WO2010052014A1 - Treatment of acute lymphoblastic leukemia - Google Patents
Treatment of acute lymphoblastic leukemia Download PDFInfo
- Publication number
- WO2010052014A1 WO2010052014A1 PCT/EP2009/007970 EP2009007970W WO2010052014A1 WO 2010052014 A1 WO2010052014 A1 WO 2010052014A1 EP 2009007970 W EP2009007970 W EP 2009007970W WO 2010052014 A1 WO2010052014 A1 WO 2010052014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mrd
- single chain
- patients
- chain antibody
- bispecific single
- Prior art date
Links
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 title claims abstract description 166
- 238000011282 treatment Methods 0.000 title claims abstract description 108
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 title claims description 118
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 title claims description 116
- 238000000034 method Methods 0.000 claims abstract description 90
- 230000008030 elimination Effects 0.000 claims abstract description 16
- 238000003379 elimination reaction Methods 0.000 claims abstract description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 15
- 208000007660 Residual Neoplasm Diseases 0.000 claims description 148
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 claims description 49
- 230000000735 allogeneic effect Effects 0.000 claims description 47
- 230000008707 rearrangement Effects 0.000 claims description 41
- 108091008874 T cell receptors Proteins 0.000 claims description 38
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 38
- 238000002512 chemotherapy Methods 0.000 claims description 37
- 208000014619 adult acute lymphoblastic leukemia Diseases 0.000 claims description 33
- 230000005945 translocation Effects 0.000 claims description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 22
- 238000001802 infusion Methods 0.000 claims description 22
- 201000010099 disease Diseases 0.000 claims description 18
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 16
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 15
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 15
- 230000002489 hematologic effect Effects 0.000 claims description 14
- 230000004927 fusion Effects 0.000 claims description 12
- 238000007596 consolidation process Methods 0.000 claims description 9
- 239000003550 marker Substances 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 6
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 claims description 5
- 108700005091 Immunoglobulin Genes Proteins 0.000 claims description 5
- 238000010222 PCR analysis Methods 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 41
- 238000002560 therapeutic procedure Methods 0.000 description 29
- 208000032839 leukemia Diseases 0.000 description 25
- 201000011184 adult acute lymphocytic leukemia Diseases 0.000 description 22
- 108060003951 Immunoglobulin Proteins 0.000 description 21
- 102000018358 immunoglobulin Human genes 0.000 description 21
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 19
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 19
- 239000003814 drug Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 16
- 238000002054 transplantation Methods 0.000 description 15
- 210000001744 T-lymphocyte Anatomy 0.000 description 14
- 229920001184 polypeptide Polymers 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 108090000765 processed proteins & peptides Proteins 0.000 description 12
- 239000000427 antigen Substances 0.000 description 11
- 108091007433 antigens Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 210000001185 bone marrow Anatomy 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 229940079593 drug Drugs 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000001990 intravenous administration Methods 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 7
- 210000003169 central nervous system Anatomy 0.000 description 7
- 208000017426 precursor B-cell acute lymphoblastic leukemia Diseases 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 6
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 5
- 229960003008 blinatumomab Drugs 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 230000002559 cytogenic effect Effects 0.000 description 5
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 5
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 5
- 150000007523 nucleic acids Chemical group 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000011476 stem cell transplantation Methods 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 210000002798 bone marrow cell Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 210000004214 philadelphia chromosome Anatomy 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 3
- 208000008691 Precursor B-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 3
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 3
- 230000006044 T cell activation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010322 bone marrow transplantation Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 229960000684 cytarabine Drugs 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 3
- 229960002411 imatinib Drugs 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000009115 maintenance therapy Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000002381 testicular Effects 0.000 description 3
- 229960004528 vincristine Drugs 0.000 description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 3
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- 206010000830 Acute leukaemia Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108700042075 T-Cell Receptor Genes Proteins 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 238000011262 co‐therapy Methods 0.000 description 2
- 238000009109 curative therapy Methods 0.000 description 2
- 230000002380 cytological effect Effects 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 229960002448 dasatinib Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 231100000755 favorable toxicity profile Toxicity 0.000 description 2
- 238000009093 first-line therapy Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000011221 initial treatment Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 210000003519 mature b lymphocyte Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000003285 pharmacodynamic effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000011255 standard chemotherapy Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 108020005098 Anticodon Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 208000032800 BCR-ABL1 positive blast phase chronic myelogenous leukemia Diseases 0.000 description 1
- 208000004860 Blast Crisis Diseases 0.000 description 1
- 208000018240 Bone Marrow Failure disease Diseases 0.000 description 1
- 206010065553 Bone marrow failure Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- USXDFAGDIOXNML-UHFFFAOYSA-N Fulminate Chemical compound [O-][N+]#[C-] USXDFAGDIOXNML-UHFFFAOYSA-N 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101100383038 Homo sapiens CD19 gene Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 208000035561 Leukaemic infiltration brain Diseases 0.000 description 1
- 206010024325 Leukaemic lymphoma Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000206607 Porphyra umbilicalis Species 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000015690 Proto-Oncogene Proteins c-bcr Human genes 0.000 description 1
- 108010024221 Proto-Oncogene Proteins c-bcr Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000003995 blood forming stem cell Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000009583 bone marrow aspiration Methods 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 208000018805 childhood acute lymphoblastic leukemia Diseases 0.000 description 1
- 201000002797 childhood leukemia Diseases 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 238000011393 cytotoxic chemotherapy Methods 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000013394 immunophenotyping Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011419 induction treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011368 intensive chemotherapy Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000009593 lumbar puncture Methods 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001167 myeloblast Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940124624 oral corticosteroid Drugs 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 231100000279 safety data Toxicity 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2896—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
Definitions
- the present invention relates to a method for the treatment, amelioration or elimination of acute lymphoblastic leukemia (ALL), the method comprising the administration of a pharmaceutical composition comprising a CD19xCD3 bispecific single chain antibody construct to an adult patient in the need thereof.
- ALL acute lymphoblastic leukemia
- Leukemias are clonal neoplastic proliferations of immature hematopoietic cells that are characterized by aberrant or arrested differentiation. Leukemia cells accumulate in the bone marrow, ultimately replacing most of normal hematopoietic cells. This results in bone marrow failure and its consequences of anemia, hemorrhage and infection. Leukemia cells circulate into the blood and other tissues throughout the body (DeVita, Hellmann, Rosenberg. Cancer: principles and practice of oncology. Eight edition. Library of Congress Cataloging-in-Publication Data, ISBN 0-781-72387-6).
- the acute leukemias which can be broadly grouped as either lymphoblastic or myeloblasts can be identified phenotypically and genetically and are characterized by a rapid clinical course requiring immediate treatment.
- Acute leukemia's are derived from early hematopoietic progenitor cells.
- chronic leukemia's have the phenotype and biologic character of more mature cells (DeVita et al., loc. cit.).
- Acute lymphoblastic leukemia (ALL) is distinguished from the lymphomas because the latter resemble more mature lymphoid cells and typically inhabit the lymph nodes, spleen or other extramedullar sites before spreading to the bone marrow.
- lymphomas such as lymphoblastic lymphomas or Burkitt's lymphomas retain features of both the leukemia's and lymphomas but are derived from immature progenitor cells and require therapy similar to that used for acute lymphoblastic leukemia ALL).
- Other lymphomas however may spread widely into the blood and bone marrow, and in such a phase can be described as leukemic lymphomas but are not true leukemias (De Vita et al., loc. cit.).
- Acute lymphoblastic leukemia is a relatively rare malignancy.
- the total incidence of acute lymphoblastic leukemia (ALL) is 1.1/100,000 per year. The incidence has its peak during childhood, decreasing continuously with increasing age.
- ALL acute lymphoblastic leukemia
- ALL acute lymphoblastic leukemia
- SCT Stem cell transplantation
- ALL acute lymphoblastic leukemia
- ALL acute lymphoblastic leukemia
- Rapid diagnosis and classification of acute lymphoblastic leukemia (ALL) is increasingly important to identify prognostic and molecular genetic subsets that will be the focus of targeted treatment (Hoelzer and Gokbuget; Hematology (2006); 133-141).
- the Philadelphia chromosome (Ph) the result of a reciprocal translocation fusing the abl proto-oncogene from chromosome 9 with the breakpoint cluster region sequences on chromosome 22, was the first neoplasm- specific translocation to be identified.
- Translocation (9;22) is the most frequent genetic aberration in adult acute lymphoblastic leukemia (ALL). It is found in 20-30% of patients. The incidence increases with age, approaching 50% in patients older than 50 years. In past clinical studies, older patients were underrepresented due to the perceived futility of treatment, but this pattern is changing with the availability of promising novel treatment options. Notably, it is found almost exclusively in CD 10+ precursor B-cell acute lymphoblastic leukemia (c-ALL and pre-B ALL); rare reports of its presence in T- lineage ALL may represent chronic myeloid leukemia (CML) in lymphoid blast crisis rather than bona fide Ph+ ALL.
- CML chronic myeloid leukemia
- MRD minimal residual disease
- PCR analysis can detect fusion transcripts such as bcr/abl and individual clonal rearrangements of immunoglobulins (IgH) and/or T-cell receptor genes (TCR).
- IgH immunoglobulins
- TCR T-cell receptor genes
- About 25% of patients with minimal residual disease (MRD) defined by rearrangement comprise a high-risk group with a 94% relapse rate within 3 years.
- MRD minimal residual disease
- the decrease in MRD occurs more slowly in adults than it does in children.
- PBSCT peripheral blood stem cell transplantation
- MRD minimal residual disease
- ALL acute lymphoblastic leukemia
- This classification allowed the identification of an MRD low-risk group consisting of about 10% of patients with a minimal chance of relapse at 3 years, an MRD high-risk group of about 25% of patients with an almost 100% risk of relapse, and an MRD intermediate-risk group. In the latter group, about 30% of patients will eventually relapse despite becoming MRD negative or reaching MRD levels below 10 ⁇ 1 at the end of the first year of therapy.
- ALL acute lymphoblastic leukemia
- the present invention provides for a method for the treatment, amelioration or elimination of acute lymphoblastic leukemia (ALL), the method comprising the administration of a pharmaceutical composition comprising a CD19xCD3 bispecific single chain antibody construct to an adult patient in the need thereof.
- said acute lymphoblastic leukemia (ALL) is B-lineage acute lymphoblastic leukemia (ALL), preferably B-precursor acute lymphoblastic leukemia.
- B-lineage acute lymphoblastic leukemia (ALL) comprises the majority of ALL's with 74% of cases. Seventy percent of all ALL's are B-precursor ALL's and 4% are mature B-cell ALL's.
- CD19xCD3 bispecific single chain antibody described herein is directed against the B cell- associated marker CD19, said antibody is particularly suitable as a therapeutic agent for B-lineage acute lymphoblastic leukemia, preferably for B-precursor ALL's which can be further subdivided into pro-B ALL, pre-B ALL and common ALL (cALL).
- CD19xCD3 bispecific single chain antibody also termed blinatumomab or MT103
- MT103 blinatumomab
- ALL acute lymphoblastic leukemia
- the CD19xCD3 bispecific single chain antibody has been designed to link T cells with CD19-expressing target cells resulting in a non-restricted cytotoxic T-cell response and T-cell activation.
- phase I study has demonstrated significant clinical activity of the CD19xCD3 bispecific single chain antibody in relapsed B-cell non-Hodgkin's lymphoma (NHL) (Bargou et al., Science 321 (2008):974-7). Based on these results, a phase Il study was designed in collaboration with the German Multicenter Study Group on Adult Acute Lymphoblastic Leukemia (GMALL) to investigate efficacy, safety, and tolerability of the CD19xCD3 bispecific single chain antibody in acute lymphoblastic leukemia (ALL) patients who achieved a complete hematological remission, but still had minimal residual disease (MRD).
- GMALL German Multicenter Study Group on Adult Acute Lymphoblastic Leukemia
- MRD is an independent prognostic factor that reflects primary drug resistance and is associated with a high relapse risk after start of consolidation. MRD was measured with standardized methods either by quantitative detection of individual rearrangements of immunoglobulin or T-cell receptor (TCR) rearrangements, t(4;11) translocations or by bcr/abl fusion transcripts (see e.g. Van der Velden et al., Leukemia 18 (2004), 1971-80). The study population includes adult patients with acute B- precursor acute lymphoblastic leukemia (ALL) who show a bcr/abl signal or t(4;11) signal above detection limit and/or at least one marker by rearrangement with a sensitivity of ⁇ IO "4 .
- ALL acute B- precursor acute lymphoblastic leukemia
- CD19xCD3 bispecific single chain antibody is a 4-week continuous intravenous infusion, which can be followed by allogeneic hematopoietic stem cell transplantation after the first cycle, or by repeated cycles after a 2-week treatment-free interval.
- CD19xCD3 bispecific single chain antibody The dosage of CD19xCD3 bispecific single chain antibody is 15 microgram/m 2 /24 hr, whereby an intra- patient dose escalation up to 30 microgram/m 2 /24 hr is allowed.
- Minimal residual disease (MRD) status is controlled after each treatment cycle. Patients who achieve MRD negativity might receive additional treatment cycles.
- ALL patients have been treated, or are still on treatment with the CD19xCD3 bispecific single chain antibody. 14 patients received the dose level of 15 microgram/m 2 /24 hr of CD19xCD3 bispecific single chain antibody, whereas in three patients the dose has been escalated from 15 to 30 microgram/m 2 /24 hr after the first or further treatment cycles. All of these ALL patients had minimal residual disease (MRD): Eleven of them had MRD by immunoglobulin or TCR rearrangements, two patients had t(4;11) translocations and four patient had bcr/abl fusion transcripts.
- MRD minimal residual disease
- MRD response was evaluable in 16 of 17 patients. 13 of 16 patients became MRD negative, which corresponds to an extraordinary complete molecular response rate of 81%. More specifically, in nine out of eleven patients with immunoglobulin or TCR rearrangements, in one out of two patients with t(4; 11) translocations and in three out of four patients with bcr/abl transcripts, MRD-negativity could be achieved. The longest duration of MRD-negativity observed so far in a patient having not received a transplantation after the antibody treatment is 41 weeks.
- Another patient treated with the CD19xCD3 bispecific single chain antibody with MRD-negativity from 23.06.2008 to 27.10.2008 and having received a successful allogeneic stem cell transplantation thereafter is relapse-free to date.
- the bcr/abl patients who could successfully be treated with the CD19xCD3 bispecific single chain antibody were refractory or intolerant to tyrosine kinase inhibitors imatinib and/or dasatinib in previous ALL treatment regimen.
- one of the bcr/abl responders to treatment with CD19xCD3 bispecific single chain antibody had a T315I mutation which was refractory to therapy by tyrosine kinase inhibitors.
- the administration of the CD19xCD3 bispecific single chain antibody now provides for the first time for a therapy for imatinib- and/or dasatinib-refractory ALL patients with bcr/abl transcripts. Only three out of a total of 17 patients did not become MRD negative. However, in two of them stable disease could be achieved. Only one patient had a testicular relapse followed by a hematological relapse, after 19 weeks of MRD- negativity. One patient was not evaluable due to a serious adverse event (SAE) on study day 2.
- SAE serious adverse event
- an absolutely exceptional complete molecular response rate of 81 % could be achieved in adult patients with B-precursor ALL upon treatment with the CD19xCD3 bispecific single chain antibody.
- Activity of the mentioned antibody could be observed in all ALL patient subsets treated, including tyrosine kinase inhibitors-refractory (T315I) bcr/abl patients and patients with t(4;11) translocations.
- T315I tyrosine kinase inhibitors-refractory
- bcr/abl patients with t(4;11) translocations.
- These ALL patient subsets are generally considered incurable by conventional ALL standard therapy, except for the option of allogeneic HSCT.
- treatment with CD19xCD3 bispecific single chain antibody shows a favorable toxicity profile, in contrast to conventional ALL therapies, such as chemotherapy.
- the administration of the CD19xCD3 bispecific single chain antibody described herein provides a new and advantageous treatment option for adult acute lymphoblastic leukemia (ALL), in particular for cases in which the ALL is refractory to conventional ALL therapy, such as chemotherapy and/or allogeneic HSCT.
- ALL adult acute lymphoblastic leukemia
- conventional ALL therapy such as chemotherapy and/or allogeneic HSCT.
- the administration of the CD19xCD3 bispecific single chain antibody now provides for the first time for a therapy for MRD-positive ALL.
- ALL acute lymphoblastic leukemia
- Conventional ALL therapies are associated with considerable health risks for patients; see e.g. Schmoll, Hoffken, Possinger: Kompendium lntern Vietnamese Onkologie, S. 2660 ff.; 4. Auflage, Springer Medizin Verlag Heidelberg).
- the pharmaceutical methods and means of the invention therefore provide a therapeutic approach for the treatment, amelioration or elimination of MRD in adult ALL, thereby reducing or even abolishing the risk of a relapse for the patient. It is worth noting that, curative treatment for MRD-positive ALL patients has not yet been available until now.
- the CD19xCD3 bispecific single chain antibody can be used for therapy of MRD-positive acute lymphoblastic leukemia (ALL) refractory to conventional ALL therapy, such as chemotherapy, administration of tyrosine kinase inhibitors, and/or HSCT.
- ALL acute lymphoblastic leukemia
- CD19xCD3 bispecific single chain antibody can replace conventional acute lymphoblastic leukemia (ALL) therapies in patients non-eligible for allogeneic HSCT, it can also be used to convert ALL patients eligible for said transplantation into an MRD negative-status, as MRD-negative patients have a lower risk of relapse after transplantation than MRD-positive patients.
- ALL acute lymphoblastic leukemia
- the high cytotoxic activity of the CD19xCD3 bispecific single chain antibody allows the elimination of leukemia cells in the bone marrow.
- ALL Acute lymphoblastic leukemia
- B-precursor acute lymphoblastic leukemia and other types of B (cell) lineage ALL treatments thereof are reviewed e.g. in Pui and Evans, N. Engl. J. Med. 354 (2006), 166-178; Hoelzer and G ⁇ kbuget; Hematology (2006); 133-141 ; or exertidou et al., Drugs 67 (2007), 2153-2171.
- Information with respect to ALL can also be found e.g. under http://www.cancer.gov, http://www.wikipedia.org or http://www.leukemia-lymphoma.org.
- bispecific single chain antibody or “single chain bispecific antibody” or related terms in accordance with the present invention mean antibody constructs resulting from joining at least two antibody variable regions in a single polypeptide chain devoid of the constant and/or Fc portion(s) present in full immunoglobulins.
- a "linker” as used herein connects V domains of the same specificity, whereas a “spacer” as used herein connects V domains of different specificities.
- a bispecific single chain antibody may be a construct with a total of two antibody variable regions, for example two VH regions, each capable of specifically binding to a separate antigen, and connected with one another through a short (usually less than 10 amino acids) synthetic polypeptide spacer such that the two antibody variable regions with their interposed spacer exist as a single contiguous polypeptide chain.
- Another example of a bispecific single chain antibody may be a single polypeptide chain with three antibody variable regions.
- two antibody variable regions may make up an scFv, wherein the two antibody variable regions are connected to one another via a synthetic polypeptide linker, the latter often being genetically engineered so as to be minimally immunogenic while remaining maximally resistant to proteolysis.
- This scFv is capable of specifically binding to a particular antigen, and is connected to a further antibody variable region, for example a VH region, capable of binding to a different antigen than that bound by the scFv.
- a bispecific single chain antibody may be a single polypeptide chain with four antibody variable regions.
- the first two antibody variable regions may form one scFv capable of binding to one antigen, whereas the second VH region and VL region may form a second scFv capable of binding to another antigen.
- individual antibody variable regions of one specificity may advantageously be separated by a synthetic polypeptide linker as described above, whereas the respective scFvs may advantageously be separated by a short polypeptide spacer as described above.
- Non-limiting examples of bispecific single chain antibodies as well as methods for producing them are shown in WO 99/54440, WO 2004/106381 , WO 2007/068354, Mack, J. Immunol.
- CD3 denotes an antigen that is expressed on T cells, preferably human T cells as part of the multimolecular T cell receptor complex, the CD3 consisting of five different chains: CD3-epsilon, CD3-gamma, CD3-delta, CD3-eta and CD3 zeta.
- Clustering of CD3 on T cells e.g. by anti-CD3 antibodies leads to T cell activation similar to the binding of an antigen but independent from the clonal specificity of the T cell subset.
- CD19xCD3 bispecific single chain antibody as used herein relates to a CD3-specific construct capable of binding to the human CD3 complex expressed on human T cells and capable of inducing elimination/lysis of target cells, wherein such target cells carry/display an antigen which is bound by the other, non- CD3-binding portion of the bispecific single chain antibody.
- CD3-specific binders e.g. a bispecific single chain antibody as administered according to the pharmaceutical means and methods of the invention
- a construct appropriate for the pharmaceutical means and methods of the invention is advantageously able to eliminate/lyse target cells in vivo and/or in vitro.
- Corresponding target cells comprise cells expressing a tumor antigen, such as CD19, which is recognized by the second specificity (i.e. the non-CD3-binding portion of the bispecific single chain antibody) of the mentioned construct.
- said second specificity is for human CD19 which has already been described in WO 99/54440, WO 2004/106381 or WO 2007/068354.
- each antigen-specific portion of the bispecific single chain antibody comprises an antibody VH region and an antibody VL region.
- An advantageous variant of this bispecific single chain antibody is from N terminus to C terminus:
- V L (CD19)-VH(CD19)-V H (CD3)-V L (CD3) (SEQ ID NO.: 1).
- the term “specifically binding” or related terms such as “specificity” is/are to be understood as being characterized primarily by two parameters: a qualitative parameter (the binding epitope, or where an antibody binds) and a quantitative parameter (the binding affinity, or how strongly this antibody binds where it does).
- Which epitope is bound by an antibody can advantageously be determined by e.g. FACS methodology, ELISA, peptide-spot epitope mapping, or mass spectroscopy.
- the strength of antibody binding to a particular epitope may advantageously be determined by e.g. known Biacore and/or ELISA methodologies. A combination of such techniques allows the calculation of a signahnoise ratio as a representative measure of binding specificity.
- the signal represents the strength of antibody binding to the epitope of interest
- the noise represents the strength of antibody binding to other, non-related epitopes differing from the epitope of interest.
- a signahnoise ratio of, for example at least 50, but preferably about 80 for a respective epitope of interest as determined e.g. by Biacore, ELISA or FACS may be taken as an indication that the antibody evaluated binds the epitope of interest in a specific manner, i.e. is a "specific binder".
- binding to/interacting with may also relate to a conformational epitope, a structural epitope or a discountinuous epitope consisting of two or even more regions of the human target molecules or parts thereof.
- a conformational epitope is defined by two or more discrete amino acid sequences separated in the primary sequence which come together on the surface of the molecule when the polypeptide folds to the native protein (SeIa, (1969) Science 166, 1365 and Laver, (1990) Cell 61 , 553-6).
- discontinuous epitope means non-linear epitopes that are assembled from residues from distant portions of the polypeptide chain. These residues come together on the surface of the molecule when the polypeptide chain folds into a three-dimensional structure to constitute a conformational/structural epitope.
- treatment means in the broadest sense medical procedures or applications that are intended to relieve illness.
- the administration of the CD19xCD3 bispecific single chain antibody prepared for administration to an adult ALL patient as described herein is for the treatment, amelioration or elimination of the ALL disease in adult patients.
- patient refers to a human adult patient.
- adult ALL or “adult ALL patient” or “adult patient” as referred to herein denotes adults aged more than 18 years, i.e. patients aged 19, 20, 21 , 22, 23, 24, 25, 30, 35, 40, or 50 years or more. Even patients with 70, 75, 80, 85, 90, 100 years or older may be treated by the methods and means of the invention.
- the indicated age is to be understood as the age of the adult at diagnosis of the ALL disease.
- ALL acute lymphoblastic leukemia
- treatment means the removal of leukemic cells from the body of an adult ALL patient.
- administration of the CD19xCD3 bispecific single chain antibody is able to convert MRD positive acute lymphoblastic leukemia (ALL) into an MRD negative status in various ALL subtypes.
- ALL acute lymphoblastic leukemia
- administration means administration of a therapeutically effective dose of the aforementioned CD19xCD3 bispecific single chain antibody to an individual, i.e. a human patient.
- the ALL patient is an adult patient, as defined herein.
- terapéuticaally effective amount is meant a dose that produces the effects for which it is administered, preferably the conversion of an minimal residual disease (MRD)-positive acute lymphoblastic leukemia (ALL) status into an MRD-negative ALL status.
- MRD minimal residual disease
- ALL acute lymphoblastic leukemia
- the exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. As is known in the art and described above, adjustments for systemic versus localized delivery, age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.
- dosages for any one patient depends upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health status, and other drugs being administered concurrently.
- dosages for any one patient depends upon many factors, including the adult patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health status, and other drugs being administered concurrently.
- a typical dose can be, for example, in the ranges set forth in the embodiments of the invention and the appended examples; however, doses below or above this exemplary range are envisioned, especially considering the aforementioned factors.
- continuous infusion refers to an infusion which is allowed to proceed permanently over a time period, i.e. without interruption.
- Continuous infusion refers to a permanently administered infusion. Accordingly, in the context of the invention, the terms “permanent” and “continuous” are used as synonyms.
- the term “4 week continuous infusion” denote(s) a situation in which the CD19xCD3 bispecific single chain antibody used in the pharmaceutical means and methods according to the invention is continuously administered to the body of an adult patient over a period of 4 weeks in a sustained, constant fashion throughout the entire duration required in the pharmaceutical means and methods of the invention.
- Continuous administration schemes of the CD19xCD3 bispecific single chain antibody are described in more detail in WO 2007/068354.
- An interruption of the introduction of CD19xCD3 bispecific single chain antibody is avoided, that is to say a transition from a state in which this antibody is being administered to the body of the patient to a state in which this antibody is no longer being administered to the body of the patient does not, or does not significantly occur over the entire duration of administration required by the pharmaceutical means and methods of the invention for other reasons than replenishing the supply of CD19xCD3 bispecific single chain antibody being administered or medical interventions which become necessary and the like.
- one treatment cycle is to be understood as a 4-week continuous infusion of the CD19xCD3 bispecific single chain antibody to the adult ALL patient, followed by a 2-week treatment-free interval.
- a minimal response or partial response to the bispecific single chain antibody treatment may be diagnosed.
- the continuous administration may be extended by additional one, two, three, four, five or even up to ten treatment cycles in order to achieve a better therapeutic result, e.g. stable disease or even a complete response.
- said complete response is MRD-negativity.
- the 4-week continuous infusion of the CD19xCD3 bispecific single chain antibody to the adult ALL patient may be followed by allogeneic HSCT. It is also envisaged that a patient treated by one, two, three, four or even more treatment cycles as set forth above may receive an allogeneic HSCT transplantation thereafter.
- the major therapeutic goal of the administration of the CD19xCD3 bispecific single chain antibody, either alone or in combination with allogeneic HSCT, to an adult ALL patient is the conversion of an MRD- positive status into an MRD-negative status, as defined herein.
- the CD19xCD3 bispecific single chain antibody as used herein is advantageously in the form of a pharmaceutical composition for administration to a human patient diagnosed with acute lymphoblastic leukemia (ALL).
- the human patient is preferably an adult as defined herein below. While the bispecific single chain antibody as used herein may be administered per alone, preferred is administration in a pharmaceutically acceptable carrier.
- Suitable pharmaceutical carriers include phosphate buffered saline solutions, water, liposomes, various types of wetting agents, sterile solutions, etc.
- Compositions comprising such carriers can be formulated by well known conventional methods. These pharmaceutical compositions can be administered to the subject at a suitable dose. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Preparations for parenteral administration include sterile aqueous or nonaqueous solutions, or suspensions.
- non-aqueous solvents examples include propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, aqueous solutions, or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, or lactated Ringer's.
- Intravenous vehicles include fluid and nutrient replenishes, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
- the composition might comprise proteinaceous carriers, like, e.g., serum albumine or immunoglobuline, preferably of human origin. It is envisaged that the composition might comprise, in addition to the proteinaceous bispecific single chain antibody further biologically active agents, depending on the intended use of the pharmaceutical composition. Such agents might be agents acting as cytostatica, agents preventing hyperurikemia, agents inhibiting immune reactions (e.g. corticosteroids, FK506), drugs acting on the circulatory system and/or agents such as T-cell co-stimulatory molecules or cytokines known in the art.
- the CD19xCD3 bispecific single chain antibody as defined herein is formulated in a buffer, a stabilizer and a surfactant.
- the buffer may be a phosphate, citrate, succinate br acetate buffer.
- the stabilizer may be (an) amino acid(s) and/or a sugar.
- the surfactants may be detergents, PEGs, or the like. More preferably, the CD19xCD3 bispecific single chain antibody as defined herein is formulated in citrate, lysine, trehalose and Tween 80. As a diluent for the pharmaceutical composition of the invention, isotonic saline and Tween 80 is preferred.
- the pharmaceutical composition is to be administered to a human adult patient diagnosed with acute lymphoblastic leukemia (ALL).
- ALL acute lymphoblastic leukemia
- the success of the CD19xCD3 bispecific single chain antibody therapy may be monitored by established standard methods for the respective disease entities: For B cell ALL therapy, Fluorescence Activated Cell Sorting (FACS), bone marrow aspiration and various leukemia specific clinical chemistry parameters and other established standard methods may be used. Methods and means for the determination of the minimal residual disease (MRD) status have been described above.
- FACS Fluorescence Activated Cell Sorting
- MRD minimal residual disease
- Cytotoxicity can be detected by methods known in the art and methods as illustrated e.g. in WO 99/54440, WO 2004/106381 , WO 2007/068354:
- the acute lymphoblastic leukemia (ALL) of the adult patient(s) is refractory to chemotherapy, preferably refractory to chemotherapy with respect to MRD (i.e. the MRD in these ALL patients is resistant to chemotherapy). Even more preferred, the acute lymphoblastic leukemia (ALL) is refractory to chemotherapy in patients non-eligible for allogeneic HSCT.
- chemotherapy denotes chemotherapy used for the treatment of acute lymphoblastic leukemia (ALL).
- ALL acute lymphoblastic leukemia
- Chemotherapy is the initial treatment of choice for ALL. Most ALL patients end up receiving a combination of different treatments. In the treatment of ALL, there are no surgical options, due to the body-wide distribution of the malignant cells.
- cytotoxic chemotherapy for ALL combines multiple anti- leukemic drugs in various combinations.
- Chemotherapy for ALL consists of three phases: remission induction, intensification, and maintenance therapy. Chemotherapy is also indicated to protect the central nervous system from leukemia. The aim of remission induction is to rapidly kill most tumor cells and get the patient into remission.
- a combination of Prednisolone or dexamethasone (in children), vincristine, asparaginase, and daunorubicin (used in Adult ALL) is used to induce remission.
- Intensification uses high doses of intravenous multidrug chemotherapy to further reduce tumor burden.
- Typical intensification protocols use vincristine, cyclophosphamide, cytarabine, daunorubicin, etoposide, thioguanine or mercaptopurine given as blocks in different combinations.
- CNS Central Nervous System
- Most protocols include delivery of chemotherapy into the CNS fluid (termed intrathecal chemotherapy).
- Some centers deliver the drug through Ommaya reservoir (a device surgically placed under the scalp and used to deliver drugs to the CNS fluid and to extract CNS fluid for various tests).
- Other centers perform multiple lumbar punctures as needed for testing and treatment delivery.
- Intrathecal methotrexate or cytarabine is usually used for this purpose.
- the aim of maintenance therapy is to kill any residual cell that was not killed by remission induction, and intensification regimens. Although such cells are few, they will cause relapse if not eradicated.
- the term "refractory to chemotherapy” as used herein denotes resistance of the acute lymphoblastic leukemia cells to chemotherapy.
- ALL patients can experience a recurrence of ALL after initial therapy and/or become refractory to chemotherapy following treatment.
- ALL patients who are refractory to chemotherapy have a markedly poor prognosis.
- the prognosis of adult patients with Ph+ ALL treated only with chemotherapy is poor, with a less than 10% probability of long-term survival.
- the pharmaceutical methods and means of the invention are capable of rendering the adult ALL patients MRD-negative, they are particularly useful for the treatment of ALL patients refractory to chemotherapy.
- allogeneic hematopoietic stem cell transplantation means allogeneic hematopoietic stem cell transplantation (HSCT) or bone marrow transplantation (BMT) which is a medical procedure in the field of hematology and oncology that involves transplantation of hematopoietic stem cells (HSCs). It is most often conducted in patients with diseases of the lymph nodes, blood or bone marrow, such as ALL.
- Allogeneic HSCT is a procedure in which a person receives blood-forming stem cells (cells from which all blood cells develop) from a genetically similar, but not identical, donor. This is often a close relative, such as a mother, father, sister or brother, but could also be an unrelated donor.
- Most recipients of HSCTs are leukemia (e.g. ALL) patients who would benefit from treatment with high doses of chemotherapy or total body irradiation. However allogeneic HSCT remains a risky and toxic treatment.
- non-eligible for HSCT means those adult patients for whom allogeneic HSCT is not the ALL treatment of choice, for instance, due to medical reasons. For example, it can be the case that no appropriate donor is available, or the patient has exceeded the upper age limit. As shown in the following example, all patients have been refractory to chemotherapy, or in case of Ph+ ALL also refractory or intolerant to tyrosine kinase before inclusion into the study. Eight patients treated with the CD19xCD3 bispecific single chain antibody have been non-eligible for allogeneic HSCT, such as for example patients 111-003, 108-002, 109-006 or 109-007.
- ALL meant the death sentence for patients refractory to chemotherapy and non- eligible for allogeneic HSCT.
- the pharmaceutical methods and means of the invention for the first time provide a therapy for this patient population in that it eliminates the minimal residual disease (MRD) which otherwise would cause a relapse and kill said patients.
- MRD minimal residual disease
- said method is followed by allogeneic hematopoietic stem cell transplantation or said method replaces allogeneic hematopoietic stem cell transplantation in adult patients eligible for allogeneic HSCT.
- allogeneic HSCT is the required therapy for the adult ALL patient.
- the administration of the CD19xCD3 bispecific single chain antibody can be used to replace allogeneic HSCT used as a conventional therapy for adult ALL patients eligible for transplantation. So the pharmaceutical methods and means of the invention can avoid the health risks for the ALL patients associated with allogeneic hematopoietic stem cell transplantation. In addition, 30% of the transplanted ALL patients usually relapse after transplantation.
- the pharmaceutical methods and means of the invention can be used to treat these patients.
- the continuous infusion of the CD19xCD3 bispecific single chain antibody to the adult ALL patient may be followed by an allogeneic hematopoietic stem cell transplantation.
- the administration of a pharmaceutical composition comprising the CD19xCD3 bispecific single chain antibody construct can be used to convert ALL patients eligible for transplantation into an MRD negative-status before they receive the transplantation. So, the pharmaceutical methods and means of the invention can be used in order to eliminate MRD, which leads to a lower risk of relapse than the transplantation treatment of MRD-positive patients.
- the example presents a patient who has first been converted into an MRD-negative status upon treatment with the CD19xCD3 bispecific single chain antibody, followed by an allogeneic transplantation. So far, this patient is still MRD negative, with duration of MRD-negativity of 47 weeks until to date.
- CD19xCD3 bispecific single chain antibody construct be administered to adult ALL patients who have received an allogeneic HSCT and relapse thereafter.
- the pharmaceutical methods and means of the invention are for the treatment, amelioration or elimination of minimal residual disease (MRD) in an adult patient with acute lymphoblastic leukemia (ALL).
- MRD minimal residual disease
- ALL acute lymphoblastic leukemia
- MRD minimal residual disease
- a "MRD positive status” as defined herein means a bcr/abl signal or t(4;11) signal above detection limit and/or by individual rearrangements of immunoglobulin or T-cell receptor (TCR) genes above 10 " 4 .
- a "MRD negative status” as defined herein means a bcr/abl signal or a t(4;11) translocation signal below detection limit or by individual rearrangements of immunoglobulin or T-cell receptor (TCR) genes below 10 ⁇ 4 .
- the MRD status can be measured by PCR or FACS analysis in that the individual rearrangements of immunoglobulin genes or T-cell receptor (TCR) rearrangements, or bcr/abl fusion transcripts, or t(4;11) are quantitatively detected.
- PCR analysis can detect fusion transcripts such as bcr/abl, or t(4;11) translocations and individual clonal rearrangements of immunoglobulins (IgH) and/or T-cell receptor genes (TCR).
- Recurrent chromosomal abnormalities in the malignant cells of patients with acute lymphoblastic leukemia are hallmarks of the disease (Harrison and Foroni, Rev. Clin. Exp. Hematol. 6 (2002), 91-113).
- Specific aberrations which are frequently indicative of consistent underlying molecular lesions can assist or even establish the diagnosis and determine optimal therapy.
- childhood ALL numerous good and high-risk cytogenetic subgroups have been identified which are regularly used to stratify patients to particular therapies (Pui and Evans, N. Engl. J. Med. 354 (2006), 166-178).
- cytogenetic subtypes have a worse prognosis than others. These include e.g.:
- TCR T-cell receptor
- said adult patient is MRD-positive in complete hematological remission.
- remission or "hematological remission” as used herein is to be understood as having no evidence of disease after treatment, e.g. after chemotherapy or transplantation. This means that the bone marrow contains fewer than 5% blast cells as determined by light microscopy, the blood cell counts are within normal limits, and there are no signs or symptoms of the ALL disease.
- a molecular complete remission means there is no evidence of leukemia cells in biopsies of the bone marrow, even when using very sensitive tests such as PCR. Put in other words: If no MRD is detectable ( ⁇ 10 "4 , i.e. ⁇ 1 leukemia cell per 10 4 bone marrow cells), a complete molecular remission is reached.
- the pharmaceutical means and methods of the invention can be used to kill these remaining tumor cells in order to prevent recurrence of the leukemia (originating from the occult leukemia cells remaining in the body after primary therapy). In this way, the pharmaceutical means and methods help to prevent disease relapse in adult ALL patients.
- the administration of said pharmaceutical composition converts MRD positive acute lymphoblastic leukemia (ALL) into an MRD negative status.
- ALL MRD positive acute lymphoblastic leukemia
- MRD is measured with quantitative detection of individual rearrangements of immunoglobulin genes or T-cell receptor (TCR) rearrangements, or by bcr/abl fusion transcripts, or t(4;11) using PCR or FACS analysis.
- TCR T-cell receptor
- the administration of CD19xCD3 bispecific single chain antibody is especially appropriate for adult patients with minimal residual disease (MRD).
- MRD minimal residual disease
- the pharmaceutical methods and means of the invention therefore provide a therapeutic approach for the treatment, amelioration or elimination of MRD, thereby reducing or even abolishing the risk of relapse for the adult patient.
- curative treatment of MRD in ALL patients has not yet been available so far.
- said patient shows a bcr/abl signal or a t(4;11) signal above detection limit and/or at least one marker by rearrangement with a sensitivity of ⁇ IO "4 .
- bcr/abl signal or t(4;11) translocation signal above detection limit means that PCR or FACS analysis leads to a detectable bcr/abl signal or t(4;11) signal.
- the time to molecular relapse is more than 4 months.
- molecular relapse means that said patient shows a bcr/abl or t(4;11) translocation signal above detection limit and/or at least one marker by rearrangement with a sensitivity of ⁇ IO "4 .
- ⁇ IO leukemia cell
- the corresponding variable heavy chain regions (V H ) and the corresponding variable light chain regions (V L ) regions in said CD19xCD3 bispecific single chain antibody construct are arranged, from N-terminus to C-terminus, in the order, V L (CD19)- V H (CD19)-V H (CD3)-V L (CD3).
- variable heavy chain regions (V H ) and the corresponding variable light chain regions (V L ) regions of the CD3 and CD19 binding domains of the CD19xCD3 bispecific single chain antibody are shown in SEQ ID NOs. 3 to 10, respectively.
- the corresponding CDR regions of the respective VH and VL regions of the mentioned CD19xCD3 bispecific single chain antibody are shown in SEQ ID NOs. 11 to 22.
- said CD19xCD3 bispecific single chain antibody construct comprises an amino acid sequence as set forth in SEQ ID NO. 1 , or an amino acid sequence at least 90%, preferably at least 95% identical to SEQ ID NO. 1.
- the invention describes a bispecific single chain antibody molecule comprising an amino acid sequence as depicted in SEQ ID NO. 1 , as well as an amino acid sequence at least 90 % or preferably 95 % identical, most preferred at least 96, 97, 98, or 99 % identical to the amino acid sequence of SEQ ID NO. 1.
- the invention describes also the corresponding nucleic acid sequence as depicted in SEQ ID NO. 2 as well as a nucleic acid sequence at least 90 %, preferably 95 % identical, most preferred at least 96, 97, 98, or 99 % identical to the nucleic acid sequence shown in SEQ ID NO. 2. It is to be understood that the sequence identity is determined over the entire nucleotide or amino acid sequence.
- a bispecific single chain antibody molecule comprising an amino acid sequence at least 90 % or preferably 95 % identical, most preferred at least 96, 97, 98, or 99 % identical to the amino acid sequence of SEQ ID NO. 1 contains all of the CDR sequences shown in SEQ ID NOs. 11 to 22.
- the programs Gap or BestFit can be used (Needleman and Wunsch J. MoI. Biol. 48 (1970), 443-453; Smith and Waterman, Adv. Appl. Math 2 (1981), 482-489), which is contained in the GCG software package (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991).
- one treatment cycle is a 4-week continuous infusion, followed by repeated cycles after a 2-week treatment-free interval or by an allogeneic hematopoietic stem cell transplantation.
- the treatment cycle is repeated at least three times, preferably four, five, six, seven or even up to ten times after determination of a MRD negative status (consolidation).
- the bispecific single chain antibody construct is to be administered in a daily dose of 10 ⁇ g to 100 ⁇ g per square meter patient body surface area.
- a dose range which is defined as "X to Y” equates with a dose range which is defined as "between X and Y”.
- the range includes the upper limit and also the lower limit. This means that for example a daily dose of 10 ⁇ g to 100 ⁇ g per square meter patient body surface area includes “10 ⁇ g" and "100 ⁇ g".
- the CD19xCD3 bispecific single chain antibody construct is to be administered in a daily dose of 15 ⁇ g, 30 ⁇ g, 60 ⁇ g or 90 ⁇ g per square meter patient body surface area.
- said antibody is to be administered in a daily dose of 15 to 30 ⁇ g per square meter patient body surface area, most preferred in a daily dose of 15 or 30 ⁇ g per square meter patient body surface area.
- the average body surface area of an adult patient is hereby calculated in the context of the pharmaceutical method or use according to the invention to be in a range of 1 ,7 to 2,2 m 2 .
- the pharmaceutical composition comprising the CD19xCD3 bispecific single chain antibody as described herein further comprises, optionally (a) reaction buffer(s), storage solutions and/or remaining reagents or materials required for the recited method or use.
- said components can be packaged individually in vials or bottles or in combination in containers or multicontainer units.
- the compound is to be administered by long-term continuous infusion.
- the beneficial and unexpected effects of the pharmaceutical means and methods of the invention can be obtained by administering the CD19xCD3 bispecific single chain antibody in a daily dose of 10 microgram to 100 microgram per square meter body surface area.
- the daily dose may be kept constant over the administration period.
- a lower dose of bispecific single chain antibody be administered ("initial dose") prior to the pharmaceutical methods described herein, whereas for the remaining infusion period a higher dose (“maintenance dose”) be applied.
- 5 microgram of bispecific single chain antibody per square meter body surface area may be administered at the first day(s) of the infusion period followed by administration of 15 microgram per square meter body surface as daily dose for the remaining treatment period.
- 15 microgram of bispecific single chain antibody per square meter body surface area may be administered at the first day(s) of the infusion period followed by administration of 30 or 45 microgram per square meter body surface as daily dose for the remaining treatment period.
- the initial dose may be administered for one, two or more days or even for one week (seven days).
- 5 microgram of bispecific single chain antibody per square meter body surface area may be administered at the first day(s) of the infusion period, followed by administration of 15 microgram of bispecific single chain antibody per square meter body surface area at the following day(s) of the infusion period, followed by administration of 45 microgram per square meter body surface as daily (maintenance) dose for the remaining treatment period.
- the average body surface area of an adult patient is hereby calculated in the context of the pharmaceutical method or use according to the invention to be in a range of 1 ,7 to 2,2 m 2 .
- the dose is escalated after the first or further treatment cycles, for example from 15 to 30 or 60 or even 90 microgram/m 2 /24 hr.
- the uninterrupted administration of the CD19xCD3 bispecific single chain antibody may be intravenous, parenteral, subcutaneous, transdermal, intraperitoneal, intramuscular or pulmonary.
- the intravenous mode of administration will in most cases be the mode of choice for uninterruptedly administering the CD19xCD3 bispecific single chain antibody and, as the case may be, for co-administration of a pharmaceutical agent as part of a regimen of co-therapy.
- intraveneous administration is especially preferred.
- a suitable metering device such as the multi-therapy infusion pump model 6060 manufactured by Baxter may advantageously be chosen.
- metering device should be of such design and construction as to minimize or, better, preclude an interruption of administration of therapeutic agent in the event of cartridge exchange and/or power cell replacement or recharging. This may be accomplished, for example by choosing a device with a secondary reservoir of CD19xCD3 bispecific single chain antibody solution apart from the cartridge to be exchanged so that continuous infusion from this secondary reservoir into the patient may continue even while the empty or almost empty cartridge is removed and replaced with a fresh one.
- a mode of intravenous administration and, as the case may be, of co-administration as part of a regimen of co-therapy involves the implantation of a pump into the body of the patient for metering such administration.
- a pump for example model 6060 manufactured by Baxter as set forth above.
- the uninterrupted, i.e. continuous administration is to be realized by a small pump system worn by or implanted into the patient for metering the influx of therapeutic agent into the body of the patient.
- a small pump system worn by or implanted into the patient for metering the influx of therapeutic agent into the body of the patient.
- Such pump systems are generally known in the art, and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be infused.
- a temporary interruption of the otherwise uninterrupted flow of therapeutic agent into the body of the patient may ensue.
- the phase of administration prior to cartridge replacement and the phase of administration following cartridge replacement would still be considered within the meaning of the pharmaceutical means and methods of the invention to together make up one "uninterrupted administration" of such therapeutic agent.
- the continuous administration may be transdermal by way of a patch worn on the skin and replaced at intervals.
- a patch worn on the skin worn on the skin and replaced at intervals.
- patch systems for drug delivery suitable for this purpose. It is of note that transdermal administration is especially amenable to uninterrupted administration, as exchange of a first exhausted patch can advantageously be accomplished simultaneously with the placement of a new, second patch, for example on the surface of the skin immediately adjacent to the first exhausted patch and immediately prior to removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
- the continuous administration is accomplished via a pulmonary route, for example via a tube worn in one or both nostrils of the nose, the tube being connected to a pressurized tank, the content of which is precisely metered.
- the invention relates to a CD19xCD3 bispecific single chain antibody construct for the treatment, amelioration or elimination of adult acute lymphoblastic leukemia (ALL).
- the invention further relates to the use of a CD19xCD3 bispecific single chain antibody construct for the preparation of a pharmaceutical composition for the treatment, amelioration or elimination of adult acute lymphoblastic leukemia (ALL).
- said acute lymphoblastic leukemia (ALL) is B-lineage acute lymphoblastic leukemia, more preferably B-precursor acute lymphoblastic leukemia.
- said acute lymphoblastic leukemia (ALL) is refractory to chemotherapy in patients non-eligible for allogeneic HSCT.
- the administration of the CD19xCD3 bispecific single chain antibody construct is followed by allogeneic HSCT or said uses replace allogeneic HSCT in patients eligible for allogeneic HSCT
- the CD19xCD3 bispecific single chain antibody construct is for the treatment, amelioration or elimination of minimal residual disease (MRD) in a patient with acute lymphoblastic leukemia (ALL).
- MRD minimal residual disease
- ALL acute lymphoblastic leukemia
- said patient is MRD-positive in complete hematological remission.
- the administration of said CD19xCD3 bispecific single chain antibody results in stable disease or converts MRD positive acute lymphoblastic leukemia (ALL) into an MRD negative status.
- MRD is measured with quantitative detection of individual rearrangements of immunoglobulin genes or T-cell receptor (TCR) rearrangements, or by bcr/abl fusion transcripts, or t(4;11), using PCR or FACS analysis.
- the ALL patient shows a bcr/abl or a t(4;11) signal above detection limit and/or at least one marker by rearrangement with a sensitivity of >1 ⁇
- the time to molecular relapse detectable by the indicated detection methods is more than 4 months.
- the corresponding variable heavy chain regions (V H ) and the corresponding variable light chain regions (V L ) regions in said CD19xCD3 bispecific single chain antibody construct are arranged, from N-terminus to C-terminus, in the order, V L (CD19)-V H (CD19)-V H (CD3)-V L (CD3).
- said CD19xCD3 bispecific single chain antibody construct comprises an amino acid sequence as set forth in SEQ ID NO. 1 , or an amino acid sequence at least 90%, preferably 95% identical to SEQ ID NO. 1.
- one treatment cycle is a 4-week continuous infusion, followed by repeated cycles after a 2-week treatment- free interval.
- the treatment cycle is repeated at least three times, after determination of a MRD negative status (consolidation).
- the CD19xCD3 bispecific single chain antibody construct is to be administered in a daily dose of 10 ⁇ g to 100 ⁇ g per square meter patient body surface area.
- the CD19xCD3 bispecific single chain antibody construct is to be administered in a daily dose of 15 ⁇ g to 30 ⁇ g per square meter patient body surface area.
- CD19xCD3 bispecific single chain antibody mode of action CD19xCD3 bispecific single chain antibody (blinatumomab or MT103) redirects CD3-positive cytotoxic T cells to eliminate human acute lymphoblastic leukemia cells carrying the CD19 antigen.
- FIG. 1 Example of minimal residual disease (MRD) course.
- PCR based measurement of TCR rearrangement (MRD) in common acute lymphoblastic leukemia (cALL) patient 109-002 shows an MRD positivy before treatment with CD19xCD3 bispecific single chain antibody and ongoing MRD negativity starting after the 1st cycle CD19xCD3 bispecific single chain antibody.
- FIG. 3 T cell kinetics of CD4 and CD8 T cells of patient 109-002 during treatment cycle 1. Representative example of pharmacodynamics, showing rapid redistribution of T cells and an increase mainly in the number of cytotoxic CD8 T cells.
- FIG. 4 T cell kinetics of T cell subsets of patient 109-002 during treatment cycle 1. Representative example of pharmacodynamics, showing rapid redistribution of T cells and expansion of T effector memory cells (TEM). Naive T cells are not expanded.
- TEM T effector memory cells
- Figure 5 The first four patients who have been enrolled in the phase Il study. All patients had previously received standard chemotherapy regimens for ALL according to GMALL protocols including at least one consolidation treatment.
- FIG. 6 Minimal residual disease (MRD) responses in the indicated ALL patients (i.e. the first four patients enrolled in the phase Il study) after the first treatment cycle with CD19xCD3 bispecific single chain antibody.
- Figure 7 Update on minimal residual disease (MRD) responses. In nine out of eleven patients with immunoglobulin or TCR rearrangements, in one out of two patients with t(4;11) translocations and in three out of four patients with bcr/abl transcripts, MRD- negativity could be achieved. In sum, 13 of 16 evaluable patients (81 %) became MRD negative.
- MRD minimal residual disease
- Figure 8 Duration of minimal residual disease (MRD)-negativity (status as of 25.05.2009). The longest duration of MRD-negativity observed so far in patient 108-001 having not received a transplantation after the antibody treatment is 41 weeks.
- Patient 111-001 with MRD-negativity from 23.06.2008 to 27.10.2008 after CD19xCD3 bispecific single chain antibody-treatment and having received a successful allogeneic hematopoietic stem cell transplantation thereafter is relapse-free to date.
- the arrowhead means that the response is still ongoing (status May 25, 2009).
- Patient 109- 002 ( * ) had a testicular relapse followed by hematological relapse after 19 weeks of MRD-negativity.
- the generation, expression and cytotoxic activity of the CD19xCD3 bispecific single chain antibody has been described in WO 99/54440.
- the corresponding amino and nucleic acid sequences of the CD19xCD3 bispecific single chain antibody are shown in SEQ ID NOs. 1 and 2, respectively.
- the VH and VL regions of the CD3 binding domain of the CD19xCD3 bispecific single chain antibody are shown in SEQ ID NOs. 7 to 10, respectively, whereas the VH and VL regions of the CD19 binding domain of the CD19xCD3 bispecific single chain antibody are shown in SEQ ID NOs 3 to 6, respectively.
- the corresponding CDR regions are shown in SEQ ID NOs. 11 to 22.
- GMALL German Multicenter Study Group on Adult Acute Lymphoblastic Leukemia
- ALL acute lymphoblastic leukemia
- MRD minimal residual disease
- MRD MRD was measured with standardized methods either by quantitative detection of individual rearrangements of immunoglobulin or T-cell receptor (TCR) rearrangements, or by bcr/abl fusion transcripts or t(4;11) translocations.
- TCR T-cell receptor
- the study population includes adult patients with acute B-precursor acute lymphoblastic leukemia (ALL) who show a bcr/abl or t(4;11) translocation signal above detection limit and/or at least one marker by rearrangement with a sensitivity of >1CT 4 . More specifically, the major inclusion criteria included:
- - Patients must have a molecular marker for evaluation of minimal residual disease which is either bcr/abl or a t(4;11) translocation at any detection level or individual rearrangements of immunoglobulin or TCR-genes measured by an assay with a sensitivity of minimum 10 "4 and quantitative range to 10 "4 for at least one marker.
- a molecular marker for evaluation of minimal residual disease which is either bcr/abl or a t(4;11) translocation at any detection level or individual rearrangements of immunoglobulin or TCR-genes measured by an assay with a sensitivity of minimum 10 "4 and quantitative range to 10 "4 for at least one marker.
- Primary endpoint of the (ongoing) phase Il study is the conversion rate to minimal residual disease (MRD) negative status as defined by a bcr/abl or t(4;11) translocation signal below detection limit and/or by detection of individual rearrangements of immunoglobulin or T-cell receptor (TCR) genes below 10 "4 .
- Secondary endpoints are time to hematological relapse, time to MRD progression, and time to molecular relapse.
- One treatment cycle of the CD19xCD3 bispecific single chain antibody is a 4-week continuous intravenous infusion, which can be followed by allogeneic hematopoietic stem cell transplantation after the first cycle or further cycles, or by repeated cycles after a 2-week treatment-free interval.
- Minimal residual disease (MRD) status is controlled after each treatment cycle.
- the starting dose level is 15 microgram/m 2 /24 hr, which may be escalated to 30 microgram/m 2 /24 hr and higher dose levels (60 microgram/m 2 /24 hr or 90 microgram/m 2 /24 hr) based on clinical activity and safety data.
- Simon's MinMax two stage design 14 to 21 patients is being used.
- patient nos. 111001 , 109002 and 110002 have been diagnosed with c-ALL, whereas patient no. 108001 is a pre-B-ALL patient.
- the four patients had previously received standard chemotherapy regimens for ALL according to GMALL protocols including at least one consolidation treatment. All of them have been refractory to chemotherapy as regards minimal residual disease (MRD). More specifically, all patients have been MRD-positive in complete hematological remission.
- Patients nos. 110002, 108001 and 109002 have been non-eligible for allogeneic hematopoietic stem cell transplantation, whereas patient no. 111001 has been eligible for said transplantation.
- FIG. 111001 the only one of the four patients eligible for allogeneic hematopoietic stem cell transplantation, received a transplantation after having been converted into MRD negativity upon CD19xCD3 bispecific single chain antibody treatment.
- Figure 2 provides an example of the minimal residual disease (MRD) course in patient 109002.
- PCR based measurement of TCR rearrangement (MRD) in common acute lymphoblastic leukemia (cALL) patient 109002 shows an MRD positivy before treatment with CD19xCD3 bispecific single chain antibody (Blinatumomab) and MRD negativity starting after the 1st cycle CD19xCD3 bispecific single chain antibody and lasting until week 19. Thereafter, the patient had a testicular relapse, followed by a haematological relapse.
- MRD minimal residual disease
- MRD response was evaluable in 16 of 17 patients.
- 13 of 16 evaluable patients became MRD negative, which corresponds to an extraordinary complete molecular response rate of 81 %.
- MRD- negativity could be achieved in nine out of eleven patients with immunoglobulin or TCR rearrangements.
- the longest duration of MRD- negativity in patient 108-001 having not received a transplantation after the antibody treatment observed so far is 41 weeks.
- the bcr/abl patients who could successfully be treated with the CD19xCD3 bispecific single chain antibody were refractory or intolerant to tyrosine kinase inhibitors imatinib and/or dasatinib in previous ALL treatment regimen.
- one of the bcr/abl responders to treatment with CD19xCD3 bispecific single chain antibody had a T315I mutation which is refractory to therapy by tyrosine kinase inhibitors.
- the administration of the CD19xCD3 bispecific single chain antibody now provides for the first time for a therapy for dasatinib-refractory ALL patients with bcr/abl transcripts. Only three out of a total of 17 patients did not become MRD negative. However, in two of them stable disease could be achieved. Only one patient with initial stable disease had a hematological relapse in the third treatment cycle. One patient was not evaluable due to an SAE on study day 2.
- an absolutely exceptional complete molecular response rate of 81% could be achieved in patients with B-precursor ALL upon treatment with CD19xCD3 bispecific single chain antibody.
- Activity of the mentioned antibody could be observed in all patients subsets treated, including tyrosine kinase inhibitors-refractory (T315I) bcr/abl patients and patients with t(4;11) translocations.
- treatment with CD19xCD3 bispecific single chain antibody shows a favorable toxicity profile, in contrast to conventional ALL therapies, such as chemotherapy.
- the administration of the CD19xCD3 bispecific single chain antibody described herein provides a new and advantageous treatment option for acute lymphoblastic leukemia (ALL), in particular for cases in which the ALL is refractory to conventional ALL therapy, such as chemotherapy.
- ALL acute lymphoblastic leukemia
- the administration of the CD19xCD3 bispecific single chain antibody now provides for the first time for a therapy for MRD-positive ALL.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- General Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/127,541 US20130323247A1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
MEP-2015-181A ME02363B (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
PL15185767T PL2982696T3 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
RS20150797A RS54456B1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
PL09760483T PL2342227T3 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
JP2011533633A JP5647132B2 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
DK09760483.9T DK2342227T3 (en) | 2008-11-07 | 2009-11-06 | TREATMENT OF ACUTE Lymphoblastic Tissue Leukemia |
CN2009801443998A CN102209728A (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
AU2009313040A AU2009313040B2 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
MX2011002927A MX2011002927A (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia. |
NZ591311A NZ591311A (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia with a CD19 CD3 bispecific single chain antibody construct |
RU2011122819/10A RU2536940C2 (en) | 2008-11-07 | 2009-11-06 | New treatment of acute lymphoblastic leukaemia |
EP09760483.9A EP2342227B1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
SI200931306T SI2342227T1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
BRPI0921482-8A BRPI0921482B1 (en) | 2008-11-07 | 2009-11-06 | USE OF A CD19XCD3 SINGLE CHAIN ANTIBODY CONSTRUCTION IN THE TREATMENT OF ACUTE LYMPHOBLASTIC LEUKEMIA |
ES09760483.9T ES2558434T3 (en) | 2008-11-07 | 2009-11-06 | Acute Lymphoblastic Leukemia Treatment |
CA2742249A CA2742249C (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia with a cd19xcd3 bispecific single chain antibody |
EP15185767.9A EP2982696B1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
KR1020117010641A KR101695327B1 (en) | 2008-11-07 | 2009-11-06 | Treatment of Acute Lymphoblastic Leukemia |
IL212652A IL212652A (en) | 2008-11-07 | 2011-05-03 | Antibodies for treatment of acute lymphoblastic leukemia in an adult patient |
ZA2011/03255A ZA201103255B (en) | 2008-11-07 | 2011-05-05 | Treatment of acute lymphoblastic leukemia |
HK11113215.9A HK1158668A1 (en) | 2008-11-07 | 2011-12-07 | Treatment of acute lymphoblastic leukemia |
HRP20151168TT HRP20151168T1 (en) | 2008-11-07 | 2015-11-03 | Treatment of acute lymphoblastic leukemia |
SM201500328T SMT201500328B (en) | 2008-11-07 | 2015-12-30 | ACUTE LYMPHOBLASTIC LEUKEMIA TREATMENT |
US16/218,797 US11597766B2 (en) | 2008-11-07 | 2018-12-13 | Treatment of acute lymphoblastic leukemia |
CY20191100527T CY1122366T1 (en) | 2008-11-07 | 2019-05-17 | TREATMENT OF ACUTE LYMPHOBLASTIC LEUKEMIA |
US18/164,304 US20240109964A1 (en) | 2008-11-07 | 2023-02-03 | Treatment of acute lymphoblastic leukemia |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11232308P | 2008-11-07 | 2008-11-07 | |
US61/112,323 | 2008-11-07 | ||
US18329109P | 2009-06-02 | 2009-06-02 | |
US61/183,291 | 2009-06-02 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/127,541 A-371-Of-International US20130323247A1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
US16/218,797 Continuation US11597766B2 (en) | 2008-11-07 | 2018-12-13 | Treatment of acute lymphoblastic leukemia |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010052014A1 true WO2010052014A1 (en) | 2010-05-14 |
Family
ID=41692882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/007970 WO2010052014A1 (en) | 2008-11-07 | 2009-11-06 | Treatment of acute lymphoblastic leukemia |
Country Status (27)
Country | Link |
---|---|
US (3) | US20130323247A1 (en) |
EP (2) | EP2982696B1 (en) |
JP (2) | JP5647132B2 (en) |
KR (1) | KR101695327B1 (en) |
CN (2) | CN102209728A (en) |
AU (4) | AU2009313040B2 (en) |
BR (1) | BRPI0921482B1 (en) |
CA (1) | CA2742249C (en) |
CY (2) | CY1117033T1 (en) |
DK (2) | DK2982696T3 (en) |
ES (2) | ES2558434T3 (en) |
HK (2) | HK1158668A1 (en) |
HR (2) | HRP20151168T1 (en) |
HU (2) | HUE028175T2 (en) |
IL (1) | IL212652A (en) |
LT (1) | LT2982696T (en) |
ME (2) | ME03480B (en) |
MX (1) | MX2011002927A (en) |
NZ (1) | NZ591311A (en) |
PL (2) | PL2982696T3 (en) |
PT (2) | PT2982696T (en) |
RS (2) | RS58827B1 (en) |
RU (1) | RU2536940C2 (en) |
SI (2) | SI2342227T1 (en) |
SM (1) | SMT201500328B (en) |
WO (1) | WO2010052014A1 (en) |
ZA (1) | ZA201103255B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130095103A1 (en) * | 2005-12-16 | 2013-04-18 | Micromet Ag | Means and methods for the treament of tumorous diseases |
US20150246975A1 (en) * | 2014-02-28 | 2015-09-03 | Janssen Biotech, Inc. | Anti-CD38 Antibodies for Treatment of Acute Lymphoblastic Leukemia |
WO2015181683A1 (en) | 2014-05-30 | 2015-12-03 | Amgen Research (Munich) Gmbh | Risk-stratification of b-precursor acute lymphoblastic leukemia patients |
CN105251003A (en) * | 2010-10-27 | 2016-01-20 | 安进研发(慕尼黑)股份有限公司 | Means and methods for treating dlbcl |
JP2016193932A (en) * | 2010-11-10 | 2016-11-17 | アムジェン リサーチ (ミュニック) ゲゼルシャフト ミット ベシュレンクテル ハフツング | Prevention of adverse effects caused by cd3 specific binding domains |
WO2016184931A1 (en) | 2015-05-20 | 2016-11-24 | Amgen Research (Munich) Gmbh | B-cell depletion as a diagnostic marker |
WO2016187349A1 (en) | 2015-05-18 | 2016-11-24 | Tcr2, Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
WO2017140632A1 (en) * | 2016-02-19 | 2017-08-24 | Novoscope Ip Limited | Engineered cells & methods |
RU2651776C2 (en) * | 2015-12-01 | 2018-04-23 | Общество с ограниченной ответственностью "Международный биотехнологический центр "Генериум" ("МБЦ "Генериум") | Bispecific antibodies against cd3*cd19 |
WO2019118426A1 (en) * | 2017-12-11 | 2019-06-20 | Amgen Inc. | Continuous manufacturing process for bispecific antibody products |
US10385135B2 (en) | 2015-11-03 | 2019-08-20 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US10563194B2 (en) | 2015-02-24 | 2020-02-18 | BioAlta, LLC | Conditionally active biological proteins |
US10604580B2 (en) | 2014-09-09 | 2020-03-31 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
US10662243B2 (en) | 2009-10-27 | 2020-05-26 | Amgen Research (Munich) Gmbh | Dosage regimen for administering a CD19XCD3 bispecific antibody |
US10668149B2 (en) | 2015-06-22 | 2020-06-02 | Janssen Biotech, Inc. | Combination therapies for heme malignancies with anti-CD38 antibodies and survivin inhibitors |
WO2020135335A1 (en) * | 2018-12-24 | 2020-07-02 | Generon (Shanghai) Corporation Ltd. | Multispecific antigen binding proteins capable of binding cd19 and cd3, and use thereof |
US10766965B2 (en) | 2015-05-20 | 2020-09-08 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of light chain amyloidosis and other CD38-positive hematological malignancies |
US10781261B2 (en) | 2015-11-03 | 2020-09-22 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US10793630B2 (en) | 2014-12-04 | 2020-10-06 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute myeloid leukemia |
US10800851B2 (en) | 2014-02-28 | 2020-10-13 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
US10870701B2 (en) | 2016-03-15 | 2020-12-22 | Generon (Shanghai) Corporation Ltd. | Multispecific fab fusion proteins and use thereof |
US11013800B2 (en) | 2011-05-16 | 2021-05-25 | Evive Biotech Ltd. | Multi-specific Fab fusion proteins comprising a CD3-binding Fab fragment with N-terminal fusion to binding domains and methods of use |
US11021543B2 (en) | 2015-06-24 | 2021-06-01 | Janssen Biotech, Inc. | Immune modulation and treatment of solid tumors with antibodies that specifically bind CD38 |
US11085021B2 (en) | 2016-10-07 | 2021-08-10 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2021183861A1 (en) | 2020-03-12 | 2021-09-16 | Amgen Inc. | Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor |
US11242376B2 (en) | 2016-08-02 | 2022-02-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
US11579142B2 (en) * | 2011-04-28 | 2023-02-14 | Amgen Research (Munich) Gmbh | Dosage regimen for administering a CD19xCD3 bispecific antibody to patients at risk for potential adverse effects |
US11618787B2 (en) | 2017-10-31 | 2023-04-04 | Janssen Biotech, Inc. | Methods of treating high risk multiple myeloma |
WO2023062188A1 (en) | 2021-10-15 | 2023-04-20 | Amgen Research (Munich) Gmbh | Subcutaneous administration of cd19-binding t cell engaging antibodies |
US11851491B2 (en) | 2016-11-22 | 2023-12-26 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ME03480B (en) * | 2008-11-07 | 2020-01-20 | Amgen Res Munich Gmbh | Treatment of acute lymphoblastic leukemia |
EP3105252B1 (en) * | 2014-02-12 | 2019-07-24 | Michael Uhlin | Bispecific antibodies for use in stem cell transplantation |
US20180021331A1 (en) | 2014-12-30 | 2018-01-25 | University Of Utah Research Foundation | Hdac1,2 inhibitors and methods of using the same |
CN105154440B (en) * | 2015-08-14 | 2016-11-30 | 深圳市瀚海基因生物科技有限公司 | A kind of multiple PCR primer and method building Minimal Residual Disease of Leukemia stove TCR library based on high-flux sequence |
KR102083481B1 (en) | 2018-03-22 | 2020-03-02 | 강원대학교산학협력단 | Pharmaceutical composition for acute lymphoblastic leukemia comprising zinc-chitosan nanoparticles |
KR20230031981A (en) | 2019-05-14 | 2023-03-07 | 프로벤션 바이오, 인코포레이티드 | Methods and compositions for preventing type 1 diabetes |
MX2022015872A (en) | 2020-06-11 | 2023-05-16 | Provention Bio Inc | Methods and compositions for preventing type 1 diabetes. |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998008875A1 (en) * | 1996-08-28 | 1998-03-05 | Viva Diagnostika Diagnostische Produkte Gmbh | Novel combination preparations and their use in immunodiagnosis and immunotherapy |
WO1999054440A1 (en) | 1998-04-21 | 1999-10-28 | Micromet Gesellschaft Für Biomedizinische Forschung Mbh | CD19xCD3 SPECIFIC POLYPEPTIDES AND USES THEREOF |
WO2004106381A1 (en) | 2003-05-31 | 2004-12-09 | Micromet Ag | Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders |
WO2007068354A1 (en) | 2005-12-16 | 2007-06-21 | Micromet Ag | Means and methods for the treatment of tumorous diseases |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BG65066B1 (en) * | 1998-04-21 | 2007-01-31 | Micromet Gessellschaft Fur Biomedicinische Forschung Mbh | CD19xCD3 SPECIFIC POLYPEPTIDES AND USE THEREOF |
CA2542239C (en) * | 2003-10-16 | 2014-12-30 | Micromet Ag | Multispecific deimmunized cd3-binders |
CN101331151A (en) * | 2005-12-16 | 2008-12-24 | 麦克罗梅特股份公司 | Means and methods for treating neoplastic diseases |
ES2402591T3 (en) * | 2006-08-14 | 2013-05-07 | Xencor Inc. | Optimized antibodies that target CD19 |
ME03480B (en) * | 2008-11-07 | 2020-01-20 | Amgen Res Munich Gmbh | Treatment of acute lymphoblastic leukemia |
NZ593593A (en) * | 2009-01-19 | 2013-11-29 | Abbvie Inc | Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases |
RU2538965C2 (en) * | 2009-01-19 | 2015-01-10 | Эббви Инк. | Apoptosis inducing agents for treating cancer and immune and autoimmune diseases |
CA2763633A1 (en) * | 2009-05-27 | 2010-12-02 | Gary T. Wang | Pyrimidine inhibitors of kinase activity |
KR20120085781A (en) * | 2009-09-20 | 2012-08-01 | 아보트 러보러터리즈 | Abt-263 crystalline forms and solvates for use in treating bcl-2 protein related diseases |
DK2493503T4 (en) * | 2009-10-27 | 2021-04-12 | Amgen Res Munich Gmbh | DOSAGE PLAN FOR ADMINISTRATION OF A CD19XCD3 BISPECIFIC ANTIBODY |
-
2009
- 2009-11-06 ME MEP-2019-146A patent/ME03480B/en unknown
- 2009-11-06 CA CA2742249A patent/CA2742249C/en active Active
- 2009-11-06 RU RU2011122819/10A patent/RU2536940C2/en active
- 2009-11-06 CN CN2009801443998A patent/CN102209728A/en active Pending
- 2009-11-06 NZ NZ591311A patent/NZ591311A/en unknown
- 2009-11-06 MX MX2011002927A patent/MX2011002927A/en active IP Right Grant
- 2009-11-06 SI SI200931306T patent/SI2342227T1/en unknown
- 2009-11-06 LT LTEP15185767.9T patent/LT2982696T/en unknown
- 2009-11-06 DK DK15185767.9T patent/DK2982696T3/en active
- 2009-11-06 AU AU2009313040A patent/AU2009313040B2/en active Active
- 2009-11-06 HU HUE09760483A patent/HUE028175T2/en unknown
- 2009-11-06 EP EP15185767.9A patent/EP2982696B1/en active Active
- 2009-11-06 PL PL15185767T patent/PL2982696T3/en unknown
- 2009-11-06 RS RS20190593A patent/RS58827B1/en unknown
- 2009-11-06 DK DK09760483.9T patent/DK2342227T3/en active
- 2009-11-06 ME MEP-2015-181A patent/ME02363B/en unknown
- 2009-11-06 PL PL09760483T patent/PL2342227T3/en unknown
- 2009-11-06 EP EP09760483.9A patent/EP2342227B1/en active Active
- 2009-11-06 WO PCT/EP2009/007970 patent/WO2010052014A1/en active Application Filing
- 2009-11-06 BR BRPI0921482-8A patent/BRPI0921482B1/en active IP Right Grant
- 2009-11-06 JP JP2011533633A patent/JP5647132B2/en active Active
- 2009-11-06 CN CN201710366308.1A patent/CN107184977A/en active Pending
- 2009-11-06 US US13/127,541 patent/US20130323247A1/en not_active Abandoned
- 2009-11-06 ES ES09760483.9T patent/ES2558434T3/en active Active
- 2009-11-06 HU HUE15185767A patent/HUE043326T2/en unknown
- 2009-11-06 SI SI200931967T patent/SI2982696T1/en unknown
- 2009-11-06 PT PT15185767T patent/PT2982696T/en unknown
- 2009-11-06 ES ES15185767T patent/ES2727585T3/en active Active
- 2009-11-06 RS RS20150797A patent/RS54456B1/en unknown
- 2009-11-06 PT PT97604839T patent/PT2342227E/en unknown
- 2009-11-06 KR KR1020117010641A patent/KR101695327B1/en active IP Right Grant
-
2011
- 2011-05-03 IL IL212652A patent/IL212652A/en active IP Right Grant
- 2011-05-05 ZA ZA2011/03255A patent/ZA201103255B/en unknown
- 2011-12-07 HK HK11113215.9A patent/HK1158668A1/en unknown
-
2014
- 2014-11-06 JP JP2014226022A patent/JP5955921B2/en active Active
-
2015
- 2015-10-06 AU AU2015238784A patent/AU2015238784A1/en not_active Abandoned
- 2015-11-03 HR HRP20151168TT patent/HRP20151168T1/en unknown
- 2015-12-09 CY CY20151101123T patent/CY1117033T1/en unknown
- 2015-12-30 SM SM201500328T patent/SMT201500328B/en unknown
-
2016
- 2016-07-22 HK HK16108827.4A patent/HK1220705A1/en unknown
-
2017
- 2017-08-25 AU AU2017219083A patent/AU2017219083B2/en active Active
-
2018
- 2018-11-06 AU AU2018260815A patent/AU2018260815B2/en active Active
- 2018-12-13 US US16/218,797 patent/US11597766B2/en active Active
-
2019
- 2019-05-16 HR HRP20190912TT patent/HRP20190912T1/en unknown
- 2019-05-17 CY CY20191100527T patent/CY1122366T1/en unknown
-
2023
- 2023-02-03 US US18/164,304 patent/US20240109964A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998008875A1 (en) * | 1996-08-28 | 1998-03-05 | Viva Diagnostika Diagnostische Produkte Gmbh | Novel combination preparations and their use in immunodiagnosis and immunotherapy |
WO1999054440A1 (en) | 1998-04-21 | 1999-10-28 | Micromet Gesellschaft Für Biomedizinische Forschung Mbh | CD19xCD3 SPECIFIC POLYPEPTIDES AND USES THEREOF |
WO2004106381A1 (en) | 2003-05-31 | 2004-12-09 | Micromet Ag | Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders |
WO2007068354A1 (en) | 2005-12-16 | 2007-06-21 | Micromet Ag | Means and methods for the treatment of tumorous diseases |
Non-Patent Citations (28)
Title |
---|
ANDERSON ET AL., BLOOD J., vol. 80, 1992, pages 2826 - 34 |
ANDERSON P M ET AL: "G19.4(alpha CD3) x B43(alpha CD19) monoclonal antibody heteroconjugate triggers CD19 antigen-specific lysis of t(4;11) acute lymphoblastic leukemia cells by activated CD3 antigen-positive cytotoxic T cells.", BLOOD 1 DEC 1992, vol. 80, no. 11, 1 December 1992 (1992-12-01), pages 2826 - 2834, XP002572418, ISSN: 0006-4971 * |
ANOMYNOUS: "Phase II Study of the BiTE® Blinatumomab (MT103) in Patients With Minimal Residual Disease of B-Precursor Acute ALL", 11 August 2008 (2008-08-11) - 11 August 2008 (2008-08-11), XP002572438, Retrieved from the Internet <URL:http://clinicaltrials.gov/archive/NCT00560794/2008_08_11> [retrieved on 20100310] * |
APOSTOLIDOU ET AL., DRUGS, vol. 67, 2007, pages 2153 - 2171 |
BARGOU ET AL., SCIENCE, vol. 321, 2008, pages 974 - 7 |
BARGOU RALF ET AL: "Tumor regression in cancer patients by very low doses of a T cell-engaging antibody.", SCIENCE (NEW YORK, N.Y.) 15 AUG 2008, vol. 321, no. 5891, 15 August 2008 (2008-08-15), pages 974 - 977, XP002572417, ISSN: 1095-9203 * |
BROGGEMANN ET AL., BLOOD, vol. 107, 2006, pages 1116 - 1123 |
BRUGGEMANN ET AL., BLOOD, vol. 107, 2006, pages 1116 - 1123 |
BRUHL, J. IMMUNOL., vol. 166, 2001, pages 2420 - 2426 |
CAVE ET AL., N. ENGL. J. MED., vol. 339, 1998, pages 591 - 598 |
CRICK, J MOL BIOL, vol. 19, 1966, pages 548 - 55 |
DEVITA; HELLMANN; ROSENBERG: "Cancer: principles and practice of oncology", LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA |
GRIFFIN ET AL., PEDIATR BLOOD CANCER, 2008 |
HOELZER ET AL., HEMATOLOGY AM. SOC. HEMATOL. EDUC. PROGRAM, vol. 1, 2002, pages 162 - 192 |
HOELZER; G6KBUGET, HEMATOLOGY, vol. 13, 2006, pages 3 - 141 |
KUFER, CANCER LMMUNOL. IMMUNOTHER, vol. 45, 1997, pages 193 - 7 |
LEE ET AL., BLOOD, vol. 102, 2003, pages 3068 - 3070 |
LÖFFLER A ET AL: "A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes.", BLOOD 15 MAR 2000, vol. 95, no. 6, 15 March 2000 (2000-03-15), pages 2098 - 2103, XP002572419, ISSN: 0006-4971 * |
LOFFLER, BLOOD, vol. 95, no. 6, 2000, pages 2098 - 103 |
MOORMANN ET AL., BLOOD, vol. 109, 2007, pages 3189 - 97 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
OTTMANN; WASSMANN, HEMATOLOGY, 2005, pages 118 - 122 |
PNAS, vol. 92, 1995, pages 7021 - 5 |
PUI; EVANS, N. ENGL. J. MED., vol. 354, 2006, pages 166 - 178 |
RAFF ET AL., BLOOD, vol. 109, 2007, pages 910 - 915 |
SMITH; WATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482 - 489 |
SZCZEPAHSKI ET AL., LEUKEMIA, vol. 12, 1998, pages 1081 - 1088 |
VAN DER VELDEN ET AL., LEUKEMIA, vol. 18, 2004, pages 1971 - 80 |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11154617B2 (en) * | 2005-12-16 | 2021-10-26 | Amgen Research (Munich) Gmbh | Means and methods for the treament of B cell non-hodgkin lymphoma and B cell leukemia |
US20130095103A1 (en) * | 2005-12-16 | 2013-04-18 | Micromet Ag | Means and methods for the treament of tumorous diseases |
US10662243B2 (en) | 2009-10-27 | 2020-05-26 | Amgen Research (Munich) Gmbh | Dosage regimen for administering a CD19XCD3 bispecific antibody |
CN105251003A (en) * | 2010-10-27 | 2016-01-20 | 安进研发(慕尼黑)股份有限公司 | Means and methods for treating dlbcl |
JP2016193932A (en) * | 2010-11-10 | 2016-11-17 | アムジェン リサーチ (ミュニック) ゲゼルシャフト ミット ベシュレンクテル ハフツング | Prevention of adverse effects caused by cd3 specific binding domains |
US11579142B2 (en) * | 2011-04-28 | 2023-02-14 | Amgen Research (Munich) Gmbh | Dosage regimen for administering a CD19xCD3 bispecific antibody to patients at risk for potential adverse effects |
US11013800B2 (en) | 2011-05-16 | 2021-05-25 | Evive Biotech Ltd. | Multi-specific Fab fusion proteins comprising a CD3-binding Fab fragment with N-terminal fusion to binding domains and methods of use |
US10556961B2 (en) * | 2014-02-28 | 2020-02-11 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
US9732154B2 (en) * | 2014-02-28 | 2017-08-15 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
US11713355B2 (en) | 2014-02-28 | 2023-08-01 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
US20150246975A1 (en) * | 2014-02-28 | 2015-09-03 | Janssen Biotech, Inc. | Anti-CD38 Antibodies for Treatment of Acute Lymphoblastic Leukemia |
US12060432B2 (en) | 2014-02-28 | 2024-08-13 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
US10800851B2 (en) | 2014-02-28 | 2020-10-13 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
WO2015181683A1 (en) | 2014-05-30 | 2015-12-03 | Amgen Research (Munich) Gmbh | Risk-stratification of b-precursor acute lymphoblastic leukemia patients |
EP4303585A2 (en) | 2014-05-30 | 2024-01-10 | Amgen Research (Munich) GmbH | Risk-stratification of b-precursor acute lymphoblastic leukemia patients |
US11079381B2 (en) | 2014-05-30 | 2021-08-03 | Amgen Research (Munich) Gmbh | Risk-stratification of B-precursor acute lymphoblastic leukemia patients |
EP3531133A1 (en) | 2014-05-30 | 2019-08-28 | Amgen Research (Munich) GmbH | Risk-stratification of b-precursor acute lymphoblastic leukemia patients |
US10604580B2 (en) | 2014-09-09 | 2020-03-31 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
US10793630B2 (en) | 2014-12-04 | 2020-10-06 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute myeloid leukemia |
US12110611B2 (en) | 2015-02-24 | 2024-10-08 | Bioatla, Inc. | Conditionally active biological proteins |
US11254932B2 (en) | 2015-02-24 | 2022-02-22 | Bioatla, Inc. | Conditionally active biological proteins |
US10563194B2 (en) | 2015-02-24 | 2020-02-18 | BioAlta, LLC | Conditionally active biological proteins |
EP3770168A1 (en) * | 2015-05-18 | 2021-01-27 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
US11028142B2 (en) | 2015-05-18 | 2021-06-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
EP3298033A4 (en) * | 2015-05-18 | 2018-10-24 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
IL255697B1 (en) * | 2015-05-18 | 2023-07-01 | Tcr2 Therapeutics Inc | Compositions and methods for tcr reprogramming using fusion proteins |
IL255697B2 (en) * | 2015-05-18 | 2023-11-01 | Tcr2 Therapeutics Inc | Compositions and methods for tcr reprogramming using fusion proteins |
US10442849B2 (en) | 2015-05-18 | 2019-10-15 | Tcr2 Therabeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US10358474B2 (en) | 2015-05-18 | 2019-07-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2016187349A1 (en) | 2015-05-18 | 2016-11-24 | Tcr2, Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
US10358473B2 (en) | 2015-05-18 | 2019-07-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11965012B2 (en) | 2015-05-18 | 2024-04-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
EP3466967A1 (en) * | 2015-05-18 | 2019-04-10 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
US12091466B2 (en) | 2015-05-20 | 2024-09-17 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of light chain amyloidosis and other CD38-positive hematological malignancies |
WO2016184931A1 (en) | 2015-05-20 | 2016-11-24 | Amgen Research (Munich) Gmbh | B-cell depletion as a diagnostic marker |
US10766965B2 (en) | 2015-05-20 | 2020-09-08 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of light chain amyloidosis and other CD38-positive hematological malignancies |
AU2016263464B2 (en) * | 2015-05-20 | 2021-12-23 | Amgen Research (Munich) Gmbh | B-cell depletion as a diagnostic marker |
US10668149B2 (en) | 2015-06-22 | 2020-06-02 | Janssen Biotech, Inc. | Combination therapies for heme malignancies with anti-CD38 antibodies and survivin inhibitors |
US11021543B2 (en) | 2015-06-24 | 2021-06-01 | Janssen Biotech, Inc. | Immune modulation and treatment of solid tumors with antibodies that specifically bind CD38 |
US10781261B2 (en) | 2015-11-03 | 2020-09-22 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US11566079B2 (en) | 2015-11-03 | 2023-01-31 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US10385135B2 (en) | 2015-11-03 | 2019-08-20 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US11732051B2 (en) | 2015-11-03 | 2023-08-22 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US11708419B2 (en) | 2015-11-03 | 2023-07-25 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
US11708420B2 (en) | 2015-11-03 | 2023-07-25 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
RU2651776C2 (en) * | 2015-12-01 | 2018-04-23 | Общество с ограниченной ответственностью "Международный биотехнологический центр "Генериум" ("МБЦ "Генериум") | Bispecific antibodies against cd3*cd19 |
WO2017140632A1 (en) * | 2016-02-19 | 2017-08-24 | Novoscope Ip Limited | Engineered cells & methods |
US10870701B2 (en) | 2016-03-15 | 2020-12-22 | Generon (Shanghai) Corporation Ltd. | Multispecific fab fusion proteins and use thereof |
US11242376B2 (en) | 2016-08-02 | 2022-02-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11085021B2 (en) | 2016-10-07 | 2021-08-10 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11377638B2 (en) | 2016-10-07 | 2022-07-05 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11851491B2 (en) | 2016-11-22 | 2023-12-26 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11618787B2 (en) | 2017-10-31 | 2023-04-04 | Janssen Biotech, Inc. | Methods of treating high risk multiple myeloma |
WO2019118426A1 (en) * | 2017-12-11 | 2019-06-20 | Amgen Inc. | Continuous manufacturing process for bispecific antibody products |
WO2020135335A1 (en) * | 2018-12-24 | 2020-07-02 | Generon (Shanghai) Corporation Ltd. | Multispecific antigen binding proteins capable of binding cd19 and cd3, and use thereof |
WO2021183861A1 (en) | 2020-03-12 | 2021-09-16 | Amgen Inc. | Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
WO2023062188A1 (en) | 2021-10-15 | 2023-04-20 | Amgen Research (Munich) Gmbh | Subcutaneous administration of cd19-binding t cell engaging antibodies |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240109964A1 (en) | Treatment of acute lymphoblastic leukemia | |
US20230235053A1 (en) | Treatment of pediatric acute lymphoblastic leukemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980144399.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09760483 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 591311 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009760483 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/002927 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011533633 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2009313040 Country of ref document: AU Date of ref document: 20091106 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2742249 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 212652 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127541 Country of ref document: US Ref document number: 3041/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20117010641 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011122819 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: P-2015/0797 Country of ref document: RS |
|
ENP | Entry into the national phase |
Ref document number: PI0921482 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110504 |