WO2010047380A1 - X線ct装置とx線ct装置の制御方法 - Google Patents

X線ct装置とx線ct装置の制御方法 Download PDF

Info

Publication number
WO2010047380A1
WO2010047380A1 PCT/JP2009/068223 JP2009068223W WO2010047380A1 WO 2010047380 A1 WO2010047380 A1 WO 2010047380A1 JP 2009068223 W JP2009068223 W JP 2009068223W WO 2010047380 A1 WO2010047380 A1 WO 2010047380A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
gantry
speed
subject
scan
Prior art date
Application number
PCT/JP2009/068223
Other languages
English (en)
French (fr)
Inventor
幸夫 熊谷
雅俊 佐藤
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2010534845A priority Critical patent/JP5552055B2/ja
Publication of WO2010047380A1 publication Critical patent/WO2010047380A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning

Definitions

  • the present invention relates to an X-ray CT apparatus. Specifically, the present invention relates to drive control of a gantry and a bed in a helical scan of an X-ray CT apparatus.
  • the X-ray CT apparatus includes a gantry that rotates around the subject, a bed that includes a table that carries the subject into and out of the opening that is the X-ray irradiation space of the gantry, an operation device that inputs various operation instructions, and And an operation console having a display device for displaying input operation instructions, a tomographic image of the subject, and the like.
  • an X-ray source for irradiating X-rays and an X-ray detector for detecting the amount of attenuation of X-rays transmitted through the subject are arranged at positions where the openings are opposed to each other. Further, the X-ray CT apparatus reconstructs a tomographic image of the subject based on the X-ray attenuation amount data obtained by the X-ray detector and outputs it to a display device or the like.
  • the subject when irradiating the subject with X-rays from the X-ray source, the subject is moved by rotating the gantry while moving the table in the body axis direction of the subject.
  • a helical scan that scans in a spiral is performed to speed up the scan.
  • a contrast agent may be injected into a subject in order to clarify an imaging region and obtain a reconstructed image with good contrast.
  • the flow of contrast medium varies among individuals, and the flow speed varies depending on the site, making it difficult to control the scan timing. Therefore, recently, an X-ray CT apparatus has been developed that monitors the flow of a contrast medium and controls a helical scan in accordance with the flow of the contrast medium (Patent Document 1).
  • Patent Document 1 the moving speed of the table and the tube current value are changed following the flow of the contrast agent.
  • the pitch (helical pitch or beam pitch) is defined as a parameter indicating the relationship between the distance the table moves during one rotation of the gantry and the X-ray beam thickness. Since the pitch of the helical scan affects the image quality of the reconstructed image, it is necessary to perform the helical scan at the optimum pitch in order to obtain a reconstructed image having the optimum image quality.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an X-ray CT apparatus capable of controlling the scan speed while keeping the helical scan pitch constant.
  • the present invention provides a gantry that rotates around a subject, an X-ray source and an X-ray detector that are arranged at positions facing each other of the gantry via the subject, A table that moves to load or unload the subject into the X-ray irradiation space of the gantry, and when the X-ray is irradiated from the X-ray source to the subject, the table is rotated while the gantry is rotated.
  • the tomographic image of the subject is reproduced using the helical scan control means for scanning the subject in a spiral manner by moving and the X-ray attenuation amount data of the subject detected by the X-ray detector.
  • An X-ray CT apparatus comprising: an image processing means configured to change the moving speed of the table and follow the change in the table speed while the scan is in progress.
  • An X-ray CT apparatus characterized by changing the rotation speed of a gantry.
  • the present invention also provides a gantry that rotates around a subject, an X-ray source and an X-ray detector that are disposed at positions facing each other of the gantry via the subject, and an X-ray irradiation space of the gantry.
  • a table that moves so that the subject is carried in or out, and when the subject is irradiated with X-rays from the X-ray source, the table is moved while rotating the gantry, Helical scan control means for scanning the subject in a spiral form, image processing means for reconstructing a tomographic image of the subject using the X-ray attenuation amount data of the subject detected by the X-ray detector,
  • the method for controlling an X-ray CT apparatus comprising: a rotating speed of the gantry that changes the moving speed of the table and follows the change in the speed of the table while scanning the subject spirally. Change It is the control method of the X-ray CT apparatus characterized by having an additional step.
  • an X-ray CT apparatus capable of controlling the scan speed while keeping the helical scan pitch constant.
  • Block diagram showing the overall configuration of the X-ray CT apparatus 1 Schematic diagram showing the drive system of the gantry 2 of the X-ray CT apparatus 1
  • Schematic diagram showing the drive system of the bed 3 of the X-ray CT apparatus 1 A graph showing the speed relationship between the gantry 2 and the table 33 of the bed 3
  • Flow chart showing the overall operation of the X-ray CT apparatus 1 Flow chart showing the flow of helical scan control processing in an examination using a contrast agent
  • Diagram showing data stored in RAM when scan is executed Sequence diagram for changing scan speed in examinations using contrast media Schematic showing rotation of gantry 2 and position of X-ray tube 23 and X-ray detector 25 An example of continuous X-ray attenuation data acquired during helical scan It is a flowchart which shows the flow of an image process. The flowchart which shows the flow of operation
  • the configuration of the X-ray CT apparatus 1 according to the first embodiment will be described.
  • the X-ray CT system uses a rotation-rotation method (Rotate-Rotate method) in which an X-ray tube and an X-ray detector rotate together while irradiating a wide fan beam that covers the entire subject, and an electron beam.
  • Rotate-Rotate method rotation-rotation method
  • an electron beam scanning method Scanning ElectRon Beam method
  • the present invention can be applied to any type of X-ray CT apparatus.
  • FIG. 1 is a block diagram showing the overall configuration of the X-ray CT apparatus 1.
  • the bed 3 and the gantry 2 are schematic views seen from the side.
  • the X-ray CT apparatus 1 includes a scanner 20 having a gantry 2, a bed 3, a console 4, and an image processing apparatus 9.
  • a subject 6 is fixed to a table 33 provided on the bed 3.
  • the X-ray CT apparatus 1 loads or unloads the subject 6 fixed on the table 33 into the X-ray irradiation space in the gantry 2 and rotates the gantry 2 around the subject 6 to emit X-rays from various angles.
  • the subject 6 is scanned by irradiation, and the tomogram of the subject 6 is reconstructed by the image processing device 9 using the X-ray attenuation amount data of the subject acquired by the scan.
  • the scanner 20 includes a control unit 21, an gantry 2 having an X-ray tube (X-ray source) 23 and an X-ray detector 25, and a gantry rotation drive mechanism 27.
  • the X-ray tube (X-ray source) 23 and the X-ray detector 25 are provided at positions facing each other in an opening 29 provided in the center of the gantry 2.
  • the control unit 21 includes a CPU (CentRal® Processing Unit), ROM (Read Only MemoRy), RAM (Random Access MemoRy), etc., and includes a gantry rotation drive mechanism 27, a bed drive mechanism 31, an X-ray tube 23, and a console 4 Connected to the main controller 5.
  • the control unit 21 controls the gantry 2, the bed 3, and the X-ray tube 23 in accordance with a control signal input from the main control device 5.
  • the control unit 21 monitors a pulse signal indicating the rotation speed of the gantry 2 input from the gantry rotation drive mechanism 27 and a pulse signal indicating the moving speed of the table 33 input from the bed drive mechanism 31.
  • the position and movement speed of the table 33 of the bed 3 or the rotation position and rotation speed of the gantry 2 are detected using the pulse signal.
  • control unit 21 monitors the position of the X-ray tube 23 (the rotation angle of the gantry 2), and when the X-ray tube 23 reaches a predetermined rotation angle, the X-ray detector 25 takes in data.
  • a view trigger (view tRiggeR) signal indicating the start timing is output.
  • control unit 21 controls the table moving speed of the bed 3 or the gantry rotation speed of the gantry 2 in accordance with an instruction from the main control device 5. That is, the main controller 5 sets an optimum pitch based on the set scanning condition, and sets the speed of the table 33 or the gantry 2 of the bed 3 based on the set pitch. The set speed is output to the control unit 21 as a control signal, and the control unit 21 controls the drive motor 271 (see FIG. 2) of the gantry 2 and the drive motor 331 (see FIG. 3) of the table 33 based on the control signal. Drive control.
  • control unit 21 changes the speed of the table 33 based on a control signal (scan speed change request signal) that is input from the main controller 5 at any time during the progress of the helical scan. Further, the control unit 21 changes the rotational speed of the gantry 2 following the speed change of the table 33. At this time, the control unit 21 controls the table moving speed or the gantry rotation speed so that the pitch is kept constant before and after the speed change of the table 33 or the gantry 2.
  • the pitch is a ratio of speed between the gantry 2 and the bed 3 (table 33), and includes a beam pitch or a helical pitch.
  • the beam pitch is determined by the distance that the table 33 moves during one rotation of the gantry 2 and the X-ray beam width, and is determined by the following formula.
  • Beam pitch (Table travel distance per gantry rotation) ⁇ (X-ray beam width)
  • X-ray beam width a maximum of 16 rows of X-ray attenuation data are obtained simultaneously with one gantry rotation.
  • the slice width per row is 1.25 mm
  • the slice width for 16 rows is 1.25 (mm)
  • ⁇ 16 (rows) 20 (mm).
  • the beam pitch (table movement distance (10 mm) ⁇ slice width (20 mm)) is 0.5.
  • the helical pitch is determined by the distance that the table 33 moves during one rotation of the gantry 2 and the collimation (slice width) of the X-ray beam, and is determined by the following equation.
  • Helical pitch (Table movement distance per gantry rotation) ⁇ (Slice width) That is, in the single slice CT in which the detection element row of the X-ray detector 25 is one row, the beam width is the slice width as it is, and therefore the helical pitch is the same as the beam pitch.
  • control unit 21 does not change the X-ray irradiation amount (mAs; the product of the tube current value [mA] and the time required for one rotation of the gantry [s]) before and after the speed change of the table 33 and the gantry 2.
  • the tube current value or the tube voltage value supplied or applied to the X-ray tube 23 is changed, and the output of the X-ray tube 23 is controlled.
  • control unit 21 monitors the deviation of the position of the X-ray tube 23 from the original data acquisition position.
  • a position shift correction request signal is output to the image processing device 9.
  • the shift of the data capture position can be determined from the pulse signal output from the gantry rotation drive mechanism 27 and the output of the position sensor.
  • the X-ray tube 23 is an X-ray source and is controlled by the control unit 21 to irradiate the subject 6 with X-rays continuously or intermittently.
  • the control unit 21 controls the output of the X-ray tube 23 in accordance with a control signal input from the main control device 5 of the console 4. That is, the control unit 21 controls the tube voltage and tube current applied and supplied to the X-ray tube 23.
  • the X-ray tube 23 is provided with a collimator. The collimator irradiates the subject 6 with X-rays emitted from the X-ray tube 23 as X-rays such as a cone beam (conical or pyramidal beam), for example. X-rays that have passed through the subject 6 enter the X-ray detector 25.
  • the X-ray detector 25 is disposed at a position facing the X-ray tube 23 of the gantry 2 and detects the amount of attenuation of X-rays emitted from the X-ray tube 23 and transmitted through the subject 6.
  • the X-ray attenuation amount data detected by the X-ray detector 25 may be referred to as raw data.
  • the X-ray detector 25 includes a plurality of detection elements and a data collection device that collects data from each detection element.
  • the detection element is configured by, for example, a combination of a scintillator and a photodiode, and the X-ray detector 25 uses such a detection element as a rotation direction of the gantry 2 (channel direction) and a body axis direction of the subject 6 (z direction). (Or in the column direction). For example, about 1000 detection elements are arranged in the channel direction and about 1 to 320 are arranged in the column direction.
  • the plurality of detection elements as a whole form a cylindrical surface or an X-ray incident surface curved in a polygonal line in the channel direction.
  • the data detected by each detection element of the X-ray detector 25 is collected by the data collection device and output to the image processing device 9 as X-ray attenuation amount data.
  • the gantry rotation drive mechanism 27 rotates the gantry 2 in response to a control signal output from the control unit 21.
  • the gantry rotation drive mechanism 27 includes, for example, a drive motor 271 for rotating the gantry 2, pulleys 273a, 273b, 273c, 273d, 273e, 273f, belts 275a, 275b, 275c, and rotary encoder 277. Etc. In addition to these configurations, a brake may be provided.
  • the drive motor 271 is driven according to the control signal input from the control unit 21.
  • the drive of the drive motor 271 is transmitted to the gantry 2 through the pulley 273a, the belt 275a, the pulley 273b, the pulley 273c, the belt 275b, and the pulley 273d.
  • the pulley 273b is provided with a coaxially rotating 273e, and the rotation of the drive motor 271 is transmitted to the rotary encoder 277 via the pulley 273a, the belt 275a, the pulley 273b, the pulley 273e, the belt 275c, and the pulley 273f.
  • the rotary encoder 277 generates a pulse signal from the rotation operation, and outputs the generated pulse signal to the control unit 21.
  • the number of pulses generated in one rotation of the gantry 2 is determined by the number of pulses generated per rotation by the rotary encoder 277 itself, the number of pulleys used, the number of gear teeth, or the reduction ratio of the speed reducer constituted by these.
  • Pg Number of pulses generated when gantry 2 makes one rotation
  • Zg d Number of teeth of pulley 273d
  • Zg c Number of teeth of pulley 273c
  • Zg e Number of teeth of pulley 273e
  • Zg f Number of teeth of pulley 273f
  • P 1 The number of pulses generated by the rotary encoder 277 in one rotation.
  • the gantry 2 has a position sensor at the gantry stationary reference position or the data capture position (view trigger signal generation reference position).
  • the control unit 21 can detect the gantry rotation speed and the rotation position of the gantry 2 based on the count number of pulse signals generated by the rotary encoder 277 and the detection signal of the position sensor.
  • 1 includes a table 33 on which a subject 6 is placed and a bed driving mechanism 31.
  • the bed driving mechanism 31 controls a table vertical movement device (not shown) to make the height of the table 33 appropriate, and moves the table 33 back and forth in the body axis direction of the subject 6. By moving the table 33 back and forth, the subject 6 is carried into and out of the opening 29 which is the X-ray irradiation space of the gantry 2.
  • the couch driving mechanism 31 moves the table 33 of the couch 3 back and forth in response to a control signal output from the control unit 21.
  • the bed driving mechanism 31 moves the table 33 back and forth.
  • the driving motor 331 pulleys 333a, 333b, 333c, 333d, belts 335a, 335b, rotary encoder 337, ball screw nut 338, ball screw 339 Etc.
  • a brake may be provided.
  • the table 33 is attached in parallel with the rotation axis of the ball screw 339 by a ball screw nut 338 attached to the lower surface of the table 33.
  • a ball screw nut 338 attached to the lower surface of the table 33.
  • the drive of the drive motor 331 is controlled according to a control signal input from the control unit 21.
  • the longitudinal movement of the table 33 is transmitted to a rotary encoder 337 that rotates coaxially with the pulley 333c.
  • the rotary encoder 337 generates a pulse signal from the rotation operation and outputs it to the control unit 21.
  • the number of pulses generated by 1 mm movement of the table 33 depends on the number of pulses generated per rotation by the rotary encoder 337 itself, the number of pulleys used, the number of gear teeth, or the reduction ratio of the speed reducer configured by these. It is determined. For example, in the bed driving mechanism 31 of FIG. 3, the number of pulses obtained by moving the table 33 by 1 mm is determined by the following equation (2).
  • Pt Number of pulses generated when the table 33 moves 1 mm
  • P B Pitch of the ball screw 339
  • Zt d Number of teeth of the pulley 333d
  • Zt c Number of teeth of the pulley 333c
  • P 2 The rotary encoder 337 makes one rotation This is the number of pulses generated.
  • the control unit 21 can detect the moving speed and position of the table 33 based on the number of pulse signals generated by the rotary encoder 337.
  • the console 4 includes a display device 7, an operation device 8, and a main control device 5, and is connected to the gantry 2, the bed 3, and the image processing device 9.
  • the image processing device 9 includes an image reconstruction circuit 91 and a storage device 93, and is connected to the X-ray detector 25 of the gantry 2 and the console 4.
  • the display device 7 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the main control device 5.
  • the display device 7 displays a reconstructed image and a scanogram image output from the image processing device 9, and various information handled by the main control device 5.
  • the operating device 8 includes, for example, an input device such as a keyboard, a mouse, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the main control device 5.
  • the operator operates the X-ray CT apparatus 1 interactively using the display device 7 and the operation device 8.
  • the main controller 5 is composed of a CPU, ROM, RAM, etc., and controls the entire X-ray CT apparatus 1.
  • the main control device 5 is connected to the control unit 21, the display device 7, the operation device 8, and the image processing device 9 in the gantry 2.
  • the main control device 5 generates a scan plan according to the scan conditions and the like input from the operation device 8, and according to the generated scan plan, the control unit 21 sends control signals for controlling the gantry 2, the bed 3, and the X-ray tube 23. To control the helical scan.
  • the main controller 5 monitors the flow of the contrast agent during the helical scan, changes the moving speed of the table 33 and the rotation speed of the gantry 2 based on the monitoring result, and scans Control is performed so that the contrast medium is always detected at the site.
  • the main controller 5 outputs a scan speed change request signal to the control unit 21, changes the moving speed of the table 33 of the bed 3, and changes the moving speed of the table 33.
  • the control unit 21 changes the moving speed of the table 33 or the rotational speed of the gantry 2 so that the pitch of the helical scan does not change and remains constant.
  • the control unit 21 monitors the number of pulses generated from the rotary encoder 337 of the bed driving mechanism 31 and the number of pulses generated from the rotary encoder 277 of the rotary drive mechanism 27 of the gantry 2, and the ratio of the number of each pulse is
  • the driving motor 331 of the bed 3 and the driving motor 271 of the gantry are controlled so as to keep constant before and after the speed change.
  • the output of the rotary encoder 337 of the bed 3 is 100 counts
  • the rotary encoder 277 of the gantry 2 In the 16-row multi-slice CT device designed to output 2000 counts, the helical scan is performed at a beam pitch of 0.5 (10 mm bed travel distance per 20 mm beam width per rotation) as described above.
  • the number of pulses per unit time is 2500 counts / second on the gantry 2 side and 1250 counts / second on the bed 3 side. That is, the ratio between the number of pulses on the gantry 2 side and the number of pulses on the bed 3 side is 2: 1.
  • the unit time on the bed 3 side The number of pulses per unit is 1000 counts / second.
  • the CPU of the control unit 21 follows the deceleration of the bed 3 and changes the rotation speed so that the number of pulses on the gantry side 2 is 2000 counts / second.
  • FIG. 4 is a graph showing the speed relationship between the gantry 2 and the table 33 of the bed 3.
  • the horizontal axis is the gantry rotation speed (pulse count / second)
  • the vertical axis is the table movement speed (pulse count / second)
  • the beam pitch is 0.5 and 0.8. This shows the relationship between the speed and the case of 1.3.
  • the main controller 5 monitors whether or not the contrast agent has reached the part to be scanned (hereinafter referred to as a region of interest).
  • whether or not the contrast agent has reached is determined, for example, by comparing the CT value before one gantry rotation with the CT value obtained by the current rotation for the region of interest. When the difference between the CT value before one rotation of the gantry and the CT value obtained by the current rotation is smaller than a predetermined threshold value, it is determined that the contrast agent has not reached.
  • the CT value is a value obtained by relatively converting the X-ray absorption coefficient of the tissue obtained from the X-ray attenuation amount data detected by the X-ray detector 25 using the X-ray absorption coefficient of water.
  • the X-ray CT apparatus 1 is provided with 16 rows of X-ray detectors 25, and the column numbers of the X-ray detectors 25 are sequentially 1, 2,... 16 Further, the direction indicated by the arrow in FIG. In the following description, it is assumed that the injection position of the contrast medium is a vein, and the contrast medium flows through the vein from the whole body artery via the heart.
  • the main controller 5 determines the X-ray attenuation amount of the first row of the X-ray detector 25 with respect to the travel direction of the table 33
  • the arrival of the contrast agent is detected by monitoring the data. That is, main controller 5 monitors the CT value of the detection element row with column number “1”.
  • the scanning direction is the reverse direction of the example of FIG. 5, that is, when scanning from the lower limb to the upper limb, the detection element row of the column number “16” of the X-ray detector 25 is the first row. Then, the arrival of the contrast agent at the site of interest can be detected. In addition, in order not to monitor the arrival of the contrast agent, but to control so as not to be delayed by the flow of the contrast agent, the scan progress direction is from the upper limb to the lower limb as shown by the arrow in FIG. The last column (column number “16”) of the X-ray detector 25 may be monitored. Similarly, if the scanning direction is the direction from the lower limb to the upper limb opposite to that in FIG. 5, the column number “1” of the X-ray detector 25 is set in order to control the flow of the contrast agent. Monitor it.
  • the main control device 5 when the main control device 5 determines that the contrast agent has not reached the region of interest, the main control device 5 sends a scan speed change request signal to the control unit 21 so as to decrease the table moving speed of the bed 3. Is output. Conversely, when the flow of the contrast agent is fast, a scan speed change request signal is output to the control unit 21 so as to increase the table moving speed of the bed 3. Further, the control unit 21 changes the rotation speed of the gantry 2 so as to keep the beam pitch constant by following the change in speed of the table 33 (see FIGS. 4 and 7).
  • the main control device 5 is connected to the image processing device 9, and controls the image reconstruction circuit 91 and the storage device 93 of the image processing device 9 to reconstruct and store the image.
  • the image processing device 9 acquires X-ray attenuation amount data collected by the X-ray detector 25 in the gantry 2 under the control of the main control device 5. At the time of scanogram imaging, a scanogram image is created using the scanogram projection data collected by the X-ray detector 25. Further, at the time of scanning, a tomographic image is reconstructed using X-ray attenuation amount data of a plurality of views collected by the X-ray detector 25.
  • the image processing device 8 performs preprocessing such as X-ray intensity correction, offset correction, and sensitivity correction on the X-ray attenuation amount data (low data) input from the X-ray detector 25, and then performs a specific z
  • the nearest neighbor data of the position in the axial (body axis) direction is extracted from each column of the X-ray detector 25, and a tomographic image at the position in the z-axis direction is reconstructed.
  • the storage device 93 is composed of a hard disk or the like and is connected to the console 4.
  • the storage device 93 stores a reconstructed image, a scanogram image, and the like generated by the image reconstruction circuit 91.
  • various scan conditions scan range, image quality index value, region of interest, tube current value, tube voltage value, collimation, etc.
  • a program for realizing the function of the X-ray CT apparatus 1 is stored.
  • the main control device 5 reads programs and data for executing various processes from the storage device 93, and executes processes based on the programs and data.
  • the CPU of the main controller 5 outputs a scanogram image capturing instruction to the control unit 21 of the gantry 2 (step S101).
  • the scanogram image is an image obtained by projecting the subject 6 from one direction by moving the table 33 parallel to the body axis without rotating the gantry 2.
  • the control unit 21 controls the gantry 2 and the bed 3 and controls the X-ray tube 23 to irradiate the subject 6 with X-rays with a predetermined intensity and perform scanogram imaging.
  • the X-ray detector 25 detects the X-ray attenuation amount data transmitted through the subject 6 and outputs it to the image processing device 9 as scanogram projection data.
  • the CPU of the main control device 5 generates a scanogram image from the scanogram projection data input from the X-ray detector 25 by the image reconstruction circuit 91 of the image processing device 9, stores the scanogram image in the storage device 93, and displays the display device 7 To display.
  • the main control device 5 executes a process for accepting a scan plan setting (step S102).
  • the scan plan is the start position and end position of the helical scan, the scan time, the imaging region, the image quality index value (image quality SD (StandaRd Deviation) value, CNR (contrast-noise ratio), identifiable diameter under a predetermined CNR ( Detectable abnormal shadow radius) or SNR (signal-to-noise ratio), scan current such as tube current, tube voltage, collimation, pitch, etc. supplied to and applied to the X-ray tube 23. And a table movement speed, a gantry rotation speed, a series of tube current values, a tube voltage value, and the like are calculated based on the scan conditions.
  • image quality SD StandaRd Deviation
  • CNR contrast-noise ratio
  • identifiable diameter under a predetermined CNR Detectable abnormal shadow radius
  • SNR signal-to-noise ratio
  • scan current such as tube current, tube voltage, collimation, pitch, etc. supplied to and applied to the X-ray tube 23.
  • the main controller 5 determines the body axis direction imaging range (z position) and the phase angle of the X-ray tube (phase angle of the gantry 2) from the input data. To do.
  • the main controller 5 determines the moving speed of the table 33 and the rotational speed of the gantry 2 from the above scanning conditions, and sets a series of tube current modulation patterns to be supplied to the X-ray tube 23.
  • the moving speed of the table 33, the rotational speed of the gantry 2, and the tube current modulation pattern determined here are set values at the scan planning stage.
  • the main controller 5 uses the flow of the contrast agent. Accordingly, the moving speed of the table 33, the rotational speed of the gantry 2 and the tube current value are changed as needed even during the progress of the scan.
  • the main control device 5 stores the generated scan plan set values (including the table moving speed 5a, the gantry rotation speed 5b, the tube current modulation pattern 5c, and the beam pitch 5d) in the RAM of the main control device 5. And output to the control unit 21.
  • control unit 21 performs a scan according to the scan plan set in step S102 (step S103). That is, the control unit 21 controls the bed 3 to move the table 33 to the scan start position. Also, the tube current is supplied to the X-ray tube 23 with the set tube current modulation pattern 5c, and the table 33 is moved at the set table moving speed 5a, and the gantry 2 is rotated at the set gantry rotation speed 5c. The subject 6 is irradiated with X-rays. The X-ray attenuation amount data detected by the X-ray detector 25 is output to the image processing collection device 9.
  • the image processing device 9 is controlled by the main control device 5, and based on the inputted X-ray attenuation amount data, the image reconstruction circuit 91 reconstructs a tomographic image at each slice position and displays it on the display device 7. At the same time, it is stored in the storage device 33 (step S104).
  • step S103 the main control device 5 monitors the CT value obtained by the image processing device 9 during the scan, and detects the flow of the contrast agent.
  • the main controller 5 detects the CT value of the region of interest set in the image of the row corresponding to the row for monitoring the contrast medium among the detection element rows of the X-ray detector 25.
  • the column to be monitored is the column number “1” of the X-ray detector 25 when the head of the contrast agent flow is detected as in the example shown in FIG.
  • the main controller 5 detects the CT value of the region of interest set in the image generated from the data of the detection element array with the column number “1” (step S201), and stores it in the RAM (5e and 5f in FIG. 8).
  • the main control device 5 compares the CT value 5e in the scan before one rotation of the gantry 2 with the CT value 5f in the current scan for the region of interest (step S202).
  • step S203 it is determined whether or not the difference between the CT value 5e of the region of interest before one rotation and the CT value 5f acquired this time is larger than a predetermined threshold value 5g (step S203), and the difference is not more than the threshold value 5g Determines that the contrast agent has not reached (step S203; if small), continues scanning without changing the speed of the bed 3 or gantry 2 (step S204).
  • the main controller 5 reaches the region of interest at the beginning of the contrast agent flow. If it is determined that the scanning speed is changed (step S203; if larger), a scanning speed change request signal is output to the control unit 21.
  • the control unit 21 changes the movement speed of the table 33 and the rotation speed of the gantry 2 in synchronization with each other according to the scan speed change request signal input from the main control device 5 (step S205). That is, when the contrast agent has not reached, the moving speed of the table 33 of the bed 3 is decreased.
  • the control unit 21 follows the moving speed of the table 33 after the change, and slows the rotational speed of the gantry 2. At this time, the control unit 21 performs control so that the beam pitch 5d does not change before and after the speed change.
  • control unit 21 does not change the X-ray irradiation amount (mAs; the product of the tube current value [mA] and the time required for one rotation of the gantry [s]) before and after the speed change.
  • the X-ray output (tube current value or tube voltage value) is changed (step S206).
  • the gantry rotation speed is changed to 1.0 s per rotation.
  • the unit 21 changes the tube current value to 200 mA.
  • the control unit 21 changes the tube current value to 500 mA.
  • the main control device 5 repeats the processing from step S201 to step S206 until the table 33 reaches the scan end position.
  • step S207 the scan end position
  • the control unit 21 based on the output of the rotary encoder 277 of the gantry rotation drive mechanism 27, the control unit 21 generates a view trigger signal that is a measurement start signal.
  • the X-ray detector 25 collects measurement data (X-ray attenuation amount data) of each detection element array in response to the view trigger signal and outputs it to the image processing device 9.
  • the image processing device 9 outputs the CT value of the region of interest based on the X-ray attenuation amount data to the main control device 5 as monitoring data.
  • the main control device 5 determines whether or not the table moving speed needs to be changed based on the monitoring data, and when determining that the change is necessary, requests the controller 21 to change the scan speed. Output a signal.
  • step T3 the control unit 21 changes the table moving speed of the bed 3 based on the scan speed change request signal, and changes the gantry rotation speed so that the beam pitch is constant. Furthermore, the control unit 21 also changes the X-ray output (tube current, tube voltage) of the X-ray tube 23 with the change of the gantry rotation speed.
  • step T4 the control unit 21 confirms each pulse interval that has changed as the speed of the table 33 or the gantry 2 changes. In the confirmation of the pulse interval, when a shift in the data capture position is detected, in step T5, the control unit 21 requests the image processing apparatus 9 to correct the data shift.
  • Steps T2 to T5 are repeated each time a scan speed change request is generated by monitoring data.
  • gantry 2 Since gantry 2 is heavy, changing the rotation speed may shift the X-ray attenuation data acquisition start position (hereinafter referred to as the data acquisition position) due to inertia.
  • the direction indicated by the arrow is the direction of rotation of the gantry 2.
  • the point of “a” is the original data capture position
  • the X-ray detector 25 is displaced.
  • the acceleration of the gantry 2 is delayed, the X-ray tube 23 and the X-ray detector 25 are shifted to the positions indicated by “c” in FIG.
  • the X-ray detector 25 continuously acquires X-ray attenuation amount data during the helical scan.
  • the horizontal axis represents the channel number (1 channel to n channel) of the X-ray detector 25, and the vertical axis represents the number of times data is taken in one rotation of the gantry (1 view to m view).
  • the X-ray attenuation amount data input to each channel is represented in the order of acquisition ("L-1" rotation-> "L” rotation-> "L + 1" rotation).
  • the intensity of the X-ray attenuation data is actually represented by shading information (grayscale), but for the sake of clarity, the intensity of the X-ray attenuation data is schematically represented using a solid line. Yes. Two curves indicated by solid lines indicate the boundary between the subject and air (region without the subject).
  • the image processing device 9 uses the X-ray attenuation amount data of each view for image reconstruction.
  • FIG. 11 shows the profile of the X-ray attenuation amount data for one column of the multi-slice detector (X-ray detector 25), but continuous profiles are obtained in all the columns.
  • the image processing device 9 reconstructs an image while interpolating X-ray attenuation amount data between slices. That is, the image processing device 9 extracts the nearest data of the position (slice position) in the z-axis (body axis) direction from the X-ray attenuation amount data of each column input from the X-ray detector 25, and obtains a tomographic image. Reconfigure.
  • the pulse signal generated by the rotary encoder 277 of the gantry 2 is synchronized with the view trigger signal indicating the timing for starting the acquisition of X-ray data (T1 in FIG. 9).
  • the gantry 2 includes a position sensor at a gantry stationary reference position or a view trigger signal generation reference position.
  • the control unit 21 calculates the displacement of the data capture position from the number of pulses of the rotary encoder 277 of the gantry 2 and the output of the position sensor when the view trigger signal is generated, and outputs a displacement correction request to the main controller 5. (T4, T5 in FIG. 9). Further, the control unit 21 or the main control device 5 can also calculate the number of views generated from the original data capturing position to the position shifted from the number of pulses of the rotary encoder 277.
  • the control unit 21 monitors the position of the X-ray tube 23 based on the pulse signal input from the rotary encoder 277 and the output signal of the position sensor during scanning.
  • the X-ray tube 23 reaches the data acquisition position based on the number of pulses on the gantry 2 side (step S301; Yes)
  • the X-ray detector 25 outputs a view trigger signal
  • the X-ray detector 25 outputs an X-ray.
  • Attenuation amount data (low data) is acquired and output to the image processing apparatus 9 (step S302).
  • the control unit 21 calculates the position where the data is actually acquired from the pulse signal on the gantry 2 side and the output of the position sensor (view trigger signal generation reference position) (step S303). If the actual data capture position is the same as the original data capture position (“a” in FIG. 9), the control unit 21 controls the image processing device 9 to perform normal image reconstruction processing. A signal is output (step S305).
  • step S304 when the position where the data is actually captured is shifted from the original data capture position (“a” in FIG. 9) (step S304; Yes), the control unit 21 determines that the position shifted from the original position is Is calculated and output to the image processing device 9.
  • the image processing device 9 When acquiring the shifted view number, the image processing device 9 performs image reconstruction processing using the raw data corrected by shifting the number of views in the view direction from the profile shown in FIG.
  • the raw data may be interpolated by a technique such as linear interpolation to perform image reconstruction processing (step S306).
  • the image processing device 9 performs a process of rotating the reconstructed image in the reverse direction to obtain the erect image. (Step S307).
  • the image processing device 9 displays the reconstructed image on the display device 7 and stores it in the storage device 93.
  • control unit 21 the main control device 5, and the image processing device 9 repeat the processes in steps S301 to S307 described above and reconstruct a tomographic image at each slice position from the scan start position to the scan end position, a series of steps are performed. End image processing.
  • the X-ray CT apparatus 1 of the first embodiment detects the flow of the contrast agent and controls the helical scan according to the detection result.
  • the main controller 5 determines that the contrast agent has not reached the scan target position or the scan target position has overtaken the contrast agent flow
  • the main controller 5 changes the speed of the table 33 of the bed 3 and follows it. Then change the rotation speed of gantry 2.
  • the moving speed of the table 33 and the rotational speed of the gantry 2 are controlled so that the pitch of the helical scan is kept constant.
  • the rotational speed of the gantry 2 can also be changed, and the pitch in the helical scan is maintained. Image quality can be maintained. As a result, it is possible to prevent re-examination due to image quality deterioration in the examination using a contrast agent, and it is possible to perform a helical scan with an optimum amount of contrast agent without using an extra contrast agent, which increases the burden on the patient. Reduce. (Second embodiment) Next, the X-ray CT apparatus 1 of the second embodiment will be described.
  • the X-ray CT apparatus 1 of the second embodiment sets a z position for changing the table moving speed of the bed 3 and the rotation speed of the gantry 2 in advance in the scan planning stage, and executes the helical scan according to the scan plan. To do.
  • the z position is the position in the body axis direction.
  • the hardware configuration of the X-ray CT apparatus 1 of the second embodiment is the same as that of the X-ray CT apparatus 1 of the first embodiment, the description thereof will be omitted, and in the following description, the first implementation The same parts as those of the embodiment will be described with the same reference numerals.
  • the inspection is performed for each part.
  • different examinations were performed for each region, such as scanning the heart (chest) at high speed and scanning the abdomen at low speed. Therefore, the number of examinations increased, and the burden on the patient was great.
  • the X-ray CT apparatus 1 of the second embodiment makes it possible to set a continuous scan of a plurality of parts at the scan planning stage, and sets different table moving speeds for each scan part in advance to follow the table moving speeds. And change the rotation speed of the gantry 2. Further, the X-ray CT apparatus 1 performs control so that the pitch does not change before and after the speed change.
  • the X-ray CT apparatus 1 first performs imaging of a scanogram image (step S401).
  • the scanogram image is captured in the same manner as in the first embodiment.
  • the main controller 5 receives the scan plan setting.
  • a continuous scan plan for a plurality of parts can be set (step S402).
  • the operator uses the z range including the chest and abdomen as a scan range and inputs from the operation device 8. Further, the operator can set an optimum table moving speed for each region for the set scan range. That is, different table moving speeds can be set according to the position of the table 33.
  • the main control device 5 also receives input from the operation device 8 for other scanning conditions (pitch, image quality index value, tube current supplied to and applied to the X-ray tube 23, tube voltage, collimation, etc.).
  • the main controller 5 calculates the rotational speed of the gantry 2 for each part from the table moving speed and pitch.
  • the main controller 5 sets the table moving speed and the gantry rotation speed so that the pitch does not change in the entire scan range.
  • the main controller 5 generates a table moving speed pattern 5m corresponding to the z position and a gantry rotation speed pattern 5n corresponding to the table moving speed pattern 5m in a series of scans, and stores them in the RAM of the main controller 5. Save (see Figure 14).
  • the main controller 5 calculates an optimum series of tube current modulation patterns 5o from the input scan conditions and stores them in the RAM.
  • the main controller 5 When the scan plan is set, the main controller 5 outputs the set scan plan information (table moving speed pattern 5m, gantry rotation speed pattern 5n, tube current modulation pattern 5o, etc.) to the control unit 21, and the control unit 21 Controls the X-ray tube 23, the bed 3 and the gantry 2 in accordance with the scan plan information, and starts a helical scan. While the scan is in progress, the rotation drive mechanism 27 of the gantry 2 and the bed drive mechanism 31 of the bed 3 each output a pulse signal to the control unit 21. As in the first embodiment, the control unit 21 can acquire movement information of the table 33 and rotation position information of the gantry 2 from these pulse signals.
  • the set scan plan information table moving speed pattern 5m, gantry rotation speed pattern 5n, tube current modulation pattern 5o, etc.
  • control unit 21 determines from the acquired movement information that the table 33 has reached the z position preset by the scan plan, the control unit 21 changes the movement speed of the table 33 and changes the rotation speed of the gantry 2. (Step S403).
  • the X-ray attenuation amount data detected by the X-ray detector 25 is output to the image processing collection device 9.
  • the image processing device 9 is controlled by the main control device 5, and based on the inputted X-ray attenuation amount data, the image reconstruction circuit 91 reconstructs a tomographic image at each slice position and displays it on the display device 7. At the same time, it is stored in the storage device 93 (step S404).
  • the image processing apparatus 9 executes image processing for correcting the shift in the data capture position shown in FIG. 12, as in the first embodiment.
  • main controller 5 outputs preset scan plan information (table movement speed pattern 5m, gantry rotation speed pattern 5n, tube current modulation pattern 5o) to control unit 21.
  • the control unit 21 monitors the movement information of the table 33 based on the output of the rotary encoder 337 of the bed 3.
  • the control unit 21 changes the table moving speed and changes the gantry rotation speed. At this time, the beam pitch is kept constant.
  • the control unit 21 also changes the X-ray output (tube current, tube voltage) in accordance with the change in the rotation speed of the gantry 2.
  • step T14 the control unit 21 confirms each pulse interval that has changed as the speed of the table 33 or the gantry 2 changes.
  • step T15 the control unit 21 requests the image processing device 9 to correct the shift in the data capture position.
  • steps T13 to T15 are repeated.
  • the z position (table moving speed pattern 5m) for changing the speed of the table 33 is set in advance at the stage of the scan plan, and the helical scan is performed.
  • the table 33 is moved at the set speed.
  • the speed of the gantry 2 is also changed following the speed change of the table 33.
  • the control unit 21 performs control so that the pitch is kept constant before and after the speed change of the table 33 and the gantry 2.
  • the present invention is not limited to the above-described embodiment.
  • the first embodiment an example of changing the scan speed in an examination using a contrast agent is shown, and in the second embodiment, at the scan planning stage.
  • part was shown, it is not limited to these, You may make it apply to what kind of inspection.
  • the present invention can also be applied by combining the first and second embodiments (inspection using a contrast agent and setting of a speed change pattern at the scan planning stage).
  • various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these naturally belong to the technical scope of the present invention. It is understood.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 ヘリカルスキャンのピッチを一定に保ちつつ、スキャン速度を制御することが可能なX線CT装置を提供する。X線CT装置1のヘリカルスキャンの制御において主制御装置5は、スキャンの進行中に寝台3のテーブル33の速度を変更させ、それに追従してガントリ2の回転速度も変更させる。このとき、ピッチは一定に保たれるように、テーブル移動速度とガントリ回転速度とが制御される。例えば、主制御装置5は被検体6に注入された造影剤の流れをモニタリングし、その結果に応じて寝台3又はガントリ2の速度を、ビームピッチを保ちながら変化させる。或いは、予め計画された速度変更位置でテーブル移動速度及びガントリ移動速度を変更するようにしてもよい。その場合においてもピッチが一定に保たれるようにテーブル移動速度とガントリ回転速度とが制御される。

Description

X線CT装置とX線CT装置の制御方法
 本発明は、X線CT装置に関する。詳細には、X線CT装置のヘリカルスキャンにおけるガントリ及び寝台の駆動制御に関する。
 X線CT装置は、被検体の周囲を回転するガントリと、ガントリのX線照射空間である開口部に被検体を搬入または搬出するテーブルを備えた寝台と、各種操作指示を入力する操作装置及び入力された操作指示や被検体の断層像等を表示させる表示装置等を備えた操作卓と、を有する。ガントリには、X線を照射するX線源と、被検体を透過するX線の減弱量を検出するX線検出器とが、開口部の互いに対向する位置に配置されている。また、X線CT装置は、X線検出器にて得られるX線減弱量データに基づいて被検体の断層像を再構成し、表示装置等に出力する。
 近年では、多列型のX線検出器を採用し、X線源からファンビーム(扇形ビーム)あるいはコーンビーム(円錐形または角錐形ビーム)のX線を照射して、ガントリ1回転で、多列のスライス位置をスキャンすることが可能なマルチスライスCT装置も開発されている。
 上述のX線CT装置では、X線源からX線を被検体に対して照射する際に、テーブルを被検体の体軸方向に移動させながら上述のガントリを回転させるようにして、被検体を螺旋状にスキャンするヘリカルスキャンを行い、スキャンの高速化を図っている。
 ところでX線CT装置を用いた検査では、撮影部位を明瞭にし、良好なコントラストのついた再構成像を得るために、被検体に造影剤を注入することがある。造影剤の流れは個人差がある上に、部位によっても流れの速さは異なっており、スキャンのタイミングを制御するのは困難であった。そのため最近では、造影剤の流れをモニタリングし、造影剤の流れに合わせてヘリカルスキャンを制御するX線CT装置が開発されている(特許文献1)。特許文献1のX線CT装置では、造影剤の流れに追従して、テーブルの移動速度や管電流値を変化させている。
特開2006-51234号公報
 しかしながら、上述の特許文献1のX線CT装置では、テーブルの移動速度を変更した際の、ピッチへの影響については言及されていない。
 ヘリカルスキャンにおいては、ガントリ1回転中にテーブルが移動する距離とX線ビーム厚との関係を示すパラメータとして、ピッチ(ヘリカルピッチまたはビームピッチ)が定義される。ヘリカルスキャンのピッチは再構成像の画質に影響を及ぼすため、最適な画質の再構成像を得るためには最適なピッチでヘリカルスキャンが行われる必要がある。
 このように画質とピッチとに相関があるにも関わらず、撮影中にテーブルの移動速度を変更してピッチが変更されてしまうと、最適な画質で再構成像を得ることができない。あまりに画質が劣化した場合には、撮影自体が無駄になってしまうこともある。
 本発明は、以上の問題点に鑑みてなされたものであり、ヘリカルスキャンのピッチを一定に保ちつつ、スキャン速度を制御することが可能なX線CT装置を提供することを目的とする。
 前述した目的を達成するために本発明は、被検体の周囲を回転するガントリと、前記被検体を介して前記ガントリの互いに対向する位置に配置されるX線源及びX線検出器と、前記ガントリのX線照射空間に前記被検体を搬入または搬出するように移動するテーブルと、前記被検体に対して前記X線源からX線を照射する際に、前記ガントリを回転しつつ前記テーブルを移動することにより、前記被検体を螺旋状にスキャンするヘリカルスキャン制御手段と、前記X線検出器にて検出される前記被検体のX線減弱量データを用いて前記被検体の断層像を再構成する画像処理手段と、を備えたX線CT装置であって、前記ヘリカルスキャン制御手段は、スキャンの進行中に、前記テーブルの移動速度を変更するとともに、テーブルの速度変化に追従して前記ガントリの回転速度を変更することを特徴とするX線CT装置である。
 また、本発明は、被検体の周囲を回転するガントリと、前記被検体を介して前記ガントリの互いに対向する位置に配置されるX線源及びX線検出器と、前記ガントリのX線照射空間に前記被検体を搬入または搬出するように移動するテーブルと、 前記被検体に対して前記X線源からX線を照射する際に、前記ガントリを回転しつつ前記テーブルを移動することにより、前記被検体を螺旋状にスキャンするヘリカルスキャン制御手段と、 前記X線検出器にて検出される前記被検体のX線減弱量データを用いて前記被検体の断層像を再構成する画像処理手段と、を備えたX線CT装置の制御方法であって、前記被検体を螺旋状にスキャンする間に、前記テーブルの移動速度を変更するとともに、テーブルの速度変化に追従して前記ガントリの回転速度を変更するステップを有することを特徴とするX線CT装置の制御方法である。
 本発明によれば、ヘリカルスキャンのピッチを一定に保ちつつ、スキャン速度を制御することが可能なX線CT装置を提供できる。
X線CT装置1の全体構成を示すブロック図 X線CT装置1のガントリ2の駆動系を示す模式図 X線CT装置1の寝台3の駆動系を示す模式図 ガントリ2と寝台3のテーブル33との速度の関係を示すグラフ X線CT装置1の寝台3及びガントリ2を横方向からみた模式図 X線CT装置1の全体の動作を示すフローチャート 造影剤を使用した検査におけるヘリカルスキャンの制御処理の流れを示すフローチャート スキャン実行時にRAMに記憶されるデータを示す図 造影剤を使用した検査でのスキャン速度変更に関するシーケンス図 ガントリ2の回転と、X線管23及びX線検出器25の位置を示す模式図 ヘリカルスキャン実行中に取得する連続したX線減弱量データの一例 画像処理の流れを示すフローチャートである。 第2の実施の形態のX線CT装置1の動作の流れを示すフローチャート スキャン実行時にRAMに記憶されるデータを示す図 予め速度変更するようにスキャン計画された検査でのスキャン速度変更に関するシーケンス図
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 (第1の実施の形態)
 まず、第1の実施の形態のX線CT装置1の構成について説明する。 
 なお、本実施形態ではX線管が1つの場合について説明するが、本発明は多線源型のX線CT装置にも適用可能である。また、X線CT装置は、被検体全体をカバーするワイドファンビームを照射しつつX線管とX線検出器とが一体となり回転する回転-回転方式(Rotate-Rotate方式)や、電子ビームを電気的に偏向させながらターゲット電極に当てる電子ビーム走査方式(Scanning ElectRon Beam方式)や、その他の方式のものがあるが、本発明はいずれの方式のX線CT装置にも適用可能である。
 図1は、X線CT装置1の全体構成を示すブロック図であり、図1において、寝台3及びガントリ2については横方向から見た模式図としている。
 図1に示すように、X線CT装置1は、ガントリ2を有するスキャナ20、寝台3、操作卓4、及び画像処理装置9から構成される。寝台3に設けられるテーブル33には被検体6が固定される。
 X線CT装置1は、テーブル33に固定された被検体6をガントリ2内のX線照射空間に搬入または搬出し、ガントリ2を被検体6の周囲で回転させて様々な角度からX線を照射することにより被検体6をスキャンし、スキャンにより取得した被検体のX線減弱量データを用いて、画像処理装置9にて被検体6の断層像を再構成するものである。
 スキャナ20は、制御部21、X線管(X線源)23とX線検出器25を有するガントリ2、及びガントリ回転駆動機構27を備える。X線管(X線源)23とX線検出器25とは、ガントリ2の中央に設けられる開口部29の互いに対向する位置に設けられる。
 制御部21は、CPU(CentRal PRocessing Unit)、ROM(Read Only MemoRy)、RAM(Random Access MemoRy)等により構成され、ガントリ回転駆動機構27、寝台駆動機構31、X線管23、及び操作卓4の主制御装置5に接続される。制御部21は、主制御装置5から入力される制御信号に応じて、ガントリ2、寝台3、及びX線管23を制御する。また制御部21は、ガントリ回転駆動機構27から入力されるガントリ2の回転速度を示すパルス信号や、寝台駆動機構31から入力されるテーブル33の移動速度を示すパルス信号を監視しており、これらのパルス信号を用いて寝台3のテーブル33の位置や移動速度、或いはガントリ2の回転位置や回転速度等を検出する。
 また、制御部21は、X線管23の位置(ガントリ2の回転角度)を監視しており、X線管23が所定の回転角度に到達するとX線検出器25に対してデータの取り込みを開始するタイミングを示すビュートリガ(view tRiggeR)信号を出力する。
 また、制御部21は、主制御装置5からの指示に従って、寝台3のテーブル移動速度又はガントリ2のガントリ回転速度を制御する。すなわち、主制御装置5は設定されたスキャン条件に基づいて最適なピッチを設定し、設定されたピッチに基づいて寝台3のテーブル33又はガントリ2の速度を設定する。設定された速度は、制御信号として制御部21へ出力され、制御部21はその制御信号に基づいてガントリ2の駆動モータ271(図2参照)及びテーブル33の駆動モータ331(図3参照)を駆動制御する。
 また、制御部21はヘリカルスキャンの進行中に、主制御装置5から随時入力される制御信号(スキャン速度変更要求信号)に基づき、テーブル33の速度を変更する。また制御部21はテーブル33の速度変化に追従して、ガントリ2の回転速度を変更する。このとき、制御部21はテーブル33又はガントリ2の速度変化の前後で、ピッチが一定を保つようにテーブル移動速度又はガントリ回転速度を制御する。
 ここで、ピッチとは、ガントリ2と寝台3(テーブル33)との速度の比率であり、ビームピッチまたはヘリカルピッチを含む。
 ビームピッチはガントリ2の1回転中にテーブル33が移動する距離とX線ビーム幅とで決定されるものであり、以下の式で決定される。
 ビームピッチ=(ガントリ1回転でのテーブル移動距離)÷(X線ビーム幅)
 具体的には、16列マルチスライスCT装置の場合は、ガントリ1回転で同時に最大16列のX線減弱量データを得る。1列当たりのスライス幅が1.25mmの場合、16列分のスライス幅(すなわち、X線ビーム幅)は1.25(mm)×16(列)=20(mm)である。例えばガントリ1回転中に寝台が10mm移動する場合は、ビームピッチ(テーブル移動距離(10mm)÷スライス幅(20mm))は0.5である。
 また、ヘリカルピッチとは、ガントリ2の1回転中にテーブル33が移動する距離とX線ビームのコリメーション(スライス幅)とで決定されるものであり、以下の式で決定される。
 ヘリカルピッチ=(ガントリ1回転でのテーブル移動距離)÷(スライス幅)
 すなわち、X線検出器25の検出素子列が1列のシングルスライスCTでは、ビーム幅がそのままスライス幅となるため、ヘリカルピッチはビームピッチと同一のものとなる。
 また、制御部21は、テーブル33やガントリ2の速度の変更の前後で、X線照射量(mAs;管電流値[mA]とガントリ1回転に要する時間[s]との積)が変わらないように、X線管23へ供給または印加する管電流値または管電圧値を変更し、X線管23の出力を制御する。
 更に、制御部21は、X線管23の位置の本来のデータ取り込み位置からのずれを監視している。X線管23の位置が本来のデータ取り込み位置からずれている場合には、画像処理装置9に対して位置ずれ補正要求信号を出力する。データ取り込み位置のずれは、ガントリ回転駆動機構27から出力されるパルス信号や上述の位置センサの出力から判定できる。
 X線管23はX線源であり、制御部21により制御されて被検体6に対してX線を連続的または断続的に照射する。制御部21は、操作卓4の主制御装置5から入力される制御信号に応じて、X線管23の出力を制御する。すなわち制御部21は、X線管23に印加及び供給する管電圧及び管電流を制御する。また、X線管23にはコリメータが設けられている。コリメータはX線管23から放射されたX線を、例えばコーンビーム(円錐形または角錐形ビーム)等のX線として被検体6に照射させるものである。被検体6を透過したX線はX線検出器25に入射する。
 X線検出器25は、ガントリ2のX線管23に対向する位置に配置され、X線管23から放射されて被検体6を透過したX線の減弱量を検出する。以下の説明において、X線検出器25にて検出したX線減弱量データを、ローデータ(Raw data)ということもある。
 X線検出器25は、複数の検出素子及び各検出素子からデータを収集するデータ収集装置から構成される。検出素子は、例えばシンチレータとフォトダイオードとの組み合わせによって構成されており、X線検出器25はこのような検出素子をガントリ2の回転方向(チャネル方向)及び被検体6の体軸方向(z方向または列方向)の2次元に配置して構成されるものである。検出素子はチャネル方向に例えば1000個程度、列方向に例えば1~320個程度配列されている。これらの複数の検出素子は全体として円筒面状もしくはチャネル方向に折れ線状に湾曲したX線入射面を形成している。
 X線検出器25の各検出素子にて検出されたデータはデータ収集装置によって収集され、X線減弱量データとして画像処理装置9に出力される。
 ガントリ回転駆動機構27は、制御部21から出力される制御信号に応じて、ガントリ2を回転駆動させる。
 図2に示すようにガントリ回転駆動機構27は、例えば、ガントリ2を回転駆動するための駆動モータ271、プーリ273a、273b、273c、273d、273e、273f、ベルト275a、275b、275c、ロータリーエンコーダ277等により構成される。これらの構成に加え、ブレーキを備えるようにしてもよい。
 ガントリ回転駆動機構27において、制御部21から入力される制御信号に応じて、駆動モータ271が駆動される。駆動モータ271の駆動は、プーリ273a、ベルト275a、プーリ273b、プーリ273c、ベルト275b、及びプーリ273dを介してガントリ2に伝達される。また、プーリ273bには同軸回転する273eが設けられており、駆動モータ271の回転はプーリ273a、ベルト275a、プーリ273b、プーリ273e、ベルト275c、プーリ273fを介してロータリーエンコーダ277に伝達される。
 ロータリーエンコーダ277は、回転動作からパルス信号を生成し、生成したパルス信号を制御部21へ出力する。ガントリ2の1回転で発生するパルス数は、ロータリーエンコーダ277自体が1回転当たり発生するパルス数、使用されているプーリ、歯車の歯数、またはこれらによって構成される減速器の減速比によって決定される。例えば、図2のガントリ回転駆動機構271においては、ガントリ1回転で得られるパルス数は次の式(1)によって決定される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Pg:ガントリ2が1回転するときに発生するパルス数
     Zgd:プーリ273dの歯数
     Zgc:プーリ273cの歯数
     Zge:プーリ273eの歯数
     Zg:プーリ273fの歯数
     P1 :ロータリーエンコーダ277が1回転で発生するパルス数
である。
 また、ガントリ2はガントリ静止基準位置、或いはデータ取り込み位置(ビュートリガ信号発生基準位置)に位置センサを備えている。制御部21は、ロータリーエンコーダ277の発生するパルス信号のカウント数や位置センサの検出信号に基づいて、ガントリ回転速度や、ガントリ2の回転位置を検出できる。
 図1に示す寝台3は、被検体6を載せるテーブル33と、寝台駆動機構31とを備えている。
 寝台駆動機構31は、図示しないテーブル上下動装置を制御してテーブル33の高さを適切なものにするとともに、テーブル33を被検体6の体軸方向に前後動させる。テーブル33の前後動により、被検体6がガントリ2のX線照射空間である開口部29内に搬入及び搬出される。
 寝台駆動機構31は、制御部21から出力される制御信号に応じて、寝台3のテーブル33を前後動させる。
 図3に示すように、寝台駆動機構31はテーブル33を前後動させるため、例えば、駆動モータ331、プーリ333a、333b、333c、333d、ベルト335a、335b、ロータリーエンコーダ337、ボールネジナット338、ボールネジ339等により構成される。これらの構成に加え、ブレーキを備えるようにしてもよい。
 テーブル33は、テーブル33の下面に取り付けられたボールネジナット338によって、ボールネジ339の回転軸と平行に取り付けられる。駆動モータ331の駆動により、プーリ333a、ベルト335a、プーリ333b、333c、ベルト335b、及びプーリ333dを介してボールネジ339が回転すると、テーブル33がボールネジ339の回転軸と平行に移動される。
 駆動モータ331の駆動は制御部21から入力される制御信号に応じて制御される。
 また、テーブル33の前後動は、プーリ333cと同軸回転するロータリーエンコーダ337に伝達される。
 ロータリーエンコーダ337は回転動作からパルス信号を生成し、制御部21へ出力する。テーブル33の1mmの移動で発生するパルス数は、ロータリーエンコーダ337自体が1回転当たりに発生するパルス数、使用されているプーリ、歯車の歯数、またはこれらによって構成される減速器の減速比によって決定される。例えば、図3の寝台駆動機構31においては、テーブル33の1mmの移動で得られるパルス数は次の式(2)によって決定される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Pt:テーブル33が1mm移動するときに発生するパルス数
     P:ボールネジ339のピッチ
     Ztd:プーリ333dの歯数
     Ztc:プーリ333cの歯数
     P2 :ロータリーエンコーダ337が1回転で発生するパルス数
である。
 制御部21はロータリーエンコーダ337の発生するパルス信号のカウント数によりテーブル33の移動速度や位置を検出できる。
 操作卓4は、図1に示すように、表示装置7、操作装置8、主制御装置5を備え、ガントリ2、寝台3、及び画像処理装置9と接続される。画像処理装置9は、画像再構成回路91、及び記憶装置93を備え、ガントリ2のX線検出器25及び操作卓4と接続される。
 表示装置7は、液晶パネル、CRTモニタ等のディスプレイ装置と、ディスプレイ装置と連携して表示処理を実行するための論理回路で構成され、主制御装置5に接続される。
表示装置7は画像処理装置9から出力される再構成画像やスキャノグラム画像、並びに主制御装置5が取り扱う種々の情報を表示するものである。
 操作装置8は、例えば、キーボード、マウス、テンキー等の入力装置、及び各種スイッチボタン等により構成され、操作者によって入力される各種の指示や情報を主制御装置5に出力する。操作者は、表示装置7及び操作装置8を使用して対話的にX線CT装置1を操作する。
 主制御装置5は、CPU、ROM、RAM等により構成され、X線CT装置1全体を制御するものである。主制御装置5はガントリ2内の制御部21、表示装置7、操作装置8、及び画像処理装置9に接続される。主制御装置5は、操作装置8から入力されるスキャン条件等に従ってスキャン計画を生成し、生成されたスキャン計画に従って、ガントリ2、寝台3、及びX線管23を制御する制御信号を制御部21に出力し、ヘリカルスキャンを制御する。
 本実施の形態において、主制御装置5は、ヘリカルスキャン実行中に、造影剤の流れをモニタリングしており、モニタリング結果に基づいてテーブル33の移動速度及びガントリ2の回転速度を変化させ、スキャン対象部位に常に造影剤が検出されるように制御する。テーブル33の移動速度等を変更する際、主制御装置5は、制御部21に対してスキャン速度変更要求信号を出力し、寝台3のテーブル33の移動速度を変化させ、テーブル33の移動速度に追従してガントリ2の回転速度を変化させる。制御部21はヘリカルスキャンのピッチが変化せず一定を保つように、テーブル33の移動速度、又はガントリ2の回転速度を変化させる。
 ヘリカルスキャンのピッチを一定に保ちつつテーブル33又はガントリ2の速度が変更されるため、再構成される画像の画質を一定に保つことが可能となる。ヘリカルスキャンのピッチを一定に保つためには、テーブル33の移動速度とガントリ2の回転速度との比率を一定に保てばよい。そのため、制御部21は寝台駆動機構31のロータリーエンコーダ337から発生されるパルス数とガントリ2の回転駆動機構27のロータリーエンコーダ277から発生されるパルス数とを監視し、それぞれのパルス数の比率が速度変化の前後で一定を保つように寝台3の駆動モータ331やガントリの駆動モータ271を制御する。
 具体的には、寝台3のテーブル33が1mm移動したときに寝台3のロータリーエンコーダ337の出力が100カウントであり、ガントリ2が0.8秒で1回転したときにガントリ2のロータリーエンコーダ277の出力が2000カウントであるように設計された16列マルチスライスCT装置において、上述のようにビームピッチ0.5(1回転のビーム幅20mmにつき寝台移動距離10mm)にてヘリカルスキャンが行われているとする。この場合、単位時間あたりのパルス数は、ガントリ2側が2500カウント/秒であり、寝台3側が1250カウント/秒である。すなわち、ガントリ2側のパルス数と寝台3側のパルス数との比率は2:1である。
 スキャン途中でテーブル33の速度を遅くしたい場合、例えば、0.8秒で10mm移動していたテーブルを、0.8秒で8mm移動するように変化させたい場合には、寝台3側の単位時間当たりパルス数は1000カウント/秒となる。制御部21のCPUは寝台3の減速に追従して、ガントリ側2のパルス数が2000カウント/秒となるように回転速度を変更する。
 図4は、ガントリ2と寝台3のテーブル33との速度の関係を示すグラフである。
 図4のグラフ中、横軸はガントリ回転速度(パルスカウント数/秒)、縦軸はテーブル移動速度(パルスカウント数/秒)であり、ビームピッチが0.5の場合と、0.8の場合と、1.3の場合とにおける、各速度の保つべき関係を表している。
 ビームピッチを一定に保つためには、テーブル移動速度とガントリ回転速度とが図4に示す関係を保つ必要がある。
 また、第1の実施の形態のX線CT装置1において主制御装置5は、スキャンしようとする部位(以下、関心領域という)に造影剤が到達しているか否かをモニタリングしている。造影剤のモニタリングにおいて、造影剤が到達しているか否かは、例えば、関心領域についてガントリ1回転前のCT値と現在の回転で得られるCT値とを比較することにより判定される。ガントリ1回転前のCT値と現在の回転で得られるCT値との差が所定の閾値より小さい場合には、造影剤が到達していないと判定される。ここで、CT値とはX線検出器25にて検出したX線減弱量データから得られる組織のX線吸収係数を、水のX線吸収係数を用いて相対的に換算した値である。
 図5を参照して、本実施の形態のX線CT装置1における造影剤のモニタリングについて説明する。
 図5に示すように、X線CT装置1は16列のX線検出器25を備えるものとし、X線検出器25の列番号を寝台3に近い側から順に1、2、・・・、16とする。また図5の矢印にて示される方向をテーブル33の進行方向とする。以下の説明では、造影剤の注入位置が静脈であって、造影剤が心臓を経由し、全身の動脈から静脈を流れるものとする。
 図5の例のように、スキャンの進行方向が被検体6の上肢から下肢である場合、主制御装置5はテーブル33の進行方向に対してX線検出器25の先頭列のX線減弱量データをモニタリングすることにより造影剤の到達を検出する。すなわち、主制御装置5は列番号「1」の検出素子列のCT値を監視する。
 なお、スキャンの進行方向が図5の例と逆方向である場合、すなわち、下肢から上肢へのスキャンである場合は、X線検出器25の列番号「16」の検出素子列を先頭列とすれば、造影剤の関心部位への到達を検出できる。また、造影剤の到達をモニタリングするのではなく、造影剤の流れに遅れないように制御するためには、スキャンの進行方向が図5の矢印に示すように上肢から下肢の方向である場合は、X線検出器25の最終列(列番号「16」)をモニタリングすればよい。同様に、スキャンの進行方向が図5とは逆の下肢から上肢の方向である場合は、造影剤の流れに遅れないように制御するためにはX線検出器25の列番号「1」をモニタリングすればよい。
 本実施の形態では主制御装置5は、造影剤が関心領域に到達していないと判定した場合には、寝台3のテーブル移動速度を遅くするよう、制御部21に対してスキャン速度変更要求信号を出力する。逆に造影剤の流れが速い場合には、寝台3のテーブル移動速度を速くするよう制御部21に対してスキャン速度変更要求信号を出力する。更に制御部21は、テーブル33の速度変化に追従させて、ビームピッチが一定に保たれるようにガントリ2の回転速度を変化させる(図4、7参照)。
 また、主制御装置5は画像処理装置9に接続されており、画像処理装置9の画像再構成回路91及び記憶装置93を制御して、画像の再構成、及び記憶を行う。
 画像処理装置9は、主制御装置5の制御によってガントリ2内のX線検出器25が収集したX線減弱量データを取得する。スキャノグラム撮影時には、X線検出器25が収集したスキャノグラム投影データを用いてスキャノグラム画像を作成する。また、スキャン時には、X線検出器25が収集した複数ビューのX線減弱量データを用いて断層像を再構成する。すなわち、画像処理装置8は、X線検出器25から入力されるX線減弱量データ(ローデータ)に対して、X線強度補正、オフセット補正、感度補正といった前処理を施し、その後特定のz軸(体軸)方向位置の最近傍データをX線検出器25の各列から抽出して、そのz軸方向位置での断層像を再構成する。
 記憶装置93は、ハードディスク等により構成されるものであり、操作卓4に接続される。記憶装置93には、画像再構成回路91によって生成した再構成画像やスキャノグラム画像等が記憶される。また、操作装置8から入力される各種スキャン条件(スキャン範囲、画質指標値、着目部位、管電流値、管電圧値、コリメーション等)が記憶される。また、これらの各種データの他、X線CT装置1の機能を実現するためのプログラム等が記憶される。
 次に、図6から図9を参照して、X線CT装置1の動作について説明する。
 主制御装置5は記憶装置93から各種処理を実行するためのプログラム及びデータを読み出し、このプログラム及びデータに基づいて処理を実行する。
 まず、主制御装置5のCPUは、スキャノグラム画像の撮影指示をガントリ2の制御部21へ出力する(ステップS101)。スキャノグラム画像とは、ガントリ2を回転せずにテーブル33を体軸と平行に移動させ、被検体6を1方向から投影した画像である。制御部21は、ガントリ2及び寝台3を制御するとともにX線管23を制御して、所定の強度で被検体6にX線を照射し、スキャノグラム撮影を行う。X線検出器25は、被検体6を透過したX線減弱量データを検出し、スキャノグラム投影データとして、画像処理装置9へ出力する。主制御装置5のCPUは、画像処理装置9の画像再構成回路91によって、X線検出器25から入力されるスキャノグラム投影データからスキャノグラム画像を生成させ、記憶装置93に記憶させるとともに、表示装置7に表示させる。
 次に、主制御装置5は、スキャン計画の設定を受け付ける処理を実行する(ステップS102)。
 スキャン計画とは、ヘリカルスキャンの開始位置や終了位置、スキャン時間、撮影部位、画質指標値(画質SD(StandaRd Deviation)値、CNR(コントラスト-ノイズ比)、所定のCNR下での識別可能径(識別可能な異常陰影の半径)、またはSNR(シグナル-ノイズ比)等)、X線管23に供給、印加する管電流、管電圧、コリメーション、ピッチ等のスキャン条件を操作装置8からの操作指示に応じて設定するとともに、スキャン条件に基づいてテーブル移動速度やガントリ回転速度、一連の管電流値、管電圧値等を算出する処理である。
 操作装置8から上述のスキャン条件が入力されると、主制御装置5は入力されたデータから、体軸方向撮影範囲(z位置)とX線管の位相角(ガントリ2の位相角)を決定する。また、主制御装置5は上述のスキャン条件からテーブル33の移動速度やガントリ2の回転速度を決定するとともに、X線管23に供給する一連の管電流変調パターンを設定する。
 なお、ここで決定されるテーブル33の移動速度、ガントリ2の回転速度、及び管電流変調パターンはスキャン計画段階での設定値であり、本実施の形態では、主制御装置5は造影剤の流れに応じて、スキャンの進行中にも随時テーブル33の移動速度、ガントリ2の回転速度、及び管電流値を変更する。
 主制御装置5は、図8に示すように、生成したスキャン計画の設定値(テーブル移動速度5a、ガントリ回転速度5b、管電流変調パターン5c、ビームピッチ5dを含む)を主制御装置5のRAMに記憶するとともに、制御部21へ出力する。
 次に制御部21は、ステップS102で設定されたスキャン計画に従って、スキャンを実行する(ステップS103)。すなわち、制御部21は寝台3を制御してスキャン開始位置へテーブル33を移動させる。また、設定された管電流変調パターン5cにてX線管23に管電流を供給し、テーブル33を設定されたテーブル移動速度5aで移動させるとともに、ガントリ2を設定されたガントリ回転速度5cで回転させ、被検体6に対してX線を照射する。X線検出器25により検出されたX線減弱量データは画像処理集装置9へ出力される。画像処理装置9は主制御装置5に制御されて、入力されたX線減弱量データに基づき、画像再構成回路91にて各スライス位置での断層像を再構成し、表示装置7に表示するとともに、記憶装置33に記憶する(ステップS104)。
 ステップS103において、主制御装置5はスキャン中に画像処理装置9にて得られるCT値を監視し、造影剤の流れを検出している。
 造影剤を使用する検査における図3のステップ103のスキャン制御について、図7に示すフローチャートを参照して説明する。
 図7に示すように、主制御装置5は、X線検出器25の検出素子列のうち、造影剤をモニタリングする列に相当する列の画像に設定された関心領域のCT値を検出する。ここで、モニタリングする列とは、図5に示す例のように造影剤の流れの先頭を検出する場合には、X線検出器25の列番号「1」である。主制御装置5は列番号「1」の検出素子列のデータから生成した画像に設定された関心領域のCT値を検出し(ステップS201)、RAMに保存する(図8の5e、5f)。
 主制御装置5は、関心領域について、ガントリ2の1回転前のスキャンにおけるCT値5eと、現在のスキャンでのCT値5fとを比較する(ステップS202)。
 そして、1回転前の関心領域のCT値5eと、今回取得したCT値5fとの差が、所定の閾値5gより大きいか否かを判定し(ステップS203)、差が閾値5g以下である場合は造影剤が到達していないと判定して(ステップS203;小さい場合)、寝台3やガントリ2の速度を変えず、スキャンを続行する(ステップS204)。
 一方、1回転前の関心領域のCT値5eと、今回取得したCT値5fとの差が、所定の閾値5gより大きい場合は、主制御装置5は造影剤の流れの先頭が関心領域に到達していると判定して(ステップS203;大きい場合)、制御部21に対してスキャン速度変更要求信号を出力する。制御部21は、主制御装置5から入力されたスキャン速度変更要求信号に応じて、テーブル33の移動速度とガントリ2の回転速度とを同期させ変更させる(ステップS205)。すなわち、造影剤が到達していない場合には寝台3のテーブル33の移動速度を遅くする。制御部21は変更後のテーブル33の移動速度に追従して、ガントリ2の回転速度を遅くする。このとき制御部21は、速度の変更前と後とでビームピッチ5dが変化しないように制御する。
 また、制御部21(または主制御装置5)は、速度の変更の前後でX線照射量(mAs;管電流値[mA]とガントリ1回転に要する時間[s]との積)が変わらないように、X線出力(管電流値や管電圧値)を変更する(ステップS206)。
 例えば、ガントリ1回転あたり0.8sを要するスキャンにおいて、もとの管電流値を250mAとしている場合(mAs=200)に、ガントリ回転速度を1回転あたり1.0sに変更した際には、制御部21は管電流値を200mAに変更する。また、ガントリ回転速度を1回転あたり0.4sに変更した際には、制御部21は管電流値を500mAに変更する。
 主制御装置5は、テーブル33がスキャン終了位置に到達するまでステップS201~ステップS206の処理を繰り返し、テーブル33がスキャン終了位置に到達すると(ステップS207;Yes)、スキャンを終了する。
 以上説明したヘリカルスキャンの制御における、X線CT装置1の各部での信号やデータの流れについて、図9のシーケンス図を用いて説明する。
 図9のステップT1において、ガントリ回転駆動機構27のロータリーエンコーダ277の出力を基に、制御部21は計測開始信号であるビュートリガ信号を発生させる。X線検出器25はビュートリガ信号に応答して各検出素子列の計測データ(X線減弱量データ)を収集し、画像処理装置9へ出力する。画像処理装置9はX線減弱量データに基づく関心領域のCT値をモニタリングデータとして主制御装置5へ出力する。ステップT2において、主制御装置5は、モニタリングデータに基づいてテーブル移動速度の変更が必要であるか否かを判断し、変更が必要であると判断した場合は、制御部21へスキャン速度変更要求信号を出力する。
 ステップT3において、制御部21はスキャン速度変更要求信号に基づいて寝台3のテーブル移動速度を変更するとともに、ビームピッチが一定となるようにガントリ回転速度を変更する。更に制御部21は、ガントリ回転速度の変更に伴い、X線管23のX線出力(管電流、管電圧)も変更する。
 ステップT4において、制御部21はテーブル33やガントリ2の速度の変更に伴い、変化した各パルス間隔を確認する。パルス間隔の確認において、データ取り込み位置のずれを検出した場合、ステップT5において、制御部21は画像処理装置9に対してデータの位置ずれの補正を要求する。
 以後モニタリングデータによりスキャン速度変更要求が生じる都度、ステップT2~T5を繰り返す。
 上述のステップT4、T5におけるX線データ取り込み位置のずれと、画像処理装置9によるデータの位置補正処理について、図10、図11、図12を参照して説明する。
 ガントリ2は重量であるため、回転速度を変化させるとイナーシャ(慣性)によりX線減弱量データの取り込み開始位置(以下、データ取り込み位置という)がずれることがある。
 図10において、矢印に示す方向がガントリ2の回転方向である。図10に示すように、「a」の地点が本来のデータ取り込み位置であるとすると、ガントリ2の減速が遅れた場合には、図10の「b」に示す位置にX線管23、及びX線検出器25がずれてしまう。また、ガントリ2の加速が遅れた場合には、図10の「c」に示す位置にX線管23、及びX線検出器25がずれてしまう。
 一方、図11に示すように、X線検出器25はヘリカルスキャン実行中、X線減弱量データを連続的に取得している。図11において、横軸はX線検出器25のチャネル番号(1チャネル~nチャネル)であり、縦軸はガントリ1回転におけるデータ取り込み回数(1ビュー~mビュー)である。図11のプロファイルには各チャネルに入力したX線減弱量データが取り込み順(「L-1」回転→「L」回転→「L+1」回転)に表されている。また、実際にはX線減弱量データの強弱は濃淡情報(グレースケール)で表されるものであるが、明瞭に示すためにX線減弱量データの強弱を実線を用いて模式的に表している。実線で示す2本の曲線は被検体とエア(被検体の無い領域)との境界を示している。画像処理装置9は、各ビューのX線減弱量データを画像再構成に使用する。
 なお、図11ではマルチスライス検出器(X線検出器25)の1列分のX線減弱量データのプロファイルを示しているが、全ての列において、それぞれ連続したプロファイルを得る。
 ヘリカルスキャンにおいて、画像処理装置9は各スライス間でX線減弱量データを補間しつつ、画像を再構成する。すなわち、画像処理装置9はX線検出器25から入力される各列のX線減弱量データからz軸(体軸)方向位置(スライス位置)の最近傍のデータを抽出して、断層像を再構成する。
 ガントリ2のロータリーエンコーダ277が発生するパルス信号と、X線データの取り込みを開始するタイミングを示すビュートリガ信号とは、同期している(図9のT1)。
また、ガントリ2はガントリ静止基準位置、或いはビュートリガ信号発生基準位置に位置センサを備えている。
 制御部21は、ビュートリガ信号の発生時点でのガントリ2のロータリーエンコーダ277のパルス数と位置センサの出力とからデータ取り込み位置のずれを算定し、位置ずれ補正要求を主制御装置5へ出力する(図9のT4、T5)。また制御部21または主制御装置5は、本来のデータ取り込み位置からずれた位置までの間に発生するビュー数もロータリーエンコーダ277のパルス数から算出できる。
 図12のフローチャートに示すように、スキャン中に制御部21は、ロータリーエンコーダ277から入力されるパルス信号及び位置センサの出力信号によって、X線管23の位置を監視している。ガントリ2側のパルス数に基づいて、X線管23がデータ取り込み位置に到達した場合(ステップS301;Yes)、X線検出器25はビュートリガ信号を出力し、X線検出器25からX線減弱量データ(ローデータ)を取得して画像処理装置9へ出力する(ステップS302)。
 制御部21はガントリ2側のパルス信号及び位置センサ(ビュートリガ信号発生基準位置)の出力とから、実際にデータを取り込んだ位置を算定する(ステップS303)。実際にデータを取り込んだ位置が、本来のデータ取り込み位置(図9の「a」)と同一である場合は、制御部21は画像処理装置9に対して通常の画像再構成処理を行うよう制御信号を出力する(ステップS305)。
 一方、実際にデータを取り込んだ位置が、本来のデータ取り込み位置(図9の「a」)とずれている場合は(ステップS304;Yes)、制御部21は、本来の位置とずれた位置との間のビュー数を算出し、画像処理装置9に出力する。画像処理装置9は、ずれたビュー数を取得すると、図11に示すプロファイルから、そのビュー数だけビュー方向にずらして補正したローデータを用いて画像再構成処理を行う。ローデータを補正した結果、必要なローデータが欠落した場合は、線形補間等の手法でローデータを補間し、画像再構成処理を行うようにすればよい(ステップS306)。
 また、数ビュー分ずれている場合等、再構成した画像は正立に対して回転してしまう場合には、画像処理装置9はその再構成画像を逆に回転させて正立像とする処理を施す(ステップS307)。画像処理装置9は再構成画像を表示装置7に表示させるとともに、記憶装置93に記憶する。
 制御部21、主制御装置5、及び画像処理装置9は上述のステップS301~ステップS307の処理を繰り返し、スキャン開始位置からスキャン終了位置までの各スライス位置での断層像を再構成すると、一連の画像処理を終了する。
 以上説明したように、第1の実施の形態のX線CT装置1は、造影剤の流れを検出し、その検出結果に応じてヘリカルスキャンを制御する。主制御装置5は、スキャン対象位置に造影剤が到達していない、またはスキャン対象位置が造影剤の流れを追い抜いていると判定した場合は、寝台3のテーブル33の速度を変更し、それに追従してガントリ2の回転速度も変更する。このとき、ヘリカルスキャンのピッチは一定に保たれるように、テーブル33の移動速度とガントリ2の回転速度とが制御される。
 従って、造影剤の流れに合わせて寝台3のテーブル33の移動速度を変更した際に、ガントリ2の回転速度も変更でき、ヘリカルスキャンにおけるピッチが保たれるので、画像処理装置9において再構成される画像の画質を保つことが可能となる。その結果、造影剤を用いた検査での画質悪化による再検査を防ぐことができ、かつ余分な造影剤を使用せずに最適な造影剤量でヘリカルスキャンを行うことが可能となり、患者負担が軽減する。
(第2の実施の形態)
 次に、第2の実施の形態のX線CT装置1について説明する。
 第2の実施の形態のX線CT装置1は、スキャン計画段階で予め寝台3のテーブル移動速度やガントリ2の回転速度を変更するz位置を設定しておき、そのスキャン計画に従ってヘリカルスキャンを実行する。z位置とは体軸方向の位置である。
 第2の実施の形態のX線CT装置1のハードウェア構成は第1の実施の形態のX線CT装置1と同様であるので、説明を省略し、以下の説明においては、第1の実施の形態と同一の各部は同一の符号を付して説明する。
 従来のX線CT装置1では、スキャンする部位に応じて最適なスキャン速度で検査を行なうために、部位別に検査を実施していた。つまり、心臓(胸部)は高速にスキャンし、腹部は低速でスキャンするというように、部位別に異なる検査が行われていた。そのため検査回数が増え、患者の負担が大きかった。
 第2の実施の形態のX線CT装置1は、スキャン計画段階で、複数の部位の連続スキャンを設定することを可能とし、スキャン部位別に異なるテーブル移動速度を予め設定し、テーブル移動速度に追従してガントリ2の回転速度を変更する。また、X線CT装置1は、速度変化の前後でピッチが変わらないように制御する。
 以下、図13、図14、図15を参照して第2の実施の形態のX線CT装置1の動作を説明する。
 図13に示すように、X線CT装置1は、まずスキャノグラム画像の撮影を実行する(ステップS401)。スキャノグラム画像の撮影は第1の実施の形態と同様である。
 次に、主制御装置5はスキャン計画の設定を受け付ける。第2の実施の形態のX線CT装置1では、複数部位の連続したスキャン計画を設定できる(ステップS402)。
 具体的には、例えば胸部と腹部との連続したスキャンを計画する場合、操作者は、胸部と腹部とを含むz範囲をスキャン範囲とし、操作装置8から入力する。また操作者は、設定したスキャン範囲について部位別に最適なテーブル移動速度を設定できる。すなわち、テーブル33の位置に応じて異なるテーブル移動速度を設定できる。また、主制御装置5は、その他のスキャン条件(ピッチ、画質指標値、X線管23に供給、印加する管電流、管電圧、コリメーション、等)についても操作装置8からの入力を受け付ける。
 主制御装置5は、テーブル移動速度及びピッチから、ガントリ2の回転速度を部位毎に算出する。ここで、主制御装置5は全てのスキャン範囲でピッチが変わらないように、テーブル移動速度及びガントリ回転速度を設定する。主制御装置5は、一連のスキャンでの、z位置に応じたテーブル移動速度パターン5mと、テーブル移動速度パターン5mに応じたガントリ回転速度パターン5nと、を生成し、主制御装置5のRAMに保存する(図14参照)。
 また、主制御装置5は、入力されたスキャン条件から最適な一連の管電流変調パターン5oを算出し、RAMに保存する。
 スキャン計画が設定されると主制御装置5は、設定されたスキャン計画情報(テーブル移動速度パターン5m、ガントリ回転速度パターン5n、管電流変調パターン5o等)を制御部21へ出力し、制御部21はスキャン計画情報に従って、X線管23、寝台3及びガントリ2を制御し、ヘリカルスキャンを開始する。スキャンの進行中、ガントリ2の回転駆動機構27及び寝台3の寝台駆動機構31はそれぞれパルス信号を制御部21へ出力している。制御部21は第1の実施の形態と同様に、これらのパルス信号からテーブル33の移動情報やガントリ2の回転位置情報を、取得できる。
 制御部21は取得した移動情報から、テーブル33がスキャン計画によって予め設定されたz位置に達したと判定した場合には、テーブル33の移動速度を変更させ、また、ガントリ2の回転速度を変更させる(ステップS403)。
 X線検出器25により検出されたX線減弱量データは画像処理集装置9へ出力される。
画像処理装置9は主制御装置5に制御されて、入力されたX線減弱量データに基づき、画像再構成回路91にて各スライス位置での断層像を再構成し、表示装置7に表示するとともに、記憶装置93に記憶する(ステップS404)
 ステップS404の画像再構成処理において、画像処理装置9は第1の実施の形態と同様に図12に示すデータ取り込み位置のずれを補正する画像処理を実行する。
 以上説明した第2の実施の形態のヘリカルスキャンの制御における、X線CT装置1の各部での信号やデータの流れについて、図15のシーケンス図を用いて説明する。
 図15のステップT11において、主制御装置5は予め設定されたスキャン計画情報(テーブル移動速度パターン5m、ガントリ回転速度パターン5n、管電流変調パターン5o)を制御部21へ出力する。ステップT12において、制御部21は、寝台3のロータリーエンコーダ337の出力に基づいてテーブル33の移動情報を監視する。ステップT13において、テーブル33が速度変更位置へ到達すると、制御部21はテーブル移動速度を変更するとともに、ガントリ回転速度を変更する。このとき、ビームピッチは一定に保たれる。また、制御部21はガントリ2の回転速度変更に伴い、X線出力(管電流、管電圧)も変更する。
 ステップT14において、制御部21はテーブル33やガントリ2の速度の変更に伴い、変化した各パルス間隔を確認する。パルス間隔の確認により、データ取り込み位置のずれを検出した場合、ステップT15において、制御部21は画像処理装置9に対してデータ取り込み位置のずれの補正を要求する。
 以後、スキャン位置が速度変更位置へ到達する都度、ステップT13~T15を繰り返す。
 以上説明したように、第2の実施の形態のX線CT装置1では、スキャン計画の段階で予めテーブル33の速度を変更するz位置(テーブル移動速度パターン5m)を設定しておき、ヘリカルスキャン実行中にテーブル33の位置が設定されたz位置に到達すると、設定されている速度でテーブル33を移動させる。またテーブル33の速度変化に追従してガントリ2の速度も変更する。制御部21はテーブル33やガントリ2の速度変化の前後でピッチが一定に保たれるように制御する。
 従って、ヘリカルスキャンのピッチを一定に保ったまま、部位別に最適なテーブル移動速度又はガントリ回転速度に変更することが可能となり、スキャン速度の異なる複数の部位を連続して撮影することが可能となる。そのため、部位毎に異なる検査を行う必要がなくなり、患者の負担が軽減する。
 以上、本発明に係るX線CT装置の好適な実施形態について説明したが、本発明は、上述の実施形態に限定されるものではない。例えば、本発明のスキャン速度の変更の例として、第1の実施の形態においては造影剤を用いた検査におけるスキャン速度変更の例を示し、第2の実施の形態においては、スキャン計画段階での撮影部位に応じた速度パターンの設定の例を示したが、これらに限定されるものではなく、どのような検査に適用するようにしてもよい。また、第1及び第2の実施の形態(造影剤を用いた検査及びスキャン計画段階での速度変更パターンの設定)を組み合わせて、本発明を適用することも可能である。また、当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1 X線CT装置、2 ガントリ、23 X線管(X線源)、25 X線検出器、27 ガントリ回転駆動機構、277 ロータリーエンコーダ、29 開口部、3 寝台、31 寝台駆動機構、337 ロータリーエンコーダ、33 テーブル、4 操作卓、5 主制御装置、6 被検体、7 表示装置、8 操作装置、9 画像処理装置、91 画像再構成回路、93 記憶装置、

Claims (7)

  1.  被検体の周囲を回転するガントリと、前記被検体を介して前記ガントリの互いに対向する位置に配置されるX線源及びX線検出器と、前記ガントリのX線照射空間に前記被検体を搬入または搬出するように移動するテーブルと、
     前記被検体に対して前記X線源からX線を照射する際に、前記ガントリを回転しつつ前記テーブルを移動することにより、前記被検体を螺旋状にスキャンするヘリカルスキャン制御手段と、
     前記X線検出器にて検出される前記被検体のX線減弱量データを用いて前記被検体の断層像を再構成する画像処理手段と、
     を備えたX線CT装置であって、
     前記ヘリカルスキャン制御手段は、
     スキャンの進行中に、前記テーブルの移動速度を変更するとともに、テーブルの速度変化に追従して前記ガントリの回転速度を変更することを特徴とするX線CT装置。
  2.  前記ヘリカルスキャン制御手段は、
     前記テーブルの移動速度と前記ガントリの回転速度とを変更する前と後とで、ヘリカルスキャンのピッチが一定に保たれるように前記ガントリの回転速度と前記テーブルの移動速度の少なくとも一方を制御することを特徴とする請求項1に記載のX線CT装置。
  3.  前記被検体に注入される造影剤の流れを検出する造影剤検出手段を更に備え、
     前記ヘリカルスキャン制御手段は、前記造影剤検出手段によって検出された情報に基づいて、前記テーブルの移動速度及び前記ガントリの回転速度を変更することを特徴とする請求項1に記載のX線CT装置。
  4.  スキャン条件の異なる複数の部位を連続してスキャンするように設定するスキャン計画設定手段を更に備え、
     前記ヘリカルスキャン制御手段は、前記スキャン計画設定手段により設定された部位毎のスキャン条件に基づき、スキャンの進行中に前記テーブルの移動速度及び前記ガントリの回転速度を変更し、複数の部位を連続してスキャンすることを特徴とする請求項1に記載のX線CT装置。
  5.  前記ヘリカルスキャン制御手段は、
     前記テーブルの移動速度及び前記ガントリの回転速度を変更する前と後とで、前記被検体に照射するX線量が略同一となるように前記X線源の出力を制御するX線源制御手段を更に備えることを特徴とする請求項1に記載のX線CT装置。
  6.  前記X線検出器におけるデータ取り込み位置のずれを検出するデータ取り込み位置検出手段を更に備え、
     前記画像処理手段は、前記データ取り込み位置検出手段により検出されるデータ取り込み位置のずれに応じて補正したX線減弱量データを使用して、前記断層像を再構成することを特徴とする請求項1に記載のX線CT装置。
  7.  被検体の周囲を回転するガントリと、前記被検体を介して前記ガントリの互いに対向する位置に配置されるX線源及びX線検出器と、前記ガントリのX線照射空間に前記被検体を搬入または搬出するように移動するテーブルと、
     前記被検体に対して前記X線源からX線を照射する際に、前記ガントリを回転しつつ前記テーブルを移動することにより、前記被検体を螺旋状にスキャンするヘリカルスキャン制御手段と、
     前記X線検出器にて検出される前記被検体のX線減弱量データを用いて前記被検体の断層像を再構成する画像処理手段と、
     を備えたX線CT装置の制御方法であって、
     前記被検体を螺旋状にスキャンする間に、前記テーブルの移動速度を変更するとともに、テーブルの速度変化に追従して前記ガントリの回転速度を変更するステップを有することを特徴とするX線CT装置の制御方法。
PCT/JP2009/068223 2008-10-23 2009-10-23 X線ct装置とx線ct装置の制御方法 WO2010047380A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534845A JP5552055B2 (ja) 2008-10-23 2009-10-23 X線ct装置とx線ct装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-272667 2008-10-23
JP2008272667 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047380A1 true WO2010047380A1 (ja) 2010-04-29

Family

ID=42119417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068223 WO2010047380A1 (ja) 2008-10-23 2009-10-23 X線ct装置とx線ct装置の制御方法

Country Status (2)

Country Link
JP (1) JP5552055B2 (ja)
WO (1) WO2010047380A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245195A (ja) * 2010-05-31 2011-12-08 Hitachi Medical Corp X線ct装置
JP2013202227A (ja) * 2012-03-29 2013-10-07 Ge Medical Systems Global Technology Co Llc 回転角度検出装置および放射線断層撮影装置
WO2014077287A1 (ja) * 2012-11-14 2014-05-22 株式会社 東芝 X線ct装置
WO2015107963A1 (ja) * 2014-01-15 2015-07-23 株式会社 日立メディコ X線ct装置及び造影撮影方法
US10722188B2 (en) 2017-05-18 2020-07-28 Canon Medical Systems Corporation X-ray CT apparatus
CN112438748A (zh) * 2020-11-25 2021-03-05 上海西门子医疗器械有限公司 Ct机架和ct机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299321A (ja) * 1995-04-27 1996-11-19 Shimadzu Corp X線ct装置
JPH10155785A (ja) * 1996-11-29 1998-06-16 Shimadzu Corp X線ct装置
JP2005160784A (ja) * 2003-12-03 2005-06-23 Hitachi Medical Corp X線ct装置
JP2007202913A (ja) * 2006-02-03 2007-08-16 Ge Medical Systems Global Technology Co Llc 放射線断層撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299321A (ja) * 1995-04-27 1996-11-19 Shimadzu Corp X線ct装置
JPH10155785A (ja) * 1996-11-29 1998-06-16 Shimadzu Corp X線ct装置
JP2005160784A (ja) * 2003-12-03 2005-06-23 Hitachi Medical Corp X線ct装置
JP2007202913A (ja) * 2006-02-03 2007-08-16 Ge Medical Systems Global Technology Co Llc 放射線断層撮影装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245195A (ja) * 2010-05-31 2011-12-08 Hitachi Medical Corp X線ct装置
JP2013202227A (ja) * 2012-03-29 2013-10-07 Ge Medical Systems Global Technology Co Llc 回転角度検出装置および放射線断層撮影装置
WO2014077287A1 (ja) * 2012-11-14 2014-05-22 株式会社 東芝 X線ct装置
JP2014113474A (ja) * 2012-11-14 2014-06-26 Toshiba Corp X線ct装置、x線ct装置の制御プログラム
US10123763B2 (en) 2012-11-14 2018-11-13 Toshiba Medical Systems Corporation X-ray CT system
WO2015107963A1 (ja) * 2014-01-15 2015-07-23 株式会社 日立メディコ X線ct装置及び造影撮影方法
JPWO2015107963A1 (ja) * 2014-01-15 2017-03-23 株式会社日立製作所 X線ct装置及び造影撮影方法
US10722188B2 (en) 2017-05-18 2020-07-28 Canon Medical Systems Corporation X-ray CT apparatus
CN112438748A (zh) * 2020-11-25 2021-03-05 上海西门子医疗器械有限公司 Ct机架和ct机

Also Published As

Publication number Publication date
JP5552055B2 (ja) 2014-07-16
JPWO2010047380A1 (ja) 2012-03-22

Similar Documents

Publication Publication Date Title
JP4490645B2 (ja) X線コンピュータ断層撮影装置
US7715520B2 (en) X-ray computed tomography apparatus
JP4639143B2 (ja) X線ct装置およびその制御方法
JP5552055B2 (ja) X線ct装置とx線ct装置の制御方法
US9542762B2 (en) X-ray CT apparatus and image reconstruction method
US20050185760A1 (en) X-ray computed tomography apparatus with x-ray intensity control
JP2005305026A (ja) X線コンピュータ断層撮影装置
WO2015107963A1 (ja) X線ct装置及び造影撮影方法
US7257190B2 (en) Radiographic device and control method therefor
JPWO2015108097A1 (ja) X線ct装置、画像処理装置、及び画像再構成方法
JP5022690B2 (ja) 放射線撮影装置
US20130216019A1 (en) X-ray ct apparatus and medical image display method
US10123763B2 (en) X-ray CT system
JP2008036275A (ja) X線ct装置
US20050053191A1 (en) Radiation tomograph apparatus and radiation tomography method thereof
JP4260966B2 (ja) X線コンピュータ断層撮影装置
JP4155550B2 (ja) X線ct装置
JP4175809B2 (ja) コンピュータ断層撮影装置
JP4406106B2 (ja) X線ct装置
JP2008017964A (ja) X線ct装置
JP4176987B2 (ja) X線ct装置
JP2004181069A (ja) コンピュータ断層撮影装置
JP4381099B2 (ja) 放射線断層撮影装置
JP2005137752A (ja) X線ct装置
JP5203750B2 (ja) 心電同期スキャン方法及びx線コンピュータ断層撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822077

Country of ref document: EP

Kind code of ref document: A1