CN101064579B - 一种低复杂度的球形译码检测方法 - Google Patents

一种低复杂度的球形译码检测方法 Download PDF

Info

Publication number
CN101064579B
CN101064579B CN2006100260432A CN200610026043A CN101064579B CN 101064579 B CN101064579 B CN 101064579B CN 2006100260432 A CN2006100260432 A CN 2006100260432A CN 200610026043 A CN200610026043 A CN 200610026043A CN 101064579 B CN101064579 B CN 101064579B
Authority
CN
China
Prior art keywords
ball
new
constellation point
radius
downline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100260432A
Other languages
English (en)
Other versions
CN101064579A (zh
Inventor
夏小梅
赵巍
杨秀梅
汪凡
熊勇
张小东
卜智勇
王海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Research Center for Wireless Communications
Original Assignee
Shanghai Research Center for Wireless Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Research Center for Wireless Communications filed Critical Shanghai Research Center for Wireless Communications
Priority to CN2006100260432A priority Critical patent/CN101064579B/zh
Publication of CN101064579A publication Critical patent/CN101064579A/zh
Application granted granted Critical
Publication of CN101064579B publication Critical patent/CN101064579B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Error Detection And Correction (AREA)

Abstract

本发明提供低复杂度的球形译码检测的方法,首先定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界,在每一步查找新的星座点的过程中,剩余的查找范围为传统球形译码的k倍,其中k是小于1大于零的系数,即r=k*(upline_R+downline_R),本发明能够加快查找范围收敛的速度,大大减少球形译码过程中遍历的星座点数目,同时系统性能损失不大。

Description

一种低复杂度的球形译码检测方法
技术领域
本发明涉及一种无线通信系统中的检测方法,尤其涉及一种低复杂度的球形译码检测方法,本发明可应用于MIMO和CDMA系统中。
背景技术
在无线通信系统中,为越来越多的移动用户提供高速率数据和多媒体业务已经日益迫切,设计能够逼近信道容量的有效方法的信号处理方法已经成为一种挑战。最优的极大似然检测(ML)由于它极高的复杂度阻止它在实际中的应用,E.Viterbo and 0.Damen提出了MIMO系统中的球形译码方法使得ML算法在实际中得以运用。球形译码使得ML算法得以简化主要在于球形译码降低了遍历星座点的数目。但球形译码的复杂度对球形初始半径的选择非常敏感:不合适的球面初始半径将导致一个非常高的译码失败率或非常大运算成本。于是如何降低球形译码的复杂度,降低对初始半径敏感程度引起人们广泛注意。
发明内容
本发明所要解决的技术问题是提供一种低复杂度的球形译码检测方法,该方法能加快查找范围收敛速度,大大减少球形译码过程中遍历的星座点数目,同时系统性能损失不大。
在传统的球形译码中,无论什么时候我们在球内找到一个星座点,球形半径将缩减到新找到的点到球心的距离。本发明的主要思想在于加快查找范围的收敛速度。
本发明的低复杂度的球形译码检测的方法包括如下步骤:
步骤1、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界。初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r。
步骤2、当在球内(以downline_R为球心,r为球的半径的球)找到一个新的星座点,将新找到的星座点到球心的距离设置为upline_R,根据如下公式计算新的球面半径:
r=k*(upline_R+downline_R)    (1)
其中k是小于1大于零的系数,可以是1/2,或者是黄金分割率等。
步骤3、在更新后的球内寻找新的星座点。如果在更新后的球内找到一个新的星座点;所述的更新后的球是以downline_R为球心,r为半径的球,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤4、如果在这个新的球内没有找到新的星座点,则将该新的球的球面半径设置为downline_R,根据式1计算半径:
r=k*(upline_R+downline_R)
在环形区域内(在半径为[downline_R,upline_R]的环球内)寻找新的星座点。
步骤5、重复步骤4,若新的球的半径的上限和下限满足设置的门限值或者在环形区域内半径更新的次数达到门限值,则输出最终找到的星座点并结束译码。
所述新的球的半径的上限和下限满足设置的门限值具体是指:
|upline_R-downline_R|<ω
其中downline_R为多次寻找星座点后新的球形译码半径的下界,upline_R为多次寻找星座点后新的球形译码半径的上界。
所述的门限值ω可以根据下述方法获得:
根据噪声方差和经验因子来定义界值ω
ω=coefficient*sqrt(noise covariance)
其中coefficient为经验因子,所述coefficient=1,2,3,4…,noise covariance为噪声方差。优选地,所述的经验因子小于等于4。
进一步地,本发明还提供另一种低复杂度的球形译码检测的方法,包括如下步骤:
步骤1、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界。初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r。
步骤2、当在球内找到一个新的星座点,所述的球是以downline_R为球心,r为半径的球;将新找到的星座点到球心的距离设置为upline_R,根据如下公式计算新的球面半径:
r=k*(upline_R+downline_R)    (1)
其中k是小于1大于零的系数,可以是1/2,或者是黄金分割率等。
步骤3、在更新后的球内寻找新的星座点,所述的更新后的球是以downline_R为球心,r为半径的球;如果在更新后的球内找到一个新的星座点,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤4、当首次在新的球内找不到新的星座点时,则在此时的球形半径下返回传统的球形译码方法结束译码。
附图说明
图1是本发明的低复杂度的球形译码检测的方法的工作流程图。
图2是基于QPSK调制的SD_RRH算法和传统的球形译码方法所需实数乘法比较。
图3是基于16QAM调制的SD_RRH算法和传统的球形译码方法所需实数乘法比较。
图4是采用第一种结束算法的SD_RRH和传统的球形译码方法BER性能比较图。
图5是采用第二种结束算法的SD RRH和传统的球形译码方法BER性能比较图。
具体实施方式
下面提供4个发送4个接收天线MIMO系统的低复杂度球形译码算法(SD_RRH)。
(1)发送端的信息比特未经过信道编码调制到星座点上的符号。然后对得到的符号进行空时编码映射到多个发射天线,由个发射天线同时发射。
(2)考虑准静态平坦衰落的信道模型,在每一时刻,接收信号经过信道后的模型为
y=Hx+n
其中H是每个元素都是均值为零,方差为1的独立同分布的4×4矩阵。x是4×1发射符号向量,n是均值为零、方差为σ2的复高斯噪声。
(3)在接收端,用球形译码算法进行检测,为了使用球形译码算法,检测可以被认为是如下的求整数的最小方差问题:
min x ∈ Z m | | y - Hx | | 2
其中,y∈Rn×1,H∈Rn×m。zm表示m维的整数格点.这里m=8;n=8。例如:x是8维的整数向量输入。一般,我们研究的空间是在无限格点中的一个有限子集
Figure GSB00000260099900032
min x ∈ D ⋐ Z m | | y - Hx | | 2
符号向量x中的元素是L2-QAM中的复值星座点,所以实部虚部分别是L-PAM星座点。例如针对QPSK,16QAM,64QAM调制,L分别为2,4,8。所谓球形译码就是在以接收向量y为球心的一个球内寻找最接近球心的星座点。传统的球形初始半径的选择是噪声方差的函数:
r2=αnσ2
其中,在这个球内至少能找到一个星座点的概率为:
∫ 0 αn λ n 2 - 1 Γ ( n 2 ) e - λ dλ = 1 - ξ
式中1-ξ是一个大的概率,当α=3.0,n=8,高概率1-ξ为0.99999990120473.
在传统的球形译码中,无论什么时候我们在球内找到一个星座点,球形半径将缩减到新找到的点到球心的距离。如图1所示:本具体实施例中球形译码检测的方法包括如下步骤:
步骤(a)、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界。初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r。
步骤(b)、当在球内(以downline_R为球心,r为球的半径的球)找到一个新的星座点,将新找到的星座点到球心的距离设置为upline_R,根据如下公式计算新的球面半径:
r=k*(upline_R+downline_R)         (1)
其中k是小于1大于零的系数,可以是1/2,或者是黄金分割率等。在本具体实施例中k等于1/2。
步骤(c)、在更新后的球内(以downline_R为球心,r为球的半径的球)寻找新的星座点,如果在更新后的球内找到一个新的星座点,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤(d)、如果在这个新的球内没有找到新的星座点,则将该新的球的球面半径设置为downline_R,根据式1计算半径:
r=k*(upline_R+downline_R)
本具体实施例中k等于1/2。
在环形区域内(在半径为[downline_R,upline_R]的环球内)寻找新的星座点。
步骤(e)、重复步骤(d),若新的球形译码半径的上限和下限满足设置的门限值则输出最终找到的星座点并结束译码。
可见,在本具体实施例中在每一步查找新的星座点的过程中,剩余的查找范围为传统球形译码的一半来加快收敛。
其中,所述的新的球形译码半径的上限和下限满足设置的门限值具体是指:
|upline_R-downline_R|<ω
其中downline_R为多次寻找星座点后新的球形译码半径的下界,upline_R为多次寻找星座点后新的球形译码半径的上界。
本具体实施例中可根据噪声方差和经验因子来定义门限值ω
ω=coefficient*sqrt(noise covariance)
coefficient=1,2,3,4…
其中coefficient为经验因子,noise covariance为噪声方差。本具体实施例中coefficient的值设为1,2和3。
当然本发明并不局限于上述具体实施例,凡本领域技术人员所熟知的变换均落在本发明的保护范围内,比如,还可以采用第二种实施方式:
其中步骤(a)-(d)与上述第一实施例相同
步骤(e)、重复步骤(d),直到在环形区域半径内的寻找次数达到门限值,则输出最终找到的星座点并结束译码。
所述的门限值ω的计算方法与实施例1相同。
进一步地,还可以采用第三种实施方式:
一种低复杂度的球形译码检测的方法,包括如下步骤:
步骤1、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界。初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r。
步骤2、当在球内(以downline_R为球心,r为球的半径的球)找到一个新的星座点,将新找到的星座点到球心的距离设置为upline_R,根据如下公式计算新的球面半径:
r=k*(upline_R+downline_R)   (1)
其中k是小于1大于零的系数,可以是1/2,或者是黄金分割率等。
步骤3、在更新后的球内(以downline_R为球心,r为球的半径的球)寻找新的星座点。如果在更新后的球内找到一个新的星座点,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤4、当首次在新的球内找不到新的星座点时,则在此时的球形半径下返回传统的球形译码方法结束译码。
本发明的SD_RRH算法能极大的减少译码所遍历的星座点数目,特别是在低信噪比和高阶调制的情况下,并且性能损失很小。
以下将给出详细的SD_RRH算法与传统的球形译码算法的复杂度比较:采用找到译码最终的输出值的过程中所遍历的所有星座点数目为比较基准。表1和表2分别给出了两种结束方法的SD_RRH算法和传统球形译码算法的遍历星座点数目。其中Num_half表示为当在新的球面半径下找不到新的星座点时,SD_RRH算法再环形区域继续折半查找的次数。
所需的实数乘法=所有遍历的星座点×搜索每个星座点所需的实数乘法每遍历一个星座点所需的实数乘法为:
QPSK:无回溯的查找一个星座点所需的实数乘法*回溯系数=79*2.53=199.87
16QAM:无回溯的查找一个星座点所需的实数乘法*回溯系数=79*6.89=544.31回溯系数和所有遍历的星座点是仿真得出的统计参数。
表1第一种SD_RRH结束方法和传统球形译码的遍历星座点数目比较
Figure GSB00000260099900061
表2第二种SD_RRH结束方法和传统球形译码的遍历星座点数目比较
Figure GSB00000260099900062
以下通过仿真结果来说明低复杂度球形译码检测(SD_RRH)的性能。主要考虑不同信噪比下的误比特率性能。假设信道是平坦衰落。在发送端,发送的比特不经过编码的进行QPSK,16QAM调制,相应的L值分别为2,4。初始半径按原始方法设置,α取值为3.0。仿真条件如表3所示:
表3仿真条件
  天线配置   4×4
  m   8
  n   8
  α   3.0
  信道   flat fading
  每帧符号数   120*Nt=120*4
  每SNR下的帧数   500
  信道编码   Uncoded
  球形译码的初始半径   αnσ2=3.0*8*σ2
图2图3分别给出了在QPSK,16QAM调制下两种SD RRH结束方法和传统球形译码算法所需的实数乘法比较。
我们通过图2图3,并结合表1表2来分析折半查找算法的复杂度。很容易看出,我们所提出的折半查找方法的两种结束方法有着相似的收敛速度和复杂度。对于方法一,随着系数值的增加复杂度减小,并且性能损失不大。在方法二中,降低在环形区域中折半查找的次数也意味着降低复杂度和增大性能损失。图4和图5仿真性能图显示:新的译码方法接近ML性能曲线,但对于QPSK和16QAM分别只需要传统球形译码大约50%和20%的复杂度。
此外,需注意的是,我们提到的球形译码在低信噪比,特别是在高调制阶数的情况下更有效!

Claims (8)

1.一种低复杂度的球形译码检测的方法,其特征在于,包括如下步骤:
步骤1、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界;初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r;
步骤2、当在球内找到一个新的星座点,所述的球是以downline_R为球心,r为半径的球,将新找到的星座点到球心的距离设置为upline_R,计算新的球面半径:
r=k*(upline_R+downline_R)
其中k是小于1大于零的系数;
步骤3、在更新后的球内寻找新的星座点,所述的更新后的球是以downline_R为球心,r为半径的球,如果在更新后的球内找到一个新的星座点,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤4、如果在这个新的球内没有找到新的星座点,则将该新的球的球面半径设置为downline_R,计算半径:
r=k*(upline_R+downline_R)
在半径为[downline_R,upline_R]的环形区域内寻找新的星座点;
步骤5、重复步骤4,若新的球的半径的上限和下限满足设置的门限值或者在环形区域内的半径更新的次数达到设置的门限值,则输出最终找到的星座点并结束译码,所述步骤5中新的球的半径的上限和下限满足设置的门限值是指:
|upline_R-downline_R|<ω
其中downline_R为多次寻找星座点后新的球形译码半径的下界,upline_R为多次寻找星座点后新的球形译码半径的上界,ω是指设置的门限值。
2.根据权利要求1所述的低复杂度的球形译码检测的方法,其特征在于,所述的设置的门限值ω可以根据噪声方差和经验因子来获得:
ω=coefficient*sqrt(noise covariance)
其中noise covariance为噪声方差,coefficient为经验因子,所述coefficient=1,2,3,4…。
3.根据权利要求2所述的低复杂度的球形译码检测的方法,其特征在于,所述的经验因子小于等于4。 
4.根据权利要求1所述的低复杂度的球形译码检测的方法,其特征在于,所述的k为1/2。
5.根据权利要求1所述的低复杂度的球形译码检测的方法,其特征在于,所述的k为黄金分割率。
6.一种低复杂度的球形译码检测的方法,其特征在于,包括如下步骤:
步骤1、首先,定义两个变量upline_R和downline_R分别代表球形译码半径的上界和下界,初始化downline_R为球心,等于零;upline_R初始化为球的初始半径r;
步骤2、当在球内找到一个新的星座点,所述的球以downline_R为球心,r为球的半径,将新找到的星座点到球心的距离设置为upline_R,根据如下公式计算新的球面半径:
r=k*(upline_R+downline_R)
其中k是小于1大于零的系数;
步骤3、在更新后的球内寻找新的星座点,所述的更新后的球是以downline_R为球心,r为半径的球;如果在更新后的球内找到一个新的星座点,则根据步骤2再计算新的球面半径,重复此过程直到在更新后的球内找不到一个新的星座点;
步骤4、当首次在新的球内找不到新的星座点时,则在此时的球形半径下返回传统的球形译码方法结束译码。
7.根据权利要求6所述的低复杂度的球形译码检测的方法,其特征在于,所述的k为1/2。
8.根据权利要求6所述的低复杂度的球形译码检测的方法,其特征在于,所述的k为黄金分割率。 
CN2006100260432A 2006-04-25 2006-04-25 一种低复杂度的球形译码检测方法 Expired - Fee Related CN101064579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100260432A CN101064579B (zh) 2006-04-25 2006-04-25 一种低复杂度的球形译码检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100260432A CN101064579B (zh) 2006-04-25 2006-04-25 一种低复杂度的球形译码检测方法

Publications (2)

Publication Number Publication Date
CN101064579A CN101064579A (zh) 2007-10-31
CN101064579B true CN101064579B (zh) 2011-05-25

Family

ID=38965338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100260432A Expired - Fee Related CN101064579B (zh) 2006-04-25 2006-04-25 一种低复杂度的球形译码检测方法

Country Status (1)

Country Link
CN (1) CN101064579B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388705B (zh) * 2008-10-30 2012-03-28 北京天碁科技有限公司 一种球形译码的初始半径计算方法及装置
CN101582750B (zh) * 2009-06-02 2012-11-21 北京天碁科技有限公司 一种基于宽度优先搜索的球形译码检测方法
CN101594202B (zh) * 2009-06-22 2012-12-26 北京天碁科技有限公司 一种球形译码检测方法及装置
CN101662342B (zh) * 2009-09-25 2012-08-29 意法·爱立信半导体(北京)有限公司 一种多输入多输出信号检测方法和装置
CN101777967B (zh) * 2010-03-12 2012-12-05 北京天碁科技有限公司 选择保留星座点的方法及装置、球形译码方法及装置
CN102355295B (zh) * 2011-08-16 2014-01-22 东南大学 一种多天线正交频分复用系统的高效接收方法
CN102833045A (zh) * 2012-09-07 2012-12-19 天津理工大学 一种用于mimo通讯系统的改进的球形译码检测方法
CN102868490B (zh) * 2012-09-25 2015-05-27 重庆邮电大学 一种低复杂度球形译码检测方法
CN103888217B (zh) * 2012-12-24 2017-11-14 中兴通讯股份有限公司 一种球形译码检测方法及装置
EP3229428B1 (en) * 2016-04-06 2021-03-10 Institut Mines-Télécom Methods and devices for sequential sphere decoding
CN106452686A (zh) * 2016-08-24 2017-02-22 重庆大学 一种基于球形译码算法的半径更新方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701518A (zh) * 2003-10-03 2005-11-23 株式会社东芝 信号解码方法和设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701518A (zh) * 2003-10-03 2005-11-23 株式会社东芝 信号解码方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chan AM and Lee Inkyu.A new reduced-complexity sphere decoder for multipleantenna systems.IEEE ICC,New York.2002,460-464. *
CUI T. ETAL.An efficient generalized sphere decoder for rank deficientMIMO systems.IEEE 60TH VEHICULAR TECHNOLOGY CONFERENCE, 2004. VTC2004-FALLvol.5.2004,vol.53689-3693. *
SAMRA H. ETAL.Sphere decoding for retransmission diversity in mimo flat-fading channels.IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING 2004. PROCEEDINGS. (ICASSP '04).2004,585 - 588.
SAMRA H. ETAL.Sphere decoding for retransmission diversity in mimo flat-fading channels.IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING 2004. PROCEEDINGS. (ICASSP '04).2004,585- 588. *

Also Published As

Publication number Publication date
CN101064579A (zh) 2007-10-31

Similar Documents

Publication Publication Date Title
CN101064579B (zh) 一种低复杂度的球形译码检测方法
CN102007737B (zh) 具有概率噪声约束的半径自适应球形解码
CN101662342B (zh) 一种多输入多输出信号检测方法和装置
CN101427507A (zh) 根据信道相位反馈使用空时格码的方法和设备
US8488721B2 (en) Adaptive QRD-M algorithm based signal detecting method by using constellation set grouping in spatial multiplexing multiple-input multiple-output system
CN107872256B (zh) 无线光通信中盲检测及调制星座优化方法、存储介质
CN104868944A (zh) 一种自适应广义空间调制方法及其简化方法
CN100571098C (zh) 通信系统中低复杂度的极大似然检测方法及装置
CN106788626A (zh) 一种能够获得二阶发射分集的改进正交空间调制传输方法
CN102487309B (zh) 一种mimo系统下的信号检测方法和装置
CN111682958B (zh) 一种基于聚类分析的环境反向散射信号检测方法
CN101483467B (zh) 多输入多输出多址信道吞吐量最大化的方法
CN101594202A (zh) 一种球形译码检测方法及装置
CN107147606A (zh) 一种广义空间调制中格基规约辅助的线性检测方法
CN109412658A (zh) 一种基于阴影域的改进型bb搜索树检测方法
CN107017929B (zh) Mimo系统信号发送和接收方法
CN101170335A (zh) 一种多天线无线通信系统中的空时编解码方法及装置
CN113938234B (zh) 一种低复杂度稀疏化大规模mimo检测方法
CN103326825B (zh) 一种准正交空时分组码低复杂度译码方法
CN113114423B (zh) 一种自适应球形译码检测方法
CN101777967B (zh) 选择保留星座点的方法及装置、球形译码方法及装置
CN101990213B (zh) 发射天线位置的获取方法及装置
CN101484908B (zh) 涉及无线电信号传输的方法和装置
CN101373975A (zh) 一种球形译码方法
CN113660016A (zh) 基于epa的mimo检测方法、装置、设备和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110525

Termination date: 20180425

CF01 Termination of patent right due to non-payment of annual fee