WO2010048833A1 - 硅电容麦克风 - Google Patents

硅电容麦克风 Download PDF

Info

Publication number
WO2010048833A1
WO2010048833A1 PCT/CN2009/073551 CN2009073551W WO2010048833A1 WO 2010048833 A1 WO2010048833 A1 WO 2010048833A1 CN 2009073551 W CN2009073551 W CN 2009073551W WO 2010048833 A1 WO2010048833 A1 WO 2010048833A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover member
condenser microphone
silicon condenser
microphone according
hole
Prior art date
Application number
PCT/CN2009/073551
Other languages
English (en)
French (fr)
Inventor
宋青林
庞胜利
谷芳辉
宋锐锋
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2008101582786A external-priority patent/CN101394687A/zh
Priority claimed from CN200920018529.0U external-priority patent/CN201383873Y/zh
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Publication of WO2010048833A1 publication Critical patent/WO2010048833A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to a silicon condenser microphone, and more particularly to a silicon condenser microphone which can greatly increase the rear cavity space of a MEMS acoustic-electric conversion chip by providing a gas permeable passage.
  • Patent Document 1 discloses a small-sized silicon condenser microphone and a method of manufacturing the same, wherein the silicon capacitor microphone comprises: a casing having a sound hole through which sound is transmitted; and a wiring board.
  • the outer casing and the circuit board are combined into a cavity, and a MEMS (Micro Electro Mechanical System) acoustic-electric conversion chip and an integrated circuit are mounted on the circuit board, and the MEMS acoustic-electric conversion chip and the integrated circuit can jointly convert the sound signal into an electrical signal.
  • the silicon condenser microphone is characterized in that a certain depression is formed by a process such as etching on a wiring board at a position below the MEMS acoustic-electric conversion chip.
  • the sound signal is applied to the product structure above the MEMS acoustic-electric conversion chip (the sound hole is disposed at a position other than the MEMS acoustic-electric conversion chip, and the externally transmitted sound signal acts on the MEMS acoustic-electric conversion chip), which can be increased.
  • the air space under the M EMS Acoustic Conversion Chip (commonly referred to in the industry as "Back Cavity - Back"
  • Patent Document 2 discloses another silicon condenser microphone which can increase the back cavity, and its structure is as shown in FIG. 1.
  • a cover 150 with a middle protrusion is mounted on the circuit board 140 to convert the MEMS acoustic electricity.
  • the chip is mounted on the central convex portion of the cover 150, and a vent hole is provided at a position corresponding to the central convex portion and the MEMS acoustic-electric conversion chip, so that a space formed between the circuit board 140 and the central convex portion of the cover 150 can be As a back cavity.
  • This structure of the silicon condenser microphone can increase the space of the rear cavity, but there is a problem that the overall height dimension of the silicon condenser microphone increases due to the use of the cover with the middle projection.
  • Patent Document 1 US Patent Publication US20020102004
  • Patent Document 2 International Patent Application Publication WO2007126179A1
  • the present invention has been made to solve the above problems in the prior art, and an object thereof is to provide a silicon condenser microphone which can greatly increase M EMS without increasing the height and plane size of the product.
  • the back cavity space of the acoustic-electric conversion chip is provided.
  • a silicon condenser microphone includes: a case; a circuit board mounted on a bottom of the case; and a cover member including a cover portion having a cavity and having one end open, and a through hole provided a horizontal extension portion provided on an upper surface of the circuit board; and a MEMS acoustic-electric conversion chip having a lower space mounted on an upper surface of the horizontal extension portion of the cover member and covering the through hole; a cover member and a MEMS acoustic-electric conversion chip are located in a space surrounded by the outer casing and the wiring board, and a joint portion of the cover member and the wiring board is disposed to communicate the cavity and the lower space a venting passage, the cover member completely covering the venting passage.
  • the gas permeable passage is constituted by a groove of a predetermined length provided on a surface of the circuit board.
  • the gas permeable passage is constituted by a groove of a predetermined length provided on a lower surface side of the horizontally extending portion of the lid member.
  • a frame-shaped sealing member having a predetermined thickness is provided between the wiring board and the cover member, and the ventilation passage is formed by the wiring board, the sealing member, and The space portion surrounded by the cover member is constituted, and the cavity and the through hole of the cover member are located within a range surrounded by the sealing member.
  • an integrated circuit chip is mounted on the upper surface of the lid portion of the cover member.
  • the air behind the MEMS acoustic-electric conversion chip can be effectively increased Space (back cavity). Moreover, since the MEMS acoustic-electric conversion chip is mounted on the horizontal extension of the cover member, the height dimension of the product is not greatly increased.
  • the height of the integrated circuit chip used in the silicon condenser microphone is usually lower than the height of the MEMS acoustic-electric conversion chip.
  • FIG. 1 is a view showing a specific structure of a silicon condenser microphone according to the prior art.
  • Fig. 2 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a first embodiment of the present invention.
  • Fig. 3 is an exploded perspective view showing a specific configuration of a silicon condenser microphone according to the first embodiment of the present invention.
  • Fig. 4 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a second embodiment of the present invention.
  • Fig. 5 is a bottom view of the cover member 3 in the silicon condenser microphone according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a third embodiment of the present invention.
  • Fig. 7 is an exploded perspective view showing a specific configuration of a silicon condenser microphone according to a third embodiment of the present invention.
  • Fig. 8 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a fourth embodiment of the present invention.
  • FIG. 9 is a bottom view of the horizontal extending portion 32 in the silicon condenser microphone according to the fourth embodiment of the present invention.
  • Fig. 10 is a cross-sectional view showing a specific configuration of another modification of the silicon condenser microphone according to the fourth embodiment of the present invention.
  • Fig. 11 is a bottom view of the horizontal extending portion 32 in the silicon condenser microphone of the other modification.
  • FIG. 12 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a fifth embodiment of the present invention.
  • Fig. 13 is an exploded perspective view showing a specific configuration of a silicon condenser microphone according to a fifth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a modified structure of a silicon condenser microphone according to the present invention.
  • Fig. 15 is a cross-sectional view showing another modified structure of the silicon condenser microphone according to the present invention.
  • 16 is a cross-sectional view showing still another modified structure of the silicon condenser microphone according to the present invention.
  • FIG. 17 is a cross-sectional view showing still another modified structure of the silicon condenser microphone according to the present invention.
  • the silicon condenser microphone according to the first embodiment includes: a casing 1 having a rectangular parallelepiped shape with a bottom open, and an acoustic hole 11 for receiving a sound signal at an upper portion of the casing 1;
  • the circuit board 2 is made of a resin material as a base material;
  • the cover member 3 includes a flat horizontal extension portion 32 and a rectangular parallelepiped cover portion 31 having an open end, and the inside of the cover portion 3 is a cavity structure.
  • the horizontal extending portion 32 is formed to extend horizontally outward from a lower end portion of one side surface of the cover portion 31, and a through hole 33 is provided near the center of the horizontal extending portion 32.
  • the circuit board 2 has a length and width dimension It is substantially equal to the length and width of the bottom of the outer casing 1, and is usually made of a resin material as a base material, and an elongated groove 21 as a gas permeable passage is opened on the side of the wiring board 2 bonded to the outer casing 1. .
  • the cover member 3 is attached to the upper surface of the circuit board 2 such that the cover member 3 completely covers the recess 21, the cover portion 31 of the cover member 3 covers a portion of the recess 21, and the through hole 33 Located above the groove 21. Thus, a cavity 34 is formed between the cover portion 31 and the wiring board 2.
  • a MEMS acoustic-electric conversion chip 4 is mounted, a lower space 41 is provided below the MEMS acoustic-electric conversion chip 4, and the MEMS acoustic-electric conversion chip 4 is provided.
  • the through hole 33 in the horizontal extension 32 is covered. Thereby, the lower space 41 of the MEMS acoustic-electric conversion chip 4 communicates with the recess 21 of the wiring board 2 through the through hole 33 in the cover member 3, and further communicates with the cavity 34 of the cover member 3.
  • the peripheral portion and the horizontal extending portion of the opening portion of the cover member 3 are attached to the wiring board 2, the peripheral portion of the lower end of the ME MS acoustic-electric conversion chip 4 is attached to the horizontally extending portion 32 of the cover member 3,
  • the communicating cavity 34, the groove 21, the through hole 33 and the lower space 41 form a closed space, so that the sealed space becomes the rear cavity of the MEMS acoustic-electric conversion chip 4 (Back
  • the lower space 41 of the MEMS acoustic-electric conversion chip 4 is naturally formed, the through-hole 33 and the recess 21 mainly serve as air communication, and the cavity 34 is a rear cavity (Back
  • the key factor for increase Through this design, the MEMS acoustic-electric conversion chip can be effectively increased. 4 rear air space (back cavity). Moreover, since the MEMS acoustic-electric conversion chip 4 is mounted on the horizontal extension 32 of the cover member 3, the height dimension of the product is not greatly increased.
  • the structure of the casing 1 and the MEMS acoustic-electric conversion chip 4 is the same as that of the first embodiment described above, and differs in the structure of the wiring board 2 and the cover member 3. Therefore, the description of the same configuration is omitted here, and the configuration different from the first embodiment will be mainly described.
  • FIG. 4 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a second embodiment of the present invention.
  • FIG. 5 is a bottom view showing the cover member 3 in the silicon condenser microphone.
  • an elongated groove 21 as a gas permeable passage is not formed on the upper surface of the wiring board 2, but a ventilating passage is formed by changing the structure of the cover member 3.
  • the cover member 3 includes a flat horizontal extending portion 32 and a rectangular parallelepiped cover portion 31 having an open end. The inside of the cover portion 31 is a cavity structure, and the horizontal extending portion 32 is a one from the cover portion 31.
  • the lower end portion of the side surface is formed to extend horizontally outward, and a through hole 33 is provided in the vicinity of the center of the horizontal extending portion 32.
  • a through hole 33 is provided in the vicinity of the center of the horizontal extending portion 32.
  • an elongated groove 36 having a predetermined depth is provided along the longitudinal direction of the horizontal extending portion 32, and the width of the groove 36 is at least not less than the width of the through hole 33.
  • the groove 36 is stopped from the opening portion of the cover member 3, passes through the through hole 33, and is stopped at a predetermined distance from the edge portion of the longitudinal extension portion 32 in the longitudinal direction, that is, the length of the groove 36 is smaller than that of the horizontal extension portion 32. length.
  • the cover member 3 of the above configuration is attached to the wiring board 2, and then the MEMS acoustic-electric conversion chip 4 having the lower space is attached and attached to the through hole 33 of the horizontally extending portion 32 of the cover member 3. .
  • the space between the groove 36 and the wiring board 2 constitutes a gas permeable passage.
  • the cavity 34 of the cover member 3, the recess 36, the through hole 33 and the space of the MEMS acoustic-electric conversion chip 4 communicate with each other to form a sealed space, so that the sealed space becomes the MEMS acoustic-electric conversion chip 4 Back volume.
  • the groove provided in the horizontal extension portion 32 of the cover member 3 is used instead of the groove provided on the upper surface of the wiring board 2 in the first embodiment. Therefore, it is also possible to effectively increase the air space (back cavity) behind the MEMS acoustic-electric conversion chip 4. Moreover, since the MEMS acoustic-electric conversion chip 4 is mounted on the horizontal extension 32 of the cover member 3, the height dimension of the product is not greatly increased. [44] In the structure of the cover member 3 shown in FIG. 5, the groove 36 has the same width as the through hole 33, but the width of the groove 36 may also be larger than the width of the through hole 33, and the above technical effect can also be achieved. .
  • the configuration of the casing 1, the wiring board 2, and the MEMS acoustic-electric conversion chip 4 is the same as that of the first embodiment described above, and differs in the structure of the cover member 3. Therefore, the description of the same configuration is omitted here, and the configuration different from the first embodiment will be mainly described.
  • Fig. 6 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a third embodiment of the present invention.
  • Fig. 7 is an exploded perspective view showing a specific configuration of the silicon condenser microphone.
  • the cover portion 31 and the horizontal extending portion 32 of the cover member 3 are separated from each other as compared with the silicon condenser microphone of the first embodiment.
  • the lid portion 31 has a rectangular parallelepiped structure in which the inside is a cavity and the lower side is open
  • the horizontally extending portion 32 is a flat plate structure in which at least the first through hole 33 and the second through hole 37 are provided at substantially the center portion in the width direction.
  • an elongated groove 21 as a gas permeable passage is formed on the upper surface of the wiring board 2, and the upper surface of the wiring board 2 having the groove 21 is pasted with a mounting length larger than the groove 21 The horizontal extension 32 of the length. Further, the cover portion 31 and the MEMS acoustic-electric conversion chip 4 are mounted on the upper surface of the horizontal extending portion 21.
  • the horizontal extension portion 32 of the above structure is affixed to the upper surface ⁇ of the wiring board 2 such that the first through hole 33 and the second through hole 37 of the horizontal extending portion 32 are located in the recess 21 of the wiring board 2 Above.
  • the cover portion 31 and the MEMS acoustic-electric conversion chip 4 are attached and mounted above the horizontal extending portion 32, and the cover portion 31 covers the second through hole 37, and the MEMS acoustic-electric conversion chip 4 covers the cover.
  • the first through hole 33 is affixed to the upper surface ⁇ of the wiring board 2 such that the first through hole 33 and the second through hole 37 of the horizontal extending portion 32 are located in the recess 21 of the wiring board 2 Above.
  • the cover portion 31 and the MEMS acoustic-electric conversion chip 4 are attached and mounted above the horizontal extending portion 32, and the cover portion 31 covers the second through hole 37, and the MEMS acoustic-electric conversion chip 4 covers the cover.
  • the first through hole 33 and the second through hole 37 are formed such that the lower space 4 1 of the MEMS acoustic-electric conversion chip 4, the groove 21 of the wiring board 2, and the inner cavity of the cover portion 31 are connected to each other to form A closed space which becomes the back volume of the MEMS acoustic-electric conversion chip 4.
  • the cover member 3 includes the cover portion 31 and the horizontal extending portion 32 of the separated structure. Therefore, it is also possible to effectively increase the air space (back cavity) behind the MEMS acoustic-electric conversion chip 4. Moreover, since the MEMS acoustic-electric conversion chip 4 is mounted on the horizontal extending portion 32, the height dimension of the product is not greatly increased.
  • FIG. 8 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a fourth embodiment of the present invention
  • FIG. 9 is a bottom view of the horizontal extending portion 32 in the silicon condenser microphone.
  • the elongated recess 21 as a horizontal venting passage is not formed on the upper surface of the wiring board 2, but at the horizontal extension of the cover member 3.
  • the lower surface of 32 forms a groove 36 of a predetermined length, the length of the groove 36 being larger than the distance between the first through hole 33 and the second through hole 37, and the width thereof is not less than the first through hole 33 and the second through hole
  • the width of the groove 37 is further communicated with the first through hole 33 and the second through hole 37. Further, as shown in Fig. 11, the first through hole 33 and the second through hole 37 are located in the recess 36 when viewed from the bottom.
  • the horizontally extending portion 32 of the cover member 3 of the above configuration is affixed and attached to the circuit board 2, and the cover portion 31 and the MEMS acoustic-electric conversion chip 4 are attached and mounted above the horizontally extending portion 32, and The cover portion 31 covers the second through hole 37, and the MEMS acoustic-electric conversion chip 4 covers the first through hole 33.
  • the lower space 41 of the MEMS acoustic-electric conversion chip 4, the recess 36 as the venting passage, and the inner cavity of the cover portion 31 are connected through the first through hole 33 and the second through hole 37 to form a
  • the sealed space becomes the back volume of the MEMS acoustic-electric conversion chip 4.
  • the groove 21 provided on the lower surface of the horizontal extending portion 32 of the cover member 3 is replaced by the groove 21 on the wiring board 2 in the third embodiment. Therefore, it is also possible to effectively increase the air space (back cavity) behind the MEMS acoustic-electric conversion chip 4. Moreover, since the MEMS acoustic-electric conversion chip 4 is mounted on the horizontal extension 32, the height dimension of the product is not greatly increased.
  • FIG. 10 is a cross-sectional view showing a specific configuration of another modification of the silicon condenser microphone according to the fourth embodiment of the present invention.
  • FIG. 11 is a horizontal extension portion 32 of the silicon condenser microphone according to the other modification. The bottom view.
  • the silicon condenser microphone of this modification since the area of the groove 36 provided on the horizontal extending portion 32 is large, the edge of the horizontal extending portion 32 is bent toward one side and contacts the surface of the wiring board 2, becoming similar.
  • a flat plate shape in order to ensure vibration even after the cover portion 31 and the MEMS acoustic-electric conversion chip 4 are mounted on the horizontally extending portion 32, one or more portions are provided near the center portion of the groove 36 of the horizontally extending portion 32.
  • Supporting bumps 38 for supporting the cover body 31 and the MEMS The horizontal extension 32 of the acoustic-electric conversion chip 4.
  • the support bumps 8 can also be arranged on the circuit board 2, as can the effect of supporting the horizontal extensions 32.
  • the structure differs from the structure of the first embodiment as described above in the structure of the wiring board 2 and the cover member 3. Therefore, the description of the same configuration will be omitted here, and the configuration different from the first embodiment will be mainly described.
  • FIG. 12 is a cross-sectional view showing a specific configuration of a silicon condenser microphone according to a fifth embodiment of the present invention.
  • FIG. 13 is an exploded perspective view showing a specific configuration of the silicon condenser microphone.
  • the cover member 3 is provided with the horizontal extending portion 32 provided in the cover member 3 in addition to the horizontal extending portion 32 in which the sound hole 33 is provided.
  • the bottom portion of the other side other than the side surface extends outwardly from the rim portion 35, and the horizontal extension portion 32 and the lower surface of the rim portion 35 are on the same plane.
  • an elongated groove 21 as a gas permeable passage is not formed on the upper surface of the wiring board 2, but a sealing member 5 of a certain height of a square shape is provided between the cover member 3 and the wiring board 2, which will be sealed by the seal
  • the space surrounded by the member 5 serves as a venting passage.
  • the inner cavity and the through hole 32 of the cover member 3 are located in a range surrounded by the sealing member 5, and the sealing member 5 may be made of a glue material having good adhesion and airtightness, or may be made of a solder material. .
  • the sealing member 5 having the above structure is attached to the wiring board 2, and the cover member 3 is attached and attached to the upper surface of the sealing member 5, and the MEMS acoustic-electric conversion chip 4 is further attached and attached to the cover member 3.
  • the upper portion of the horizontal extension portion 32, and the internal cavity of the cover member 3 communicates with the lower space of the MEMS acoustic-electric conversion chip 4 through the gas permeable passage and the through hole 33 to form a closed space, which becomes a MEMS acoustic power
  • the rear cavity of the chip 4 is switched.
  • a sufficient air permeable passage is formed by the sealing member 5 provided between the cover member 3 and the wiring board 2. Therefore, it is also possible to effectively increase the air space (back cavity) behind the MEMS acoustic-electric conversion chip 4. Moreover, since the thickness of the sealing member 5 is small, the height dimension of the product is not greatly increased.
  • the cover member 3 The other side surfaces other than the side surface on which the horizontal extending portion 32 is provided do not have the rim portion extending horizontally outward, but it is needless to say that, as shown in Fig. 14, on the side other than the side surface on which the horizontal extending portion 32 is provided A rim portion 35 that extends horizontally outward is provided.
  • the bonding area of the cover member 3 and the wiring board 2 can be increased, so that the adhesive sealing property of the surface of the cover member 3 and the wiring board 2 is good.
  • a thin-shaped sealing member 5 having a square shape may be provided between the cover member 3 and the wiring board 2, and the cover member 3 is mounted on the wiring board 2 via the sealing member 5. According to this configuration, the adhesion between the cover member 3 and the surface of the wiring board 2 is good.
  • the sound hole 11 for receiving an acoustic signal is provided on the upper portion of the casing 1, but the present invention is not limited to this configuration.
  • the sound hole may be set.
  • the cover member on the wiring board 2 covers a position other than the portion to constitute a "Bottom" type silicon condenser microphone.
  • the shape of the lid portion or the lid portion of the lid member is not limited to a rectangular parallelepiped, and may be other shapes such as a polygonal shape or a circular arc shape.
  • the circuit board 2 may be a structure in which a two-layer substrate is laminated, wherein the lower substrate 24 is a flat plate structure not provided with a groove, and the upper substrate 23 is provided with a ventilating passage. An elongated opening 21 is provided.
  • the outer casing 1 may be constituted by a detachable top cover 12 and a frame-shaped casing 13, in which an acoustic hole 11 is provided in the top cover 12.
  • the through hole provided in the horizontal extension of the cover member may also be a structure composed of a plurality of fine holes instead of an opening, which prevents impurities in the rear cavity from adhering to the MEMS sound.
  • the electrical conversion chip 4 various adverse effects are caused.
  • the integrated circuit chip 8 used in the silicon condenser microphone may be mounted on the upper surface of the lid portion 31 of the cover member 3. Since the height of the integrated circuit chip 8 used in the silicon condenser microphone is generally lower than the height of the MEMS acoustic-electric conversion chip 4, by mounting the integrated circuit chip 8 on the cover portion 31 of the cover member 3, the overall height of the silicon condenser microphone is not The increase is much, and the plane area is not increased by the cover member. Further, it is also possible to mount the filter capacitor 7 at a position where the groove is not covered by the cover member 3, and connect the cover member 3 to the ground on the wiring board 2 (not shown) Out).
  • a circuit of a silicon condenser microphone is designed with a capacitor or a resistor and a resistor, and a filter circuit or an antistatic circuit is formed to resist electromagnetic interference and antistatic. Since the capacitor or/and the resistor are mounted on the wiring board covered by the cover member, the plane area is not occupied, so that the planar size of the product can be reduced. Moreover, grounding the cover member is beneficial to enhancing the anti-interference performance of the circuit inside the circuit board. [68] In summary, in the silicon microphone according to the present invention, since a slender sound intermediate passage is provided, it is difficult to cause solder slag, dust, moisture, and the like which may easily affect the performance of the silicon microphone on the circuit board.
  • the circuit board 2 is composed of a single-layer or double-layer substrate, which reduces the height dimension and reduces the cost as compared with the silicon microphone structure of the conventional three-layer circuit board.
  • both the outer casing and the wiring board are square, but it is needless to say that the outer casing and the wiring board may be of other shapes such as a circular shape or an elliptical shape.
  • the material of the outer casing is preferably made of a metal material, but a resin material may also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

说明书 硅电容麦克
技术领域
[1] 本发明涉及一种硅电容麦克风, 更具体地说, 涉及通过设置透气通道, 可以大 幅度地增加 MEMS声电转换芯片的后腔空间的硅电容麦克风。
背景技术
[2] 近年来, 随着手机、 笔记本电脑等电子产品的体积不断减小, 对其性能要求越 来越高, 也要求配套的电子零部件的体积不断减小, 电子零部件的性能和一致 性不断提高。 在这种背景下, 作为重要零部件之一的麦克风产品也推出了很多 的新型产品, 利用 MEMS (微机电系统) 工艺技术生产的硅电容麦克风为其中的 代表产品。 硅电容麦克风中的关键技术为封装结构设计, 而且封装结构所占用 的成本比例较高, 所以, 最近出现了很多关于硅电容麦克风的封装技术的专利 申请。
[3] 例如, 专利文献 1公开了一种小型的硅电容麦克风及其制造方法, 其中, 硅电 容麦克风包括: 一个外壳, 外壳上设置有能够透过声音的声孔; 以及一个线路 板。 外壳和线路板结合成为一个空腔, 在线路板上安装有 MEMS (微机电系统) 声电转换芯片和集成电路, MEMS声电转换芯片和集成电路可以共同将声音信号 转化为电信号。 该硅电容麦克风的特征在于, 在 MEMS声电转换芯片的下方位置 的线路板上通过腐蚀等工艺加工出一定凹陷。 根据上述结构, 针对声音信号作 用到 MEMS声电转换芯片上方的产品结构 (声孔设置在 MEMS声电转换芯片以外 的位置上, 外界传输的声音信号作用在 MEMS声电转换芯片上方) , 可以增加 M EMS声电转换芯片下方的空气空间 (行业内通常称之为 "后腔 -Back
volume", 指声波遇到 MEMS声电转换芯片以后, MEMS声电转换芯片后方的空 间) , 可以使硅电容麦克风的灵敏度更高, 频响曲线更好。 然而, 这种设计简 单的通过 MEMS声电转换芯片下方的线路板凹陷来增加后腔, 对后腔增大的贡献 非常有限, 对性能提高的贡献也非常小; 并且, 这种设计将使得线路板的厚度 大大增加, 过多的增加了产品的高度, 并且导致成本增加。 [4] 专利文献 2公开了另一种可以增大后腔的硅电容麦克风, 其结构如图 1所示, 在 线路板 140上安装一个带有中部凸起的盖子 150, 将 MEMS声电转换芯片安装在盖 子 150的中部凸起部上, 在中部凸起部和 MEMS声电转换芯片相对应的位置设置 有透气孔, 从而线路板 140和盖子 150的中部凸起部之间形成的空间可以作为后 腔。 该硅电容麦克风的这种结构可以增大后腔的空间, 但是, 由于釆用了带有 中部凸起的盖子, 存在硅电容麦克风的整体高度尺寸增加的问题。
[5] 专利文献 1 : 美国专利公开 US20020102004
[6] 专利文献 2: 国际专利申请公开 WO2007126179A1
发明内容
[7] 本发明为了解决现有技术中存在的上述问题而做出, 其目的在于提供一种硅电 容麦克风, 在产品的高度和平面尺寸不增加很多的情况下, 可以大幅度地增加 M EMS声电转换芯片的后腔空间。
[8] 为了解决上述问题, 本发明涉及的硅电容麦克风包括: 外壳; 线路板, 安装在 所述外壳的底部; 盖构件, 包括具有空腔且一端开口的盖体部和设有通孔的水 平延伸部, 设于所述线路板的上表面; 以及 MEMS声电转换芯片, 其具有下部空 间, 被安装在所述盖构件的水平延伸部的上表面且盖住所述通孔; 所述盖构件 和 MEMS声电转换芯片位于被所述外壳和所述线路板包围的空间内, 而且, 在所 述盖构件与所述线路板的结合部设置有连通所述空腔和所述下部空间的透气通 道, 所述盖构件完全覆盖住所述透气通道。
[9] 另外, 优选的是, 所述透气通道由设在所述线路板上表面的规定长度的凹槽构 成。
[10] 另外, 优选的是, 所述透气通道由设在所述盖构件的水平延伸部的下表面侧的 规定长度的凹槽构成。
[11] 另外, 优选的是, 在所述线路板与所述盖构件之间设有规定厚度的框形的密封 构件, 所述透气通道由被所述线路板、 所述密封构件和所述盖构件包围的空间 部分构成, 而且所述盖构件的空腔和通孔位于被所述密封构件包围的范围内。
[12] 再者, 优选的是, 在所述盖构件的盖体部的上面安装有集成电路芯片。
[13] 通过釆用本发明的上述结构, 可以有效地增加 MEMS声电转换芯片后方的空气 空间 (后腔) 。 而且, 由于 MEMS声电转换芯片安装在盖构件的水平延伸部上, 使得产品的高度尺寸没有增加很多。
[14] 同吋, 硅电容麦克风中使用的集成电路芯片的高度通常低于 MEMS声电转换芯 片的高度, 通过在盖构件的盖体部上安装集成电路芯片, 使得硅电容麦克风的 整体高度没有增加很多, 其平面面积也没有因盖构件而增加。
附图说明
[15] 通过下面结合附图对其实施例进行描述, 本发明的上述特征和技术优点将会变 得更加清楚和容易理解。
[16] 图 1是表示现有技术涉及的一种硅电容麦克风的具体结构的图。
[17] 图 2是表示本发明的第一实施方式涉及的硅电容麦克风的具体结构的剖视图。
[18] 图 3是表示本发明的第一实施方式涉及的硅电容麦克风的具体结构的分解立体 图。
[19] 图 4是表示本发明的第二实施方式涉及的硅电容麦克风的具体结构的剖视图。
[20] 图 5是本发明的第二实施方式涉及的硅电容麦克风中的盖构件 3的仰视图。
[21] 图 6是表示本发明的第三实施方式涉及的硅电容麦克风的具体结构的剖视图。
[22] 图 7是表示本发明的第三实施方式涉及的硅电容麦克风的具体结构的分解立体 图。
[23] 图 8是表示本发明的第四实施方式涉及的硅电容麦克风的具体结构的剖视图。
[24] 图 9是本发明的第四实施方式涉及的硅电容麦克风中的水平延伸部 32的仰视图
[25] 图 10是表示本发明的第四实施方式涉及的硅电容麦克风的另一变形例的具体结 构的剖视图。
[26] 图 11是该另一变形例的硅电容麦克风中的水平延伸部 32的仰视图。
[27] 图 12是本发明的第五实施方式涉及的硅电容麦克风的具体结构的剖视图。
[28] 图 13是表示本发明的第五实施方式涉及的硅电容麦克风的具体结构的分解立体 图。
[29] 图 14是表示本发明涉及的硅电容麦克风的改进结构的剖视图。
[30] 图 15是表示本发明涉及的硅电容麦克风的另一改进结构的剖视图。 [31] 图 16是表示本发明涉及的硅电容麦克风的又一改进结构的剖视图。
[32] 图 17是表示本发明涉及的硅电容麦克风的再一改进结构的剖视图。
具体实施方式
[33] 下面, 参照附图详细说明本发明涉及的硅电容麦克风的具体实施方式。
[34] (第一实施方式)
[35] 首先, 参照图 2、 图 3说明本发明的第一实施方式涉及的硅电容麦克风。 如图 2 、 图 3所示, 第一实施方式涉及的硅电容麦克风包括: 外壳 1, 其具有底部开放 的长方体形状, 并且在外壳 1的上部设有用于接收声音信号的声孔 11 ; 长方形的 线路板 2, 利用树脂材料作为基材制作; 盖构件 3, 其包括平板状的水平延伸部 3 2和一端开口的长方体形状的盖体部 31, 该盖体部 3的内部为空腔结构, 该水平 延伸部 32是从盖体部 31的一个侧面的下端部向外水平延伸而构成, 并且, 在该 水平延伸部 32的中央附近设有一个通孔 33; 线路板 2, 其长宽尺寸与该外壳 1的 底部的长宽尺寸大致相等, 通常利用树脂材料作为基材, 并且, 在该线路板 2的 与外壳 1粘接的一侧, 开设有作为透气通道的细长的凹槽 21。
[36] 在线路板 2的上表面粘贴安装盖构件 3, 使得该盖构件 3完全盖住凹槽 21、 该盖 构件 3的盖体部 31盖住该凹槽 21的一部分, 而且通孔 33位于该凹槽 21的上方。 这 样, 盖体部 31与线路板 2之间形成一个空腔 34。
[37] 此外, 在该盖构件 3的水平延伸部 32的上方, 安装有 MEMS声电转换芯片 4, 在 该 MEMS声电转换芯片 4的下方具有下部空间 41, 并且该 MEMS声电转换芯片 4盖 住水平延伸部 32上的通孔 33。 从而, 该 MEMS声电转换芯片 4的下部空间 41通过 盖构件 3上的通孔 33同线路板 2的凹槽 21相连通, 进一步同盖构件 3的空腔 34连通 。 再者, 由于盖构件 3的开口部的周边部和水平延伸部被粘贴在线路板 2上, ME MS声电转换芯片 4的下端周边部被粘贴在盖构件 3的水平延伸部 32上, 因此, 相 连通的空腔 34、 凹槽 21、 通孔 33和下部空间 41形成一个密闭的空间, 从而, 该 密闭的空间成为 MEMS声电转换芯片 4的后腔 (Back
volume) 。 其中, MEMS声电转换芯片 4的下部空间 41为自然形成, 通孔 33和凹 槽 21主要起着空气连通的作用, 空腔 34是后腔 (Back
volume) 增加的关键因素。 通过这种设计, 可以有效地增加 MEMS声电转换芯片 4后方的空气空间 (后腔) 。 而且, 由于 MEMS声电转换芯片 4安装在盖构件 3的 水平延伸部 32上, 使得产品的高度尺寸没有增加很多。
[38] (第二实施方式)
[39] 下面, 参照附图说明本发明涉及的硅电容麦克风的第二实施方式。
[40] 在本实施方式涉及的硅电容麦克风中, 外壳 1和 MEMS声电转换芯片 4的结构与 如上所述的第一实施方式相同, 不同点在于线路板 2和盖构件 3的结构。 因此, 在此省略相同结构的说明, 而着重说明与第一实施方式不同的构成。
[41] 图 4是表示本发明的第二实施方式涉及的硅电容麦克风的具体结构的剖视图; 图 5是表示该硅电容麦克风中的盖构件 3的仰视图。 如图 4所示, 在本实施方式的 硅电容麦克风中, 没有在线路板 2的上表面形成作为透气通道的细长的凹槽 21, 而是通过改变盖构件 3的结构, 来形成透气通道。 其中, 盖构件 3包括平板状的 水平延伸部 32和一端开口的长方体形状的盖体部 31, 该盖体部 31的内部为空腔 结构, 该水平延伸部 32是从盖体部 31的一个侧面的下端部向外水平延伸而构成 , 并且, 在该水平延伸部 32的中央附近设有一个通孔 33。 另外, 在该水平延伸 部 32的下表面上沿着该水平延伸部 32的长度方向设有一个细长的规定深度的凹 槽 36, 该凹槽 36的宽度至少不小于通孔 33的宽度, 并且该凹槽 36自盖构件 3的开 口部分开始, 经过通孔 33后, 在距离水平延伸部 32的长度方向的边缘部规定距 离处停止, 即该凹槽 36的长度小于水平延伸部 32的长度。
[42] 另外, 将上述结构的盖构件 3粘贴安装在线路板 2上, 然后再将具有下部空间的 MEMS声电转换芯片 4粘贴安装在盖构件 3的水平延伸部 32的通孔 33的上方。 从而 , 凹槽 36与线路板 2之间的空间构成透气通道。 由此, 盖构件 3的空腔 34、 凹槽 3 6、 通孔 33和 MEMS声电转换芯片 4的空间相互连通而形成一个密闭的空间, 从而 , 该密闭的空间成为 MEMS声电转换芯片 4的后腔 (Back volume) 。
[43] 在本实施方式涉及的硅电容麦克风中, 利用在盖构件 3的水平延伸部 32设置的 凹槽 36来代替第一实施方式中设在线路板 2的上表面上的凹槽。 因此, 同样可以 有效地增加 MEMS声电转换芯片 4后方的空气空间 (后腔) 。 而且, 由于 MEMS 声电转换芯片 4安装在盖构件 3的水平延伸部 32上, 使得产品的高度尺寸没有增 加很多。 [44] 在图 5所示的盖构件 3的结构中, 凹槽 36与通孔 33的宽度相等, 但是, 该凹槽 36 的宽度也可以大于通孔 33的宽度, 同样能够实现上述技术效果。
[45] (第三实施方式)
[46] 接着, 参照附图说明本发明涉及的硅电容麦克风的第三实施方式。
[47] 在本实施方式涉及的硅电容麦克风中, 外壳 1、 线路板 2和 MEMS声电转换芯片 4的结构与如上所述的第一实施方式相同, 不同点在于盖构件 3的结构。 因此, 在此省略相同结构的说明, 而着重说明与第一实施方式不同的构成。
[48] 图 6是表示本发明的第三实施方式涉及的硅电容麦克风的具体结构的剖视图; 图 7是表示该硅电容麦克风的具体结构的分解立体图。 如图 6、 图 7所示, 同第一 实施方式的硅电容麦克风相比, 不同之处在于盖构件 3的盖体部 31和水平延伸部 32是分离结构。 其中, 盖体部 31是内部为空腔且下侧开放的长方体结构, 水平 延伸部 32是在其宽度方向的大致中央部至少设有第一通孔 33和第二通孔 37的平 板结构。 在本实施方式的硅电容麦克风中, 在线路板 2的上表面形成作为透气通 道的细长的凹槽 21, 在具有该凹槽 21的线路板 2的上表面粘贴安装长度大于该凹 槽 21的长度的水平延伸部 32。 此外, 在水平延伸部 21的上表面安装该盖体部 31 和 MEMS声电转换芯片 4。
[49] 另外, 将上述结构的水平延伸部 32粘贴安装到线路板 2的上表面吋, 使得该水 平延伸部 32的第一通孔 33和第二通孔 37位于线路板 2的凹槽 21的上方。 此外, 盖 体部 31和 MEMS声电转换芯片 4粘贴安装在该水平延伸部 32的上方, 并且, 使盖 体部 31盖住所述第二通孔 37、 该 MEMS声电转换芯片 4盖住所述第一通孔 33。 从 而, 通过该第一通孔 33和第二通孔 37, 使得该 MEMS声电转换芯片 4的下部空间 4 1、 线路板 2的凹槽 21和盖体部 31的内部空腔相连通而形成一个密闭的空间, 该 密闭的空间成为 MEMS声电转换芯片 4的后腔 (Back volume) 。
[50] 在本实施方式涉及的硅电容麦克风中, 利用盖构件 3包括分离结构的盖体部 31 和水平延伸部 32。 因此, 同样可以有效地增加 MEMS声电转换芯片 4后方的空气 空间 (后腔) 。 而且, 由于 MEMS声电转换芯片 4安装在水平延伸部 32上, 使得 产品的高度尺寸没有增加很多。
[51] (第四实施方式) [52] 接着, 参照附图说明本发明涉及的硅电容麦克风的第四实施方式。 在本实施方 式涉及的硅电容麦克风中, 同如上所述的第三实施方式的结构相比, 不同点在 于线路板 2和盖构件 3的结构。 因此, 在此省略相同结构的说明, 而着重说明与 第三实施方式不同的构成。
[53] 图 8是表示本发明的第四实施方式涉及的硅电容麦克风的具体结构的剖视图; 图 9是该硅电容麦克风中的水平延伸部 32的仰视图。 如图 8、 图 9所示, 在本实施 方式的硅电容麦克风中, 没有在线路板 2的上表面形成作为水平透气通道的细长 的凹槽 21, 而是在盖构件 3的水平延伸部 32的下表面形成规定长度的凹槽 36, 该 凹槽 36的长度大于第一通孔 33与第二通孔 37间的距离, 并且, 其宽度不小于第 一通孔 33和第二通孔 37的宽度, 再者该凹槽 21与第一通孔 33及第二通孔 37连通 。 另外, 如图 11所示, 当仰视吋, 该第一通孔 33和第二通孔 37位于凹槽 36中。
[54] 将上述结构的盖构件 3的水平延伸部 32粘贴安装在线路板 2上, 此外, 盖体部 31 和 MEMS声电转换芯片 4粘贴安装在该水平延伸部 32的上方, 并且, 使盖体部 31 盖住所述第二通孔 37、 该 MEMS声电转换芯片 4盖住所述第一通孔 33。 从而, 通 过该第一通孔 33和第二通孔 37, 使得该 MEMS声电转换芯片 4的下部空间 41、 作 为透气通道的凹槽 36和盖体部 31的内部空腔相连通而形成一个密闭的空间, 该 密闭的空间成为 MEMS声电转换芯片 4的后腔 (Back volume) 。
[55] 在本实施方式涉及的硅电容麦克风中, 利用在盖构件 3的水平延伸部 32的下表 面设置的凹槽来代替第三实施方式中的线路板 2上的凹槽 21。 因此, 同样可以有 效地增加 MEMS声电转换芯片 4后方的空气空间 (后腔) 。 而且, 由于 MEMS声 电转换芯片 4安装在水平延伸部 32上, 使得产品的高度尺寸没有增加很多。
[56] 另外, 图 10是表示本发明的第四实施方式涉及的硅电容麦克风的另一变形例的 具体结构的剖视图; 图 11是该另一变形例的硅电容麦克风中的水平延伸部 32的 仰视图。 在该变形例的硅电容麦克风中, 由于在水平延伸部 32上设置的凹槽 36 的面积较大, 会导致水平延伸部 32的边缘朝向一侧弯曲并且接触到线路板 2的表 面, 成为类似一个扁平的盘子形状, 因此, 为了保证在水平延伸部 32上安装盖 体部 31和 MEMS声电转换芯片 4之后也能够产生振动, 在水平延伸部 32的凹槽 36 的中心部位附近设置一个以上的支撑凸点 38, 用于支撑安装了盖体部 31和 MEMS 声电转换芯片 4的水平延伸部 32。 此外, 该支撑凸点 8也可以设置在线路板 2上, 同样也能实现支撑水平延伸部 32的效果。
[57] (第五实施方式)
[58] 下面, 参照附图说明本发明涉及的硅电容麦克风的第五实施方式。 在本实施方 式涉及的硅电容麦克风中, 同如上所述的第一实施方式的结构相比, 不同点在 于线路板 2和盖构件 3的结构。 因此, 在此省略相同结构的说明, 而着重说明与 第一实施方式不同的构成。
[59] 图 12是表示本发明的第五实施方式涉及的硅电容麦克风的具体结构的剖视图; 图 13是该硅电容麦克风的具体结构的分解立体图。 如图 12、 图 13所示, 在本实 施方式的硅电容麦克风中, 盖构件 3除了具备设置有声孔 33的水平延伸部 32之外 , 还具备在盖构件 3的设有该水平延伸部 32的侧面以外的其他侧面的底部向外水 平延伸的边沿部 35, 并且, 该水平延伸部 32和边沿部 35的下表面处于同一平面 上。 此外, 没有在线路板 2的上表面形成作为透气通道的细长的凹槽 21, 而是在 盖构件 3与线路板 2之间设置有方框形的一定高度的密封构件 5, 将由该密封构件 5包围的空间作为透气通道。 在此, 盖构件 3的内部空腔和通孔 32位于被密封构 件 5包围的范围内, 而且, 该密封构件 5可以使用黏结性和密闭性较好的胶类材 料, 也可以使用焊锡材料制作。
[60] 将上述结构的密封构件 5粘贴安装在线路板 2上, 再将盖构件 3粘贴安装在该密 封构件 5的上表面, 进一步将 MEMS声电转换芯片 4粘贴安装在该盖构件 3的水平 延伸部 32的上方, 并且使盖构件 3的内部空腔通过该透气通道和通孔 33同 MEMS 声电转换芯片 4的下部空间相连通而构成密闭的空间, 该密闭的空间成为 MEMS 声电转换芯片 4的后腔。
[61] 在本实施方式涉及的硅电容麦克风中, 利用在盖构件 3与线路板 2之间设置的密 封构件 5形成足够的透气通道。 因此, 同样可以有效地增加 MEMS声电转换芯片 4 后方的空气空间 (后腔) 。 而且, 由于密封构件 5的厚度很小, 使得产品的高度 尺寸没有增加很多。
[62] (其他变形结构)
[63] 另外, 在如上所述的第一、 第二实施方式涉及的硅电容麦克风中, 盖构件 3的 设有水平延伸部 32的侧面以外的其他侧面都不具有向外水平延伸的边沿部, 但 毋庸置疑, 也可以如图 14所示地, 在设有水平延伸部 32的侧面以外的其他侧面 都设置水平向外延伸的边沿部 35。 通过釆用这种结构, 可以使盖构件 3与线路板 2的粘结面积增加, 使得盖构件 3和线路板 2表面的粘结密封性良好。 此外, 还可 以在该盖构件 3与线路板 2之间设置方框形的较薄的密封构件 5, 盖构件 3隔着该 密封构件 5安装在线路板 2上。 根据这种结构, 使得盖构件 3和线路板 2的表面之 间的粘接密闭性良好。
[64] 此外, 在以上的各实施方式中, 说明了在外壳 1的上部设置用于接收声音信号 的声孔 11, 但不限于这种结构, 例如图 15所示, 该声孔也可以设置在线路板 2上 的被盖构件覆盖部分以外的位置, 从而构成 "Bottom"型结构的硅电容麦克风。
[65] 再者, 盖构件的盖体部或盖体部的形状不限于长方体, 也可以是多角形、 圆弧 形等其他形状。 另外, 如图 16所示, 线路板 2也可以是将双层基板层叠而成的结 构, 其中的下基板 24为未设有凹槽的平板结构, 在上基板 23上设有作为透气通 道的长条形开孔 21。 此外, 外壳 1也可以由可分离的顶盖 12和框形的壳体 13构成 , 其中在顶盖 12上设有声孔 11。
[66] 而且, 在盖构件的水平延伸部上设置的通孔, 也可以是由多个细孔构成的结构 , 而不是由一个开孔构成, 这样可以防止后腔中的杂质附着到 MEMS声电转换芯 片 4上, 造成各种不良影响。
[67] 另外, 如图 17所示, 也可以在盖构件 3的盖体部 31的上面安装硅电容麦克风中 使用的集成电路芯片 8。 由于硅电容麦克风中使用的集成电路芯片 8的高度通常 低于 MEMS声电转换芯片 4的高度, 通过在盖构件 3的盖体部 31上安装集成电路芯 片 8, 使得硅电容麦克风的整体高度没有增加很多, 其平面面积也没有因盖构件 而增加。 此外, 也可以是, 在被盖构件 3盖住的线路板 2上表面的未设有凹槽的 位置安装滤波电容 7, 并且将盖构件 3连接到线路板 2上的接地 (图中未示出) 。 通常硅电容麦克风的线路板上的电路中都设计有电容或 /和电阻零件, 形成滤波 电路或者抗静电电路等, 具有抵抗电磁干扰、 抗静电等作用。 由于将电容或 /和 电阻安装在被盖构件覆盖的线路板上, 没有占用平面面积, 因此能够减小产品 的平面尺寸。 而且, 将盖构件接地, 有利于增强线路板内部电路的抗干扰性能 [68] 综上所述, 在本发明涉及的硅麦克风中, 由于设置了细长的声音中间通道, 使 得在线路板上容易产生的焊锡渣、 灰尘、 水汽等可能影响硅麦克风性能的物质 难以到达 MEMS声电转换芯片的位置, 因此降低了堵塞声孔或硅麦克风芯片被损 坏的可能性。 再者, 线路板 2由单层或双层的基板构成, 同以往的三层线路板的 硅麦克风结构相比, 降低了高度尺寸, 也降低了成本。
[69] 在本发明的上述各实施方式中, 外壳和线路板都釆用了方形, 但毋庸置疑, 外 壳和线路板也可以釆用圆形、 椭圆形等其他形状。 再者, 外壳的材料优选釆用 金属材料, 但也可以釆用树脂材料。
[70] 虽然上面针对硅电容麦克风的具体结构描述了本发明具体实施方式, 但是, 在 本发明的上述教导下, 本领域技术人员可以在上述实施方式的基础上进行各种 改进和变形, 而这些改进或者变形落在本发明的保护范围内。 本领域技术人员 应该明白, 上面的具体描述只是为了解释本发明的目的, 并非用于限制本发明 。 本发明的保护范围由权利要求及其等同物限定。

Claims

权利要求书
[1] 1 . 一种硅电容麦克风, 其特征在于, 包括:
外壳;
线路板, 安装在所述外壳的底部;
盖构件, 设于所述线路板的上表面, 其包括具有空腔且一端开口的盖体部 和设有通孔的水平延伸部; 以及
MEMS声电转换芯片, 其具有下部空间, 被安装在所述盖构件的水平延伸 部的上表面且盖住所述通孔;
所述盖构件和 MEMS声电转换芯片位于被所述外壳和所述线路板包围的空 间内,
而且, 在所述盖构件与所述线路板的结合部设置有连通所述空腔和所述下 部空间的透气通道, 所述盖构件完全覆盖住所述透气通道。
[2] 2. 如权利要求 1所述的硅电容麦克风, 其特征在于,
所述透气通道由设在所述线路板上表面的规定长度的凹槽构成。
[3] 3. 如权利要求 1所述的硅电容麦克风, 其特征在于,
所述透气通道由设在所述盖构件的水平延伸部的下表面的规定长度的凹槽 构成。
[4] 4. 如权利要求 1所述的硅电容麦克风, 其特征在于,
在所述线路板与所述盖构件之间设有规定厚度的框形的密封构件, 所述透 气通道由被所述线路板、 所述密封构件和所述盖构件包围的空间部分构成 , 而且所述盖构件的空腔和通孔位于被所述密封构件包围的范围内。
[5] 5、 如权利要求 1至 4中任一项所述的硅电容麦克风, 其特征在于,
所述盖构件的盖体部和水平延伸部一体构成, 所述水平延伸部从所述盖体 部的一个侧面的下端部向外水平延伸。
[6] 6、 如权利要求 1至 4中任一项所述的硅电容麦克风, 其特征在于,
所述盖构件的盖体部和水平延伸部是分离结构, 所述水平延伸部是设有 2个 以上通孔的平板结构, 所述盖体部设置在所述水平延伸部的上表面且盖住 被所述 MEMS声电转换芯片盖住的通孔之外的至少一个通孔。
[7] 7、 如权利要求 5所述的硅电容麦克风, 其特征在于,
所述盖构件的盖体部具备从设有该水平延伸部的侧面以外的其他侧面的底 部向外水平延伸的边沿部。
[8] 8、 如权利要求 6所述的硅电容麦克风, 其特征在于,
在所述水平延伸部的下表面设有连通所述 2个通孔的构成所述透气通道的凹 槽。
[9] 9. 如权利要求 8所述的硅电容麦克风, 其特征在于,
所述凹槽的宽度大于所述 2个通孔的宽度;
并且, 在所述线路板的上表面或所述水平延伸部的下表面, 在同所述凹槽 的中部对应的位置设有一个以上的支撑凸点。
[10] 10. 如权利要求 1或 2所述的硅电容麦克风, 其特征在于,
所述线路板由上下层叠的上基板和下基板构成, 在上基板上设有构成所述 透气通道的长条形开孔, 下基板为未设有凹槽的平板结构。
[11] 11 . 如权利要求 1至 10中任一项所述的硅电容麦克风, 其特征在于,
在所述外壳的上部或所述线路板上, 设有用于接收声音信号的声孔。
[12] 12. 如权利要求 1至 11中任一项所述的硅电容麦克风, 其特征在于,
设在所述盖构件上的通孔由多个细孔构成。
[13] 13. 如权利要求 1至 12中任一项所述的硅电容麦克风, 其特征在于,
在所述盖构件的盖体部的上面安装有集成电路芯片。
[14] 14. 如权利要求 5所述的硅电容麦克风, 其特征在于,
在所述盖构件的下方的所述线路板上还设有滤波电容, 并且所述盖构件电 连接到所述线路板的接地。
PCT/CN2009/073551 2008-10-28 2009-08-27 硅电容麦克风 WO2010048833A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNA2008101582786A CN101394687A (zh) 2008-10-28 2008-10-28 硅电容麦克风
CN200810158278.6 2008-10-28
CN200920018529.0 2009-01-19
CN200920018529.0U CN201383873Y (zh) 2009-01-19 2009-01-19 增大后腔的硅电容麦克风

Publications (1)

Publication Number Publication Date
WO2010048833A1 true WO2010048833A1 (zh) 2010-05-06

Family

ID=42128230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073551 WO2010048833A1 (zh) 2008-10-28 2009-08-27 硅电容麦克风

Country Status (1)

Country Link
WO (1) WO2010048833A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053868A (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 マイクロホン
CN113840218A (zh) * 2021-06-21 2021-12-24 荣成歌尔微电子有限公司 麦克风的封装结构和电子设备
WO2023232628A1 (en) * 2022-05-31 2023-12-07 Ams-Osram Ag Acoustic transducer device with expanded back volume

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102004A1 (en) * 2000-11-28 2002-08-01 Minervini Anthony D. Miniature silicon condenser microphone and method for producing same
CN1813490A (zh) * 2005-07-07 2006-08-02 宝星电子株式会社 硅电容传声器的封装结构及其制造方法
JP2007178133A (ja) * 2005-12-27 2007-07-12 Yamaha Corp 圧力センサモジュール、その製造方法、及び、半導体装置
US20070205492A1 (en) * 2006-03-03 2007-09-06 Silicon Matrix, Pte. Ltd. MEMS microphone with a stacked PCB package and method of producing the same
CN201042077Y (zh) * 2007-05-26 2008-03-26 歌尔声学股份有限公司 硅电容麦克风
CN101394687A (zh) * 2008-10-28 2009-03-25 歌尔声学股份有限公司 硅电容麦克风
CN201294631Y (zh) * 2008-10-28 2009-08-19 歌尔声学股份有限公司 硅电容麦克风

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102004A1 (en) * 2000-11-28 2002-08-01 Minervini Anthony D. Miniature silicon condenser microphone and method for producing same
CN1813490A (zh) * 2005-07-07 2006-08-02 宝星电子株式会社 硅电容传声器的封装结构及其制造方法
JP2007178133A (ja) * 2005-12-27 2007-07-12 Yamaha Corp 圧力センサモジュール、その製造方法、及び、半導体装置
US20070205492A1 (en) * 2006-03-03 2007-09-06 Silicon Matrix, Pte. Ltd. MEMS microphone with a stacked PCB package and method of producing the same
CN201042077Y (zh) * 2007-05-26 2008-03-26 歌尔声学股份有限公司 硅电容麦克风
CN101394687A (zh) * 2008-10-28 2009-03-25 歌尔声学股份有限公司 硅电容麦克风
CN201294631Y (zh) * 2008-10-28 2009-08-19 歌尔声学股份有限公司 硅电容麦克风

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053868A (ja) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 マイクロホン
JP7038307B2 (ja) 2018-09-27 2022-03-18 パナソニックIpマネジメント株式会社 マイクロホン
CN113840218A (zh) * 2021-06-21 2021-12-24 荣成歌尔微电子有限公司 麦克风的封装结构和电子设备
WO2023232628A1 (en) * 2022-05-31 2023-12-07 Ams-Osram Ag Acoustic transducer device with expanded back volume

Similar Documents

Publication Publication Date Title
US8995694B2 (en) Embedded circuit in a MEMS device
US8472647B2 (en) Package for micro-electro-mechanical acoustic transducer with improved double side mountable electrodes
US8571249B2 (en) Silicon microphone package
CN101316462B (zh) 微机电系统麦克风封装体及其封装组件
US20140037115A1 (en) MEMS Apparatus Disposed On Assembly Lid
CN102742301A (zh) 微机电换能器及对应组装工艺
JP6175873B2 (ja) マイクロフォン
WO2010051707A1 (zh) 硅麦克风
EP2555543B1 (en) MEMS Microphone
US10252906B2 (en) Package for MEMS device and process
JP2007060389A (ja) シリコンマイクロホンパッケージ
US8155366B2 (en) Transducer package with interior support frame
JP2008271426A (ja) 音響センサ
CN104080033A (zh) 麦克风
JP2011114506A (ja) マイクロホンユニット
JP2007150514A (ja) マイクロホンパッケージ
WO2014052559A1 (en) Embedded circuit in a mems device
TWI646876B (zh) 用於至少一麥克風構件的第二電平安裝的電路板以及具這類電路板的麥克風模組
WO2010048833A1 (zh) 硅电容麦克风
JP2008271424A (ja) 音響センサ
JP2001054196A (ja) エレクトレットコンデンサマイクロホン
CN110868680A (zh) 一种改进基材的麦克风结构
TWI479901B (zh) Silicon condenser microphone
CN115412820A (zh) Mems麦克风及电子装置
JP2007060228A (ja) シリコンマイクロホンパッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823025

Country of ref document: EP

Kind code of ref document: A1