WO2010048816A1 - 一种球形译码的初始半径计算方法及装置 - Google Patents

一种球形译码的初始半径计算方法及装置 Download PDF

Info

Publication number
WO2010048816A1
WO2010048816A1 PCT/CN2009/072402 CN2009072402W WO2010048816A1 WO 2010048816 A1 WO2010048816 A1 WO 2010048816A1 CN 2009072402 W CN2009072402 W CN 2009072402W WO 2010048816 A1 WO2010048816 A1 WO 2010048816A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial radius
signal
weight
calculate
calculating
Prior art date
Application number
PCT/CN2009/072402
Other languages
English (en)
French (fr)
Inventor
邓冰
Original Assignee
北京天碁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天碁科技有限公司 filed Critical 北京天碁科技有限公司
Publication of WO2010048816A1 publication Critical patent/WO2010048816A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03203Trellis search techniques
    • H04L25/03242Methods involving sphere decoding

Definitions

  • the present invention relates to multiple input/output (MIMO) detection in wireless communication, and more particularly to a method and apparatus for calculating an initial radius of a sphere decoding.
  • MIMO multiple input/output
  • MIMO multiple input multiple output
  • LTE long term evolution
  • 802.16 series technology evolution versions both OFDM and MIMO technologies are widely used as key technologies in both 3GPP long term evolution (LTE) and 802.16 series technology evolution versions.
  • SISO single-input and output
  • the MIMO signal can be detected by Maximum Likelihood (ML) detection.
  • ML Maximum Likelihood
  • the maximum likelihood detection needs to traverse the number of constellation points of the search as the number of transmitting antennas and the degree of freedom of the modulation mode increase exponentially. Therefore, in the case of a large number of transmitting antennas and high-order modulation, the computational complexity is actually The system is unbearable. Therefore, finding a method that is close to the ML detection method and greatly reducing the complexity becomes a key factor for whether the MIMO detection technology can be realized in the actual system.
  • Viterbo et al. proposed a Sphere Decoding (SD) algorithm for signals with a grid-like constellation.
  • SD Sphere Decoding
  • V-BLAST vertical Bell Labs layered space-time
  • the sphere decoding algorithm needs to preset an initial decoding half before performing the sphere decoding detection.
  • the diameter d, and the complexity of the sphere decoding algorithm itself is exponentially related to the initial decoding radius d. Therefore, how to determine the initial decoding radius d becomes more critical. If the radius d is too large, the spherical decoding search grid points are too much, which leads to an increase in complexity. If the radius d is too small, there may be no grid points in the initial radius sphere and the search fails, and the initial radius d needs to be increased. Re-searching also leads to increased complexity.
  • a method for reducing the initial radius of a sphere decoding is disclosed, which is based on a predetermined target bit error rate (BER) performance to determine the number of bits to be simulated, and then The initial radius coefficient is calculated according to the number of bits, the modulation method, and the number of transmitting antennas. Finally, the initial radius d is calculated in conjunction with the variance of the channel noise.
  • BER bit error rate
  • the initial radius d is selected to be too large, which increases the complexity of the sphere decoding.
  • the technical problem to be solved by the present invention is to provide a method and a device for calculating the initial radius of a sphere decoding, so as to accurately determine the initial radius of the sphere decoding, and reduce the complexity of the sphere decoding algorithm under the premise of ensuring the spherical decoding performance.
  • the present invention provides the following technical solutions:
  • a method for calculating an initial radius of a sphere decoding includes the following steps:
  • step B the weight is calculated as:
  • -( ⁇ - ) ⁇ CN + ⁇ SNR , where ⁇ is the weight, which is the weight coefficient, and CN is the condition number, which is the signal-to-noise ratio.
  • step C of the above method the threshold is calculated according to the modulation mode and the target bit error rate:
  • step D the calculation formula for calculating the initial radius based on the variance of the channel noise is:
  • ⁇ 2 ⁇ 2 , where d is the initial radius, ⁇ is the initial radius factor, ⁇ is twice the number of transmitting antennas, and ⁇ 2 is the noise variance.
  • step D the initial radius is calculated based on the minimum mean square error solution of the received signal Specifically:
  • a spherical decoding initial radius calculation device includes:
  • a weight calculation unit configured to calculate a condition number and a signal to noise ratio of the current channel, and calculate a weight according to the condition number and the signal to noise ratio;
  • a threshold value calculation unit configured to calculate a threshold according to the modulation mode and the target bit error rate; the determining unit determines whether the weight is greater than the threshold, and if yes, activates the first initial radius calculation unit; otherwise, activates the Two initial radius calculation unit;
  • a first initial radius calculation unit for calculating an initial radius based on a channel noise variance
  • a second initial radius calculation unit configured to calculate an initial radius based on the received signal minimum mean square error solution.
  • the threshold calculation unit in the above device calculates the threshold according to the following method: determining the signal to noise ratio SNR ' corresponding to the bit error rate according to the modulation mode;
  • Threshold X *SNR'- 2 , where , and 1 ⁇ 2 are preset parameters.
  • the first initial radius calculation unit in the above apparatus calculates an initial radius according to the following formula:
  • the second initial radius calculating unit in the above apparatus specifically calculates the initial radius as follows:
  • the invention not only ensures that at least one grid point exists in the selected initial radius sphere under the channel condition of low and medium signal to noise ratio, thereby avoiding the problem of re-searching the initial radius; and, at high signal to noise ratio Under the channel conditions, the calculated initial radius is more reasonable. In this way, while ensuring the performance of the sphere decoding, the algorithm complexity of the sphere decoding is greatly reduced.
  • FIG. 1 is a flowchart of a method for calculating a spherical decoding initial radius according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a spherical decoding initial radius computing device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a spherical decoding algorithm after using the method of the present invention
  • the expression of the MIMO system is as follows:
  • y is the received signal
  • H is the channel matrix
  • M is the channel noise.
  • Step 101 Calculate the condition number ⁇ of the current channel H and the signal to noise ratio ⁇ ⁇ ;
  • the embodiment of the present invention combines the condition number and the signal to noise ratio to perform the initial radius. Calculation.
  • Step 102 Calculate a weight according to the condition number and the signal to noise ratio
  • Step 103 Calculate a threshold value of 3 ⁇ 4 ra/z according to the modulation mode and the target bit error rate.
  • w First, according to the modulation method, determine the required signal-to-noise ratio of the target bit error rate, and then calculate the threshold according to SNR ': Threshold ⁇ '- ⁇ 2 , where, preferably, 1 ⁇ ⁇ 3 ⁇ 2 ⁇ 4.
  • Step 104 Determine whether the weight ⁇ is greater than the threshold ⁇ ⁇ ⁇ , and if so, proceeds to step 105; otherwise, proceeds to step 106;
  • Step 105 Calculate an initial radius based on the channel noise variance
  • Step 106 Calculate the initial radius based on the received signal minimum mean square error (MMSE) solution.
  • Step 106 specifically includes:
  • the weight calculation unit 10 is configured to calculate a condition number and a signal to noise ratio of the current channel, and calculate a weight according to the condition number and the signal to noise ratio;
  • the threshold value calculating unit 20 is configured to calculate a threshold according to the modulation mode and the target bit error rate; the determining unit 30 determines whether the weight is greater than the threshold, and if yes, activates the first initial radius calculating unit 40; Activating the second initial radius calculation unit 50;
  • the first initial radius calculating unit 40 is configured to calculate an initial radius based on the channel noise variance; and the second initial radius calculating unit 50 is configured to calculate the initial radius based on the received signal minimum mean square solution.
  • the initial radius obtained by the method of the present invention can save about 20% of the complexity of the sphere decoding algorithm.
  • the embodiment of the present invention combines the condition number and the signal-to-noise ratio to calculate the weight.
  • the condition number is the most direct parameter for measuring the distortion degree of the channel to the transmitted signal constellation
  • the current condition number can be utilized.
  • Characterizing the degree of channel variation on the other hand, the overall signal quality can be measured using the signal-to-noise ratio.
  • the embodiment of the present invention uses the condition number and the signal-to-noise ratio to jointly calculate the initial radius, which is an adaptive initial radius calculation method, thereby jumping out of the conventional method of fixing the initial radius from the beginning, so that the method can be fully utilized.
  • the algorithm complexity of the sphere decoding is greatly reduced while ensuring the spherical decoding performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)

Description

一种球形译码的初始半径计算方法及装置 技术领域
本发明涉及无线通信中的多输入输出 (MIMO )检测, 尤其涉及一 种球形译码的初始半径计算方法及装置。 发明背景
在目前无线通信标准及其演进过程中, 多输入输出 ( Multiple Input Multiple Output, MIMO )天线技术已经被广泛采用。 无论是 3GPP长期 演进技术(long term evolution, LTE ) 中, 还是 802.16系列技术演进版 本中, 都把正交频分复用 ( OFDM )和 MIMO技术作为关键技术加以广 泛采用。 与传统的单输入输出 (SISO ) 系统相比, MIMO系统的接收是 在时间与频域上均相互重叠的情况下进行 MIMO信号检测,因此, MIMO 信号检测的复杂度大大高于传统 SISO信号检测。
理论上, 对 MIMO信号可以通过最大似然( Maximum likelihood, ML )检测方法进行检测。 但是, 最大似然检测需要遍历搜索的星座图 点数随着发射天线数、 调制方式自由度的增加成指数增长, 因此, 在发 射天线数多和高阶调制的情况下, 其运算复杂度在实际系统中是难以承 受的。 因此, 寻找性能接近 ML检测方法, 而复杂度大大降低的方法, 就成为 MIMO检测技术在实际系统中能否实现的关键因素。
于是, Viterbo等在 Pohst等的研究基础上, 对具有栅格状星座图的 信号提出了球形译码 ( Sphere Decoding, SD )算法。 而 Damen将这种 算法推广到 MIMO 信号检测, 并取得了比垂直贝尔实验室分层空时 ( V-BLAST )检测更好的性能。
球形译码算法需要在进行球形译码检测之前预设一个初始译码半 径 d , 而球形译码算法本身的复杂度与初始译码半径 d则呈指数关系。 因此, 如何确定初始译码半径 d就变得比较关键。 若半径 d过大, 则球 形译码搜索网格点过多, 导致复杂度增大; 若半径 d过小, 有可能在初 始半径球内没有网格点而导致搜索失败, 需要增加初始半径 d进行重新 搜索, 也导致了复杂度增加。
在申请号为 200610116780.1的中国专利申请文件中,公开了一种减 小球形译码初始化半径的方法, 其主要基于预先设定的目标误比特率 ( BER )性能确定需要仿真的比特数, 然后再根据比特数、 调制方式和 发射天线数共同计算出初始半径系数《 , 最后结合信道噪声方差计算出 初始半径 d。 该方案对初始半径 d的选取存在如下不足:
不能保证所选取的球体内肯定存在网格点, 从而可能需要重新进行 搜索;
在信噪比相对比较低的情况下, 由于噪声方差较大, 导致选取初始 半径 d过大, 这样会增加球形译码的复杂度。
针对上述球形译码中存在的问题, 在刘谦雷的博士论文, "MIMO 通信系统信号检测算法研究, 南京: 东南大学, 2006"中提出了一种基于 接收信号最小均方差 (MMSE )解选取初始半径 d的方法, 一方面, 规 避了因初始半径 d过小, 导致初始球体内没有网格点的情况; 另一方面, 对于低信噪比信道条件, 球形译码复杂度得到降低。 但是, 该方法也存 问题: 一方面, 在相对比较高信噪比的条件下, 其对球形译码复杂度有 时并没有降低, 甚至有时还要增加复杂度的情况; 另一方面, 在低、 中 信噪比的条件下, 其对复杂度的降低还存在更进一步优化的余地。
因此, 现有技术存在缺陷, 需要进一步改进和完善。 发明内容
本发明所要解决的技术问题是提供一种球形译码的初始半径计算 方法及装置, 以准确确定球形译码的初始半径, 在保证球形译码性能的 前提下, 降低球形译码算法复杂度。
为解决上述技术问题, 本发明提供技术方案如下:
一种球形译码的初始半径计算方法, 包括如下步骤:
A、 计算当前信道的条件数和信噪比;
B、 根据所述条件数和信噪比计算一权值;
C、 根据调制方式和目标误比特率计算一阀值;
D、 判断所述权值是否大于所述阀值, 若是, 则基于信道噪声方差 计算初始半径; 否则, 基于接收信号最小均方差解计算初始半径。
上述的方法, 步骤 B中, 权值的计算公式为:
ψ = -(\- )^CN + ^SNR , 其中, ^为权值, 为权重系数, CN为 条件数, 为信噪比。
上述方法的步骤 C中,根据调制方式和目标误比特率计算阈值具体 为:
根据调制方式确定误比特率所对应要求的信噪比 S服 ';
根据 ^ W'计算阀值: ¥Threshold = *SNR'- 2 , 其中, 和 ½为预先 设置的参数。
上述的方法, 步骤 D中, 基于信道噪声方差计算初始半径的计算公 式为:
= αησ 2 , 其中, d为初始半径, α为初始半径系数, Μ为两倍的 发射天线数, σ 2为噪声方差。
上述的方法, 步骤 D中, 基于接收信号最小均方差解计算初始半径 具体为:
计算接收信号的最小均方差解 χ = (ΗΗΗ + Ισ2Γ1ΗΗ γ , 其中, y 为接收信号, H为信道矩阵, /为单位矩阵, σ 2为噪声方差;
对 进行硬判决得到相应的网格点, 并利用信道 H进行重构得到 y; 计算初始半径 d = \\y- y\\
一种球形译码的初始半径计算装置, 包括:
权值计算单元, 用于计算当前信道的条件数和信噪比, 并根据所述 条件数和信噪比计算一权值;
阀值计算单元, 用于根据调制方式和目标误比特率计算一阀值; 判断单元, 判断所述权值是否大于所述阀值, 若是, 则激活第一初 始半径计算单元; 否则, 激活第二初始半径计算单元;
第一初始半径计算单元, 用于基于信道噪声方差计算初始半径; 第二初始半径计算单元, 用于基于接收信号最小均方差解计算初始 半径。
上述装置中的所述权值计算单元用于根据如下公式计算权值: ψ = -(\- )^CN + ^SNR , 其中, ^为权值, 为权重系数, CN为 条件数, 为信噪比。
上述装置中的所述阀值计算单元具体按照如下方式计算阈值: 根据调制方式确定误比特率所对应要求的信噪比 SNR ';
根据 SNR'计算阀值: Threshold = X *SNR'- 2 , 其中, 和 ½为预先 设置的参数。
上述装置中的所述第一初始半径计算单元根据如下公式计算初始半 径:
- αησ 2, 其中, 为初始半径, 《为初始半径系数, w为两倍的 发射天线数, 为噪声方差。
上述装置中的所述第二初始半径计算单元具体按照如下方式计算初 始半径:
计算接收信号的最小均方差解 x = (HHH + I 2 y1 HH y , 其中, y 为接收信号, H为信道矩阵, /为单位矩阵, ^为噪声方差;
对 进行硬判决得到相应的网格点, 并利用信道 H进行重构得到 j; 计算初始半径 d = \\y - y\\
本发明不仅保证了在低、 中信噪比的信道条件下, 所选取的初始半 径球内至少存在一个网格点, 从而避免对初始半径进行重新搜索的问 题; 而且, 在高信噪比的信道条件下, 计算得到的初始半径更为合理。 这样,在保证球形译码性能的同时, 大大降低了球形译码的算法复杂度。 附图简要说明
图 1 为本发明实施例的球形译码初始半径计算方法流程图; 图 2 为本发明实施例的球形译码初始半径计算装置结构示意图; 图 3 为采用本发明的方法后球形译码算法复杂度与采用现有的方 法后球形译码算法复杂度对比示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及 具体实施例对本发明进行详细描述。
MIMO系统的表达式如下:
y = Hx + n
其中, y为接收信号, H为信道矩阵, 为发射信号, M为信道噪声。 参照图 1 , 本发明实施例的球形译码的初始半径计算方法, 主要包 括如下步骤:
步骤 101: 计算当前信道 H的条件数 αν和信噪比^顺;
由于球形译码的复杂度对信道条件数敏感, 而条件数本身是衡量信 道对发射信号星座图扭曲程度的最直接参数, 因此, 本发明实施例利用 条件数和信噪比联合进行初始半径 的计算。
步骤 102: 根据所述条件数和信噪比计算一权值
权值的计算公式为: y =—{i— p、*CN + P*SNR , 其中, 为权重系数, 优选地, 0·3< <0·7。
步骤 103: 根据调制方式和目标误比特率计算一阀值^ ¾ra/zw; 首先,根据调制方式,确定目标误比特率所对应要求的信噪比 , 然后, 根据 SNR '计算阀值: Threshold 膽'- Λ2 , 其中, 优选地, 1</ΐ! <1.8 , 3< 2 <4。
步骤 104: 判断所述权值 ^是否大于所述阀值^ ^ ^, 若是, 进入 步骤 105; 否则, 进入步骤 106;
步骤 105: 基于信道噪声方差计算初始半径 结束;
初始半径 的计算公式为: ά2=αησ2,其中, "为初始半径系数(经 验值为 3), "为两倍的发射天线数, σ2为噪声方差。
步骤 106: 基于接收信号最小均方差 (MMSE)解计算初始半径。 步骤 106具体包括:
( 1)计算接收信号的最小均方差解 x = (HHH + I 2 1HHy , 中, /为单位矩阵;
(2)对_¾进行硬判决得到相应的网格点, 并利用信道 H进行重构得 到
(3)计算初始半径 : d = |y-j||。 通过上述初始半径计算, 能够保证初始半径球内至少有一个网格 点, 从而避免了重新搜索的发生。
本发明的上述方法可以通过如图 2所述的装置来实现, 该装置主要 包括:
权值计算单元 10, 用于计算当前信道的条件数和信噪比, 并根据所 述条件数和信噪比计算一权值;
阀值计算单元 20, 用于根据调制方式和目标误比特率计算一阀值; 判断单元 30, 判断所述权值是否大于所述阀值, 若是, 则激活第一 初始半径计算单元 40; 否则, 激活第二初始半径计算单元 50;
第一初始半径计算单元 40, 用于基于信道噪声方差计算初始半径; 第二初始半径计算单元 50,用于基于接收信号最小均方差解计算初 始半径。
通过上述本发明实施例的描述, 进行如下的仿真。 主要考虑不同的 信噪比条件下, 采用本发明的方法后球形译码算法复杂度与采用现有的 方法后球形译码算法复杂度对比。 在发送端比特不经过信道编码, 采用 16QAM调制方式, 每个天线发送 100个符号, 其仿真条件如表 1所示:
Figure imgf000009_0001
表 1 从图 3 中可以看出, 采用本发明的方法得到的初始半径可以节省 20%左右的球形译码算法复杂度。
综上所述, 本发明的实施例联合利用条件数和信噪比来计算权值, 一方面, 由于条件数是衡量信道对发射信号星座图扭曲程度的最直接参 数, 因此可以利用当前条件数表征信道变化的程度, 另一方面, 利用信 噪比可以对整体信号质量进行衡量。 本发明的实施例利用条件数和信噪 比联合进行初始半径的计算, 是一种自适应的初始半径计算方法, 从而 跳出了传统的对初始半径一开始就进行固定的方法, 这样能够充分利用 各种不同算法的优势。
通过实施本发明, 不仅保证了在低、 中信噪比的信道条件下, 所选 取的初始半径球内至少存在一个网格点, 从而避免对初始半径进行重新 搜索的问题; 而且, 在高信噪比的信道条件下, 计算得到的初始半径更 为合理。 总之, 通过本发明, 在保证球形译码性能的同时, 大大降低了 球形译码的算法复杂度。
最后应当说明的是, 以上实施例仅用以说明本发明的技术方案而非 限制, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行 修改或者等同替换, 而不脱离本发明技术方案的精神范围, 其均应涵盖 在本发明的权利要求范围当中。

Claims

权利要求书
1. 一种球形译码的初始半径计算方法,其特征在于,包括如下步骤:
A、 计算当前信道的条件数和信噪比;
B、 根据所述条件数和信噪比计算一权值;
C、 根据调制方式和目标误比特率计算一阀值;
D、 判断所述权值是否大于所述阀值, 若是, 则基于信道噪声方差 计算初始半径; 否则, 基于接收信号最小均方差解计算初始半径。
2. 如权利要求 1所述的方法, 其特征在于, 步骤 B中, 权值的计算 公式为:
ψ = -(\- )^CN + fi^SNR , 其中, 为权值, 为权重系数, OV为条 件数, 为信噪比。
3. 如权利要求 2所述的方法, 其特征在于, 步骤 C中, 根据调制方 式和目标误比特率计算阈值具体为:
根据调制方式确定误比特率所对应要求的信噪比 SNR ';
根据 SNR'计算阀值: Threshold = 1 *SNR'- 2 , 其中, ^和 ^为预先 设置的参数。
4. 如权利要求 1至 3任一项所述的方法, 其特征在于, 步骤 D中, 基于信道噪声方差计算初始半径的计算公式为:
= αησ 2 , 其中, d为初始半径, α为初始半径系数, Μ为两倍的 发射天线数, σ2为噪声方差。
5. 如权利要求 1至 3任一项所述的方法, 其特征在于, 步骤 D中, 基于接收信号最小均方差解计算初始半径具体为:
计算接收信号的最小均方差解 x = (HHH + I 2y1HHy, 其中, y 为接收信号, H为信道矩阵, /为单位矩阵, σ 2为噪声方差; 对 进行硬判决得到相应的网格点, 并利用信道 进行重构得到 j; 计算初始半径 ^?: j = ||} - ))|| 0
6. 一种球形译码的初始半径计算装置, 其特征在于, 包括: 权值计算单元, 用于计算当前信道的条件数和信噪比, 并根据所述 条件数和信噪比计算一权值;
阀值计算单元, 用于根据调制方式和目标误比特率计算一阀值; 判断单元, 判断所述权值是否大于所述阀值, 若是, 则激活第一初 始半径计算单元; 否则, 激活第二初始半径计算单元;
第一初始半径计算单元, 用于基于信道噪声方差计算初始半径; 第二初始半径计算单元, 用于基于接收信号最小均方差解计算初始 半径。
7. 如权利要求 6所述的装置, 其特征在于, 所述权值计算单元根据 如下公式计算权值:
ψ = -(\ - ) ^ CN + fi ^ SNR , 其中, 为权值, 为权重系数, CN为 条件数, 为信噪比。
8. 如权利要求 6至 8任一项所述的装置, 其特征在于, 所述阀值计 算单元具体按照如下方式计算阈值:
根据调制方式确定误比特率所对应要求的信噪比 SNR ';
根据 SNR'计算阀值: rThreshold 膽' - Λ2 , 其中, 和 ½为预先 设置的参数。
9. 如权利要求 6至 8任一项所述的装置, 其特征在于, 所述第一初 始半径计算单元根据如下公式计算初始半径:
d2 = αησ 2 , 其中, d为初始半径, α为初始半径系数, w为两倍的 发射天线数, 为噪声方差。
10. 如权利要求 6至 8任一项所述的装置, 其特征在于, 所述第二 初始半径计算单元具体按照如下方式计算初始半径:
计算接收信号的最小均方差解 χ = (ΗΗΗ + Ισ2Γ1ΗΗ γ , 其中, y 为接收信号, H为信道矩阵, /为单位矩阵, 为噪声方差;
对 进行硬判决得到相应的网格点, 并利用信道 H进行重构得到 ; 计算初始半径 d = \\y- y\\
PCT/CN2009/072402 2008-10-30 2009-06-23 一种球形译码的初始半径计算方法及装置 WO2010048816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810225194.X 2008-10-30
CN200810225194XA CN101388705B (zh) 2008-10-30 2008-10-30 一种球形译码的初始半径计算方法及装置

Publications (1)

Publication Number Publication Date
WO2010048816A1 true WO2010048816A1 (zh) 2010-05-06

Family

ID=40477908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072402 WO2010048816A1 (zh) 2008-10-30 2009-06-23 一种球形译码的初始半径计算方法及装置

Country Status (2)

Country Link
CN (1) CN101388705B (zh)
WO (1) WO2010048816A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388705B (zh) * 2008-10-30 2012-03-28 北京天碁科技有限公司 一种球形译码的初始半径计算方法及装置
CN101594202B (zh) * 2009-06-22 2012-12-26 北京天碁科技有限公司 一种球形译码检测方法及装置
CN101662341B (zh) * 2009-09-25 2012-08-01 意法·爱立信半导体(北京)有限公司 一种多输入多输出信号检测方法和装置
CN101662342B (zh) * 2009-09-25 2012-08-29 意法·爱立信半导体(北京)有限公司 一种多输入多输出信号检测方法和装置
CN104393953A (zh) * 2014-11-12 2015-03-04 东华大学 一种lte系统中低复杂度、低误码率的球型译码算法
EP3229428B1 (en) * 2016-04-06 2021-03-10 Institut Mines-Télécom Methods and devices for sequential sphere decoding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101509A1 (en) * 2006-10-31 2008-05-01 Samsung Electronics Co., Ltd. Apparatus and method for decoding received signal in multiple input multiple output (mimo) system
CN101247207A (zh) * 2006-12-21 2008-08-20 财团法人工业技术研究院 球状解码方法与系统
CN101388705A (zh) * 2008-10-30 2009-03-18 北京天碁科技有限公司 一种球形译码的初始半径计算方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064579B (zh) * 2006-04-25 2011-05-25 上海无线通信研究中心 一种低复杂度的球形译码检测方法
CN101155165B (zh) * 2006-09-29 2010-12-08 上海无线通信研究中心 减小球形译码初始化半径方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080101509A1 (en) * 2006-10-31 2008-05-01 Samsung Electronics Co., Ltd. Apparatus and method for decoding received signal in multiple input multiple output (mimo) system
CN101247207A (zh) * 2006-12-21 2008-08-20 财团法人工业技术研究院 球状解码方法与系统
CN101388705A (zh) * 2008-10-30 2009-03-18 北京天碁科技有限公司 一种球形译码的初始半径计算方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU QIANLEI.: "Signal Detection Algorithms For MIMO Communication Systems", A DISSERTATION SUBMITTED TO SOUTHEAST UNIVERSITY FOR THE ACADEMIC DEGREE OF DOCTOR OF ENGINEERING, 31 December 2006 (2006-12-31) *

Also Published As

Publication number Publication date
CN101388705B (zh) 2012-03-28
CN101388705A (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
CN104756453B (zh) 使用正交频分多路复用的高频谱有效性接收
WO2010048816A1 (zh) 一种球形译码的初始半径计算方法及装置
JP4372155B2 (ja) Mimo受信機及びmimo受信方法
US8089894B2 (en) Methods and systems for adaptive effective CINR reporting in a wireless communication system
WO2020233182A1 (zh) 自适应mimo检测方法和系统
JP2009060616A (ja) Mimoシステムに用いる低複雑度の信号検出方法及びその検出装置
JP4861316B2 (ja) 多出力無線通信システムで最尤デコードを行うシステム及び方法
WO2011153802A1 (zh) 一种多输入多输出系统的信号检测方法和装置
CN101669313B (zh) 估计误差传播概率以提高决策反馈系统的性能
Zhang et al. Signal detection technology research of MIMO-OFDM system
US10348525B2 (en) Facilitating dynamic layer mapping with multiple downlink control channels for wireless communication systems
Nissel et al. Closed-Form capacity expression for low complexity BICM with uniform inputs
Liu et al. Successive transmit beamforming algorithms for multiple-antenna OFDM systems
CN109889286A (zh) 一种基于导频信号的信噪比估计方法
Yoon et al. Low-complexity iterative channel estimation for turbo receivers
US20140164002A1 (en) Joint decoding apparatus and method, necessity judging method and apparatus, and receiver
Noh et al. A practical mmse-ml detector for a mimo sc-fdma system
WO2017054339A1 (zh) 一种迭代信道估计方法及装置、计算机存储介质
Kang et al. Adaptive modulation and coding for MIMO-OFDM systems using LMS channel prediction and CQI table adaptation
Sheela et al. Performance analysis of channel-dependent rate adaptation for OFDMA transmission in IEEE 802.11 ax WLANs
WO2017101104A1 (zh) 一种计算信噪比的方法和用户设备ue
Ding et al. A Novel Weighted LLR Algorithm for Non-Coherent OFDM-MFSK System in Ionospheric Scatter Channel
Dang et al. Beamforming for SC-FDMA transmission over MIMO ISI channels with decision-feedback equalization
Fu et al. Improved sphere decoding algorithm in TD-LTE system
Leturc et al. Average PER Prediction Based on Statistical CSI for SC-FDE Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823009

Country of ref document: EP

Kind code of ref document: A1