WO2010047321A1 - Ceramic electrode material and process for producing the ceramic electrode material - Google Patents

Ceramic electrode material and process for producing the ceramic electrode material Download PDF

Info

Publication number
WO2010047321A1
WO2010047321A1 PCT/JP2009/068051 JP2009068051W WO2010047321A1 WO 2010047321 A1 WO2010047321 A1 WO 2010047321A1 JP 2009068051 W JP2009068051 W JP 2009068051W WO 2010047321 A1 WO2010047321 A1 WO 2010047321A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
electrode material
resin
material according
ceramic electrode
Prior art date
Application number
PCT/JP2009/068051
Other languages
French (fr)
Japanese (ja)
Inventor
正督 藤
高橋 実
景軍 ▲りゅう▼
渡辺 秀夫
白井 孝
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008270911A external-priority patent/JP5464464B2/en
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Priority to US13/125,221 priority Critical patent/US8486240B2/en
Priority to CN2009801418816A priority patent/CN102197440B/en
Publication of WO2010047321A1 publication Critical patent/WO2010047321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a ceramic electrode material having corrosion resistance and conductivity that can be used as an electrode material, and a method for producing the same.
  • the material of the electrode material used is not only conductive but also liquid such as water Corrosion resistance below is required.
  • liquid such as water Corrosion resistance below is required.
  • Patent Document 1 Ni-Ti alloy
  • Patent Document 2 alloys containing rare earth elements
  • Patent Document 3 stainless steel
  • Noble metal element plating for example, platinum layer formation on Ti alloy
  • Metal electrode is coated with resinous film (for example, insulating film coating on platinum wire (Patent Document 5)), etc.
  • resinous film for example, insulating film coating on platinum wire (Patent Document 5)
  • Ceramics are mainly composed of oxides, carbides, nitrides, and borides of inorganic elements, and are generally excellent in mechanical strength and corrosion resistance.
  • ceramics themselves are not conductive, so they are used as electrode materials. For this, it is necessary to impart conductivity by any method.
  • Patent Document 6 a method in which a rare earth element-containing organic carbon compound is present at the grain boundary of aluminum nitride (Patent Document 6), a method in which an electrode metal is coated with aluminum oxide (Patent Document 7), and an oxide by a sol-gel method on a metal electrode substrate
  • Patent Document 8 a method of applying a ceramic thin film coating (Patent Document 8), a method of forming a conductive path made of a reduced fired product of a polymer compound between ceramic particles
  • Patent Document 9 Japanese Unexamined Patent Publication No. 6-32067 JP 2005-289695 A
  • the present invention has been made in view of the above-described conventional situation, and is to provide a ceramic electrode material having appropriate conductivity and excellent corrosion resistance as an electrode material. It aims at providing the manufacturing method excellent in workability and economical efficiency.
  • a first feature of the present invention is a ceramic sintered body in which a three-dimensional network-like conductive path made of a reduced fired product of a polymer compound having carbon atoms is formed between ceramic particles, and its volume resistivity Is a ceramic electrode material having a corrosion resistance smaller than 0.2 ⁇ ⁇ cm and having corrosion resistance equal to or higher than that of graphite or a vitreous carbon body.
  • the second feature of the present invention is that the reduced fired product is conductive carbon, and the carbon component content of the ceramic sintered body is 0.3% by mass or more and 1.7% by mass or less.
  • a third feature of the present invention is that the ceramic particles are composed of an inorganic oxide.
  • the fourth feature of the present invention is that the inorganic oxide is alumina.
  • the fifth feature of the present invention is that the ceramic sintered body has catalytic performance by supporting fine particles composed of a metal, a metal compound, a metal oxide, or a mixture of two or more thereof.
  • the sixth feature of the present invention is that, in addition to the fifth feature, the ceramic sintered body is porous.
  • the metal is at least one selected from platinum, nickel, palladium, and gold
  • the metal oxide is at least one selected from titanium oxide and zinc oxide
  • the metal compound is at least one selected from cadmium sulfide and strontium titanate.
  • the eighth feature of the present invention is that the polymer compound is a vinyl resin, a urethane resin, an olefin resin, a styrene resin, an acrylic resin, a haloolefin resin, a diene resin, an ether resin, or a sulfide resin. Resin, imide resin, imine resin, phenyrin resin or epoxy resin.
  • the ninth feature of the present invention is that a composition obtained by blending at least one polymerizable substance having a carbon atom in a molecule with a ceramic raw material is injected into a mold, and the polymerization is performed in the mold. After polymerizing the polymerizable substance to form a molded body in which the polymer compound that is a polymer of the polymerizable substance is uniformly present, A sintered ceramic body is obtained by reducing and firing the molded body in an inert gas atmosphere containing no nitrogen gas, and the polymer is formed between the ceramic particles constituting the obtained ceramic sintered body. There is a method for producing a ceramic electrode material in which a conductive path made of a reduced fired product of a compound is formed in a three-dimensional network.
  • the tenth feature of the present invention is that a polymerizable monomer is used as the polymerizable substance.
  • the eleventh feature of the present invention is that the monomer and the crosslinkable monomer are used as the polymerizable substance.
  • the twelfth feature of the present invention is that a vinyl unsaturated monomer is used as the monomer.
  • the thirteenth feature of the present invention is that the composition is prepared in the form of an aqueous slurry and that the polymerizable substance is hydrophilic or water-soluble.
  • the conductive path itself is coated with ceramic particles having excellent corrosion resistance except for the sintered body surface. Corrosion resistance equivalent to or higher than that of other conductive carbon materials such as glassy carbon materials and graphite due to the appearance and the apparent reduction of exposure to corrosive environments. It will have.
  • the reduced fired product of the polymer compound is sufficiently formed between the ceramic particles by reduction firing in an inert gas atmosphere not containing nitrogen gas, Specifically, when the carbon component content in the ceramic sintered body is 0.3% by mass or more and 1.7% by mass or less, the volume resistivity becomes smaller than 0.2 ⁇ ⁇ cm, and it has appropriate conductivity as an electrode material. It has become a thing.
  • a molded body is formed by arbitrarily setting a mold shape from a place where a molded body is formed by a polymerization reaction of a polymerizable substance. It becomes possible. Further, the produced molded body is obtained in a wet state, and is uniformly contracted in the drying, degreasing, and sintering processes by the presence of the polymer compound therein uniformly. In addition, it is possible to easily manufacture a desired electrode material without complicated post-processing by designing and producing a mold in consideration of this shrinkage rate in advance.
  • a mixture of ceramic particles and a polymerizable monomer in water is introduced into a mold after introducing bubbles into the mold by mechanical stirring or the like, and then a molded body is formed by a polymerization reaction of the polymerizable monomer. Accordingly, it is possible to produce a porous ceramic having pores therein, and it is possible to easily control the pore structure by controlling the introduction of bubbles. Therefore, it has excellent moldability, pore structure controllability, and excellent economics of the manufacturing process as compared with a conventionally developed method of manufacturing a corrosion-resistant electrode material.
  • a composition prepared by blending a ceramic raw material and a polymerizable substance having carbon atoms in the molecule is prepared.
  • any conventionally known ceramic can be used, and specifically, alumina-based, mullite-based, zirconia-based, etc. oxidized. It is possible to use physical ceramics, non-oxide ceramics such as silicon carbide, silicon nitride, aluminum nitride, and boron nitride. Among them, oxide ceramics, particularly alumina ceramics are advantageously used in the present invention. This is because, as in Patent Document 6, when a hardly sinterable aluminum nitride is used as a ceramic raw material, it is necessary to use a rare earth metal as a sintering agent, which increases the manufacturing cost. This is because oxide ceramics are easily sinterable and it is not necessary to use rare earth metals as sintering agents.
  • a powder or granular material of such a ceramic raw material is used, and its size (average particle diameter) is 0.1 to The size is about 10 ⁇ m, preferably about 0.1 to 5 ⁇ m, more preferably about 0.1 to 1 ⁇ m.
  • the average particle size of the powdered material (granular material) is too large or too small, a sintered body having sufficient strength may not be obtained.
  • a polymerizable substance having carbon atoms in the molecule (hereinafter also simply referred to as a polymerizable substance) that can be blended together with a ceramic material having a predetermined size, it can be polymerized in a mold. Any material can be used as long as it can obtain a molded body in which the polymer (polymer compound) obtained by such polymerization and the ceramic raw material are present uniformly.
  • the polymerizable substance is not limited to a monomer as long as a desired polymer can be obtained by polymerization, and may be a substance obtained by polymerizing monomers to some extent.
  • a methacrylamide-based vinyl unsaturated monomer a polyol and an isocyanate compound that become a urethane resin by mixing, and a predetermined curing agent are used in combination.
  • examples include binders (binders) blended in ceramic raw materials when producing ceramic products from the past, such as epoxy resins where intermolecular crosslinking proceeds, etc.
  • vinyl unsaturated monomers such as methacrylamide are preferably used.
  • the vinyl unsaturated monomer means all compounds that can form a polymer (vinyl resin) by cleavage addition of a carbon-carbon double bond in the compound molecule. , Vinyl compounds, vinylidene compounds, vinylene compounds, and the like.
  • the vinyl unsaturated monomer as described above is used as the polymerizable substance, it is preferable to use a crosslinkable monomer together with the vinyl unsaturated monomer.
  • a crosslinkable monomer by using a vinyl unsaturated monomer and a crosslinkable monomer in combination, in a molded product obtained by polymerizing these monomers in a mold, a three-dimensional network structure is obtained. It is possible to advantageously form a polymer compound to be exhibited.
  • the thing according to the kind of vinyl-type unsaturated monomer used is suitably selected from well-known bifunctional or polyfunctional compounds. For example, when methacrylamide is used as the vinyl unsaturated monomer, N ⁇ , N '-methylenebisacrylamide, etc. are advantageously used.
  • the product (reduced fired product) produced by the reduction firing of the polymer (polymer compound) of the polymerizable substance is a conductive path in the ceramic sintered body. Therefore, if a composition having a low blending ratio of the polymerizable substance is used, the ceramic sintered body obtained by reducing and firing the molded body of such a composition may not exhibit sufficient electrical conductivity. is there.
  • the blending amount of the polymerizable substance is determined so that the ratio of the carbon amount (mass) of the entire polymerizable substance is 0.1 parts by mass or more, preferably about 0.1 to 6 parts by mass.
  • a polymerization initiator when polymerizing a polymerizable substance, generally, a polymerization initiator, a polymerization catalyst, or the like corresponding to the polymerizable substance is used.
  • Such polymerization initiators include ammonium persulfate, potassium persulfide, organic peroxides, hydrogen peroxide compounds, azo compounds, diazo compounds and the like, and polymerization catalysts include N, N, N ′, N ′- ⁇ tetra. Examples thereof include methylethylenediamine and the like.
  • polymerization initiator since the type and blending amount affect the polymerization rate of the polymerizable substance, it is possible to polymerize the polymerizable substance well in the mold.
  • the composition is not necessarily required to be blended with the polymerizable substance in the composition.
  • it is also possible to simultaneously supply the polymerization initiator and the polymerization catalyst into the mold.
  • a predetermined composition is prepared by blending at least one of the polymerizable substances as described above with respect to the ceramic raw material.
  • a ceramic raw material and a polymerizable substance are added to the medium and mixed to prepare an aqueous or non-aqueous slurry in which the ceramic raw material is uniformly dispersed.
  • the medium in which the ceramic raw material and the like are dispersed water (distilled water), an organic solvent, or a mixed solvent thereof can be used. From the viewpoint of easy handling, water is preferably used. (Distilled water) cocoons are used and prepared in the form of a water slurry.
  • the polymerizable substance when the composition is prepared in the form of an aqueous slurry, the polymerizable substance can be uniformly dispersed in the slurry by using a hydrophilic or water-soluble polymerizable substance.
  • a dispersant for the purpose of uniformly dispersing the ceramic material granular (or powder) soot in the medium.
  • a dispersing agent those according to the types of ceramic raw materials and polymerizable substances are appropriately selected from various conventionally known dispersing agents and used, for example, ammonium polycarboxylate-based dispersion An agent (anionic dispersant) or the like is used.
  • various components can be blended for various purposes in the composition used in the present invention. Specifically, when producing a porous ceramic sintered body, it is necessary to prepare a slurry-like composition containing bubbles, and in order to generate bubbles in the composition, When bubbles are generated by adding a foaming agent or by introducing gas into the slurry-like composition, a surfactant or the like that facilitates the generation of such bubbles, A thickener, a paste or the like for stably holding in the composition can be blended.
  • the foaming agent a protein-based foaming agent, a surfactant-based foaming agent, etc.
  • the surfactant an alkylbenzene sulfonic acid, a higher alkyl amino acid, etc.
  • a thickener or a paste examples include methyl cellulose, polyvinyl alcohol, saccharose, molasses, xanthan gum and the like.
  • various metal fine particles, metal oxide fine particles, etc. are blended, or as described later, these fine particles are appropriately added to the sintered body. It can also be supported by a method.
  • the composition thus prepared it is supplied into a mold according to the shape of the target conductive ceramic product, together with a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold.
  • a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold.
  • the polymerization rate of the polymerizable substance in the mold varies depending on the type of the polymerizable substance, the presence or absence of a polymerization initiator, a polymerization catalyst, etc., so the time during which the composition is held in the mold
  • the temperature and the temperature are set in consideration of the various conditions. In general, in the case of a water slurry composition using water as a medium, a temperature of 20 ° C. or higher, preferably 25 to 80 ° C., more preferably 25 to 35 ° C. is set. For 10 minutes or longer, preferably 20 minutes to several hours, more preferably 1 to 4 hours.
  • the composition containing the polymerizable substance When the composition containing the polymerizable substance is allowed to stand at a predetermined temperature for a predetermined time in the mold, the polymerization of the polymerizable substance contained in the composition is effective in the mold.
  • the polymer compound that is a polymer of the polymerizable substance In the molded product obtained by demolding after a lapse of a predetermined time, the polymer compound that is a polymer of the polymerizable substance is uniformly distributed. It presents an existing structure.
  • the molded body obtained as described above contains a large amount of water or an organic solvent, particularly when a slurry-like composition is used. Therefore, it is generally dried before reduction firing.
  • the Rukoto is a large amount of water or an organic solvent, particularly when a slurry-like composition is used. Therefore, it is generally dried before reduction firing. The Rukoto.
  • the drying method and various conditions at the time of drying this molded object, what was according to each component contained in a molded object, the medium (water, organic solvent, etc.) volatilized, etc. are appropriately selected and adopted.
  • the medium water, organic solvent, etc.
  • the molded body is placed in a drier room set at a temperature of about 25 to 30 ° C., and the humidity in the room (relative humidity: RH)
  • RH relative humidity
  • the ceramic electrode material according to this invention is obtained by carrying out reduction baking at the predetermined temperature in the atmosphere of the inert gas which does not contain nitrogen gas for the molded object obtained as mentioned above.
  • the inert gas not containing nitrogen gas include rare gases such as argon and helium.
  • a ceramic raw material contained in the molded body is sintered.
  • a ceramic sintered body can be obtained.
  • a reduced fired product having carbon atoms is generated from the polymer compound, unlike the usual firing in an atmosphere of air (oxygen).
  • Such a reduced fired product does not scatter outside the sintered body but remains in the sintered body, and advantageously forms a conductive path between the ceramic particles (grain boundaries) constituting the sintered body.
  • the ceramic electrode material according to the present invention exhibiting excellent conductivity is manufactured.
  • the content of the polymerizable substance in the molded body is the same, the case where the reduction firing is performed under an inert gas atmosphere not containing nitrogen gas, compared to the case where the reduction firing is performed under a nitrogen gas atmosphere, The amount of conductive carbon generated in the ceramic sintered body increases. This is because, when reducing firing in a nitrogen gas atmosphere, the ceramic particles, the polymerizable substance, and the nitrogen gas react to produce a compound.
  • the ratio of the total carbon amount (mass) of the polymerizable material in the green body before firing is 0.1 to 6 parts by mass with respect to 100 parts by mass of the ceramic raw material, and in an inert gas atmosphere not containing nitrogen gas
  • the carbon component content of the ceramic sintered body was in the range of 0.3 mass% to 1.7 mass%. This carbon component content is calculated from the measured value of the amount of components thermally decomposed and burned by thermal analysis, and is a mass ratio with respect to the mass of the ceramic sintered body.
  • the conductive carbon component content in the ceramic sintered body was 0.2% by mass or less.
  • the carbon component content of the ceramic sintered body is preferably 1.7% by mass or less. This is because if the carbon in the ceramic sintered body increases, the strength of the ceramic sintered body will decrease, and the present inventors have confirmed that sufficient strength can be obtained if it is 1.7% by mass or less. Because it is.
  • any furnace that can fire the molded body in a reducing atmosphere such as an argon atmosphere can be used.
  • a graphite crucible or various firing furnaces such as an electric furnace can be used.
  • various conditions when performing reductive firing of the formed body are appropriately set according to the type of ceramic raw material used.
  • a temperature of about 1000-1700 ° C. is set as the firing temperature (maximum temperature)
  • the firing time is 1 to About 5 hours.
  • the ceramic sintered body can be provided with a catalytic function by supporting fine particles as a catalyst component on the surface of the obtained ceramic sintered body or porous ceramic sintered body.
  • fine particles those composed of a metal, a metal compound, a metal oxide, or a mixture of two or more thereof can be used.
  • the metal at least one selected from platinum, nickel, palladium, and gold can be used.
  • the metal compound at least one selected from titanium oxide and zinc oxide can be used.
  • at least 1 sort (s) chosen from cadmium sulfide and strontium titanate is employable.
  • the ceramic electrode material according to the present invention obtained in this way not only exhibits excellent corrosion resistance and conductivity, but is also relatively lightweight, and its excellent conductivity is isotropic. It shows sex.
  • the conductive path formed between the ceramic particles constituting the ceramic sintered body is composed of a reduced fired product of a polymer compound having carbon atoms. Therefore, it is relatively lightweight compared to a ceramic electrode material using a conductive material having a high density such as a metal material.
  • the resulting ceramic is obtained by reducing and firing a molded body in which a polymer compound that is a polymer of a polymerizable substance is uniformly present. Between the ceramic particles constituting the sintered body, a conductive path made of a reduced calcined product of the polymer compound is uniformly formed. Therefore, in the obtained ceramic material, the conductivity is equal. It shows the direction.
  • alumina powder as a ceramic raw material manufactured by Showa Denko KK, readily sinterable alumina, AL-160SG-4, average particle size: 0.6 ⁇ m
  • methacrylamide as a polymerizable substance
  • a crosslinkable monomer N, N'-methylenebisacrylamide as a dispersant
  • ammonium polycarboxylate dispersant manufactured by Chukyo Yushi Co., Ltd., Serna D305
  • the obtained molded product is placed in the room of a constant humidity dryer, and it is reduced at a rate of 10% RH per day until the relative humidity in the room becomes 90% RH to 60% RH, and it takes 3 days. And dried. After the drying, the dried molded body was reduced and fired at a temperature of 1700 ° C. for 2 hours while introducing argon gas using a small electric furnace in an argon atmosphere to obtain a ceramic sintered body. About each ceramic sintered compact obtained in this way, bulk density and electrical resistivity were measured. The results are shown in Table 2 below. The electrical resistivity was measured according to the 4-terminal method, the fracture strength was measured according to a three-point bending test method, and the carbon content was measured with a total carbon content measuring device.
  • the corrosion resistance of the vitreous carbon body and the graphite body was evaluated by the following method.
  • Each sample was processed into a few cm square and a thickness of several mm, and then its surface was polished with a sandpaper.
  • An area other than 1 cm ⁇ 1 cm on one surface of the sample piece was covered with an insulating masking tape, and the range of 1 cm ⁇ 1 cm was defined as an effective area.
  • using a working piece with a wire connected to a sample piece with insulation coating other than these effective areas using a platinum plate electrode as the counter electrode and a standard calomel electrode (SCE: + 0.24V vs.
  • the electrode is immersed in a 1 mol / dm 3 sulfuric acid aqueous solution as an acidic solution or in a 1 mol / dm 3 sodium hydroxide aqueous solution as a basic solution, and 1.5 in the range from -1.8 mV to +1.8 mV.
  • the current was measured when the applied potential was swept at a rate of mV / s.
  • the open circuit potentials obtained from these measurements are shown in Table 3 below.
  • the ceramic electrode material according to the present invention has the same open circuit potential in acidic and basic aqueous solutions as that of graphite. Therefore, the ceramic electrode material according to the present invention has the same degree of corrosion resistance as graphite. It was shown to have Similarly, the ceramic electrode material according to the present invention has an absolute value of open circuit potential lower than that of the vitreous carbon body, which indicates that the ceramic electrode material has better corrosion resistance than the vitreous carbon body.
  • the weight reduction ratio, the elution amount from the sintered body, and the volume resistivity after the ceramic sintered body of this example was immersed in strong acid and strong alkali for a predetermined period were evaluated. Specifically, two test pieces of 3 mm ⁇ 4 mm ⁇ 40 mm were cut out from the obtained ceramic sintered body and the mass was measured. Then, each test piece was immersed in 50 mL of acid and alkali solution and left at room temperature for 4 months, and then the test piece was taken out, washed with water, washed with ethanol, and the mass after drying was measured. Further, the aluminum ion concentration of the immersion solution was quantified by ICP (inductively coupled plasma) analysis. In addition, 50 mass% sulfuric acid was used as the acid, and 4M sodium hydroxide aqueous solution was used as the alkaline solution.
  • ICP inductively coupled plasma
  • the ceramic electrode material according to the present invention is stable for a long time under strong acid / strong base conditions.
  • alumina powder as a ceramic raw material manufactured by Showa Denko KK, readily sinterable alumina, AL-160SG-4, average particle size: 0.6 ⁇ m
  • methacrylamide as a polymerizable substance
  • a crosslinkable monomer N, N'-methylenebisacrylamide as a dispersant
  • ammonium polycarboxylate dispersant manufactured by Chukyo Yushi Co., Ltd., Serna D305
  • the obtained molded product is placed in the room of a constant humidity dryer, and it is reduced at a rate of 10% RH per day until the relative humidity in the room becomes 90% RH to 60% RH, and it takes 3 days. And dried. After the drying, the dried molded body is reduced and fired at a temperature of 1700 ° C. for 2 hours while introducing argon gas using a small electric furnace in an argon atmosphere, and a conductive porous ceramic sintered body Got. The porosity and electrical resistivity were measured for each ceramic sintered body thus obtained. The results are shown in Table 5 below.
  • the electrical resistivity is measured according to the 4-terminal method, the fracture strength is the three-point bending test method, and the porosity is measured according to JIS R 1643 (measuring method of sintered ceramic density and open porosity of fine ceramics).
  • JIS R 1643 measuring method of sintered ceramic density and open porosity of fine ceramics.
  • the electrical resistivity was 0.35 ⁇ ⁇ cm for the entire sintered body including the voids, and was 0.12 ⁇ ⁇ cm as a result of the compact body conversion.
  • excellent conductivity was exhibited by including 0.83% by mass of the reduced calcined carbonaceous material.
  • the surface-treated porous ceramic sintered body and the treated solution are heated to 100 ° C. under reflux conditions, and a nickel ion solution is dropped to adsorb nickel ions on the surface of the porous ceramic sintered body. I let you.
  • the porous ceramic sintered body to which nickel ions are adsorbed by the above method is immersed in a reducing solution composed of lactic acid, diamine, and ethylenediaminetetraacetic acid sodium acetate, and the pH is maintained at 9.6 in a nitrogen atmosphere at 75 ° C.
  • the mixture was refluxed for 3 hours to support nickel fine particles on the surface of the porous ceramic sintered body.
  • the porous ceramic sintered body supporting nickel fine particles was evaluated by the following method.
  • An area other than 1 cm ⁇ 1 cm on one surface of the sample piece was covered with an insulating masking tape, and the range of 1 cm ⁇ 1 cm was defined as an effective area.
  • using a working piece with a wire connected to a sample piece with insulation coating other than these effective areas using a platinum plate electrode as the counter electrode and a standard calomel electrode (SCE: + 0.24V vs.
  • Electrode is immersed in a mixed aqueous solution prepared at a concentration of 0.5 mol / dm 3 methanol and 1.0 mol / dm 3 sodium hydroxide, and a rate of 20 mV / s in the range of -0.3 V to +1.3 V The current when the applied potential was swept was measured. The electrochemical characteristics obtained from the measurement are shown in FIG.
  • the electrode material using the porous ceramic sintered body supporting nickel fine particles according to the present invention exhibits a behavior indicating methanol oxidation reaction in a basic aqueous solution containing methanol. It has been shown to have performance.
  • the change in potential with time was measured when the voltage was fixed at +0.5 V under the same conditions as in the above evaluation.
  • the electrochemical characteristics obtained from the measurement are shown in FIG.
  • the electrode material using the porous ceramic sintered body supporting nickel fine particles according to the present invention has a quick response to voltage application in a basic aqueous solution containing methanol. Since a stable current density of about 1.5 mA / cm 2 was maintained after a lapse of a certain time, stable performance as an electrocatalyst was shown.
  • Silica powder as a ceramic raw material high purity synthetic spherical silica, Admatechs Co., Ltd., Admafine SO-C1, average particle size: 0.5 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ m
  • methacrylamide as a polymerizable substance N as a crosslinkable monomer
  • N'-methylenebisacrylamide and distilled water these were blended in the proportions listed in Table 6 below to prepare a water slurry composition.
  • Zirconia powder (easily sintered grade, Tosoh Corporation, TZ-3Y, granular) as a ceramic raw material, methacrylamide as a polymerizable substance, N, N'-methylenebisacrylamide as a crosslinkable monomer, Using an ammonium polycarboxylate dispersant (manufactured by Chukyo Yushi Co., Ltd., Serna D305) as a dispersant and distilled water, these are blended in the proportions listed in Table 7 below to prepare a water slurry composition. did. In addition, it carried out similarly to Example 1 from slurry preparation to shaping
  • the corrosion-resistant ceramic electrode material of the present invention has sufficient electrical conductivity as an electrode and corrosion resistance equivalent to or higher than that of an existing carbon-based electrode, and has excellent mechanical strength and the like because it is based on ceramics.
  • an electrode material for various industries for example, as an electrode for molten salt electrolysis for electrolysis industry that is forced to operate under acidic or basic conditions, or as a negative electrode for secondary batteries, Furthermore, the use as a fuel electrode in a fuel cell or a separator for a polymer fuel cell is also highly expected.
  • the manufacturing method of the corrosion-resistant ceramic electrode material according to the present invention has a significant point in the manufacturing process, such that it is possible to manufacture a material having a complicated shape and low cost, simple operation, compared to the conventional manufacturing method of the conductive ceramic material. It is expected to be put to practical use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is a ceramic material that has proper electrical conductivity and high corrosion resistance as an electrode material.  Also disclosed is a process for producing the corrosion resistant ceramic electrode material in a good workable and economical manner. According to the process, a molded product gelled by polymerizing a polymerizable monomer, which has been previously added to a ceramic slurry, is fired in a reducing atmosphere after drying and degreasing thereof, whereby a corrosion resistant ceramic electrode material including three-dimensional net-like electrically-conducting paths that are formed of a reduction fired product of a polymer compound having carbon atoms among ceramic particles can be provided.

Description

セラミックス電極材およびその製造方法Ceramic electrode material and manufacturing method thereof
 本発明は、電極材料として利用可能な耐食性と導電性とを有するセラミックス電極材およびその製造方法に関するものである。 The present invention relates to a ceramic electrode material having corrosion resistance and conductivity that can be used as an electrode material, and a method for producing the same.
 電気化学反応を利用した各種産業、例えば電気分解工業から近年開発の進む燃料電池産業までの広領域の産業において、用いられる電極材の素材には、導電性は勿論のこと水等の液体の存在下での耐食性が求められる。例えば、海水電解やソーダ電解においては過酷な酸及び塩基性条件下での電極腐食が問題になり、或いは燃料電池セル内においては改質反応によって得られる原料水素中の一酸化炭素による電極腐食が問題となる。 In various industries using electrochemical reactions, for example, in a wide range of industries from the electrolysis industry to the recently developed fuel cell industry, the material of the electrode material used is not only conductive but also liquid such as water Corrosion resistance below is required. For example, in seawater electrolysis and soda electrolysis, electrode corrosion under severe acid and basic conditions becomes a problem, or in a fuel cell, electrode corrosion due to carbon monoxide in raw hydrogen obtained by a reforming reaction occurs. It becomes a problem.
 上記の様な問題を解決する手段として、これまで(1)合金の開発(例えばNi-Ti合金(特許文献1)、希土類元素を含む合金(特許文献2)、ステンレス鋼(特許文献3)、(2)貴金属元素めっき(例えばTi合金へ白金層形成(特許文献4))、(3)金属電極を樹脂性フィルムによりコーティングする(例えば白金線への絶縁性フィルムコート(特許文献5))等の技術が提案されているが、耐食性以外の要因すなわち加工性、経済性等の観点からの問題が残っている。 As means for solving the above problems, (1) development of alloys (for example, Ni-Ti alloy (Patent Document 1), alloys containing rare earth elements (Patent Document 2), stainless steel (Patent Document 3), (2) Noble metal element plating (for example, platinum layer formation on Ti alloy (Patent Document 4)), (3) Metal electrode is coated with resinous film (for example, insulating film coating on platinum wire (Patent Document 5)), etc. However, there are still problems from the viewpoint of factors other than corrosion resistance, that is, workability and economy.
 そこで、他の手段として、セラミックス材料の電極材料への適用が検討されている。セラミックスは、主に無機元素の酸化物、炭化物、窒化物、ホウ化物により構成され、一般に機械的強度および耐食性には優れているが、セラミックス自身には導電性が無いので電極材として使用するためには、何からの方法で導電性を付与することが必要である。例えば、窒化アルミニウムの粒界に希土類元素含有有機炭素化合物を存在させる方法(特許文献6)、電極金属を酸化アルミニウムで被覆する方法(特許文献7)、金属製電極基材にゾルゲル法により酸化物セラミックスの薄膜コーティングを施す方法(特許文献8)、高分子化合物の還元焼成物よりなる導電路をセラミックス粒子間に形成する方法(特許文献9)等がこれまで提案されている。
特許1921459号 特開平5-156395号 特許3565661号 特許3116664号 特開2006-265629号 特開2007-112705号 特開2004-212341号 特開平6-132067号 特開2005-289695号
Therefore, application of ceramic materials to electrode materials has been studied as another means. Ceramics are mainly composed of oxides, carbides, nitrides, and borides of inorganic elements, and are generally excellent in mechanical strength and corrosion resistance. However, ceramics themselves are not conductive, so they are used as electrode materials. For this, it is necessary to impart conductivity by any method. For example, a method in which a rare earth element-containing organic carbon compound is present at the grain boundary of aluminum nitride (Patent Document 6), a method in which an electrode metal is coated with aluminum oxide (Patent Document 7), and an oxide by a sol-gel method on a metal electrode substrate A method of applying a ceramic thin film coating (Patent Document 8), a method of forming a conductive path made of a reduced fired product of a polymer compound between ceramic particles (Patent Document 9), and the like have been proposed.
Patent 1921459 Japanese Patent Laid-Open No. 5-156395 Patent 3565661 Patent No. 3116664 JP 2006-265629 JP 2007-112705 JP2004-212341 Japanese Unexamined Patent Publication No. 6-32067 JP 2005-289695 A
 しかし、上記従来の方法では、希土類金属の使用による製造コストの増加、電極寸法及び形状が限定される等の加工性の問題、製造プロセスの複雑化の問題が残り、抜本的な解決には至っていないのが現状である。また、特許文献9の導電性セラミックスは、耐食性および導電性を有しているが、これを電極材として利用するためには、さらなる改善が必要であった。 However, the above-mentioned conventional methods still have a problem of workability such as an increase in manufacturing cost due to the use of rare earth metals, limitations on electrode dimensions and shapes, and problems of complicated manufacturing processes. There is no current situation. Moreover, although the electroconductive ceramic of patent document 9 has corrosion resistance and electroconductivity, in order to utilize this as an electrode material, the further improvement was required.
 本発明は、上記従来の実情に鑑みてなされたものであって、電極材料として適切な導電性、優れた耐食性を有するセラミックス電極材を提供することにあり、また、そのようなセラミックス電極材の加工性及び経済性に優れた製造方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional situation, and is to provide a ceramic electrode material having appropriate conductivity and excellent corrosion resistance as an electrode material. It aims at providing the manufacturing method excellent in workability and economical efficiency.
 本発明の第1の特徴は、炭素原子を有する高分子化合物の還元焼成物よりなる三次元網目状の導電路がセラミックス粒子間に形成せしめられてなるセラミックス焼結体からなり、その体積抵抗率が0.2Ω・cmより小さく且つグラファイトやガラス質炭素体と同等またはそれ以上の耐食性を有するセラミックス電極材にある。 A first feature of the present invention is a ceramic sintered body in which a three-dimensional network-like conductive path made of a reduced fired product of a polymer compound having carbon atoms is formed between ceramic particles, and its volume resistivity Is a ceramic electrode material having a corrosion resistance smaller than 0.2 Ω · cm and having corrosion resistance equal to or higher than that of graphite or a vitreous carbon body.
 本発明の第2の特徴は、前記還元焼成物は導電性の炭素であり、前記セラミックス焼結体の炭素成分含有率が0.3質量%以上1.7質量%以下であることにある。 The second feature of the present invention is that the reduced fired product is conductive carbon, and the carbon component content of the ceramic sintered body is 0.3% by mass or more and 1.7% by mass or less.
 本発明の第3の特徴は、前記セラミックス粒子が無機酸化物で構成されていることにある。 A third feature of the present invention is that the ceramic particles are composed of an inorganic oxide.
 本発明の第4の特徴は、前記無機酸化物をアルミナとすることにある。 The fourth feature of the present invention is that the inorganic oxide is alumina.
 本発明の第5の特徴は、前記セラミックス焼結体が、金属、金属化合物、金属酸化物またはこれらの2種以上の混合物で構成された微粒子を担持することにより触媒性能を有することにある。 The fifth feature of the present invention is that the ceramic sintered body has catalytic performance by supporting fine particles composed of a metal, a metal compound, a metal oxide, or a mixture of two or more thereof.
 本発明の第6の特徴は、第5の特徴に加えて、前記セラミックス焼結体が多孔質であることにある。 The sixth feature of the present invention is that, in addition to the fifth feature, the ceramic sintered body is porous.
 本発明の第7の特徴は、前記金属が、プラチナ、ニッケル、パラジウム、金から選ばれる少なくとも1種であり、
 前記金属酸化物は、酸化チタン、酸化亜鉛から選ばれる少なくとも1種であり、
 前記金属化合物は、硫化カドミウム、チタン酸ストロンチウムから選ばれる少なくとも1種であることにある。
In a seventh aspect of the present invention, the metal is at least one selected from platinum, nickel, palladium, and gold,
The metal oxide is at least one selected from titanium oxide and zinc oxide,
The metal compound is at least one selected from cadmium sulfide and strontium titanate.
 本発明の第8の特徴は、前記高分子化合物が、ビニル系樹脂、ウレタン系樹脂、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ハロオレフィン系樹脂、ジエン系樹脂、エーテル系樹脂、スルフィド系樹脂、イミド系樹脂、イミン系樹脂、フェニリン系樹脂またはエポキシ系樹脂であることにある。 The eighth feature of the present invention is that the polymer compound is a vinyl resin, a urethane resin, an olefin resin, a styrene resin, an acrylic resin, a haloolefin resin, a diene resin, an ether resin, or a sulfide resin. Resin, imide resin, imine resin, phenyrin resin or epoxy resin.
 本発明の第9の特徴は、炭素原子を分子中に有する重合性物質の少なくとも1種をセラミックス原料に対して配合してなる組成物を成形型内に注入し、前記成形型内において前記重合性物質を重合せしめて、前記重合性物質の重合体である高分子化合物が均一に存在する成形体を形成した後、
 窒素ガスを含有しない不活性ガスの雰囲気下で、前記成形体を還元焼成することにより、セラミックス焼結体を得るとともに、得られた前記セラミックス焼結体を構成するセラミックス粒子間に、前記高分子化合物の還元焼成物よりなる導電路を三次元的網目状に形成せしめるセラミックス電極材の製造方法にある。
The ninth feature of the present invention is that a composition obtained by blending at least one polymerizable substance having a carbon atom in a molecule with a ceramic raw material is injected into a mold, and the polymerization is performed in the mold. After polymerizing the polymerizable substance to form a molded body in which the polymer compound that is a polymer of the polymerizable substance is uniformly present,
A sintered ceramic body is obtained by reducing and firing the molded body in an inert gas atmosphere containing no nitrogen gas, and the polymer is formed between the ceramic particles constituting the obtained ceramic sintered body. There is a method for producing a ceramic electrode material in which a conductive path made of a reduced fired product of a compound is formed in a three-dimensional network.
 本発明の第10の特徴は、前記重合性物質として重合可能な単量体を用いることにある。 The tenth feature of the present invention is that a polymerizable monomer is used as the polymerizable substance.
 本発明の第11の特徴は、前記重合性物質として前記単量体と架橋性単量体とを用いることにある。 The eleventh feature of the present invention is that the monomer and the crosslinkable monomer are used as the polymerizable substance.
 本発明の第12の特徴は、前記単量体としてビニル系不飽和単量体を用いることにある。 本発明の第13の特徴は、前記組成物を水系スラリーの形態において調製するとともに、前記重合性物質として親水性または水溶性のものを用いることにある。 The twelfth feature of the present invention is that a vinyl unsaturated monomer is used as the monomer. The thirteenth feature of the present invention is that the composition is prepared in the form of an aqueous slurry and that the polymerizable substance is hydrophilic or water-soluble.
 本発明に従うセラミックス電極材にあっては、高分子化合物の還元焼成物がセラミックス粒子間に形成されているので、導電路自体は焼結体表面以外においては耐食性に優れたセラミックス粒子に被覆された格好になっており、したがって腐食性環境に曝されることが見かけ上低減されていることによって、他の導電性炭素材料であるガラス状炭素材料やグラファイト等と同等乃至はそれ以上の耐腐食性を有するものとなる。 In the ceramic electrode material according to the present invention, since the reduced fired product of the polymer compound is formed between the ceramic particles, the conductive path itself is coated with ceramic particles having excellent corrosion resistance except for the sintered body surface. Corrosion resistance equivalent to or higher than that of other conductive carbon materials such as glassy carbon materials and graphite due to the appearance and the apparent reduction of exposure to corrosive environments. It will have.
 また、本発明に従うセラミックス電極材およびその製造方法にあっては、窒素ガスを含有しない不活性ガス雰囲気下での還元焼成によって、高分子化合物の還元焼成物がセラミックス粒子間に十分に形成され、具体的には、セラミックス焼結体中の炭素成分含有率が0.3質量%以上1.7質量%以下となることで、体積抵抗率が0.2Ω・cmより小さくなり、電極材料として適切な導電性を有するものとなっている。 Moreover, in the ceramic electrode material according to the present invention and the method for producing the same, the reduced fired product of the polymer compound is sufficiently formed between the ceramic particles by reduction firing in an inert gas atmosphere not containing nitrogen gas, Specifically, when the carbon component content in the ceramic sintered body is 0.3% by mass or more and 1.7% by mass or less, the volume resistivity becomes smaller than 0.2Ω · cm, and it has appropriate conductivity as an electrode material. It has become a thing.
 また、本発明に従うセラミックス電極材の製造法にあっては、重合性物質の重合反応により成形体が形成されるところから、型形状を任意に設定することによって任意の複雑形状成形体を作製することが可能となる。また、作製された成形体は湿潤状態で得られ、内部の前記高分子化合物が均一に存在していることによって、乾燥、脱脂及び焼結工程において等方的に収縮せしめられることとなるものであり、この収縮率を予め考慮に入れて成形型を設計作製することによって、所望の電極材料を煩雑な後加工無しに簡便に製造することが可能になる。また、セラミックス粒子および重合性単量体を水に混合したものを機械的攪拌等により気泡を内部に導入したのち成形型に注入した後、重合性単量体の重合反応によって成形体を形成することによって、内部に気孔を保持した多孔質セラミックスを作製することが可能であり、また気泡導入を制御することで気孔構造を容易に制御することが可能である。従って、従来開発の耐食性電極材料の製造法に比べて、優れた成形性・気孔構造制御性及び優れた製造工程の経済性を有しているものである。  Moreover, in the method for producing a ceramic electrode material according to the present invention, a molded body is formed by arbitrarily setting a mold shape from a place where a molded body is formed by a polymerization reaction of a polymerizable substance. It becomes possible. Further, the produced molded body is obtained in a wet state, and is uniformly contracted in the drying, degreasing, and sintering processes by the presence of the polymer compound therein uniformly. In addition, it is possible to easily manufacture a desired electrode material without complicated post-processing by designing and producing a mold in consideration of this shrinkage rate in advance. Also, a mixture of ceramic particles and a polymerizable monomer in water is introduced into a mold after introducing bubbles into the mold by mechanical stirring or the like, and then a molded body is formed by a polymerization reaction of the polymerizable monomer. Accordingly, it is possible to produce a porous ceramic having pores therein, and it is possible to easily control the pore structure by controlling the introduction of bubbles. Therefore, it has excellent moldability, pore structure controllability, and excellent economics of the manufacturing process as compared with a conventionally developed method of manufacturing a corrosion-resistant electrode material. *
ニッケル微粒子担持多孔質セラミックスの電気化学的特性(電流-電位曲線)を示す図である。It is a figure which shows the electrochemical property (electric current-potential curve) of the nickel ceramic carrying porous ceramics. ニッケル微粒子担持多孔質セラミックスの電気化学的特性(電流-時間曲線)を示す図である。It is a figure which shows the electrochemical characteristic (current-time curve) of nickel fine particle support porous ceramics.
 ところで、本発明に従う耐食性セラミックス電極材を有利に製造するに際しては、先ず、セラミックス原料と炭素原子を分子中に有する重合性物質とを配合せしめてなる組成物が、準備されることとなる。 By the way, when the corrosion-resistant ceramic electrode material according to the present invention is advantageously produced, first, a composition prepared by blending a ceramic raw material and a polymerizable substance having carbon atoms in the molecule is prepared.
 ここで、本発明において得るセラミックス原料としては、従来より公知のセラミックスであれば、如何なるものであっても用いることが可能であり、具体的には、アルミナ系、ムライト系、ジルコニア系等の酸化物系セラミックスや、炭化ケイ素系、窒化ケイ素系、窒化アルミニウム系、窒化ホウ素系等の非酸化物系セラミックス等を用いることができる。それらの中でも、本発明においては、酸化物系セラミックス、特にアルミナ系セラミックスが、有利に用いられることとなる。これは、特許文献6のように、セラミックス原料として難焼結性の窒化アルミニウムを用いた場合、希土類金属を焼結剤として用いる必要が生じるため、製造コストが増加してしまうが、アルミナ等の酸化物系セラミックスは易焼結性であり、希土類金属を焼結剤として用いる必要がないからである。 Here, as the ceramic raw material obtained in the present invention, any conventionally known ceramic can be used, and specifically, alumina-based, mullite-based, zirconia-based, etc. oxidized. It is possible to use physical ceramics, non-oxide ceramics such as silicon carbide, silicon nitride, aluminum nitride, and boron nitride. Among them, oxide ceramics, particularly alumina ceramics are advantageously used in the present invention. This is because, as in Patent Document 6, when a hardly sinterable aluminum nitride is used as a ceramic raw material, it is necessary to use a rare earth metal as a sintering agent, which increases the manufacturing cost. This is because oxide ceramics are easily sinterable and it is not necessary to use rare earth metals as sintering agents.
 また、そのようなセラミックス原料を用いて前記組成物を調製する際には、一般に、かかるセラミックス原料の粉状物又は粒状物が用いられるのであり、その大きさ(平均粒径)は、0.1乃至10μm程度、好ましくは0.1乃至5μm程度、更に好ましくは0.1乃至1μm程度の大きさとされる。けだし、粉状物(粒状物)の平均粒径が大きすぎたり、或いは小さすぎたりすると、十分な強度を有する焼結体が得られない恐れがあるからである。 Further, when preparing the composition using such a ceramic raw material, generally, a powder or granular material of such a ceramic raw material is used, and its size (average particle diameter) is 0.1 to The size is about 10 μm, preferably about 0.1 to 5 μm, more preferably about 0.1 to 1 μm. However, if the average particle size of the powdered material (granular material) is too large or too small, a sintered body having sufficient strength may not be obtained.
 一方、このような所定の大きさのセラミックス原料と共に配合せしめられる、炭素原子を分子中に有する重合性物質(以下、単に重合性物質とも言う)としては、成形型内において重合せしめることが可能であって、かかる重合によって得られる重合体(高分子化合物)とセラミックス原料とが均一に存在してなる成形体を得ることが出来るものであれば、如何なる物質であっても用いることが可能である。なお、重合性物質は、重合によって所望の重合体が得られる物質であれば良く、単量体に限らず、単量体がある程度重合したものであっても良い。 On the other hand, as a polymerizable substance having carbon atoms in the molecule (hereinafter also simply referred to as a polymerizable substance) that can be blended together with a ceramic material having a predetermined size, it can be polymerized in a mold. Any material can be used as long as it can obtain a molded body in which the polymer (polymer compound) obtained by such polymerization and the ceramic raw material are present uniformly. . The polymerizable substance is not limited to a monomer as long as a desired polymer can be obtained by polymerization, and may be a substance obtained by polymerizing monomers to some extent.
 具体的には、そのような重合性物質として、メタクリルアミド系のビニル系不飽和単量体や、混合することによりウレタン樹脂となるポリオール類及びイソシアネート化合物、更には、所定の硬化剤と併用することによって分子間架橋が進行するエポキシ樹脂等の、従来よりセラミックス製品を製造する際にセラミックス原料に配合されるバインダー(結合剤)等を例示することが出来るが、本発明においては、それらの中でも、特に、メタクリルアミド等のビニル系不飽和単量体が好適に用いられる。なお、本明細書において、ビニル系不飽和単量体とは、化合物分子中の炭素-炭素二重結合が開裂付加することによって重合体(ビニル系樹脂)を形成しえる全ての化合物を意味し、ビニル化合物、ビニリデン化合物及びビニレン化合物等を包含するものである。 Specifically, as such a polymerizable substance, a methacrylamide-based vinyl unsaturated monomer, a polyol and an isocyanate compound that become a urethane resin by mixing, and a predetermined curing agent are used in combination. Examples include binders (binders) blended in ceramic raw materials when producing ceramic products from the past, such as epoxy resins where intermolecular crosslinking proceeds, etc. In the present invention, among them In particular, vinyl unsaturated monomers such as methacrylamide are preferably used. In the present specification, the vinyl unsaturated monomer means all compounds that can form a polymer (vinyl resin) by cleavage addition of a carbon-carbon double bond in the compound molecule. , Vinyl compounds, vinylidene compounds, vinylene compounds, and the like.
 また、重合性物質として、上述の如きビニル系不飽和単量体を用いる場合にあっては、かかるビニル系不飽和単量体と共に、架橋性単量体を用いることが好ましい。このように、ビニル系不飽和単量体と架橋性単量体とを併用して用いることにより、それら単量体を成形型内において重合せしめることにより得られる成形体において、三次元網状構造を呈する高分子化合物を有利に形成せしめることが可能である。なお、そのような架橋性単量体としては、公知の2官能性又は多官能性の化合物の中から、用いられるビニル系不飽和単量体の種類に応じたものが適宜に選択されることとなるが、例えば、ビニル系不飽和単量体としてメタクリルアミドを用いた場合にあっては、N 、 N ’ - メチレンビスアクリルアミド等が有利に用いられる。 Further, in the case where the vinyl unsaturated monomer as described above is used as the polymerizable substance, it is preferable to use a crosslinkable monomer together with the vinyl unsaturated monomer. Thus, by using a vinyl unsaturated monomer and a crosslinkable monomer in combination, in a molded product obtained by polymerizing these monomers in a mold, a three-dimensional network structure is obtained. It is possible to advantageously form a polymer compound to be exhibited. In addition, as such a crosslinkable monomer, the thing according to the kind of vinyl-type unsaturated monomer used is suitably selected from well-known bifunctional or polyfunctional compounds. For example, when methacrylamide is used as the vinyl unsaturated monomer, N が, N '-methylenebisacrylamide, etc. are advantageously used.
 なお、本発明に従う導電性セラミックス製品にあっては、重合性物質の重合体(高分子化合物)が還元焼成されることにより生ずる生成物(還元焼成物)が、セラミックス焼結体中において導電路として機能するものであるため、重合性物質の配合割合が少ない組成物を用いると、かかる組成物の成形体を還元焼成して得られるセラミックス焼結体が充分な電気伝導性を発揮しない恐れがある。従って、充分な電気伝導性を発揮するセラミックス焼結体、具体的には、その体積抵抗率が0.2 Ω・cm より小さいセラミックス焼結体を製造するためには、セラミックス原料の100 質量部に対する、重合性物質全体の炭素量(質量) の割合が、0.1質量部以上、好ましくは0.1乃至6 質量部程度となるように、重合性物質の配合量が決定されることとなる。 In the conductive ceramic product according to the present invention, the product (reduced fired product) produced by the reduction firing of the polymer (polymer compound) of the polymerizable substance is a conductive path in the ceramic sintered body. Therefore, if a composition having a low blending ratio of the polymerizable substance is used, the ceramic sintered body obtained by reducing and firing the molded body of such a composition may not exhibit sufficient electrical conductivity. is there. Therefore, in order to produce a ceramic sintered body that exhibits sufficient electrical conductivity, specifically, a ceramic sintered body whose volume resistivity is smaller than 0.2 Ω · cm, for 100 parts by mass of the ceramic raw material, The blending amount of the polymerizable substance is determined so that the ratio of the carbon amount (mass) of the entire polymerizable substance is 0.1 parts by mass or more, preferably about 0.1 to 6 parts by mass.
 また、重合性物質を重合せしめる際には、一般に、かかる重合性物質に応じた重合開始剤や重合触媒等が用いられることとなる。かかる重合開始剤としては、過硫酸アンモニウム、過硫化カリウム、有機過酸化物、過酸化水素化合物、アゾ化合物、ジアゾ化合物等を、また、重合触媒としては、N、N、N’、N’- テトラメチルエチレンジアミン等を、それぞれ例示することが出来る。なお、そのような重合開始剤等にあっては、その種類や配合量等が、重合性物質の重合速度に影響を与えるため、成形型内において重合性物質を良好に重合せしめることが可能であれば、必ずしも、重合性物質と共に組成物中に配合する必要はない。例えば、組成物を調製した後、かかる組成物を所定の成形型内に供給する際に、同時に、重合開始剤及び重合触媒を成形型内に供給することも可能である。 Further, when polymerizing a polymerizable substance, generally, a polymerization initiator, a polymerization catalyst, or the like corresponding to the polymerizable substance is used. Such polymerization initiators include ammonium persulfate, potassium persulfide, organic peroxides, hydrogen peroxide compounds, azo compounds, diazo compounds and the like, and polymerization catalysts include N, N, N ′, N ′-、 tetra. Examples thereof include methylethylenediamine and the like. In addition, in such a polymerization initiator, since the type and blending amount affect the polymerization rate of the polymerizable substance, it is possible to polymerize the polymerizable substance well in the mold. If present, it is not necessarily required to be blended with the polymerizable substance in the composition. For example, after preparing the composition, when supplying the composition into a predetermined mold, it is also possible to simultaneously supply the polymerization initiator and the polymerization catalyst into the mold.
 本発明においては、セラミックス原料に対して、上述の如き重合性物質のうちの少なくとも1種が配合されて、所定の組成物が調製されることとなるが、かかる組成物は、一般に、所定の媒体中にセラミックス原料及び重合性物質を添加し、混合することにより、セラミックス原料等が均一に分散されてなる水系又は非水系のスラリーの形態にて調製される。かかるセラミックス原料等が分散せしめられる媒体としては、水(蒸留水)、有機溶媒、或いはこれらの混合溶媒等の何れも使用することが出来るが、取扱いが容易である等の観点から、好ましくは水(蒸留水) が用いられ、水スラリーの形態にて調製される。 In the present invention, a predetermined composition is prepared by blending at least one of the polymerizable substances as described above with respect to the ceramic raw material. A ceramic raw material and a polymerizable substance are added to the medium and mixed to prepare an aqueous or non-aqueous slurry in which the ceramic raw material is uniformly dispersed. As the medium in which the ceramic raw material and the like are dispersed, water (distilled water), an organic solvent, or a mixed solvent thereof can be used. From the viewpoint of easy handling, water is preferably used. (Distilled water) cocoons are used and prepared in the form of a water slurry.
 ここで、組成物が水系スラリーの形態にて調製される場合では、重合性物質として親水性または水溶性のものを用いることで、重合性物質をスラリー中で均一に分散させることができる。 Here, when the composition is prepared in the form of an aqueous slurry, the polymerizable substance can be uniformly dispersed in the slurry by using a hydrophilic or water-soluble polymerizable substance.
 また、そのようなスラリー状の組成物を調製するに際しては、媒体中に、セラミックス原料の粒状物(又は粉状物) を均一に分散せしめることを目的として、分散剤を用いることが好ましい。かかる分散剤としては、従来より公知の各種分散剤の中から、セラミックス原料や重合性物質等の種類に応じたものが、適宜に選択されて用いられるのであり、例えば、ポリカルボン酸アンモニウム系分散剤(アニオン系分散剤)等が用いられる。 Also, when preparing such a slurry composition, it is preferable to use a dispersant for the purpose of uniformly dispersing the ceramic material granular (or powder) soot in the medium. As such a dispersing agent, those according to the types of ceramic raw materials and polymerizable substances are appropriately selected from various conventionally known dispersing agents and used, for example, ammonium polycarboxylate-based dispersion An agent (anionic dispersant) or the like is used.
 なお、本発明において用いられる組成物に対しては、上述したような成分以外にも、種々の目的の下に、様々な成分を配合することが可能である。具体的には、多孔質なセラミックス焼結体を製造する際には、気泡を含んだスラリー状の組成物を調製することが必要であるところ、組成物中において気泡を生成せしめるために、起泡剤を配合したり、或いは、スラリー状の組成物中にガスを導入することにより気泡を発生させる場合には、かかる気泡の発生を容易にする界面活性剤等、更には、導入した気泡を組成物中において安定に保持するための増粘剤や糊剤等を、配合することが出来る。ここで、起泡剤としては、タンパク質系起泡剤や界面活性剤系起泡剤等を、また、界面活性剤としては、アルキルベンゼンスルホン酸や高級アルキルアミノ酸等を、更に、増粘剤や糊剤としては、メチルセルロース、ポリビニルアルコール、サッカロース、糖蜜、キサンタンガム等を、それぞれ例示することが出来る。 In addition to the components as described above, various components can be blended for various purposes in the composition used in the present invention. Specifically, when producing a porous ceramic sintered body, it is necessary to prepare a slurry-like composition containing bubbles, and in order to generate bubbles in the composition, When bubbles are generated by adding a foaming agent or by introducing gas into the slurry-like composition, a surfactant or the like that facilitates the generation of such bubbles, A thickener, a paste or the like for stably holding in the composition can be blended. Here, as the foaming agent, a protein-based foaming agent, a surfactant-based foaming agent, etc., as the surfactant, an alkylbenzene sulfonic acid, a higher alkyl amino acid, etc., and further, a thickener or a paste. Examples of the agent include methyl cellulose, polyvinyl alcohol, saccharose, molasses, xanthan gum and the like.
 また、得られるセラミックス電極材おける強度の向上等を目的として、セラミックス製繊維材料や、金属製あるいはセラミックス製のチップ材料等を配合することや、更には、組成物に含まれるセラミックス原料の焼結を促進する微量の無機化合物等を配合することも、可能である。 In addition, for the purpose of improving the strength of the obtained ceramic electrode material, blending of ceramic fiber material, metal or ceramic chip material, etc., and further sintering of ceramic raw material contained in the composition It is also possible to add a trace amount of an inorganic compound or the like that promotes.
 また、得られる耐食性セラミックス電極材の触媒性能を向上させることを目的として、各種金属微粒子、金属酸化物微粒子等を配合すること、または、後述するように、焼結体にこれらの微粒子を適切な方法によって担持させることも可能である。 In addition, for the purpose of improving the catalytic performance of the resulting corrosion-resistant ceramic electrode material, various metal fine particles, metal oxide fine particles, etc. are blended, or as described later, these fine particles are appropriately added to the sintered body. It can also be supported by a method.
 そのようにして調製された組成物にあっては、必要に応じて重合開始剤や重合触媒と共に、目的とする導電性セラミックス製品の形状に応じた成形型内に供給され、成形型ごと所定時間、所定温度の下に静置されることにより、かかる成形型内において、組成物中の重合性物質が重合せしめられる。 In the composition thus prepared, it is supplied into a mold according to the shape of the target conductive ceramic product, together with a polymerization initiator and a polymerization catalyst as necessary, and for a predetermined time together with the mold. By allowing the composition to stand at a predetermined temperature, the polymerizable substance in the composition is polymerized in the mold.
 ここにおいて、成形型内における重合性物質の重合は、重合性物質の種類、重合開始剤や重合触媒の有無等によって、その進行速度が異なるため、成形型内にて組成物が保持される時間及び温度は、それら様々な条件を総合的に考慮して、設定されることとなる。一般には、媒体として水を用いた水スラリー状の組成物の場合には、20 ℃ 以上、好ましくは25乃至80 ℃ 、より好ましくは25乃至35℃ の温度が設定され、その設定された温度にて、10分以上、好ましくは20分乃至数時間、より好ましくは1乃至4時間の間、静置される。 Here, the polymerization rate of the polymerizable substance in the mold varies depending on the type of the polymerizable substance, the presence or absence of a polymerization initiator, a polymerization catalyst, etc., so the time during which the composition is held in the mold The temperature and the temperature are set in consideration of the various conditions. In general, in the case of a water slurry composition using water as a medium, a temperature of 20 ° C. or higher, preferably 25 to 80 ° C., more preferably 25 to 35 ° C. is set. For 10 minutes or longer, preferably 20 minutes to several hours, more preferably 1 to 4 hours.
 そして、重合性物質を含有する組成物が、成形型内にて所定時間、所定温度の下に静置されると、かかる成形型内においては、組成物に含まれる重合性物質の重合が効果的に、且つ、成形体全体において均一に進行することとなり、以て、所定時間経過後に脱型して得られる成形体にあっては、重合性物質の重合体である高分子化合物が均一に存在せしめられた構造を呈するのである。 When the composition containing the polymerizable substance is allowed to stand at a predetermined temperature for a predetermined time in the mold, the polymerization of the polymerizable substance contained in the composition is effective in the mold. In the molded product obtained by demolding after a lapse of a predetermined time, the polymer compound that is a polymer of the polymerizable substance is uniformly distributed. It presents an existing structure.
 上述の如くして得られた成形体は、特にスラリー状の組成物を用いた場合、多量の水乃至は有機溶媒等を含有するものであるため、一般には、還元焼成される前に乾燥されることとなる。 The molded body obtained as described above contains a large amount of water or an organic solvent, particularly when a slurry-like composition is used. Therefore, it is generally dried before reduction firing. The Rukoto.
 なお、かかる成形体を乾燥させる際の乾燥方法や各種条件(乾燥温度、乾燥時間等)については、成形体に含まれる各成分や揮発させる媒体(水、有機溶媒等)等に応じたものが、適宜に選択されて、採用されることとなる。例えば、水スラリー状の組成物を用いた場合にあっては、25乃至30℃ 程度の温度に設定された乾燥器の室内に成形体を載置し、かかる室内の湿度(相対湿度:RH) が、5乃至15% RH/日程度の割合において低下するように調節しながら、室内の相対湿度が60%RH程度となるまで、数日間かけて乾燥させることが好ましい。 In addition, about the drying method and various conditions (drying temperature, drying time, etc.) at the time of drying this molded object, what was according to each component contained in a molded object, the medium (water, organic solvent, etc.) volatilized, etc. Are appropriately selected and adopted. For example, in the case of using a water slurry composition, the molded body is placed in a drier room set at a temperature of about 25 to 30 ° C., and the humidity in the room (relative humidity: RH) However, it is preferable to dry it over several days until the relative humidity in the room reaches about 60% RH while adjusting so as to decrease at a rate of about 5 to 15% RH / day.
 そして、上述の如くして得られた成形体を、窒素ガスを含有しない不活性ガスの雰囲気下で所定温度にて還元焼成することにより、本発明に従うセラミックス電極材が得られるのである。窒素ガスを含有しない不活性ガスとしては、アルゴン、ヘリウム等の希ガスが挙げられる。 And the ceramic electrode material according to this invention is obtained by carrying out reduction baking at the predetermined temperature in the atmosphere of the inert gas which does not contain nitrogen gas for the molded object obtained as mentioned above. Examples of the inert gas not containing nitrogen gas include rare gases such as argon and helium.
 すなわち、セラミックス原料と、炭素原子を有する重合性物質の重合体である高分子化合物とが均一に存在せしめられてなる成形体を、還元焼成すると、かかる成形体に含まれるセラミックス原料が焼結してセラミックス焼結体が得られる。一方、高分子化合物からは、通常の空気(酸素) 雰囲気下での焼成とは異なり、炭素原子を有する還元焼成物(導電性の炭素)が生成する。かかる還元焼成物は、焼結体外へ飛散せず、焼結体内に残存し、焼結体を構成するセラミックス粒子間(粒界)に、導電路を有利に形成せしめることとなり、以て、セラミックス焼結体として、優れた導電性を発揮する本発明に係るセラミックス電極材が製造されるのである。 That is, when a molded body in which a ceramic raw material and a polymer compound that is a polymer of a polymerizable substance having a carbon atom are uniformly present is reduced and fired, the ceramic raw material contained in the molded body is sintered. Thus, a ceramic sintered body can be obtained. On the other hand, a reduced fired product having carbon atoms (conductive carbon) is generated from the polymer compound, unlike the usual firing in an atmosphere of air (oxygen). Such a reduced fired product does not scatter outside the sintered body but remains in the sintered body, and advantageously forms a conductive path between the ceramic particles (grain boundaries) constituting the sintered body. As a sintered body, the ceramic electrode material according to the present invention exhibiting excellent conductivity is manufactured.
 ここで、成形体中の重合性物質の含有量が同じ場合、窒素ガスを含有しない不活性ガス雰囲気下で還元焼成した場合の方が、窒素ガス雰囲気下で還元焼成した場合と比較して、セラミックス焼結体中の導電性炭素の生成量が多くなる。これは、窒素ガス雰囲気下で還元焼成すると、セラミックス粒子と重合性物質と窒素ガスとが反応して化合物が生じてしまうからである。 Here, when the content of the polymerizable substance in the molded body is the same, the case where the reduction firing is performed under an inert gas atmosphere not containing nitrogen gas, compared to the case where the reduction firing is performed under a nitrogen gas atmosphere, The amount of conductive carbon generated in the ceramic sintered body increases. This is because, when reducing firing in a nitrogen gas atmosphere, the ceramic particles, the polymerizable substance, and the nitrogen gas react to produce a compound.
 例えば、焼成前の成形体における重合性物質全体の炭素量(質量)の割合を、セラミックス原料100 質量部に対して0.1質量部以上6 質量部以下として、窒素ガスを含有しない不活性ガス雰囲気下で還元焼成すると、セラミックス焼結体の炭素成分含有率は0.3質量%以上1.7質量%以下の範囲であった。この炭素成分含有率は、熱分析で熱分解・燃焼する成分量の測定値から算出したものであり、セラミックス焼結体の質量に対する質量割合である。これに対して、同じ成形体を用いて窒素ガス雰囲気下で還元焼成すると、セラミックス焼結体中の導電性の炭素成分含有率は0.2質量%以下であった。 For example, the ratio of the total carbon amount (mass) of the polymerizable material in the green body before firing is 0.1 to 6 parts by mass with respect to 100 parts by mass of the ceramic raw material, and in an inert gas atmosphere not containing nitrogen gas When the reduction firing was performed, the carbon component content of the ceramic sintered body was in the range of 0.3 mass% to 1.7 mass%. This carbon component content is calculated from the measured value of the amount of components thermally decomposed and burned by thermal analysis, and is a mass ratio with respect to the mass of the ceramic sintered body. On the other hand, when the same compact was subjected to reduction firing in a nitrogen gas atmosphere, the conductive carbon component content in the ceramic sintered body was 0.2% by mass or less.
 なお、セラミックス焼結体の炭素成分含有率は1.7質量%以下が好ましい。これは、セラミックス焼結体中の炭素が多くなると、セラミックス焼結体の強度が低下してしまうからであり、1.7質量%以下であれば、十分な強度が得られることを本発明者が確認しているからである。 The carbon component content of the ceramic sintered body is preferably 1.7% by mass or less. This is because if the carbon in the ceramic sintered body increases, the strength of the ceramic sintered body will decrease, and the present inventors have confirmed that sufficient strength can be obtained if it is 1.7% by mass or less. Because it is.
 なお、そのような還元焼成の際に用いられ得る焼成炉としては、アルゴン雰囲気等の還元雰囲気下で成形体を焼成することが可能なものであれば、如何なるものであっても用いることが可能であり、例えば、黒鉛坩堝や、電気炉等の各種焼成炉等を用いることが可能である。 In addition, as a firing furnace that can be used in such reduction firing, any furnace that can fire the molded body in a reducing atmosphere such as an argon atmosphere can be used. For example, a graphite crucible or various firing furnaces such as an electric furnace can be used.
 また、本発明において、成形体の還元焼成を行う際の各種条件(焼成温度、焼成時間、昇温速度等)は、用いられるセラミックス原料の種類等に応じて、適宜に設定されることとなる。例えば、セラミックス原料としてアルミナ粉末を用いた場合にあっては、焼成温度(最高温度)として1000-1700 ℃ 程度の温度が設定され、また、焼成時間(焼成温度において保持する時間)は、1乃至5時間程度とされる。 In the present invention, various conditions (firing temperature, firing time, temperature increase rate, etc.) when performing reductive firing of the formed body are appropriately set according to the type of ceramic raw material used. . For example, when alumina powder is used as the ceramic raw material, a temperature of about 1000-1700 ° C. is set as the firing temperature (maximum temperature), and the firing time (the time held at the firing temperature) is 1 to About 5 hours.
 また、得られたセラミックス焼結体や多孔質セラミック焼結体の表面に触媒成分となる微粒子を担持させることで、セラミックス焼結体に触媒機能を持たせることができる。この微粒子としては、金属、金属化合物、金属酸化物またはこれらの2種以上の混合物で構成されたものを用いることができる。ここで、金属としては、プラチナ、ニッケル、パラジウム、金から選ばれる少なくとも1種が採用可能であり、金属化合物としては、酸化チタン、酸化亜鉛から選ばれる少なくとも1種が採用可能であり、金属化合物としては、硫化カドミウム、チタン酸ストロンチウムから選ばれる少なくとも1種が採用可能である。 In addition, the ceramic sintered body can be provided with a catalytic function by supporting fine particles as a catalyst component on the surface of the obtained ceramic sintered body or porous ceramic sintered body. As the fine particles, those composed of a metal, a metal compound, a metal oxide, or a mixture of two or more thereof can be used. Here, as the metal, at least one selected from platinum, nickel, palladium, and gold can be used. As the metal compound, at least one selected from titanium oxide and zinc oxide can be used. As for, at least 1 sort (s) chosen from cadmium sulfide and strontium titanate is employable.
 このようにして得られた、本発明に従うセラミックス電極材にあっては、優れた耐食性および導電性を発揮するだけでなく、比較的軽量なものであり、また、その優れた導電性が等方性を示すものである。 The ceramic electrode material according to the present invention obtained in this way not only exhibits excellent corrosion resistance and conductivity, but is also relatively lightweight, and its excellent conductivity is isotropic. It shows sex.
 すなわち、本発明に従う耐食性セラミックス電極材にあっては、セラミックス焼結体を構成するセラミックス粒子間に形成されている導電路が、炭素原子を有する高分子化合物の還元焼成物にて構成されているところから、金属材料等の密度の大きな導電性材料を用いたセラミックス電極材料と比較して、比較的軽量なものとなっているのである。 In other words, in the corrosion-resistant ceramic electrode material according to the present invention, the conductive path formed between the ceramic particles constituting the ceramic sintered body is composed of a reduced fired product of a polymer compound having carbon atoms. Therefore, it is relatively lightweight compared to a ceramic electrode material using a conductive material having a high density such as a metal material.
 また、本発明に従うセラミックス電極材の製造方法にあっては、重合性物質の重合体である高分子化合物が均一に存在せしめられてなる成形体を還元焼成するものであるところから、得られるセラミックス焼結体を構成するセラミックス粒子間においては、高分子化合物の還元焼成物よりなる導電路が、均一に形成せしめられることとなるものであり、従って、得られるセラミックス材料においてはその導電性に等方性を示すこととなるのである。 Further, in the method for producing a ceramic electrode material according to the present invention, the resulting ceramic is obtained by reducing and firing a molded body in which a polymer compound that is a polymer of a polymerizable substance is uniformly present. Between the ceramic particles constituting the sintered body, a conductive path made of a reduced calcined product of the polymer compound is uniformly formed. Therefore, in the obtained ceramic material, the conductivity is equal. It shows the direction.
 以下に、本発明の実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記の具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。 Examples of the present invention will be shown below to clarify the present invention more specifically. However, the present invention is not limited by the description of such examples. Needless to say. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the above specific description. It should be understood that improvements can be made.
 先ず、セラミックス原料としてのアルミナ粉末(昭和電工株式会社製、易焼結性アルミナ、AL-160SG-4、平均粒径: 0.6μm)と、重合性物質としてのメタクリルアミドと、架橋性単量体としてのN、N’-メチレンビスアクリルアミドと、分散剤としてのポリカルボン酸アンモニウム系分散剤(株式会社中京油脂製、セルナD305)と、蒸留水とを用いて、これらを下記表1に掲げる割合において配合し、水スラリー状の組成物を調製した。なお、かかる組成物の調製は、先ず、蒸留水に、メタクリルアミドとN、N’-メチレンビスアクリルアミドを溶解せしめ、次いで、ポリカルボン酸アンモニウム系分散剤を添加し、さらに、アルミナ粉末を加えた後、25℃ に設定された恒温水槽中にて25時間、湿式ボールミル混合することにより行なった。 First, alumina powder as a ceramic raw material (manufactured by Showa Denko KK, readily sinterable alumina, AL-160SG-4, average particle size: 0.6 μm), methacrylamide as a polymerizable substance, and a crosslinkable monomer N, N'-methylenebisacrylamide as a dispersant, ammonium polycarboxylate dispersant (manufactured by Chukyo Yushi Co., Ltd., Serna D305) as a dispersant, and distilled water. Were mixed to prepare a water slurry composition. In the preparation of such a composition, first, methacrylamide and N, N′-methylenebisacrylamide were dissolved in distilled water, then an ammonium polycarboxylate dispersant was added, and alumina powder was further added. Thereafter, the wet ball mill was mixed for 25 hours in a constant temperature water bath set at 25 ° C.
Figure JPOXMLDOC01-appb-T000001
 そのようにして準備された組成物を用いて、以下の実験を行なった。なお、以下の各実験においては、重合触媒として、N、N、N’、N’- テトラメチルエチレンジアミンを、また、重合開始剤として、過硫酸アンモニウム(ペルオキシ二硫酸アンモニウム)を、それぞれ用いた。
Figure JPOXMLDOC01-appb-T000001
The following experiment was conducted using the composition thus prepared. In each of the following experiments, N, N, N ′, N′-tetramethylethylenediamine was used as a polymerization catalyst, and ammonium persulfate (ammonium peroxydisulfate) was used as a polymerization initiator.
 実験例
 上記組成物100gに対して、1.03 mgの重合開始剤及び、0.17 mgの重合触媒を添加した後、かかる重合開始剤が添加された組成物の適量を、円盤形状(直径5 cm×厚さ1 cm)の成形型に供給した。そちらの成形型を、室内(温度:25℃)において3.0時間静置することにより、組成物に含まれるメタクリルアミドとN、N’-メチレンビスアクリルアミドとを重合させた後、成形型から脱型することにより、円盤形状の成形体を得た。
Experimental Example After adding 1.03 mg of a polymerization initiator and 0.17 mg of a polymerization catalyst to 100 g of the above composition, an appropriate amount of the composition to which the polymerization initiator was added was changed to a disk shape (diameter 5 cm × thickness). 1 cm). The mold is allowed to stand in the room (temperature: 25 ° C.) for 3.0 hours to polymerize methacrylamide and N, N′-methylenebisacrylamide contained in the composition, and then removed from the mold. As a result, a disk-shaped molded body was obtained.
 得られた成形体を恒湿乾燥機の室内に載置し、かかる室内の相対湿度が90%RHから60%RHとなるまで、1日あたり10%RHの割合にて低下せしめ、3日間かけて乾燥した。かかる乾燥の後かかる乾燥成形体を、アルゴン雰囲気とされた小型電気炉を用いて、アルゴンガスを導入しながら、1700℃の温度にて2時間、還元焼成し、セラミックス焼結体を得た。このようにして得られた各セラミックス焼結体について、嵩密度及び電気抵抗率を測定した。その結果を、下記表2に示す。なお、電気抵抗率の測定は4端子法、破壊強度は3点曲げ試験法に従って実施し、炭素含有量は全炭素量測定装置により測定した。 The obtained molded product is placed in the room of a constant humidity dryer, and it is reduced at a rate of 10% RH per day until the relative humidity in the room becomes 90% RH to 60% RH, and it takes 3 days. And dried. After the drying, the dried molded body was reduced and fired at a temperature of 1700 ° C. for 2 hours while introducing argon gas using a small electric furnace in an argon atmosphere to obtain a ceramic sintered body. About each ceramic sintered compact obtained in this way, bulk density and electrical resistivity were measured. The results are shown in Table 2 below. The electrical resistivity was measured according to the 4-terminal method, the fracture strength was measured according to a three-point bending test method, and the carbon content was measured with a total carbon content measuring device.
Figure JPOXMLDOC01-appb-T000002
 かかる表2の結果からも明らかなように、本発明に係るセラミックス電極材の製造法に従って作製されたセラミックス焼結体にあっては、セラミックス自体の強度を保ちつつも還元焼成炭素物を0.84質量%内包することで優れた導電性を示すことが確認された。
Figure JPOXMLDOC01-appb-T000002
As is clear from the results of Table 2, in the ceramic sintered body produced according to the method for producing a ceramic electrode material according to the present invention, 0.84 mass of the reduced-fired carbonaceous material is maintained while maintaining the strength of the ceramic itself. It was confirmed that excellent conductivity was exhibited by encapsulating%.
 次に、セラミックス焼結体、および対照試料として、ガラス質炭素体、グラファイト体の耐食性を以下に示す方法により評価した。各試料を数cm角、厚さ数mmに加工した後、その表面を紙やすりにより研磨した。かかる試料片の1表面の1cm×1cmの範囲以外を絶縁性マスキングテープにより被覆し、該1cm×1cmの範囲を有効面積とした。これら有効面積以外を絶縁被覆した試料片に電線を適宜接続したものを作用電極とし、対極に白金板電極、参照電極として標準カロメル電極(SCE:+0.24V 対標準水素電極)を用いて、これらの電極を酸性溶液として濃度1 mol/dm3の硫酸水溶液、乃至は塩基性溶液として、濃度1 mol/dm3の水酸化ナトリウム水溶液に浸漬せしめ、-1.8 mVから+1.8 mVまでの範囲で1.5 mV/sの速度で印加電位を掃引した際の電流を測定した。これら測定から得られる開回路電位を下記表3に示す。 Next, as a ceramic sintered body and a control sample, the corrosion resistance of the vitreous carbon body and the graphite body was evaluated by the following method. Each sample was processed into a few cm square and a thickness of several mm, and then its surface was polished with a sandpaper. An area other than 1 cm × 1 cm on one surface of the sample piece was covered with an insulating masking tape, and the range of 1 cm × 1 cm was defined as an effective area. Using a working piece with a wire connected to a sample piece with insulation coating other than these effective areas, using a platinum plate electrode as the counter electrode and a standard calomel electrode (SCE: + 0.24V vs. standard hydrogen electrode) as the reference electrode The electrode is immersed in a 1 mol / dm 3 sulfuric acid aqueous solution as an acidic solution or in a 1 mol / dm 3 sodium hydroxide aqueous solution as a basic solution, and 1.5 in the range from -1.8 mV to +1.8 mV. The current was measured when the applied potential was swept at a rate of mV / s. The open circuit potentials obtained from these measurements are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 かかる表3の結果に示す通り、本発明によるセラミックス電極材は酸性および塩基性水溶液中での開回路電位がグラファイトと同程度であることから、本発明によるセラミックス電極材はグラファイトと同程度の耐食性を有していることが示された。また同様に、本発明によるセラミックス電極材はガラス質炭素体よりも開回路電位の絶対値が低いことから、ガラス質炭素体よりも優れた耐食性を有していることが示されたのである。
Figure JPOXMLDOC01-appb-T000003
As shown in the results of Table 3, the ceramic electrode material according to the present invention has the same open circuit potential in acidic and basic aqueous solutions as that of graphite. Therefore, the ceramic electrode material according to the present invention has the same degree of corrosion resistance as graphite. It was shown to have Similarly, the ceramic electrode material according to the present invention has an absolute value of open circuit potential lower than that of the vitreous carbon body, which indicates that the ceramic electrode material has better corrosion resistance than the vitreous carbon body.
 また、本実施例のセラミックス焼結体を強酸および強アルカリ中に所定期間浸漬した後の重量減小割合、焼結体からの溶出量および体積抵抗率を評価した。具体的には、得られたセラミックス焼結体から3mm×4mm×40 mmの試験片を2つ切り出し、質量を測定した。そして、試験片を50 mLの酸及びアルカリ溶液にそれぞれ浸漬して4ヶ月間常温で放置した後、試験片を取り出して、水洗浄、エタノール洗浄し、乾燥後の質量を測定した。また、浸漬溶液のアルミニウムイオン濃度をICP(誘導結合プラズマ)分析により定量した。なお、酸として50mass%硫酸を用い、アルカリ溶液として4 M水酸化ナトリウム水溶液を用いた。 Further, the weight reduction ratio, the elution amount from the sintered body, and the volume resistivity after the ceramic sintered body of this example was immersed in strong acid and strong alkali for a predetermined period were evaluated. Specifically, two test pieces of 3 mm × 4 mm × 40 mm were cut out from the obtained ceramic sintered body and the mass was measured. Then, each test piece was immersed in 50 mL of acid and alkali solution and left at room temperature for 4 months, and then the test piece was taken out, washed with water, washed with ethanol, and the mass after drying was measured. Further, the aluminum ion concentration of the immersion solution was quantified by ICP (inductively coupled plasma) analysis. In addition, 50 mass% sulfuric acid was used as the acid, and 4M sodium hydroxide aqueous solution was used as the alkaline solution.
 この結果、硫酸に4ヶ月浸漬した後の質量減は0.095 %であり、アルミニウムイオンの溶出量は134 ppmであった。一方、水酸化ナトリウム水溶液に4ヶ月浸漬した後の質量減は0.134%であり、アルミニウムイオン溶出量は534 ppmであった。また、硫酸、水酸化ナトリウム水溶液に4ヶ月浸漬した後も体積抵抗率に有意な変化は認められなかった。これらのことから、本発明によるセラミックス電極材は、強酸・強塩基条件下で長期間安定であることがわかる。 As a result, the weight loss after immersion in sulfuric acid for 4 months was 0.095%, and the elution amount of aluminum ions was 134ppm. On the other hand, the weight loss after immersion in an aqueous sodium hydroxide solution for 4 months was 0.134%, and the aluminum ion elution amount was 534 ppm. In addition, no significant change in volume resistivity was observed even after immersion in sulfuric acid or sodium hydroxide aqueous solution for 4 months. From these facts, it can be seen that the ceramic electrode material according to the present invention is stable for a long time under strong acid / strong base conditions.
 先ず、セラミックス原料としてのアルミナ粉末(昭和電工株式会社製、易焼結性アルミナ、AL-160SG-4、平均粒径: 0.6μm)と、重合性物質としてのメタクリルアミドと、架橋性単量体としてのN、N’-メチレンビスアクリルアミドと、分散剤としてのポリカルボン酸アンモニウム系分散剤(株式会社中京油脂製、セルナD305)と、蒸留水とを用いて、これらを下記表4に掲げる割合において配合し、水スラリー状の組成物を調製した。なお、かかる組成物の調製は、先ず、蒸留水に、メタクリルアミドとN、N’-メチレンビスアクリルアミドを溶解せしめ、次いで、ポリカルボン酸アンモニウム系分散剤を添加し、さらに、アルミナ粉末を加えた後、25℃ に設定された恒温水槽中にて25時間、湿式ボールミル混合することにより行なった。 First, alumina powder as a ceramic raw material (manufactured by Showa Denko KK, readily sinterable alumina, AL-160SG-4, average particle size: 0.6 μm), methacrylamide as a polymerizable substance, and a crosslinkable monomer N, N'-methylenebisacrylamide as a dispersant, ammonium polycarboxylate dispersant (manufactured by Chukyo Yushi Co., Ltd., Serna D305) as a dispersant, and distilled water. Were mixed to prepare a water slurry composition. In the preparation of such a composition, first, methacrylamide and N, N′-methylenebisacrylamide were dissolved in distilled water, then an ammonium polycarboxylate dispersant was added, and alumina powder was further added. Thereafter, the wet ball mill was mixed for 25 hours in a constant temperature water bath set at 25 ° C.
Figure JPOXMLDOC01-appb-T000004
 そのようにして準備された組成物を用いて、以下の実験を行なった。なお、以下の各実験においては、重合触媒として、N、N、N’、N’- テトラメチルエチレンジアミンを、重合開始剤として、過硫酸アンモニウム(ペルオキシ二硫酸アンモニウム)を、また、界面活性剤として、ラウリル硫酸アンモニウムを、それぞれ用いた。
Figure JPOXMLDOC01-appb-T000004
The following experiment was conducted using the composition thus prepared. In each of the following experiments, N, N, N ′, N′-tetramethylethylenediamine was used as a polymerization catalyst, ammonium persulfate (ammonium peroxydisulfate) was used as a polymerization initiator, and lauryl was used as a surfactant. Ammonium sulfate was used for each.
 実験例
 上記組成物100gに対して、1.03 mgの重合開始剤、0.17 mgの重合触媒、0.17mlの界面活性剤を添加した後、かかる重合開始剤が添加された組成物を攪拌により起泡せしめ、適量を、円盤形状(直径5 cm×厚さ1 cm)の成形型に供給した。そちらの成形型を、室内(温度:25℃)において3.0時間静置することにより、組成物に含まれるメタクリルアミドとN、N’-メチレンビスアクリルアミドとを重合させた後、成形型から脱型することにより、円盤形状の多孔質成形体を得た。
Experimental Example After adding 1.03 mg of a polymerization initiator, 0.17 mg of a polymerization catalyst, and 0.17 ml of a surfactant to 100 g of the above composition, the composition to which the polymerization initiator was added was foamed by stirring. An appropriate amount was supplied to a mold having a disk shape (diameter 5 cm × thickness 1 cm). The mold is allowed to stand in the room (temperature: 25 ° C.) for 3.0 hours to polymerize methacrylamide and N, N′-methylenebisacrylamide contained in the composition, and then removed from the mold. As a result, a disk-shaped porous molded body was obtained.
 得られた成形体を恒湿乾燥機の室内に載置し、かかる室内の相対湿度が90%RHから60%RHとなるまで、1日あたり10%RHの割合にて低下せしめ、3日間かけて乾燥した。かかる乾燥の後かかる乾燥成形体を、アルゴン雰囲気とされた小型電気炉を用いて、アルゴンガスを導入しながら、 1700℃の温度にて2時間、還元焼成し、導電性多孔質セラミックス焼結体を得た。このようにして得られた各セラミックス焼結体について、気孔率及び電気抵抗率を測定した。その結果を、下記表5に示す。なお、電気抵抗率の測定は4端子法、破壊強度は3点曲げ試験法、気孔率はJIS R 1643 (ファインセラミックスの焼結体密度・開気孔率の測定方法)に従って実施し、炭素含有量は全炭素量測定装置により測定した。また、電気抵抗率の測定では、空隙部を含む焼結体全体の抵抗率を測定した後、焼結体全体から空隙部体積を排除するように測定結果を緻密体換算した。 The obtained molded product is placed in the room of a constant humidity dryer, and it is reduced at a rate of 10% RH per day until the relative humidity in the room becomes 90% RH to 60% RH, and it takes 3 days. And dried. After the drying, the dried molded body is reduced and fired at a temperature of 1700 ° C. for 2 hours while introducing argon gas using a small electric furnace in an argon atmosphere, and a conductive porous ceramic sintered body Got. The porosity and electrical resistivity were measured for each ceramic sintered body thus obtained. The results are shown in Table 5 below. The electrical resistivity is measured according to the 4-terminal method, the fracture strength is the three-point bending test method, and the porosity is measured according to JIS R 1643 (measuring method of sintered ceramic density and open porosity of fine ceramics). Was measured with a total carbon measuring device. Moreover, in the measurement of electrical resistivity, after measuring the resistivity of the entire sintered body including the voids, the measurement result was converted into a dense body so as to exclude the void volume from the entire sintered body.
Figure JPOXMLDOC01-appb-T000005
 電気抵抗率は、空隙部を含む焼結体全体では0.35Ω・cmであり、緻密体換算の結果、0.12Ω・cmであった。かかる表5の結果からも明らかなように、本発明に係るセラミックス電極材の製造法に従って作製された多孔質セラミックス焼結体にあっては、高い気孔率においてもセラミックス自体の強度を保ちつつ、且つ、還元焼成炭素物を0.83質量%内包することで優れた導電性を示すことが確認された。
Figure JPOXMLDOC01-appb-T000005
The electrical resistivity was 0.35 Ω · cm for the entire sintered body including the voids, and was 0.12 Ω · cm as a result of the compact body conversion. As apparent from the results of Table 5, in the porous ceramic sintered body produced according to the method for producing a ceramic electrode material according to the present invention, while maintaining the strength of the ceramic itself even at a high porosity, In addition, it was confirmed that excellent conductivity was exhibited by including 0.83% by mass of the reduced calcined carbonaceous material.
 次に、上記の多孔質セラミックス焼結体を数cm角、厚さ数mmに加工した後、室温(温度:25℃)において、超音波を照射しつつ、硫酸と硝酸の混酸に浸漬せしめ、一時間静置した後に、塩化スズ0.0024M及び、塩化パラジウム0.012Mの混合溶液に浸漬し、表面処理を行った。 Next, after processing the above porous ceramic sintered body to a few cm square and a thickness of several mm, it was immersed in a mixed acid of sulfuric acid and nitric acid while irradiating ultrasonic waves at room temperature (temperature: 25 ° C.), After standing for 1 hour, it was immersed in a mixed solution of 0.0024M tin chloride and 0.012M palladium chloride to perform surface treatment.
 そのようにして表面処理された多孔質セラミックス焼結体及び、その処理溶液を100℃に加熱し環流条件としつつ、ニッケルイオン溶液を滴下せしめ、多孔質セラミックス焼結体の表面にニッケルイオンを吸着させた。 The surface-treated porous ceramic sintered body and the treated solution are heated to 100 ° C. under reflux conditions, and a nickel ion solution is dropped to adsorb nickel ions on the surface of the porous ceramic sintered body. I let you.
 上記の手法によりニッケルイオンを吸着させた多孔質セラミックス焼結体を乳酸、ジアミン、及びエチレンジアミン四酢酸ナトリウムからなる還元溶液中に浸漬し、窒素雰囲気下において、pHを9.6に保ちつつ、75℃で3時間、環流を行い、多孔質セラミックス焼結体表面にニッケルの微粒子を担持させた。 The porous ceramic sintered body to which nickel ions are adsorbed by the above method is immersed in a reducing solution composed of lactic acid, diamine, and ethylenediaminetetraacetic acid sodium acetate, and the pH is maintained at 9.6 in a nitrogen atmosphere at 75 ° C. The mixture was refluxed for 3 hours to support nickel fine particles on the surface of the porous ceramic sintered body.
 次に、ニッケル微粒子を担持させた多孔質セラミックス焼結体を以下に示す方法により評価した。試料片の1表面の1cm×1cmの範囲以外を絶縁性マスキングテープにより被覆し、該1cm×1cmの範囲を有効面積とした。これら有効面積以外を絶縁被覆した試料片に電線を適宜接続したものを作用電極とし、対極に白金板電極、参照電極として標準カロメル電極(SCE:+0.24V 対標準水素電極)を用いて、これらの電極をメタノール0.5 mol/dm3、水酸化ナトリウム1.0 mol/dm3の濃度に調製された混合水溶液中に浸漬せしめ、-0.3 Vから+1.3 Vまでの範囲で20 mV/sの速度で印加電位を掃引した際の電流を測定した。測定から得られる電気化学的特性を図1に示す。 Next, the porous ceramic sintered body supporting nickel fine particles was evaluated by the following method. An area other than 1 cm × 1 cm on one surface of the sample piece was covered with an insulating masking tape, and the range of 1 cm × 1 cm was defined as an effective area. Using a working piece with a wire connected to a sample piece with insulation coating other than these effective areas, using a platinum plate electrode as the counter electrode and a standard calomel electrode (SCE: + 0.24V vs. standard hydrogen electrode) as the reference electrode Electrode is immersed in a mixed aqueous solution prepared at a concentration of 0.5 mol / dm 3 methanol and 1.0 mol / dm 3 sodium hydroxide, and a rate of 20 mV / s in the range of -0.3 V to +1.3 V The current when the applied potential was swept was measured. The electrochemical characteristics obtained from the measurement are shown in FIG.
 かかる図1の結果に示す通り、本発明によるニッケル微粒子を担持させた多孔質セラミックス焼結体を用いた電極材はメタノールを含有した塩基性水溶液中において、メタノールの酸化反応を示す挙動を示し触媒性能を有することが示されたのである。
また、上記の評価と同様の条件において、電圧を+0.5Vに固定した場合の電位の時間変化を測定した。測定から得られる電気化学的特性を下記図2に示す。
As shown in the results of FIG. 1, the electrode material using the porous ceramic sintered body supporting nickel fine particles according to the present invention exhibits a behavior indicating methanol oxidation reaction in a basic aqueous solution containing methanol. It has been shown to have performance.
In addition, the change in potential with time was measured when the voltage was fixed at +0.5 V under the same conditions as in the above evaluation. The electrochemical characteristics obtained from the measurement are shown in FIG.
 かかる図2の結果に示す通り、本発明によるニッケル微粒子を担持させた多孔質セラミックス焼結体を用いた電極材はメタノールを含有した塩基性水溶液中において、電圧の印加に対して応答性が早く、一定時間経過後において、約1.5mA/cm2の安定した電流密度を保つことから、電気触媒としての安定した性能が示されたのである。 As shown in the results of FIG. 2, the electrode material using the porous ceramic sintered body supporting nickel fine particles according to the present invention has a quick response to voltage application in a basic aqueous solution containing methanol. Since a stable current density of about 1.5 mA / cm 2 was maintained after a lapse of a certain time, stable performance as an electrocatalyst was shown.
 セラミックス原料としてシリカ粉末(高純度合成球状シリカ、株式会社アドマテックス、アドマファイン SO-C1、平均粒径: 0.5 μm)と、重合性物質としてのメタクリルアミドと、架橋性単量体としてのN、N’-メチレンビスアクリルアミドと、蒸留水とを用いて、これらを下記表6に掲げる割合において配合し、水スラリー状の組成物を調製した。なお、スラリー調製から成形、焼成までを実施例1と同様に行った。 Silica powder as a ceramic raw material (high purity synthetic spherical silica, Admatechs Co., Ltd., Admafine SO-C1, average particle size: 0.5 セ ラ ミ ッ ク ス μm), methacrylamide as a polymerizable substance, N as a crosslinkable monomer, Using N'-methylenebisacrylamide and distilled water, these were blended in the proportions listed in Table 6 below to prepare a water slurry composition. In addition, it carried out similarly to Example 1 from slurry preparation to shaping | molding and baking.
Figure JPOXMLDOC01-appb-T000006
 そして、実施例1と同様の測定方法によって、得られたセラミックス焼結体の体積抵抗率を測定した結果、0.18Ω・cmであった。
Figure JPOXMLDOC01-appb-T000006
And as a result of measuring the volume resistivity of the obtained ceramic sintered compact by the measuring method similar to Example 1, it was 0.18 ohm * cm.
 セラミックス原料としてジルコニア粉末(易焼結グレード、東ソー株式会社、TZ-3Y、顆粒状)と、重合性物質としてのメタクリルアミドと、架橋性単量体としてのN、N’-メチレンビスアクリルアミドと、分散剤としてのポリカルボン酸アンモニウム系分散剤(株式会社中京油脂製、セルナD305)と、蒸留水とを用いて、これらを下記表7に掲げる割合において配合し、水スラリー状の組成物を調製した。なお、スラリー調製から成形、焼成までを実施例1と同様に行った。 Zirconia powder (easily sintered grade, Tosoh Corporation, TZ-3Y, granular) as a ceramic raw material, methacrylamide as a polymerizable substance, N, N'-methylenebisacrylamide as a crosslinkable monomer, Using an ammonium polycarboxylate dispersant (manufactured by Chukyo Yushi Co., Ltd., Serna D305) as a dispersant and distilled water, these are blended in the proportions listed in Table 7 below to prepare a water slurry composition. did. In addition, it carried out similarly to Example 1 from slurry preparation to shaping | molding and baking.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の耐食性セラミックス電極材は、電極として十分な導電性および既存の炭素系電極と同等乃至はそれ以上の耐食性を有しており、且つ、セラミックスを元とするため優れた機械的強度等をも兼ね備えており、電極材として各種産業、例えば、酸性乃至は塩基性条件下での操業を余儀なくされる電気分解工業用の溶融塩電気分解用電極として、または、二次電池用負電極として、更には、燃料電池における燃料極乃至は高分子型燃料電池用のセパレーターとしてなどの利用も大いに期待されるものである。さらに、本発明による耐食性セラミックス電極材の製造法においては、従来の導電性セラミックス材料製造法に比べ、低コスト且つ簡便な操作且つ複雑形状の材料が作製可能、といった製造プロセス上の有意点を有しており、実用化が多い期待されるのである。 The corrosion-resistant ceramic electrode material of the present invention has sufficient electrical conductivity as an electrode and corrosion resistance equivalent to or higher than that of an existing carbon-based electrode, and has excellent mechanical strength and the like because it is based on ceramics. As an electrode material for various industries, for example, as an electrode for molten salt electrolysis for electrolysis industry that is forced to operate under acidic or basic conditions, or as a negative electrode for secondary batteries, Furthermore, the use as a fuel electrode in a fuel cell or a separator for a polymer fuel cell is also highly expected. Furthermore, the manufacturing method of the corrosion-resistant ceramic electrode material according to the present invention has a significant point in the manufacturing process, such that it is possible to manufacture a material having a complicated shape and low cost, simple operation, compared to the conventional manufacturing method of the conductive ceramic material. It is expected to be put to practical use.

Claims (13)

  1.  炭素原子を有する高分子化合物の還元焼成物よりなる三次元網目状の導電路がセラミックス粒子間に形成せしめられてなるセラミックス焼結体からなり、その体積抵抗率が0.2Ω・cmより小さく且つグラファイトやガラス質炭素体と同等またはそれ以上の耐食性を有することを特徴とするセラミックス電極材。 A ceramic sintered body in which a three-dimensional network-like conductive path made of a reduced fired product of a polymer compound having carbon atoms is formed between ceramic particles, and has a volume resistivity of less than 0.2 Ω · cm and graphite. A ceramic electrode material having a corrosion resistance equivalent to or higher than that of glassy carbon.
  2.  前記還元焼成物は導電性の炭素であり、前記セラミックス焼結体の炭素成分含有率が0.3質量%以上1.7質量%以下であることを特徴とする請求項1に記載のセラミックス電極材。 The ceramic electrode material according to claim 1, wherein the reduced fired product is conductive carbon, and the carbon component content of the ceramic sintered body is 0.3 mass% or more and 1.7 mass% or less.
  3.  前記セラミックス粒子は、無機酸化物で構成されていることを特徴とする請求項1または2に記載のセラミックス電極材。 The ceramic electrode material according to claim 1 or 2, wherein the ceramic particles are made of an inorganic oxide.
  4.  前記無機酸化物は、アルミナであることを特徴とする請求項3に記載のセラミックス電極材。 The ceramic electrode material according to claim 3, wherein the inorganic oxide is alumina.
  5.  前記セラミックス焼結体は、金属、金属化合物、金属酸化物またはこれらの2種以上の混合物で構成された微粒子を担持することにより触媒性能を有することを特徴とする請求項1ないし4のいずれか1つに記載のセラミックス電極材。 5. The ceramic sintered body has catalytic performance by supporting fine particles composed of a metal, a metal compound, a metal oxide, or a mixture of two or more thereof. The ceramic electrode material according to one.
  6.  前記セラミックス焼結体は、多孔質であることを特徴とする請求項5に記載のセラミックス電極材。 The ceramic electrode material according to claim 5, wherein the ceramic sintered body is porous.
  7.  前記金属は、プラチナ、ニッケル、パラジウム、金から選ばれる少なくとも1種であり、
     前記金属酸化物は、酸化チタン、酸化亜鉛から選ばれる少なくとも1種であり、
     前記金属化合物は、硫化カドミウム、チタン酸ストロンチウムから選ばれる少なくとも1種であることを特徴とする請求項5または6に記載のセラミックス電極材。
    The metal is at least one selected from platinum, nickel, palladium, and gold,
    The metal oxide is at least one selected from titanium oxide and zinc oxide,
    The ceramic electrode material according to claim 5 or 6, wherein the metal compound is at least one selected from cadmium sulfide and strontium titanate.
  8.  前記高分子化合物が、ビニル系樹脂、ウレタン系樹脂、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ハロオレフィン系樹脂、ジエン系樹脂、エーテル系樹脂、スルフィド系樹脂、イミド系樹脂、イミン系樹脂、フェニリン系樹脂またはエポキシ系樹脂であることを特徴とする請求項1ないし7のいずれか1つに記載のセラミックス電極材。 The polymer compound is vinyl resin, urethane resin, olefin resin, styrene resin, acrylic resin, haloolefin resin, diene resin, ether resin, sulfide resin, imide resin, imine resin. The ceramic electrode material according to any one of claims 1 to 7, wherein the ceramic electrode material is a phenyrin resin or an epoxy resin.
  9.  請求項1ないし8のいずれか1つに記載のセラミックス電極材の製造方法であって、
     炭素原子を分子中に有する重合性物質の少なくとも1種をセラミックス原料に対して配合してなる組成物を成形型内に注入し、前記成形型内において前記重合性物質を重合せしめて、前記重合性物質の重合体である高分子化合物が均一に存在する成形体を形成した後、
     窒素ガスを含有しない不活性ガスの雰囲気下で、前記成形体を還元焼成することにより、セラミックス焼結体を得るとともに、得られた前記セラミックス焼結体を構成するセラミックス粒子間に、前記高分子化合物の還元焼成物よりなる導電路を三次元的網目状に形成せしめることを特徴とするセラミックス電極材の製造方法。
    A method for producing a ceramic electrode material according to any one of claims 1 to 8,
    A composition obtained by blending at least one polymerizable substance having a carbon atom in the molecule with a ceramic raw material is injected into a mold, and the polymerizable substance is polymerized in the mold, and the polymerization is performed. After forming a molded body in which a high molecular compound that is a polymer of a functional substance exists uniformly,
    A sintered ceramic body is obtained by reducing and firing the molded body in an inert gas atmosphere containing no nitrogen gas, and the polymer is formed between the ceramic particles constituting the obtained ceramic sintered body. A method for producing a ceramic electrode material, wherein a conductive path made of a reduced fired product of a compound is formed in a three-dimensional network.
  10.  前記重合性物質として重合可能な単量体を用いることを特徴とする請求項9に記載のセラミックス電極材の製造方法。 The method for producing a ceramic electrode material according to claim 9, wherein a polymerizable monomer is used as the polymerizable substance.
  11.  前記重合性物質として前記単量体と架橋性単量体とを用いることを特徴する請求項10に記載のセラミックス電極材の製造方法。 The method for producing a ceramic electrode material according to claim 10, wherein the monomer and the crosslinkable monomer are used as the polymerizable substance.
  12.  前記単量体は、ビニル系不飽和単量体であることを特徴とする請求項10または11に記載のセラミックス電極材の製造方法。 The method for producing a ceramic electrode material according to claim 10 or 11, wherein the monomer is a vinyl unsaturated monomer.
  13.  前記組成物を水系スラリーの形態において調製するとともに、前記重合性物質として親水性または水溶性のものを用いることを特徴とする請求項9ないし12のいずれか1つに記載のセラミックス電極材の製造方法。
     
    The ceramic electrode material according to any one of claims 9 to 12, wherein the composition is prepared in the form of an aqueous slurry, and the polymerizable substance is hydrophilic or water-soluble. Method.
PCT/JP2009/068051 2007-10-24 2009-10-20 Ceramic electrode material and process for producing the ceramic electrode material WO2010047321A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/125,221 US8486240B2 (en) 2007-10-24 2009-10-20 Ceramic electrode material and manufacturing method thereof
CN2009801418816A CN102197440B (en) 2008-10-21 2009-10-20 Ceramic electrode material and process for producing the ceramic electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008270911A JP5464464B2 (en) 2007-10-24 2008-10-21 Corrosion-resistant ceramic electrode material and manufacturing method thereof
JP2008-270911 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047321A1 true WO2010047321A1 (en) 2010-04-29

Family

ID=42119497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068051 WO2010047321A1 (en) 2007-10-24 2009-10-20 Ceramic electrode material and process for producing the ceramic electrode material

Country Status (2)

Country Link
CN (1) CN102197440B (en)
WO (1) WO2010047321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874336A (en) * 2019-05-22 2021-12-31 住友大阪水泥股份有限公司 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
EP4290533A4 (en) * 2021-02-05 2024-04-03 Panasonic Intellectual Property Management Co., Ltd. Composite member

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649375A (en) * 2015-03-09 2015-05-27 罗民雄 Electrode mainly prepare from ceramic material and applicable to water electrolysis device
CN107516723A (en) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 Battery core and energy storage device
CN108774052B (en) * 2018-06-11 2020-11-20 三峡大学 Graphene-containing graphite/ceramic conductive composite material and preparation method thereof
JP6676835B1 (en) * 2018-09-27 2020-04-08 日本碍子株式会社 Manufacturing method of wafer mounting table
CN110407571B (en) * 2019-07-18 2022-09-13 武汉纺织大学 Method for manufacturing electrothermal sintered solid, product and application method
CN111620719B (en) * 2020-06-04 2021-12-31 常熟理工学院 Method for rapidly sintering ceramsite
CN116514575A (en) * 2023-05-05 2023-08-01 郑州大学 Beryllium oxide electrode material, beryllium-beryllium oxide cermet and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199764A (en) * 2000-01-17 2001-07-24 Wicera Co Ltd Conductive ceramic and method for producing the same
JP2004018296A (en) * 2002-06-14 2004-01-22 Nippon Steel Corp Alumina-base sintered compact and its manufacturing method
JP2005197178A (en) * 2004-01-09 2005-07-21 Matsushita Electric Ind Co Ltd Electrode for fuel cell
JP2005289695A (en) * 2004-03-31 2005-10-20 Nagoya Kogyo Univ Conductive ceramic product and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080057356A1 (en) * 2004-05-17 2008-03-06 Masatoshi Shimomura Anode Support Substrate For Solid Oxide Fuel Cell And Process For Producing The Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199764A (en) * 2000-01-17 2001-07-24 Wicera Co Ltd Conductive ceramic and method for producing the same
JP2004018296A (en) * 2002-06-14 2004-01-22 Nippon Steel Corp Alumina-base sintered compact and its manufacturing method
JP2005197178A (en) * 2004-01-09 2005-07-21 Matsushita Electric Ind Co Ltd Electrode for fuel cell
JP2005289695A (en) * 2004-03-31 2005-10-20 Nagoya Kogyo Univ Conductive ceramic product and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874336A (en) * 2019-05-22 2021-12-31 住友大阪水泥股份有限公司 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
CN113874336B (en) * 2019-05-22 2023-03-28 住友大阪水泥股份有限公司 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
EP4290533A4 (en) * 2021-02-05 2024-04-03 Panasonic Intellectual Property Management Co., Ltd. Composite member

Also Published As

Publication number Publication date
CN102197440A (en) 2011-09-21
CN102197440B (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2010047321A1 (en) Ceramic electrode material and process for producing the ceramic electrode material
JP5464464B2 (en) Corrosion-resistant ceramic electrode material and manufacturing method thereof
JPH11297338A (en) Separator for solid polymer type fuel cell, and manufacture thereof
CN1961443A (en) Nickel foam and felt-based anode for solid oxide fuel cells
Krüger et al. Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods
CN111960819A (en) ZrO (ZrO)2Base conductive ceramic and preparation method thereof
JP5492195B2 (en) Composite product and manufacturing method
Ramanathan et al. Powder dispersion and aqueous tape casting of YSZ-NiO composite
JP2018190730A (en) Method for manufacturing proton conducting oxide fuel cell
JP4572290B2 (en) Manufacturing method of conductive ceramic products
TW200418222A (en) Terminal electrode compositions for multilayer ceramic capacitors
JP2004119072A (en) Electrode for fuel cell
Liu et al. Highly conductive alumina/NCN composites electrodes fabricated by gelcasting and reduction-sintering—An electrochemical behavior study in aggressive environments
Kalinina et al. Formation of a Single-and Two-Layer Solid Electrolyte by Electrophoresis on Anodic Substrates Metalized with Silver or Platinum
JP2001329380A5 (en)
JP3981718B2 (en) Method for producing a porous substrate having a dense solid oxide film formed on the surface
JP5273588B2 (en) Au colloid coating material
JP4721113B2 (en) Method for producing sponge-like titanium sintered body with excellent corrosion resistance
JPH0773671B2 (en) Ceramic composite powder and method for producing the same
Hirata et al. Synthesis of alumina/nickel composite by electrodeposition of nickel
JPH07215764A (en) Electrical conductive ceramic sintered compact and its production
JPS6157397B2 (en)
BG113137A (en) Composition of electrically conductive ceramic composites and a method for preparation thereof
KR100187430B1 (en) Method of manufacturing electrolyte matrix for phosphorus fuel cell made of sic whisker
EP2103714A1 (en) Porous titanium having low contact resistance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141881.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822018

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13125221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822018

Country of ref document: EP

Kind code of ref document: A1