WO2010050409A1 - Method for storing target comprising rare earth metal or oxide thereof - Google Patents
Method for storing target comprising rare earth metal or oxide thereof Download PDFInfo
- Publication number
- WO2010050409A1 WO2010050409A1 PCT/JP2009/068248 JP2009068248W WO2010050409A1 WO 2010050409 A1 WO2010050409 A1 WO 2010050409A1 JP 2009068248 W JP2009068248 W JP 2009068248W WO 2010050409 A1 WO2010050409 A1 WO 2010050409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- oxide
- rare earth
- earth metal
- storing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
- B65D81/26—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F15/00—Other methods of preventing corrosion or incrustation
Definitions
- the present invention relates to a method for storing a target comprising a rare earth metal that is easily powdered by oxidation or hydroxylation, or an oxide thereof.
- the rare earth metal is contained in the earth's crust as a mixed composite oxide. Since rare earth metals were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust. Recently, rare earth metals have attracted attention as electronic materials, and are being researched and developed. Among these rare earth metals, lanthanum (La) is particularly attracting attention. Briefly introducing this lanthanum, the lanthanum has an atomic number of 57 and an atomic weight of 138.9, and is a white metal with a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3.
- the surface is oxidized in the air and gradually dissolved in water. Soluble in hot water and acid. There is no ductility, but there is slight malleability.
- the resistivity is 5.70 ⁇ 10 ⁇ 6 ⁇ cm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary).
- rare earth metals compounds having an oxidation number of 3 are generally stable, but lanthanum is also trivalent. This lanthanum is a metal attracting attention as an electronic material, such as a metal gate material and a high dielectric constant material (High-k). Rare earth metals other than lanthanum have attributes similar to this lanthanum.
- rare earth metals such as lanthanum have a problem that they are easily oxidized during purification, they are difficult materials to be highly purified. Further, when a rare earth metal such as lanthanum is left in the air, it is oxidized and discolored in a short time, so that there is a problem that handling is not easy. Recently, thinning is required as a gate insulating film in next-generation MOSFETs, but in SiO 2 that has been used as a gate insulating film so far, leakage current due to a tunnel effect increases and normal operation has become difficult. .
- HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 having a high dielectric constant, high thermal stability, and a high energy barrier against holes and electrons in silicon are proposed.
- La 2 O 3 is highly evaluated, electrical characteristics have been investigated, and research reports as a gate insulating film in next-generation MOSFETs have been made (see Non-Patent Document 1).
- the object of research is the La 2 O 3 film, and the characteristics and behavior of La metal are not particularly mentioned.
- the rare earth metals such as lanthanum and their oxides are still in the research stage, but when investigating the characteristics of such rare earth metals and their oxides, the rare earth metals and their oxides themselves are sputtered. If it exists as a target material, it is possible to form a thin film of rare earth metal and its oxide on the substrate, and also the behavior of the interface with the silicon substrate, and further the formation of a rare earth metal compound to form a high dielectric constant gate. It is easy to examine the characteristics of an insulating film and the like, and has a great advantage that the degree of freedom as a product is increased.
- a lanthanum sputtering target even if a lanthanum sputtering target is produced, it is oxidized in the air in a short time as described above. In general, a stable oxide film is formed on the surface of a metal target. However, since it is usually very thin, it peels off at the initial stage of sputtering and does not significantly affect the sputtering characteristics. However, in the lanthanum sputtering target, the oxide film becomes thick, the electric conductivity is lowered, and the sputtering is defective. Also, if left in the air for a long time, it reacts with the moisture in the air and is covered with a white powder of hydroxide, eventually resulting in a powdered state, and normal sputtering is not possible Even it happens.
- Patent Document 1 a method of covering a hollow cathode sputtering target with a resin bag
- Patent Document 2 a method of attaching a protective film of a plastic film to a target
- Patent Document 3 A method of packing a target using a nonexistent surface film
- Patent Document 4 a method of producing a target storage container using a transparent acrylic resin top cover and screwing
- Patent Document 5 a method of producing a target storage container using a transparent acrylic resin top cover and screwing
- Patent Document 5 a method that encloses a bag-like material.
- these enclose the target using a resin lid or a resinous film, and are not sufficient as a method for storing a target made of a rare earth metal or its oxide.
- the present invention devised a method for storing a target made of a rare earth metal or its oxide, and suppresses oxidization of the target due to residual and intrusion of air and pulverization due to hydroxylation, so that it can be used as a sputtering target. It is an object of the present invention to provide a technique capable of storing a period.
- the present invention 1) A method for storing a sputtering target comprising a rare earth metal or an oxide thereof, and a target comprising a rare earth metal or an oxide thereof stored in a container or film seal for storage of the target The same rare earth metal oxide is introduced as a desiccant, and the storage container or the film-like seal is sealed and stored.
- a large rare earth metal oxide is introduced as a desiccant, and the container for storage or the film-like seal is sealed and stored.
- Target storage method of a rare earth metal or an oxide thereof, characterized in, provides.
- the present invention also provides: 3) In the case of a target composed of two or more kinds of rare earth metals or oxides thereof, the rare earth metal oxide having the highest hygroscopicity is used as a desiccant, or the rare earth metals or oxides thereof according to 2) above 4.
- a method for storing a target comprising 4)
- a method for carrying out sealing storage is vacuum sealing, wherein the target comprising a rare earth metal or oxide thereof according to any one of 1) to 3) above is characterized. 5.
- Storage method 5) The rare earth metal or oxide thereof according to any one of 1) to 4) above, wherein the sealed storage means is a vacuum seal using a flexible film.
- a method for storing a target In the case of a target composed of two or more kinds of rare earth metals or oxides thereof, the rare earth metal oxide having the highest hygroscopicity is used as a desiccant, or the rare earth metals or oxides thereof according to 2) above 4.
- a method for storing a target comprising
- the present invention provides 6) The rare earth metal according to any one of 1) to 5) above, wherein these are sealed by sealing with an inert gas having a dew point of ⁇ 80 ° C. or lower. 7. Method for storing a target made of oxide 7) Any one of 1) to 6) above, wherein the rare earth metal oxide used as a desiccant is placed or filled in a space generated during sealing. 8. A method for storing a target comprising the rare earth metal or oxide thereof according to any one of 8) to 8), wherein the rare earth metal constituting the target contains La or La. 9. A method for storing a target comprising a rare earth metal or an oxide thereof according to 9), wherein the rare earth metal oxide used as a desiccant is a La oxide.
- Noble earth described in Metal or moisture intrusion of external moisture permeation or container flexible film storage method 10) used to seal storage target made of these oxides is the following 0.1g / m 2 ⁇ 24h
- a method for storing a target comprising the rare earth metal or oxide thereof according to any one of 1) to 9) above is provided.
- the la 2 O 3 target in a film is a diagram illustrating an example of a case where vacuum sealing.
- rare earths particularly lanthanum and lanthanum oxides
- lanthanum oxide is more hygroscopic than lanthanum, and when storing lanthanum targets, lanthanum oxide (sintered powder, plates, blocks, etc.) It is intended to prevent oxidation and hydroxylation of the lanthanum target body by applying, placing, or placing on the lantern.
- lanthanum oxide target it is possible to absorb and remove moisture more effectively by encapsulating a powder with a larger surface area and granular lanthanum oxide. It is possible to prevent deterioration due to.
- the method for storing a target comprising a rare earth metal or an oxide thereof according to the present invention is the same as the rare earth metal stored in a storage container or a film-like seal.
- An oxide is introduced as a desiccant.
- the lanthanum oxide reacts with water to be hydroxylated and powdered and adheres to the target surface, it is a compound of the same metal and is a powder, so it can be easily removed, causing contamination. Not. This is a significant advantage over the use of desiccants made of other metals.
- a rare earth metal oxide that has higher hygroscopicity than the stored rare earth metal or its oxide target material is used as a desiccant for target storage. It can be introduced into a container or film-like seal, and the storage container or film-like seal can be sealed and stored.
- a rare earth metal oxide having the highest hygroscopicity can also be used as a desiccant.
- vacuum sealing can be used.
- vacuum-sealing and storing it is desirable to replace the inside of the container or film-like seal once with an inert gas having a dew point of ⁇ 80 ° C. or lower and then vacuum-seal.
- a flexible film can be used, and this can be vacuum-sealed as a sealed bag.
- vacuum sealing has been described.
- an inert gas having a dew point of ⁇ 80 ° C. or lower can be sealed and sealed. Both prevent outside air from entering.
- the target is bonded to the backing plate.
- the target when using a flexible film and vacuum-sealing it as a sealed bag, the target inevitably has a step between the backing plate, and the gap Is likely to occur. In such a gap, the outside air is easily stored. And it becomes easy to advance powdering of the target from there. It is desirable to fill such a step or void with a rare earth oxide serving as a desiccant.
- the rare earth oxide serving as the desiccant is preferably a powder or granule having a large surface area in this sense.
- simply placing a rare earth oxide blob in a place where the outside air can easily be stored is effective.
- a general desiccant even if sealed in a moisture-permeable film, it is sufficiently effective.
- the rare earth metal constituting the target is particularly effective for a lanthanum target or a target containing lanthanum.
- the rare earth oxide used as the desiccant is lanthanum oxide.
- lanthanum oxide which is most easily hydroxylated, is the most effective in suppressing the hydroxylation of a target made of rare earth metal or its oxide. It is expensive.
- the moisture permeation amount of the flexible film used for sealed storage or the moisture intrusion amount from the outside of the container should be 0.1 g / m 2 ⁇ 24 h or less to prevent moisture from entering as much as possible.
- Table 1 shows preferable examples of the flexible film used for sealed storage and other examples. From Table 1, those having characteristics more than GX barrier (trade name) are effective. As shown in Table 1, a GX barrier (trade name) and a bag containing Al foil are suitable. Table 1 shows typical examples, and it goes without saying that other flexible films can be used as long as the above conditions are satisfied.
- Example 1 the La target is vacuum-packed, and La oxide powder is thinly filled on the surface and side surfaces.
- FIG. 1 A specific example is shown in FIG.
- the presence of the lanthanum oxide layer between the vacuum pack film and the La target allows moisture remaining inside the vacuum pack and moisture passing through the film to be lanthanum oxide powder.
- lanthanum hydroxide which is effective in preventing the phenomenon that the surface of the La target reacts with moisture and becomes hydroxide to be pulverized.
- Example 2 This is an example in which a La target is vacuum-packed and La oxide powder is placed in a stepped space from BP (like a silica gel bag). A specific example is shown in FIG. As shown in FIG. 2, in the vacuum pack, La oxide absorbs moisture remaining in the slightly remaining space and fixes it as lanthanum hydroxide, so that the La target reacts with moisture to become hydroxide and powder. This is effective in preventing the phenomenon that occurs.
- Example 3 A La oxide target is placed in a metal container, and the target is filled with La oxide powder. Then, the surrounding air is temporarily replaced with argon having a dew point of ⁇ 80 ° C. or lower, and then vacuum sealed. A specific example of the stopped example is shown in FIG. As shown in FIG. 3, since lanthanum oxide absorbs moisture remaining after being evacuated and fixes it as lanthanum hydroxide, it is effective in preventing the phenomenon that La reacts with moisture to become hydroxide and powder. It is.
- Example 4 A metal alloy target composed of La and Er is placed in a metal container, and then a sintered La oxide block is placed on the step between the target and BP, and the air in the container has a dew point of -80 ° C or less.
- This is an example of evacuation after replacement with argon gas.
- lanthanum oxide absorbs moisture remaining after being evacuated and is fixed as lanthanum hydroxide, which is effective in preventing the phenomenon that La reacts with moisture to form hydroxide and powder. It is.
- the La 2 O 3 target is vacuum-sealed with a film.
- a specific example is shown in FIG.
- La oxide (La 2 O 3 ) absorbs moisture remaining in the slightly remaining space in the vacuum pack and fixes it as lanthanum hydroxide, so that the La 2 O 3 target reacts with moisture. It becomes a hydroxide and is pulverized.
- the method for storing a target comprising a rare earth metal or its oxide according to the present invention does not cause such a problem.
- the same rare earth metal oxide as the target comprising a rare earth metal or oxide stored therein is placed in a storage container or a film-like seal. Introduced as a desiccant. This effectively suppresses the state of reacting with moisture in the air and being covered with hydroxide white powder. This makes it possible to stably supply a target as an electronic material such as a metal gate material and a high dielectric constant material (High-k), which is extremely useful industrially.
- High-k high dielectric constant material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Food Science & Technology (AREA)
- Physical Vapour Deposition (AREA)
- Packages (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
この希土類金属の中では、特にランタン(La)が注目されている。このランタンを簡単に紹介すると、ランタンの原子番号は57、原子量138.9の白色の金属であり、常温で複六方最密構造を備えている。融点は921°C、沸点3500°C、密度6.15g/cm3であり、空気中では表面が酸化され、水には徐々にとける。
熱水、酸に可溶である。延性はないが、展性はわずかにある。抵抗率は5.70×10-6Ωcmである。445°C以上で燃焼して酸化物(La2O3)となる(理化学辞典参照)。希土類金属は、一般に酸化数3の化合物が安定であるが、ランタンも3価である。
このランタンは、メタルゲート材料、高誘電率材料(High-k)等の、電子材料として注目されている金属である。ランタン以外の希土類金属も、このランタンに類似した属性を持っている。 The rare earth metal is contained in the earth's crust as a mixed composite oxide. Since rare earth metals were separated from relatively rare (rare) minerals, they were named as such, but they are not rare when viewed from the entire crust. Recently, rare earth metals have attracted attention as electronic materials, and are being researched and developed.
Among these rare earth metals, lanthanum (La) is particularly attracting attention. Briefly introducing this lanthanum, the lanthanum has an atomic number of 57 and an atomic weight of 138.9, and is a white metal with a double hexagonal close-packed structure at room temperature. The melting point is 921 ° C., the boiling point is 3500 ° C., and the density is 6.15 g / cm 3. The surface is oxidized in the air and gradually dissolved in water.
Soluble in hot water and acid. There is no ductility, but there is slight malleability. The resistivity is 5.70 × 10 −6 Ωcm. It burns at 445 ° C or higher to become oxide (La 2 O 3 ) (see Physics and Chemistry Dictionary). As for rare earth metals, compounds having an oxidation number of 3 are generally stable, but lanthanum is also trivalent.
This lanthanum is a metal attracting attention as an electronic material, such as a metal gate material and a high dielectric constant material (High-k). Rare earth metals other than lanthanum have attributes similar to this lanthanum.
最近、次世代のMOSFETにおけるゲート絶縁膜として薄膜化が要求されているが、これまでゲート絶縁膜として使用されてきたSiO2では、トンネル効果によるリーク電流が増加し、正常動作が難しくなってきた。
このため、それに変わるものとして、高い誘電率、高い熱的安定性、シリコン中の正孔と電子に対して高いエネルギー障壁を有するHfO2、ZrO2、Al2O3、La2O3が提案されている。特に、これらの材料の中でも、La2O3の評価が高く、電気的特性を調査し、次世代のMOSFETにおけるゲート絶縁膜としての研究報告がなされている(非特許文献1参照)。しかし、この特許文献の場合に、研究の対象となっているのは、La2O3膜であり、La金属の特性と挙動については、特に触れてはいない。 Since rare earth metals such as lanthanum have a problem that they are easily oxidized during purification, they are difficult materials to be highly purified. Further, when a rare earth metal such as lanthanum is left in the air, it is oxidized and discolored in a short time, so that there is a problem that handling is not easy.
Recently, thinning is required as a gate insulating film in next-generation MOSFETs, but in SiO 2 that has been used as a gate insulating film so far, leakage current due to a tunnel effect increases and normal operation has become difficult. .
For this reason, HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 having a high dielectric constant, high thermal stability, and a high energy barrier against holes and electrons in silicon are proposed. Has been. In particular, among these materials, La 2 O 3 is highly evaluated, electrical characteristics have been investigated, and research reports as a gate insulating film in next-generation MOSFETs have been made (see Non-Patent Document 1). However, in the case of this patent document, the object of research is the La 2 O 3 film, and the characteristics and behavior of La metal are not particularly mentioned.
また、空気中に長時間放置しておくと、空気中の水分と反応して水酸化物の白い粉で覆われ、最終的には粉化してしまう状態に至り、正常なスパッタリングができないという問題すら起こる。このために、ターゲット作製後、すぐ真空パックするか又は油脂で覆い、酸化及び水酸化防止策を講ずる必要がある。
希土類金属の保管方法としては、大気との接触を避けるために鉱物性油中での保管が一般的であるが、スパッタリングターゲットとして使用する場合、使用前に鉱物油を取り除くため洗浄する必要がある。ところが、前記のような酸素、水分、二酸化炭素との反応性から洗浄自体が難しいという問題がある。
従って、通常、真空パックによる保管・梱包することが必要となる。ところが、真空パックをした状態でも、使用するフィルムを透過するわずかな水分によっても、酸化・水酸化による粉化が進行するので、スパッタリングターゲットとして使用可能な状態での長期間の保管が困難であった。 However, even if a lanthanum sputtering target is produced, it is oxidized in the air in a short time as described above. In general, a stable oxide film is formed on the surface of a metal target. However, since it is usually very thin, it peels off at the initial stage of sputtering and does not significantly affect the sputtering characteristics. However, in the lanthanum sputtering target, the oxide film becomes thick, the electric conductivity is lowered, and the sputtering is defective.
Also, if left in the air for a long time, it reacts with the moisture in the air and is covered with a white powder of hydroxide, eventually resulting in a powdered state, and normal sputtering is not possible Even it happens. For this reason, it is necessary to vacuum-pack or cover with oils and fats immediately after producing the target, and to take measures to prevent oxidation and hydroxylation.
As a rare earth metal storage method, it is common to store in mineral oil in order to avoid contact with the atmosphere, but when used as a sputtering target, it is necessary to clean the mineral oil before use. . However, there is a problem that cleaning itself is difficult due to the reactivity with oxygen, moisture, and carbon dioxide as described above.
Therefore, it is usually necessary to store and pack with a vacuum pack. However, even in a vacuum-packed state, even with a slight amount of moisture that permeates the film to be used, pulverization due to oxidation and hydroxylation proceeds, making it difficult to store for a long time in a usable state as a sputtering target. It was.
徳光永輔、外2名著、「High-k ゲート絶縁膜用酸化物材料の研究」電気学会電子材料研究会資料、Vol.6-13、Page.37-41、2001年9月21日発行
Eisuke Tokumitsu and 2 other authors, "Studies on oxide materials for high-k gate insulating films", Electrochemical Society of Japan, Materials for Electronic Materials, Vol. 6-13, Page. 37-41, issued on September 21, 2001
1)希土類金属又はこれらの酸化物からなるスパッタリングターゲットの保管方法であって、当該ターゲットの保管用の容器又はフィルム状のシールの中に、保管される希土類金属又はこれらの酸化物からなるターゲットと同じ希土類金属の酸化物を乾燥剤として導入し、前記保管用の容器又はフィルム状のシールを封止して保管することを特徴とする希土類金属又はその酸化物からなるターゲットの保管方法
2)希土類金属又はこれらの酸化物からなるターゲットの保管方法であって、当該ターゲットの保管用の容器又はフィルム状のシールの中に、保管される希土類金属又はこれらの酸化物ターゲット材料よりも、吸湿性が大きい希土類金属酸化物を乾燥剤として導入し、前記保管用の容器又はフィルム状のシールを封止して保管することを特徴とする希土類金属又はこれらの酸化物からなるターゲットの保管方法、を提供する。 The present invention
1) A method for storing a sputtering target comprising a rare earth metal or an oxide thereof, and a target comprising a rare earth metal or an oxide thereof stored in a container or film seal for storage of the target The same rare earth metal oxide is introduced as a desiccant, and the storage container or the film-like seal is sealed and stored. A method for storing a target comprising a metal or an oxide thereof, wherein the hygroscopic property is higher than that of a rare earth metal or an oxide target material stored in a container or film-like seal for storing the target. A large rare earth metal oxide is introduced as a desiccant, and the container for storage or the film-like seal is sealed and stored. Target storage method of a rare earth metal or an oxide thereof, characterized in, provides.
3)2種以上の希土類金属又はこれらの酸化物からなるターゲットの場合、吸湿性が最も大きい希土類金属酸化物を乾燥剤として用いることを特徴とする上記2)記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
4)封止保管する方法が、真空封止であることを特徴とする上記1)~3)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
5)封止保管する手段が、可撓性フィルムを用いた真空シールであることを特徴とする上記1)~4)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法、を提供する。 The present invention also provides:
3) In the case of a target composed of two or more kinds of rare earth metals or oxides thereof, the rare earth metal oxide having the highest hygroscopicity is used as a desiccant, or the rare earth metals or oxides thereof according to 2) above 4. A method for storing a target comprising 4) A method for carrying out sealing storage is vacuum sealing, wherein the target comprising a rare earth metal or oxide thereof according to any one of 1) to 3) above is characterized. 5. Storage method 5) The rare earth metal or oxide thereof according to any one of 1) to 4) above, wherein the sealed storage means is a vacuum seal using a flexible film. A method for storing a target.
6)封止保管する方法が、露点-80°C以下の不活性ガスを封入して封止することを特徴とする上記1)~5)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
7)乾燥剤として用いる上記希土類金属酸化物を、封止される際に生じる空間に載置又は充填することを特徴とする上記1)~6)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
8)上記ターゲットを構成する希土類金属が、La又はLaを含有することを特徴とする上記1)~7)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
9)乾燥剤として用いる上記希土類金属酸化物が、La酸化物であることを特徴とする上記1)~8)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法
10)封止保管に使用する可撓性フィルムの水分透過量又は容器の外部からの水分侵入量が、0.1g/m2・24h以下であることを特徴とする上記1)~9)のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法、を提供する。 Furthermore, the present invention provides
6) The rare earth metal according to any one of 1) to 5) above, wherein these are sealed by sealing with an inert gas having a dew point of −80 ° C. or lower. 7. Method for storing a target made of oxide 7) Any one of 1) to 6) above, wherein the rare earth metal oxide used as a desiccant is placed or filled in a space generated during sealing. 8. A method for storing a target comprising the rare earth metal or oxide thereof according to any one of 8) to 8), wherein the rare earth metal constituting the target contains La or La. 9. A method for storing a target comprising a rare earth metal or an oxide thereof according to 9), wherein the rare earth metal oxide used as a desiccant is a La oxide. Noble earth described in Metal or moisture intrusion of external moisture permeation or container flexible film storage method 10) used to seal storage target made of these oxides is the following 0.1g / m 2 · 24h A method for storing a target comprising the rare earth metal or oxide thereof according to any one of 1) to 9) above is provided.
ところがランタンよりもランタン酸化物の方が、より吸湿性が高いことを逆に利用し、ランタンターゲットを保管する際に、ランタン酸化物(粉末、板・ブロックなどの焼結体)を、ターゲット表面にまぶしたり、載せたり、置いたりすることにより、ランタンターゲット本体の酸化・水酸化を防止するものである。
また、ランタン酸化物ターゲットを保管する場合には、より表面積の多い粉末、顆粒状のランタン酸化物を封入することにより、より効果的に水分を吸収、除去することが出来るため、ターゲットの水酸化による劣化を防止することが出来る。 It is known that rare earths, particularly lanthanum and lanthanum oxides, are extremely hygroscopic (reactive with moisture). Therefore, until now, it has been a problem to prevent lanthanum and lanthanum oxide from absorbing moisture below or to store them in an environment with little moisture.
However, lanthanum oxide is more hygroscopic than lanthanum, and when storing lanthanum targets, lanthanum oxide (sintered powder, plates, blocks, etc.) It is intended to prevent oxidation and hydroxylation of the lanthanum target body by applying, placing, or placing on the lantern.
In addition, when storing a lanthanum oxide target, it is possible to absorb and remove moisture more effectively by encapsulating a powder with a larger surface area and granular lanthanum oxide. It is possible to prevent deterioration due to.
このとき、ランタン酸化物が水分と反応して水酸化し粉末化してターゲット表面に付着したとしても、同一金属の化合物であり、かつ粉末であるため、除去が容易であることから、汚染の原因とならない。この点が他の金属から成る乾燥剤を使用する場合に比べて顕著な優位点である。 That is, the method for storing a target comprising a rare earth metal or an oxide thereof according to the present invention is the same as the rare earth metal stored in a storage container or a film-like seal. An oxide is introduced as a desiccant.
At this time, even if the lanthanum oxide reacts with water to be hydroxylated and powdered and adheres to the target surface, it is a compound of the same metal and is a powder, so it can be easily removed, causing contamination. Not. This is a significant advantage over the use of desiccants made of other metals.
2種以上の希土類金属又はそれらの酸化物からなるターゲットの場合、吸湿性が最も大きい希土類金属酸化物を乾燥剤として用いることもできる。 In addition, when contamination with other rare earth metals is not particularly problematic, a rare earth metal oxide that has higher hygroscopicity than the stored rare earth metal or its oxide target material is used as a desiccant for target storage. It can be introduced into a container or film-like seal, and the storage container or film-like seal can be sealed and stored.
In the case of a target composed of two or more kinds of rare earth metals or oxides thereof, a rare earth metal oxide having the highest hygroscopicity can also be used as a desiccant.
上記においては、真空封止について説明したが、保管する方法として、露点-80°C以下の不活性ガスを封入して封止することもできる。いずれも外気の侵入を防ぐものである。 About the method of sealing and storing, it is more preferable to prevent outside air from entering as much as possible, and as one of the methods, vacuum sealing can be used. Further, when vacuum-sealing and storing, it is desirable to replace the inside of the container or film-like seal once with an inert gas having a dew point of −80 ° C. or lower and then vacuum-seal. As a means for sealing and storing, a flexible film can be used, and this can be vacuum-sealed as a sealed bag.
In the above description, vacuum sealing has been described. However, as a storage method, an inert gas having a dew point of −80 ° C. or lower can be sealed and sealed. Both prevent outside air from entering.
一般に、ターゲットはバッキングプレートに接合されるが、これを例えば、可撓性フィルムを用い、これを密閉状の袋として真空シールする場合には、どうしてもターゲットはバッキングプレートの間に段差ができ、空隙が発生し易い。このような空隙には、外気が貯留し易くなる。そして、そこからターゲットの粉状化が進み易くなる。このような段差又は空隙に、乾燥剤となる希土類酸化物を充填することが望ましい。
この乾燥剤となる希土類酸化物は、この意味で表面積が大きい粉末又は顆粒状が良いことは理解できるであろう。しかし、外気が貯留し易い場所に、希土類酸化物の小塊を置くだけでも、効果がある。
また、希土類酸化物とターゲットは直接触れるように置くのが最も効果的であるが、ターゲット表面への粉末の附着は、スパッタリング中のパーティクル発生の原因となり得る。そのような場合は、一般的な乾燥剤のように、透湿性のフィルムにパックした状態で封入しても十分効果がある。 In this way, it shuts off from the outside air and suppresses the entry of moisture in the outside air as much as possible, but even if there is a slight intrusion, the rare earth oxide used as a desiccant is placed in the space generated when sealed or By filling, it becomes possible to suppress hydroxylation of the target body.
In general, the target is bonded to the backing plate. For example, when using a flexible film and vacuum-sealing it as a sealed bag, the target inevitably has a step between the backing plate, and the gap Is likely to occur. In such a gap, the outside air is easily stored. And it becomes easy to advance powdering of the target from there. It is desirable to fill such a step or void with a rare earth oxide serving as a desiccant.
It will be understood that the rare earth oxide serving as the desiccant is preferably a powder or granule having a large surface area in this sense. However, simply placing a rare earth oxide blob in a place where the outside air can easily be stored is effective.
Moreover, it is most effective to place the rare earth oxide and the target in direct contact with each other, but the adhesion of the powder to the surface of the target may cause generation of particles during sputtering. In such a case, as with a general desiccant, even if sealed in a moisture-permeable film, it is sufficiently effective.
封止保管に使用する可撓性フィルムの水分透過量又は容器の外部からの水分侵入量を、0.1g/m2・24h以下とし、極力水分の浸入を防ぐことも、希土類金属又はその酸化物からなるターゲットの保管方法として、重要である。
封止保管に使用する可撓性フィルムの好適な例と、それ以外の例を表1に示す。この表1からは、GXバリア(商品名)以上の特性を持つものが有効である。表1に示すように、GXバリア(商品名)とAlフォイル入り袋が好適である。表1は代表的な例を示すものであり、上記の条件を満たすものであれば、他の可撓性フィルムを使用できることは言うまでも無い。 In the method for storing a target of the present invention target, the rare earth metal constituting the target is particularly effective for a lanthanum target or a target containing lanthanum. The rare earth oxide used as the desiccant is lanthanum oxide. Although this is an irony story, as a method of storing a target made of rare earth metal or its oxide, lanthanum oxide, which is most easily hydroxylated, is the most effective in suppressing the hydroxylation of a target made of rare earth metal or its oxide. It is expensive.
The moisture permeation amount of the flexible film used for sealed storage or the moisture intrusion amount from the outside of the container should be 0.1 g / m 2 · 24 h or less to prevent moisture from entering as much as possible. It is important as a method for storing targets made of objects.
Table 1 shows preferable examples of the flexible film used for sealed storage and other examples. From Table 1, those having characteristics more than GX barrier (trade name) are effective. As shown in Table 1, a GX barrier (trade name) and a bag containing Al foil are suitable. Table 1 shows typical examples, and it goes without saying that other flexible films can be used as long as the above conditions are satisfied.
Laターゲットを真空パックし、La酸化物粉末を表面と側面に薄く充填した場合の例である。この具体例を、図1に示す。
図1に示すように、真空パックのフィルムとLaターゲットとの間に酸化ランタンの層が存在することにより、真空パック内側に残留している水分及び、フィルムを透過してくる水分は酸化ランタン粉末に吸収され、水酸化ランタンとして固定されるため、Laターゲット表面が水分と反応して水酸化物となって粉化する現象の防止に有効である。 Example 1
In this example, the La target is vacuum-packed, and La oxide powder is thinly filled on the surface and side surfaces. A specific example is shown in FIG.
As shown in FIG. 1, the presence of the lanthanum oxide layer between the vacuum pack film and the La target allows moisture remaining inside the vacuum pack and moisture passing through the film to be lanthanum oxide powder. And is fixed as lanthanum hydroxide, which is effective in preventing the phenomenon that the surface of the La target reacts with moisture and becomes hydroxide to be pulverized.
Laターゲットを真空パックし、La酸化物粉末を(シリカゲルの袋のように)BPとの段差の空間に置いた例である。この具体例を、図2に示す。
図2に示すように、真空パックにおいて、わずかに残る空間に残留する水分をLa酸化物が吸収、水酸化ランタンとして固定するため、Laターゲットが水分と反応して水酸化物となって粉化する現象の防止に有効である。 (Example 2)
This is an example in which a La target is vacuum-packed and La oxide powder is placed in a stepped space from BP (like a silica gel bag). A specific example is shown in FIG.
As shown in FIG. 2, in the vacuum pack, La oxide absorbs moisture remaining in the slightly remaining space and fixes it as lanthanum hydroxide, so that the La target reacts with moisture to become hydroxide and powder. This is effective in preventing the phenomenon that occurs.
金属製の容器内にLa酸化物ターゲットを設置し、該ターゲットの周囲にLa酸化物粉末で充填した後、周囲の空気をいったん露点-80°C以下のアルゴンで置換し、さらにそれを真空封止した例の具体例を図3に示す。
図3に示すように、真空にひいた後に残留する水分を酸化ランタンが吸収し、水酸化ランタンとして固定するため、Laが水分と反応し水酸化物となって粉化する現象の防止に有効である。 (Example 3)
A La oxide target is placed in a metal container, and the target is filled with La oxide powder. Then, the surrounding air is temporarily replaced with argon having a dew point of −80 ° C. or lower, and then vacuum sealed. A specific example of the stopped example is shown in FIG.
As shown in FIG. 3, since lanthanum oxide absorbs moisture remaining after being evacuated and fixes it as lanthanum hydroxide, it is effective in preventing the phenomenon that La reacts with moisture to become hydroxide and powder. It is.
金属製の容器内にLaとErからなる金属合金ターゲットと配置し、次に該ターゲットとBPとの段差に焼結したLa酸化物のブロックを置き、容器内の空気を露点-80°C以下のアルゴンガスで置換した後、真空引きした例である。
図4に示すように、真空にひいた後に残留する水分を酸化ランタンが吸収し、水酸化ランタンとして固定するため、Laが水分と反応し水酸化物となって粉化する現象の防止に有効である。 Example 4
A metal alloy target composed of La and Er is placed in a metal container, and then a sintered La oxide block is placed on the step between the target and BP, and the air in the container has a dew point of -80 ° C or less. This is an example of evacuation after replacement with argon gas.
As shown in FIG. 4, lanthanum oxide absorbs moisture remaining after being evacuated and is fixed as lanthanum hydroxide, which is effective in preventing the phenomenon that La reacts with moisture to form hydroxide and powder. It is.
Laターゲットをフィルムで真空封止した場合である。この具体例を図5に示す。図5に示すように、真空パックフィルムとターゲットの間に出来た空間に僅かに残留している水分とLaターゲット反応して、ランタン水酸化物になり、粉化した。 (Comparative Example 1)
This is a case where the La target is vacuum-sealed with a film. A specific example is shown in FIG. As shown in FIG. 5, the La target reacted with the water slightly remaining in the space formed between the vacuum pack film and the target to become lanthanum hydroxide and powdered.
Laターゲットをフィルムで真空封止し、乾燥剤として(シリカゲル)をおいた場合である。この具体例を図6に示す。
図6に示すように、シリカゲルを置いた場合は、シリカゲルのない場合よりも早く粉化した。これは、シリカゲルが吸着している水分が脱離し、真空パックフィルム中に放出されるため、水分とLaとの反応が促進されてランタン水酸化物になったと考えられる。このことから、一般に乾燥剤として使用するシリカゲルは、希土類金属又は希土類金属酸化物の粉化現象の防止には役に立たず、むしろ好ましくないことが分かる。 (Comparative Example 2)
This is a case where the La target is vacuum-sealed with a film and (silica gel) is placed as a desiccant. A specific example is shown in FIG.
As shown in FIG. 6, when silica gel was placed, it was pulverized faster than when no silica gel was present. This is presumably because the moisture adsorbed by the silica gel was desorbed and released into the vacuum pack film, so that the reaction between moisture and La was promoted to lanthanum hydroxide. This indicates that silica gel generally used as a desiccant is not useful for preventing the rare earth metal or rare earth metal oxide powdering phenomenon, and is rather undesirable.
この例は、La2O3ターゲットをフィルムで真空封止した場合である。この具体例を図7に示す。図7に示すように、真空パック内の、わずかに残る空間に残留する水分をLa酸化物(La2O3)が吸収、水酸化ランタンとして固定するため、La2O3ターゲットが水分と反応して水酸化物となって粉化する。 (Comparative Example 3)
In this example, the La 2 O 3 target is vacuum-sealed with a film. A specific example is shown in FIG. As shown in FIG. 7, La oxide (La 2 O 3 ) absorbs moisture remaining in the slightly remaining space in the vacuum pack and fixes it as lanthanum hydroxide, so that the La 2 O 3 target reacts with moisture. It becomes a hydroxide and is pulverized.
本発明の希土類金属又はその酸化物からなるターゲットの保管方法は、保管用の容器又はフィルム状のシールの中に、保管される希土類金属又はその酸化物からなるターゲットと同じ希土類金属の酸化物を乾燥剤として導入するものである。これによって、空気中の水分と反応して水酸化物の白い粉で覆われるという状態を効果的に抑制できる。
これによって、メタルゲート材料、高誘電率材料(High-k)等の、電子材料として、ターゲットの安定供給が可能となり、産業上極めて有用である。 Conventionally, if a rare earth metal and rare earth metal oxide sputtering target is left in the air for a long time, it will react with moisture in the air and will be covered with white hydroxide powder. However, the method for storing a target comprising a rare earth metal or its oxide according to the present invention does not cause such a problem.
In the method for storing a target comprising a rare earth metal or oxide thereof according to the present invention, the same rare earth metal oxide as the target comprising a rare earth metal or oxide stored therein is placed in a storage container or a film-like seal. Introduced as a desiccant. This effectively suppresses the state of reacting with moisture in the air and being covered with hydroxide white powder.
This makes it possible to stably supply a target as an electronic material such as a metal gate material and a high dielectric constant material (High-k), which is extremely useful industrially.
Claims (10)
- 希土類金属又はこれらの酸化物からなるターゲットの保管方法であって、当該ターゲットの保管用の容器又はフィルム状のシールの中に、保管される希土類金属又はこれらの酸化物からなるターゲットと同じ希土類金属の酸化物を乾燥剤として導入し、前記保管用の容器又はフィルム状のシールを封止して保管することを特徴とする希土類金属又はこれらの酸化物からなるターゲットの保管方法。 A method for storing a target comprising a rare earth metal or an oxide thereof, wherein the rare earth metal is the same as the target comprising a rare earth metal or an oxide stored in a container or film seal for storing the target. A storage method of a target comprising a rare earth metal or an oxide thereof, wherein the oxide is introduced as a desiccant and the container for storage or the film-like seal is sealed and stored.
- 希土類金属又はこれらの酸化物からなるターゲットの保管方法であって、当該ターゲットの保管用の容器又はフィルム状のシールの中に、保管される希土類金属又はこれらの酸化物ターゲット材料よりも、吸湿性が大きい希土類金属酸化物を乾燥剤として導入し、前記保管用の容器又はフィルム状のシールを封止して保管することを特徴とする希土類金属又はこれらの酸化物からなるターゲットの保管方法。 A method for storing a target comprising a rare earth metal or an oxide thereof, wherein the target is stored in a container or a film-like seal, and is more hygroscopic than a rare earth metal or an oxide target material stored therein. A method for storing a target comprising a rare earth metal or an oxide thereof, wherein a rare earth metal oxide having a large particle size is introduced as a desiccant and the container or film-like seal for storage is sealed and stored.
- 2種以上の希土類金属又はこれらの酸化物からなるターゲットの場合、吸湿性が最も大きい希土類金属の酸化物を乾燥剤として用いることを特徴とする請求項2記載の希土類金属又はこれらの酸化物ターゲットの保管方法。 3. The rare earth metal or oxide target according to claim 2, wherein a rare earth metal oxide having the highest hygroscopicity is used as a desiccant in the case of a target composed of two or more rare earth metals or oxides thereof. Storage method.
- 封止保管する方法が、真空封止であることを特徴とする請求項1~3のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The method for storing a target comprising a rare earth metal or an oxide thereof according to any one of claims 1 to 3, wherein the sealed storage method is vacuum sealing.
- 封止保管する手段が、可撓性フィルムを用いた真空シールであることを特徴とする請求項1~4のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The method for storing a target comprising a rare earth metal or an oxide thereof according to any one of claims 1 to 4, wherein the means for sealing and storing is a vacuum seal using a flexible film.
- 封止保管する方法が、露点-80°C以下の不活性ガスを封入して封止することを特徴とする請求項1~5のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The rare earth metal or oxide thereof according to any one of claims 1 to 5, wherein the sealed storage is performed by sealing with an inert gas having a dew point of -80 ° C or lower. The target storage method.
- 乾燥剤として用いる上記希土類金属酸化物を、封止される際に生じる空間に載置又は充填することを特徴とする請求項1~6のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 7. The rare earth metal or oxide thereof according to any one of claims 1 to 6, wherein the rare earth metal oxide used as a desiccant is placed or filled in a space generated when sealed. A target storage method consisting of:
- 上記ターゲットを構成する希土類金属が、La又はLaを含有することを特徴とする請求項1~7のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The method for storing a target comprising a rare earth metal or an oxide thereof according to any one of claims 1 to 7, wherein the rare earth metal constituting the target contains La or La.
- 乾燥剤として用いる上記希土類金属酸化物が、La酸化物であることを特徴とする請求項1~8のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The method for storing a target comprising a rare earth metal or an oxide thereof according to any one of claims 1 to 8, wherein the rare earth metal oxide used as a desiccant is La oxide.
- 封止保管に使用する可撓性フィルムの水分透過量又は容器の外部からの水分侵入量が、0.1g/m2・24h以下であることを特徴とする請求項1~9のいずれか一項に記載の希土類金属又はこれらの酸化物からなるターゲットの保管方法。 The moisture permeation amount of the flexible film used for sealed storage or the moisture penetration amount from the outside of the container is 0.1 g / m 2 · 24 h or less, characterized in that it is not more than one. A method for storing a target comprising the rare earth metal or the oxide thereof according to item 2.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801435671A CN102203314B (en) | 2008-10-29 | 2009-10-23 | Method for storing target comprising rare earth metal or oxide thereof |
US13/119,377 US20110162322A1 (en) | 2008-10-29 | 2009-10-23 | Method for Storing Target Comprising Rare Earth Metal or Oxide Thereof |
KR1020117006460A KR101290941B1 (en) | 2008-10-29 | 2009-10-23 | Method for storing target comprising rare earth metal or oxide thereof |
JP2010519298A JP5032662B2 (en) | 2008-10-29 | 2009-10-23 | Storage method of target comprising rare earth metal or oxide thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008277725 | 2008-10-29 | ||
JP2008-277725 | 2008-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050409A1 true WO2010050409A1 (en) | 2010-05-06 |
Family
ID=42128772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068248 WO2010050409A1 (en) | 2008-10-29 | 2009-10-23 | Method for storing target comprising rare earth metal or oxide thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110162322A1 (en) |
JP (1) | JP5032662B2 (en) |
KR (1) | KR101290941B1 (en) |
CN (1) | CN102203314B (en) |
TW (1) | TWI472458B (en) |
WO (1) | WO2010050409A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011062003A1 (en) | 2009-11-17 | 2011-05-26 | Jx日鉱日石金属株式会社 | Method for storing lanthanum oxide target, and vacuum-packed lanthanum oxide target |
JP2011122241A (en) * | 2009-11-13 | 2011-06-23 | Semiconductor Energy Lab Co Ltd | Method for packaging target material and method for mounting target |
WO2012117834A1 (en) | 2011-03-01 | 2012-09-07 | Jx日鉱日石金属株式会社 | Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101910431B (en) * | 2007-12-28 | 2015-01-21 | Jx日矿日石金属株式会社 | Highly pure lanthanum, sputtering target comprising highly pure lanthanum, and metal gate film mainly composed of highly pure lanthanum |
WO2010004862A1 (en) * | 2008-07-07 | 2010-01-14 | 日鉱金属株式会社 | Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object |
KR101222789B1 (en) * | 2008-07-07 | 2013-01-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Lanthanum oxide-based sintered object, sputtering target comprising the sintered object, process for producing lanthanum oxide-based sintered object, and process for sputtering target production using the process |
JP5497740B2 (en) | 2009-03-27 | 2014-05-21 | Jx日鉱日石金属株式会社 | Lanthanum target for sputtering |
JP5456763B2 (en) | 2009-03-31 | 2014-04-02 | Jx日鉱日石金属株式会社 | Lanthanum target for sputtering |
CA2825301C (en) | 2011-01-21 | 2015-05-12 | Jx Nippon Mining & Metals Corporation | Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component |
CN102417042A (en) * | 2011-07-25 | 2012-04-18 | 武汉科技大学 | Packaging and storing method for powder standard sample/material easy to hydrate |
CN104309865A (en) * | 2014-05-30 | 2015-01-28 | 微密科技(无锡)有限公司 | Particle contamination prevention packaging method |
JP6178455B1 (en) * | 2016-03-30 | 2017-08-09 | Jx金属株式会社 | Cylindrical sputtering target and packing method thereof |
JP6348940B2 (en) * | 2016-09-21 | 2018-06-27 | Jx金属株式会社 | Cylindrical sintered body and packing method thereof |
JP6885981B2 (en) * | 2019-03-29 | 2021-06-16 | Jx金属株式会社 | How to make and transport the packaging of the sputtering target |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159372A (en) * | 1988-12-12 | 1990-06-19 | Nec Corp | Protective vessel for sputtering target |
JPH08246145A (en) * | 1995-03-13 | 1996-09-24 | Vacuum Metallurgical Co Ltd | Preserving vessel and preserving method for dielectric target |
JP2002511115A (en) * | 1997-05-02 | 2002-04-09 | マテリアル リサーチ コーポレーション | Method for minimizing particles generated during sputtering by shortening time required for sputtering burn-in, and target assembly used at this time |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4427992A (en) * | 1975-12-17 | 1984-01-24 | Motorola, Inc. | Method for incorporating a desiccant in a semiconductor package |
DE2927428C3 (en) * | 1979-07-06 | 1982-05-19 | Siemens AG, 1000 Berlin und 8000 München | Fluorescent |
JPH04231461A (en) * | 1990-12-27 | 1992-08-20 | Tosoh Corp | Protector for sputtering target and packaging method |
US5866263A (en) * | 1996-04-26 | 1999-02-02 | Semi-Alloys Company | Adsorbent lid construction |
JP2000073054A (en) * | 1998-08-31 | 2000-03-07 | Toyota Motor Corp | Antioxidant and method for using the same |
JP2001240959A (en) * | 1999-12-22 | 2001-09-04 | Mitsui Mining & Smelting Co Ltd | Packed high purity target |
TW546396B (en) * | 1999-12-22 | 2003-08-11 | Mitsui Mining & Smelting Co | Packed high purity target |
US6733882B2 (en) * | 2000-08-10 | 2004-05-11 | Shin-Etsu Chemical Co., Ltd. | Rare earth hydroxide and method for the preparation thereof |
US6390179B1 (en) * | 2000-11-08 | 2002-05-21 | Pcc Structurals, Inc. | Method for processing materials to increase slurry lifetime |
JP2002212718A (en) * | 2001-01-17 | 2002-07-31 | Sumitomo Metal Mining Co Ltd | Target with protective film and surface treatment method |
JP3887253B2 (en) * | 2002-03-19 | 2007-02-28 | 日鉱金属株式会社 | Transport box for sputtering target |
EP1674396A4 (en) * | 2003-10-15 | 2007-08-22 | Nippon Mining Co | Packaging device and packaging method for hollow cathode type spattering target |
US7498015B1 (en) * | 2004-02-27 | 2009-03-03 | Kovio, Inc. | Method of making silane compositions |
KR20080031252A (en) * | 2005-06-03 | 2008-04-08 | 프레자코르, 인크. | Compositions comprising elemental metals and uses therefor |
JP2009529579A (en) * | 2006-03-10 | 2009-08-20 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate and tantalate dielectric films |
US8328915B2 (en) * | 2006-06-29 | 2012-12-11 | Mitsui Mining & Smelting Co., Ltd. | Dehumidifying deoxidizer |
KR100778518B1 (en) * | 2006-12-06 | 2007-11-22 | 삼성에스디아이 주식회사 | Organic light emitting display device |
EP2091096A1 (en) * | 2008-02-15 | 2009-08-19 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Encapsulated electronic device and method of manufacturing |
KR20120023725A (en) * | 2009-11-17 | 2012-03-13 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Method for storing lanthanum oxide target, and vacuum-packed lanthanum oxide target |
KR20130109170A (en) * | 2011-03-01 | 2013-10-07 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target |
CN102312115B (en) * | 2011-09-23 | 2012-12-26 | 太原理工大学 | Preparation method for lanthana alterant |
-
2009
- 2009-10-23 US US13/119,377 patent/US20110162322A1/en not_active Abandoned
- 2009-10-23 JP JP2010519298A patent/JP5032662B2/en active Active
- 2009-10-23 KR KR1020117006460A patent/KR101290941B1/en active IP Right Grant
- 2009-10-23 WO PCT/JP2009/068248 patent/WO2010050409A1/en active Application Filing
- 2009-10-23 CN CN2009801435671A patent/CN102203314B/en active Active
- 2009-10-29 TW TW98136621A patent/TWI472458B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159372A (en) * | 1988-12-12 | 1990-06-19 | Nec Corp | Protective vessel for sputtering target |
JPH08246145A (en) * | 1995-03-13 | 1996-09-24 | Vacuum Metallurgical Co Ltd | Preserving vessel and preserving method for dielectric target |
JP2002511115A (en) * | 1997-05-02 | 2002-04-09 | マテリアル リサーチ コーポレーション | Method for minimizing particles generated during sputtering by shortening time required for sputtering burn-in, and target assembly used at this time |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011122241A (en) * | 2009-11-13 | 2011-06-23 | Semiconductor Energy Lab Co Ltd | Method for packaging target material and method for mounting target |
US8753491B2 (en) | 2009-11-13 | 2014-06-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for packaging target material and method for mounting target |
WO2011062003A1 (en) | 2009-11-17 | 2011-05-26 | Jx日鉱日石金属株式会社 | Method for storing lanthanum oxide target, and vacuum-packed lanthanum oxide target |
EP2503020A1 (en) * | 2009-11-17 | 2012-09-26 | JX Nippon Mining & Metals Corporation | Method for storing lanthanum oxide target, and vacuum-packed lanthanum oxide target |
EP2503020A4 (en) * | 2009-11-17 | 2013-07-24 | Jx Nippon Mining & Metals Corp | Method for storing lanthanum oxide target, and vacuum-packed lanthanum oxide target |
US8911600B2 (en) | 2009-11-17 | 2014-12-16 | Jx Nippon Mining & Metals Corporation | Method of storing lanthanum oxide target, and vacuum-sealed lanthanum oxide target |
WO2012117834A1 (en) | 2011-03-01 | 2012-09-07 | Jx日鉱日石金属株式会社 | Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target |
EP2682497A1 (en) * | 2011-03-01 | 2014-01-08 | JX Nippon Mining & Metals Corporation | Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target |
EP2682497A4 (en) * | 2011-03-01 | 2014-08-13 | Jx Nippon Mining & Metals Corp | Method for storing metallic lanthanum target, vacuum-sealed metallic lanthanum target, and thin film formed by sputtering using metallic lanthanum target |
JP5583777B2 (en) * | 2011-03-01 | 2014-09-03 | Jx日鉱日石金属株式会社 | Method for storing metallic lanthanum target and vacuum sealed metallic lanthanum target |
JP2014167167A (en) * | 2011-03-01 | 2014-09-11 | Jx Nippon Mining & Metals Corp | Storage method of metal lanthanum target, vacuum-sealed metal lanthanum target, and thin film formed by sputtering using metal lanthanum target |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010050409A1 (en) | 2012-03-29 |
KR20110047235A (en) | 2011-05-06 |
JP5032662B2 (en) | 2012-09-26 |
US20110162322A1 (en) | 2011-07-07 |
CN102203314A (en) | 2011-09-28 |
KR101290941B1 (en) | 2013-07-29 |
TW201016551A (en) | 2010-05-01 |
CN102203314B (en) | 2013-07-17 |
TWI472458B (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5032662B2 (en) | Storage method of target comprising rare earth metal or oxide thereof | |
JP5234860B2 (en) | Method for storing lanthanum oxide target, sputtering target comprising lanthanum oxide, and method for forming lanthanum oxide thin film | |
EP1851050B1 (en) | Flexible multi-layered getter | |
KR101476365B1 (en) | Rechargeable lithium batteries comprising means for the sorption of harmful substances in the form of a multilayer polymeric sheet | |
CN112020571B (en) | Method for manufacturing package of sputtering target and transportation method | |
EP2990712B1 (en) | Insulator including gas adsorbent | |
EP1843076A1 (en) | Thermal insulator | |
JP5876097B2 (en) | Metal lanthanum sputtering target | |
JP6178455B1 (en) | Cylindrical sputtering target and packing method thereof | |
JP2631055B2 (en) | Sorption method of residual gas by non-evaporable barium getter alloy | |
JP2004059154A (en) | Sealing material packed body and method of packing sealing material | |
WO2006050924A1 (en) | Method of manufacturing highly moisture-sensitive electronic device elements | |
JPH04268085A (en) | Method for preserving oxidizable powder | |
JP6348940B2 (en) | Cylindrical sintered body and packing method thereof | |
EP1657747A1 (en) | Method of manufacturing highly moisture-sensitive electronic device elements | |
Lee et al. | Application of liquid desiccant for enhanced lifetime of active matrix organic light emitting diodes | |
JP2017179585A (en) | Cylindrical sputtering target and packaging method thereof | |
JPH05195730A (en) | Hollow valve for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980143567.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010519298 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823520 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117006460 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09823520 Country of ref document: EP Kind code of ref document: A1 |