized, vacuum ultraviolet rays are generated by Xe discharge in the cell, which excites the phosphor and emits red, green, and blue visible light, which is the protective layer. (43), observed from the outside through the dielectric layer (42) and the glass substrate (45), and functions as an image display device.

[実施例14]
図6は、本発明による画像表示装置(フィールドエミッションディスプレイパネル)を示す概略図である。
[Example 14]
FIG. 6 is a schematic view showing an image display device (field emission display panel) according to the present invention.

本発明の実施例10の赤色蛍光体(56)が陽極(53)の内面に塗布されている。陰極(52)とゲート(54)の間に電圧をかけることにより、エミッタ(55)から電子(57)が放出される。電子は陽極(53)と陰極の電圧により加速されて、赤色蛍光体(56)に衝突して蛍光体が発光する。全体はガラス(51)で保護されている。図は、1つのエミッタと1つの蛍光体からなる1つの発光セルを示したが、実際には赤色の他に、青色、緑色のセルが多数配置されて多彩な色を発色するディスプレイが構成される。緑色や赤色のセルに用いられる蛍光体に関しては特に指定しないが、低速の電子線で高い輝度を発するものを用いると良い。   The red phosphor (56) of Example 10 of the present invention is applied to the inner surface of the anode (53). By applying a voltage between the cathode (52) and the gate (54), electrons (57) are emitted from the emitter (55). The electrons are accelerated by the voltage of the anode (53) and the cathode, collide with the red phosphor (56), and the phosphor emits light. The whole is protected by glass (51). The figure shows one light-emitting cell consisting of one emitter and one phosphor, but in fact, a display that can produce a variety of colors is constructed by arranging a large number of blue and green cells in addition to red. The The phosphor used for the green or red cell is not particularly specified, but a phosphor that emits high luminance with a low-speed electron beam may be used.

本発明の窒化物蛍光体は、従来の蛍光体とは異なる発光特性(発光色や励起特性、発光スペクトル)を有し、かつ、470nm以下のLEDと組み合わせた場合でも発光強度が高く、化学的および熱的に安定であり、さらに励起源に曝された場合の蛍光体の輝度の低下が少ないので、VFD、FED、PDP、CRT、白色LEDなどに好適に使用される窒化物蛍光体である。今後、各種表示装置における材料設計において、大いに活用され、産業の発展に寄与することが期待できる。   The nitride phosphor of the present invention has emission characteristics (emission color, excitation characteristics, emission spectrum) different from those of conventional phosphors, and has high emission intensity even when combined with an LED of 470 nm or less. It is a nitride phosphor that is suitably used for VFD, FED, PDP, CRT, white LED, etc. because it is thermally stable and has little decrease in phosphor brightness when exposed to an excitation source. . In the future, it can be expected to contribute greatly to the development of the industry in material design for various display devices.

1.砲弾型発光ダイオードランプ。
2、3.リードワイヤ。
4.発光ダイオード素子。
5.ボンディングワイヤ。
6、8.樹脂。
7.蛍光体。
11.基板実装用チップ型白色発光ダイオードランプ。
12、13.リードワイヤ。
14.発光ダイオード素子。
15.ボンディングワイヤ。
16、18.樹脂。
17.蛍光体。
19.アルミナセラミックス基板。
20.側面部材。
31.赤色蛍光体。
32.緑色蛍光体。
33.青色蛍光体。
34、35、36.紫外線発光セル。
37、38、39、40.電極。
41、42.誘電体層。
43.保護層。
44、45.ガラス基板。
51.ガラス。
52.陰極。
53.陽極。
54.ゲート。
55.エミッタ。
56.蛍光体。
57.電子。
1. Cannonball type light emitting diode lamp.
2,3. Lead wire.
4). Light emitting diode element.
5. Bonding wire.
6,8. resin.
7). Phosphor.
11. Chip-type white light-emitting diode lamp for board mounting.
12,13. Lead wire.
14 Light emitting diode element.
15. Bonding wire.
16, 18. resin.
17. Phosphor.
19. Alumina ceramic substrate.
20. Side member.
31. Red phosphor.
32. Green phosphor.
33. Blue phosphor.
34, 35, 36. UV light emitting cell.
37, 38, 39, 40. electrode.
41, 42. Dielectric layer.
43. Protective layer.
44, 45. Glass substrate.
51. Glass.
52. cathode.
53. anode.
54. Gate.
55. Emitter.
56. Phosphor.
57. Electronic.

Claims (33)

少なくともA元素とD元素とE元素とX元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、必要に応じてB元素(ホウ素)を含み、
(1)結晶の単位格子中に、A(D,E)で示される構造、または、
(D,E)で示される構造、または、(1−x)A(D,E)+xA(D,E)(ただし、xは0以上1以下の数値)で示される構造を含む結晶(以下N結晶と呼ぶ)、
(2)N結晶と同一の結晶構造を有する無機結晶、
(3)これらの結晶の固溶体結晶、
のいずれかの結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体。
At least A element, D element, E element, and X element (where A is one or more elements selected from Mg, Ca, Sr, and Ba, and D is Si, Ge, Sn, Ti, Zr, One or more elements selected from Hf, E is one or more elements selected from Al, Ga, In, Sc, Y, and La, and X is selected from O, N, and F 1 element or 2 or more elements), and optionally B element (boron),
(1) A structure represented by A 2 B 2 (D, E) 4 X 8 in the unit cell of the crystal, or
A structure represented by A 2 (D, E) 6 X 9 or (1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9 (where x is 0) A crystal including a structure represented by the above (numerical value of 1 or less) (hereinafter referred to as N crystal),
(2) an inorganic crystal having the same crystal structure as the N crystal,
(3) solid solution crystals of these crystals,
From an inorganic compound in which M element (where M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb) is dissolved in any of the crystals A phosphor.
前記N結晶は、単位格子の平均構造が、
(1−x)A(D,E)+xA(D,E)
(ただし、xは0以上1以下の数値)で示される、請求項1に記載の蛍光体。
The N crystal has an average structure of unit cell,
(1-x) A 2 B 2 (D, E) 4 X 8 + xA 2 (D, E) 6 X 9
The phosphor according to claim 1, wherein x is a numerical value of 0 or more and 1 or less.
A元素にSrを含み、D元素にSiを含み、E元素にAlを含み、X元素にNを含む、請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the A element contains Sr, the D element contains Si, the E element contains Al, and the X element contains N. xが0.02≦x≦0.2の範囲の数値である、請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein x is a numerical value in a range of 0.02 ≦ x ≦ 0.2. 前記N結晶が、SrSi230Al1.908.101.80である、請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein the N crystal is Sr 2 Si 230 Al 1.90 N 8.10 B 1.80 . N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系の結晶でありP62cの対称性を持つ、請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the N crystal or the inorganic crystal having the same crystal structure as the N crystal is a hexagonal crystal and has a symmetry of P62c. N結晶あるいはN結晶と同一の結晶構造を有する無機結晶が、六方晶系の結晶であり、
格子定数a、b、cが、
a = 0.47965±0.05 nm
b = 0.47965±0.05 nm
c = 0.97932±0.05 nm
の範囲の値である請求項1に記載の蛍光体。
N crystal or an inorganic crystal having the same crystal structure as N crystal is a hexagonal crystal,
Lattice constants a, b, c are
a = 0.47965 ± 0.05 nm
b = 0.47965 ± 0.05 nm
c = 0.97932 ± 0.05 nm
The phosphor according to claim 1, wherein the phosphor has a value in the range.
前記無機化合物は、組成式B(ただし、式中c+d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータc、d、e、f、g、hが、
0.1≦ c ≦0.25
0.00001≦ d ≦0.05
0.08≦ e ≦0.16
0.08≦ f ≦ 0.2
0 ≦ g ≦ 0.2
0.45 ≦ h ≦ 0.55
の条件を全て満たす範囲の組成で表される請求項1に記載の蛍光体。
The inorganic compound formula B c M d A e D f E g X h ( proviso that wherein c + d + e + f + g + h = 1, M is, Mn, Ce, Pr, Nd , Sm, Eu, Tb, Dy, Yb One or two or more elements selected from: A is one or more elements selected from Mg, Ca, Sr, Ba; D is selected from Si, Ge, Sn, Ti, Zr, Hf One or more elements selected from the above, E is one or more elements selected from Al, Ga, In, Sc, Y, and La, X is one selected from O, N, and F Parameters c, d, e, f, g, h are
0.1 ≦ c ≦ 0.25
0.00001 ≦ d ≦ 0.05
0.08 ≦ e ≦ 0.16
0.08 ≦ f ≦ 0.2
0 ≤ g ≤ 0.2
0.45 ≤ h ≤ 0.55
The phosphor according to claim 1, wherein the phosphor is represented by a composition in a range satisfying all of the above conditions.
前記無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the inorganic compound is a single crystal particle or an aggregate of single crystals having an average particle diameter of 0.1 μm or more and 20 μm or less. 請求項1に記載の無機化合物からなる蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、蛍光体の含有量が20質量%以上である請求項1に記載の蛍光体。   The phosphor according to claim 1, which is composed of a mixture of the phosphor composed of the inorganic compound according to claim 1 and another crystal phase or an amorphous phase, and the phosphor content is 20 mass% or more. 前記他の結晶相あるいはアモルファス相が導電性を持つ無機物質である請求項10に記載の蛍光体。   The phosphor according to claim 10, wherein the other crystal phase or amorphous phase is a conductive inorganic substance. M元素にEuを含み、励起源を照射することにより550nmから650nmの範囲の波長にピークを持つ蛍光を発光する請求項1に記載の蛍光体。   2. The phosphor according to claim 1, which contains Eu in M element and emits fluorescence having a peak in a wavelength range of 550 nm to 650 nm when irradiated with an excitation source. 前記励起源が100nm以上520nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線である請求項12に記載の蛍光体。   The phosphor according to claim 12, wherein the excitation source is vacuum ultraviolet light, ultraviolet light, visible light, electron beam, or X-ray having a wavelength of 100 nm to 520 nm. 金属化合物の混合物であって焼成することにより、請求項1に記載の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成する、請求項1に記載の蛍光体の製造方法。   By firing the mixture of metal compounds, the raw material mixture that can constitute the phosphor according to claim 1 is fired in a temperature range of 1200 ° C. or higher and 2200 ° C. or lower in an inert atmosphere containing nitrogen. The manufacturing method of the fluorescent substance of Claim 1. 前記金属化合物の混合物が、Bを含有する化合物と、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)とからなる請求項14に記載の蛍光体の製造方法。   The mixture of the metal compounds is a compound containing B, a compound containing M, a compound containing A, a compound containing D, a compound containing E, and a compound containing X (provided that M is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb, and A is one or two elements selected from Mg, Ca, Sr, Ba The above elements, D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf, and E is one or more elements selected from Al, Ga, In, Sc, Y, and La The method for producing a phosphor according to claim 14, comprising two or more elements, wherein X is one or more elements selected from O, N, and F). 前記Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物である請求項15に記載の蛍光体の製造方法。   The compound containing M is a single substance or a mixture of two or more selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides containing M And the compound containing A is a simple substance or two kinds selected from metals containing A, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides A mixture of the above, wherein the compound containing D is a single substance or two or more selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides The method for producing a phosphor according to claim 15, wherein the phosphor is a mixture of 少なくとも発光体と蛍光体とから構成される発光装置において、少なくとも請求項1に記載の蛍光体を用いることを特徴とする発光装置。   A light-emitting device comprising at least a light-emitting body and a phosphor, wherein the phosphor according to claim 1 is used. 前記発光体が330〜500nmの波長の光を発する発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、または有機EL発光体(OLED)である請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the light emitter is a light emitting diode (LED), a laser diode (LD), a semiconductor laser, or an organic EL light emitter (OLED) that emits light having a wavelength of 330 to 500 nm. 前記発光装置が、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライトである請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the light emitting device is a white light emitting diode, a lighting fixture including a plurality of white light emitting diodes, or a backlight for a liquid crystal panel. 前記発光体がピーク波長300〜500nmの紫外または可視光を発し、請求項1に記載の蛍光体が発する黄色から赤色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発することを特徴とする請求項17に記載の発光装置。   The phosphor emits ultraviolet or visible light having a peak wavelength of 300 to 500 nm, and the yellow to red light emitted from the phosphor according to claim 1 is mixed with white light having a wavelength of 450 nm or more emitted from another phosphor. The light emitting device according to claim 17, wherein the light emitting device emits light other than light or white light. 前記蛍光体は、前記発光体によりピーク波長420nm〜500nm以下の光を発する青色蛍光体をさらに含む請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the phosphor further includes a blue phosphor that emits light having a peak wavelength of 420 nm to 500 nm or less by the light emitter. 前記青色蛍光体が、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α−サイアロン:Ce、JEM:Ceから選ばれる請求項21に記載の発光装置。 The blue phosphor is selected from AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, α-sialon: Ce, JEM: Ce The light-emitting device according to claim 21. 前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含む請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the phosphor further includes a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by the light emitter. 前記緑色蛍光体が、β−サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euから選ばれる請求項23に記載の発光装置。 The green phosphor, beta-sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4: Eu, (Ca, Sr, Ba) Si 2 O 2 N 2: according to claim 23 selected from Eu Light-emitting device. 前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含む請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the phosphor further includes a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by the light emitter. 前記黄色蛍光体が、YAG:Ce、α−sialon:Eu、CaAlSiN:Ce、LaSi11:Ceから選ばれる請求項25に記載の発光装置。 The yellow phosphor, YAG: Ce, α-sialon : Eu, CaAlSiN 3: Ce, La 3 Si 6 N 11: light-emitting device according to claim 25 selected from Ce. 前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含む請求項17に記載の発光装置。   The light emitting device according to claim 17, wherein the phosphor further includes a red phosphor that emits light having a peak wavelength of 600 nm to 700 nm by the light emitter. 前記赤色蛍光体が、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euから選ばれる請求項27に記載の発光装置。 The red phosphor, CaAlSiN 3: Eu, (Ca , Sr) AlSiN 3: Eu, Ca 2 Si 5 N 8: Eu, Sr 2 Si 5 N 8: light emitting device according to claim 27 selected from Eu. 前記発光体が320〜500nmの波長の光を発するLEDである請求項42に記載の発光装置。   43. The light emitting device according to claim 42, wherein the light emitter is an LED that emits light having a wavelength of 320 to 500 nm. 励起源と蛍光体から構成される画像表示装置において、少なくとも請求項1に記載の蛍光体を用いることを特徴とする画像表示装置。   An image display device comprising an excitation source and a phosphor, wherein at least the phosphor according to claim 1 is used. 前記画像表示装置が、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、液晶ディスプレイ(LCD)のいずれかである請求項30に記載の画像表示装置。   The image according to claim 30, wherein the image display device is any one of a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), and a liquid crystal display (LCD). Display device. 請求項1項に記載の無機化合物からなる顔料。   A pigment comprising the inorganic compound according to claim 1. 請求項1に記載の無機化合物からなる紫外線吸収剤。
An ultraviolet absorber comprising the inorganic compound according to claim 1.
JP2012059998A 2012-03-16 2012-03-16 Phosphor, method for manufacturing the same, light emitting device, and image display device Active JP5920773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059998A JP5920773B2 (en) 2012-03-16 2012-03-16 Phosphor, method for manufacturing the same, light emitting device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059998A JP5920773B2 (en) 2012-03-16 2012-03-16 Phosphor, method for manufacturing the same, light emitting device, and image display device

Publications (2)

Publication Number Publication Date
JP2013194078A true JP2013194078A (en) 2013-09-30
JP5920773B2 JP5920773B2 (en) 2016-05-18

Family

ID=49393445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059998A Active JP5920773B2 (en) 2012-03-16 2012-03-16 Phosphor, method for manufacturing the same, light emitting device, and image display device

Country Status (1)

Country Link
JP (1) JP5920773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080062A1 (en) * 2013-11-29 2015-06-04 独立行政法人物質・材料研究機構 Phosphor, light-emitting device, image display device, pigment, and ultraviolet absorber
TWI673343B (en) * 2014-10-23 2019-10-01 日商三菱化學股份有限公司 Phosphor, light emitting device, illumination device and image display device
WO2020153260A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Phosphor, wavelength conversion member, and light emitting apparatus
CN116285986A (en) * 2022-01-28 2023-06-23 有研稀土新材料股份有限公司 Luminescent material and luminescent device comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296376A2 (en) * 2001-09-25 2003-03-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Illumination device with at least one LED as the light source
JP2006057018A (en) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd Fluorescent material, method for producing the same and light source produced by using the fluorescent material
WO2006077740A1 (en) * 2004-12-28 2006-07-27 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
JP2009167328A (en) * 2008-01-18 2009-07-30 National Institute For Materials Science Phosphor, method for producing it, and light emission apparatus
JP2010268004A (en) * 2010-08-18 2010-11-25 Toshiba Corp Red phosphor and light-emitting device using the same
JP2011037913A (en) * 2009-08-06 2011-02-24 Showa Denko Kk Phosphor, manufacturing method therefor, and light emitting device using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296376A2 (en) * 2001-09-25 2003-03-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Illumination device with at least one LED as the light source
US20030094893A1 (en) * 2001-09-25 2003-05-22 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Illumination unit having at least one LED as light source
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2006057018A (en) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd Fluorescent material, method for producing the same and light source produced by using the fluorescent material
WO2006077740A1 (en) * 2004-12-28 2006-07-27 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
EP1837386A1 (en) * 2004-12-28 2007-09-26 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
US20080149957A1 (en) * 2004-12-28 2008-06-26 Nichia Corporation Nitride Phosphor, Method For Producing This Nitride Phosphor, And Light Emitting Device That Uses This Nitride Phosphor
JP2008227523A (en) * 2004-12-28 2008-09-25 Nichia Chem Ind Ltd Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor
JP2009167328A (en) * 2008-01-18 2009-07-30 National Institute For Materials Science Phosphor, method for producing it, and light emission apparatus
JP2011037913A (en) * 2009-08-06 2011-02-24 Showa Denko Kk Phosphor, manufacturing method therefor, and light emitting device using the same
JP2010268004A (en) * 2010-08-18 2010-11-25 Toshiba Corp Red phosphor and light-emitting device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080062A1 (en) * 2013-11-29 2015-06-04 独立行政法人物質・材料研究機構 Phosphor, light-emitting device, image display device, pigment, and ultraviolet absorber
JP6057231B2 (en) * 2013-11-29 2017-01-11 国立研究開発法人物質・材料研究機構 Phosphor, light emitting device, image display device, pigment and ultraviolet absorber
US9909060B2 (en) 2013-11-29 2018-03-06 National Institute For Materials Science Phosphor, light-emitting device, image display device, pigment, and ultraviolet absorber
TWI673343B (en) * 2014-10-23 2019-10-01 日商三菱化學股份有限公司 Phosphor, light emitting device, illumination device and image display device
WO2020153260A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Phosphor, wavelength conversion member, and light emitting apparatus
JPWO2020153260A1 (en) * 2019-01-25 2021-11-18 パナソニックIpマネジメント株式会社 Fluorescent material, wavelength conversion member and light emitting device
JP7142303B2 (en) 2019-01-25 2022-09-27 パナソニックIpマネジメント株式会社 Phosphor, wavelength conversion member, and light emitting device
CN116285986A (en) * 2022-01-28 2023-06-23 有研稀土新材料股份有限公司 Luminescent material and luminescent device comprising same
CN116285986B (en) * 2022-01-28 2024-02-27 有研稀土新材料股份有限公司 Luminescent material and luminescent device comprising same

Also Published As

Publication number Publication date
JP5920773B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5717076B2 (en) Phosphor and manufacturing method, light emitting device and image display device using phosphor
JP5713305B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP6083881B2 (en) Phosphor, production method thereof, light emitting device, image display device, pigment, and ultraviolet absorber
JP5881092B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP5885175B2 (en) Phosphor and production method thereof, light emitting device using phosphor, image display device, pigment, and ultraviolet absorber
JP6057213B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP6040500B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP6061332B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP6684412B1 (en) Phosphor, method of manufacturing the same, and light-emitting device
JP2017210529A (en) Phosphor, production method thereof, light-emitting device, image display device, pigment, and, uv-absorber
JP5920773B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP6176664B2 (en) Phosphor, method for producing the same, light emitting device, image display device, pigment, and ultraviolet absorber
JP6735487B2 (en) Phosphor, manufacturing method thereof, light emitting device, image display device, pigment and ultraviolet absorber
JP6700630B2 (en) Phosphor, manufacturing method thereof, light emitting device, image display device, pigment and ultraviolet absorber
JP6700632B2 (en) Phosphor, manufacturing method thereof, light emitting device, image display device, pigment and ultraviolet absorber
JP6074807B2 (en) Phosphor, method for producing the same, light emitting device, image display device, pigment, and ultraviolet absorber
JP6700633B2 (en) Phosphor, manufacturing method thereof, light emitting device, image display device, pigment and ultraviolet absorber
JP6700631B2 (en) Phosphor, manufacturing method thereof, light emitting device, image display device, pigment and ultraviolet absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5920773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250