JP4721113B2 - Method for producing sponge-like titanium sintered body with excellent corrosion resistance - Google Patents

Method for producing sponge-like titanium sintered body with excellent corrosion resistance Download PDF

Info

Publication number
JP4721113B2
JP4721113B2 JP2006070478A JP2006070478A JP4721113B2 JP 4721113 B2 JP4721113 B2 JP 4721113B2 JP 2006070478 A JP2006070478 A JP 2006070478A JP 2006070478 A JP2006070478 A JP 2006070478A JP 4721113 B2 JP4721113 B2 JP 4721113B2
Authority
JP
Japan
Prior art keywords
titanium
sponge
sintered body
corrosion resistance
titanium sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070478A
Other languages
Japanese (ja)
Other versions
JP2007246965A (en
Inventor
正弘 和田
晃一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006070478A priority Critical patent/JP4721113B2/en
Publication of JP2007246965A publication Critical patent/JP2007246965A/en
Application granted granted Critical
Publication of JP4721113B2 publication Critical patent/JP4721113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Powder Metallurgy (AREA)

Description

この発明は、耐食性に優れたスポンジ状チタン焼結体の製造方法に関するものであり、この方法で作製された耐食性に優れたスポンジ状チタン焼結体は、自動車の排気ガス用フィルター、空気清浄機用フィルター、汚水処理用フィルターなどの各種フィルター、その他、生体材料、燃料電池用電極などを作製するための素材として使用される。   TECHNICAL FIELD The present invention relates to a method for producing a sponge-like titanium sintered body excellent in corrosion resistance, and the sponge-like titanium sintered body excellent in corrosion resistance produced by this method is used in automobile exhaust gas filters, air purifiers. It is used as a material for producing various filters such as filters for filters and filters for sewage treatment, biomaterials, electrodes for fuel cells and the like.

一般に、水素化チタンまたは純チタン粉末を有機バインダーと混合して混合物を作製し、得られた混合物を成形して成形体を作製し、得られた成形体を加熱することにより有機バインダー成分を除去して脱脂体を作製し(以下、この成形体を加熱することにより有機バインダー成分を除去して脱脂体を作製する工程を脱脂工程と言う)、この脱脂工程を経て得られた脱脂体をさらに高温で加熱することにより通常の多孔質なチタン焼結体を製造する方法は知られている。   In general, titanium hydride or pure titanium powder is mixed with an organic binder to produce a mixture, the resulting mixture is molded to produce a molded body, and the resulting molded body is heated to remove the organic binder component. To produce a degreased body (hereinafter, the process of producing a degreased body by removing the organic binder component by heating the molded body is referred to as a degreased step), and the degreased body obtained through this degreasing step A method for producing a normal porous titanium sintered body by heating at a high temperature is known.

この方法で作製したチタン焼結体は、その気孔率が小さいものは各種機械部品として使用することができるが、各種フィルター、燃料電池用電極、生体材料などの高気孔率を必要とする部品の素材としては使用することができない。各種フィルター、燃料電池用電極、生体材料などの高気孔率を必要とする部品の素材は、その気孔率が50%以上あることが必要であるからである。   Titanium sintered bodies produced by this method can be used as various machine parts if their porosity is small, but they are used for various filters, fuel cell electrodes, biomaterials and other parts that require high porosity. It cannot be used as a material. This is because the materials of parts that require high porosity such as various filters, fuel cell electrodes, and biomaterials need to have a porosity of 50% or more.

かかる気孔率が50%以上の高気孔率を有するスポンジ状チタン焼結体を製造するための方法として、水素化チタン粉末または水素化チタン粉末を脱水素して得られた純チタン粉末に有機バインダー、発泡剤および必要に応じて界面活性剤などを添加し混合して発泡スラリーを作製し、得られた発泡スラリーを成形して成形体を作製し、得られた成形体を加熱乾燥することにより発泡させて気孔率が60%以上の高気孔率を有するグリーン体を作製し、得られた高気孔率を有するグリーン体をさらに高温で加熱することにより高気孔率を有するスポンジ状チタン焼結体を製造する方法が知られている。この方法で得られたスポンジ状チタン焼結体は表面に開口し内部の空孔に連続している空孔(以下、連続空孔という)を有し、気孔率:50〜98容量%を有することも知られている(特許文献1参照)。
特開2004―43976号公報
As a method for producing a sponge-like titanium sintered body having a high porosity of 50% or more, an organic binder is added to titanium hydride powder or pure titanium powder obtained by dehydrogenating titanium hydride powder. By adding a foaming agent and, if necessary, a surfactant and mixing to produce a foamed slurry, molding the resulting foamed slurry to produce a molded product, and heating and drying the resulting molded product Sponge-like titanium sintered body having a high porosity by producing a green body having a high porosity of 60% or more by foaming and heating the obtained green body having a high porosity at a higher temperature A method of manufacturing is known. The sponge-like titanium sintered body obtained by this method has pores (hereinafter referred to as continuous pores) that are open on the surface and continuous with the internal pores, and have a porosity of 50 to 98% by volume. This is also known (see Patent Document 1).
Japanese Patent Laid-Open No. 2004-43976

しかし、従来の方法で作製した気孔率:50〜98容量%を有するスポンジ状チタン焼結体の耐食性は、通常のチタンが本来有する耐食性よりも低く、従来の方法で作製した気孔率:50〜98容量%を有するスポンジ状チタン焼結体で作製したフィルターなどの各種部品の耐用年数は予測される耐用年数よりも短い。
特に、近年、気孔率の一層高いスポンジ状チタン焼結体が求められており、気孔率が高まるに連れて3次元網目構造の骨格部分の肉厚が薄くなって比表面積の大きなスポンジ状チタン焼結体となっているので耐食性が一層低下することにより、フィルターなど各種部品の耐用年数が一層短くなっているという問題点があった。
However, the corrosion resistance of the sponge-like titanium sintered body having a porosity of 50 to 98% by volume produced by a conventional method is lower than the corrosion resistance inherent to normal titanium, and the porosity produced by a conventional method: 50 to 50%. The service life of various parts such as a filter made of a sponge-like titanium sintered body having 98% by volume is shorter than the expected service life.
In particular, in recent years, there has been a demand for a sponge-like titanium sintered body having a higher porosity. As the porosity increases, the thickness of the skeleton portion of the three-dimensional network structure is reduced, and the sponge-like titanium sintered body having a large specific surface area is obtained. Since it is a ligated body, the corrosion resistance is further lowered, so that the service life of various parts such as a filter is further shortened.

そこで、本発明者らは、気孔率が50%以上を有するスポンジ状チタン焼結体の耐食性が通常のチタンよりも低い原因を究明すべく研究を行った。その結果、(イ)原料粉末として純チタン粉末を使用し、この純チタン粉末に水溶性樹脂結合剤、有機溶剤、可塑剤、必要に応じて界面活性剤を添加し混合してスラリーを作製し、得られたスラリーを成形して成形体を作製し、得られた成形体を加熱して有機溶剤を気化発泡させ、その後乾燥させることによりスポンジ状グリーン体を作製し、このスポンジ状グリーン体を真空雰囲気中で加熱することにより有機バインダー成分を除去して気孔率が60%以上の高気孔率を有する脱脂体を作製し、この脱脂体をさらに高温で加熱して焼結することにより得られた表面に開口し内部の空孔に連続している連続空孔を有する3次元網目構造の骨格を持ちかつ気孔率が50〜98%を有するスポンジ状チタン焼結体は、3次元網目構造の骨格表面にチタン炭化物が生成しており、この骨格表面にチタン炭化物が生成しているスポンジ状チタン焼結体は、骨格表面全面が酸化チタン層で被覆されているスポンジ状チタン焼結体に比べて耐食性が低下する、
(ロ)スポンジ状チタン焼結体を酸化性酸水溶液に浸漬することにより骨格表面に生成しているチタン炭化物を除去することができ、骨格表面のチタン炭化物を除去すると、チタン炭化物が除去された部分は金属チタンが露出し、金属チタンが露出した部分は酸化されて酸化チタンとなり、スポンジ状チタン焼結体における骨格表面の全面が酸化チタン層で被覆されるようになって耐食性が一層向上する、などの研究結果が得られたのである。
Therefore, the present inventors have studied to determine the cause of the lower corrosion resistance of the sponge-like titanium sintered body having a porosity of 50% or more than that of normal titanium. As a result, (i) pure titanium powder is used as the raw material powder, and a water-soluble resin binder, an organic solvent, a plasticizer and, if necessary, a surfactant are added to the pure titanium powder and mixed to prepare a slurry. The resulting slurry is molded to produce a molded body, and the resulting molded body is heated to vaporize and foam an organic solvent, and then dried to produce a sponge-like green body. It is obtained by removing the organic binder component by heating in a vacuum atmosphere to produce a degreased body having a high porosity of 60% or more, and heating and sintering the degreased body at a higher temperature. Sponge-like titanium sintered body having a three-dimensional network structure skeleton having continuous pores open to the surface and continuing to the internal pores and having a porosity of 50 to 98% is a three-dimensional network structure. On the surface of the skeleton The sponge titanium sintered body in which tan carbide is generated and titanium carbide is generated on the surface of the skeleton has corrosion resistance compared to the sponge titanium sintered body in which the entire skeleton surface is coated with a titanium oxide layer. descend,
(B) The titanium carbide formed on the surface of the skeleton can be removed by immersing the sponge-like titanium sintered body in an oxidizing acid aqueous solution. When the titanium carbide on the skeleton surface is removed, the titanium carbide is removed. The part is exposed to titanium metal, the part where the metal titanium is exposed is oxidized to become titanium oxide, and the entire surface of the skeleton surface of the sponge-like titanium sintered body is covered with the titanium oxide layer to further improve the corrosion resistance. The research results were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
チタン粉末を含むスポンジ状グリーン体を焼結して得たスポンジ状チタン焼結体を酸化性酸水溶液中に浸漬することによりスポンジ状チタン焼結体における3次元網目構造の骨格表面のチタン炭化物を除去する耐食性に優れたスポンジ状チタン焼結体の製造方法、に特徴を有するものである。
前記酸化性酸とは、カソード反応種の酸化還元電位がH/H(OV SHE)よりも貴にある酸をいう。代表的には、硝酸が挙げられる。その他、熱濃硫酸や過塩素酸等が知られている。

The present invention has been made based on the results of such research,
By immersing a sponge-like titanium sintered body obtained by sintering a sponge-like green body containing titanium powder in an oxidizing acid aqueous solution, titanium carbide on the skeleton surface of the three-dimensional network structure in the sponge-like titanium sintered body is obtained. It is characterized by a method for producing a sponge-like titanium sintered body having excellent corrosion resistance to be removed.
The oxidizing acid refers to an acid in which the redox potential of the cathode reactive species is more noble than H + / H 2 (OV SHE). A typical example is nitric acid. In addition, hot concentrated sulfuric acid and perchloric acid are known.

この発明の耐食性に優れたスポンジ状チタン焼結体を製造する方法は下記の通りである。まず、原料粉末として、水素化チタン粉末または水素化チタン粉末を脱水素することにより作製した純チタン粉末を用意し、この原料粉末に水溶性樹脂結合剤、有機溶剤、可塑剤、溶媒としての水、場合によっては界面活性剤を混合して金属粉末スラリーを作製し、この金属粉末スラリーをドクターブレード法によりシート状に成形し、得られたシート成形体を発泡させてスポンジ状グリーン成形体を作製し、このスポンジ状グリーン成形体をジルコニア製板の上に載せ、真空雰囲気中で加熱することにより脱脂処理し、その後、脱脂体を真空雰囲気中で50℃以下に冷却したのち又は冷却せずに真空雰囲気中で燒結し、焼結後、炉内にアルゴンガスを投入し、冷却することによりスポンジ状チタン焼結体を製造する。   The method for producing a sponge-like titanium sintered body having excellent corrosion resistance according to the present invention is as follows. First, as a raw material powder, a titanium hydride powder or a pure titanium powder prepared by dehydrogenating a titanium hydride powder is prepared, and a water-soluble resin binder, an organic solvent, a plasticizer, and water as a solvent are added to the raw material powder. In some cases, a surfactant is mixed to prepare a metal powder slurry, the metal powder slurry is formed into a sheet by the doctor blade method, and the resulting sheet molded body is foamed to produce a sponge-like green molded body The sponge-like green molded body is placed on a zirconia plate and degreased by heating in a vacuum atmosphere. After that, the degreased body is cooled to 50 ° C. or lower in a vacuum atmosphere or without cooling. After sintering in a vacuum atmosphere and sintering, an argon gas is charged into the furnace and cooled to produce a sponge-like titanium sintered body.

次に、得られたスポンジ状チタン焼結体を酸化性酸水溶液中に浸漬することにより、スポンジ状チタン焼結体における骨格表面のチタン炭化物を除去する。この時使用する酸化性酸水溶液は硝酸濃度:5〜60%の水溶液を使用し、温度:50〜80℃に浸漬することが好ましいが、煮沸しても良い。骨格表面のチタン炭化物を除去した部分は金属チタンが露出し、そのまま大気中に放置すると、自然に酸化してチタン酸化膜を形成し、スポンジ状チタン焼結体における3次元網目構造の骨格表面全面が酸化チタンとなって耐食性が向上する。   Next, the obtained sponge-like titanium sintered body is immersed in an oxidizing acid aqueous solution to remove titanium carbide on the skeleton surface of the sponge-like titanium sintered body. The oxidizing acid aqueous solution used at this time is an aqueous solution having a nitric acid concentration of 5 to 60% and is preferably immersed at a temperature of 50 to 80 ° C., but may be boiled. When titanium carbide is removed from the surface of the skeletal surface, titanium metal is exposed, and when left in the atmosphere, it will oxidize naturally to form a titanium oxide film. Becomes titanium oxide and the corrosion resistance is improved.

この発明の製造方法によると、耐食性に一層優れた高気孔率を有するスポンジ状チタン焼結体を提供することができ、この耐食性に優れたスポンジ状チタン焼結体は各種フィルターや生体材料、燃料電池用電極などの素材として使用することができ、産業の発展に大いに貢献し得るものである。   According to the production method of the present invention, it is possible to provide a sponge-like titanium sintered body having a high porosity, which is further excellent in corrosion resistance, and this sponge-like titanium sintered body excellent in corrosion resistance can be used for various filters, biomaterials, fuels. It can be used as a material for battery electrodes and the like, and can greatly contribute to industrial development.

実施例1
原料粉末として、平均粒径:10μmの純チタン粉末を用意した。さらに、水溶性樹脂結合剤としてメチルセルロースを用意し、有機溶剤としてネオペンタンを用意し、可塑剤としてエチレングリコールを用意し、溶媒として水を用意し、さらに界面活性剤としてアルキルベンゼンスルホン酸塩を用意し、これらを純チタン粉末:60質量%、メチルセルロース:3質量%、ネオペンタン:2質量%、エチレングリコール:2.5質量%、アルキルベンゼンスルホン酸塩:4質量%、残部:水となるように配合し、15分間混練し、発泡スラリーを作製した。
Example 1
Pure titanium powder having an average particle diameter of 10 μm was prepared as a raw material powder. Furthermore, methylcellulose is prepared as a water-soluble resin binder, neopentane is prepared as an organic solvent, ethylene glycol is prepared as a plasticizer, water is prepared as a solvent, and alkylbenzene sulfonate is prepared as a surfactant, These were blended so that pure titanium powder: 60% by mass, methyl cellulose: 3% by mass, neopentane: 2% by mass, ethylene glycol: 2.5% by mass, alkylbenzene sulfonate: 4% by mass, and the balance: water, The foamed slurry was prepared by kneading for 15 minutes.

得られた発泡スラリーをブレードギャップ:0.4mmでドクターブレード法によりスラリー層をジルコニア製板の上に成形し、このスラリー層をジルコニア製板の上に載せたまま高温・高湿度槽に供給し、そこで温度:40℃、湿度:90%、20分間保持の条件で発泡させたのち、温度:80℃、15分間保持の条件の温風乾燥を行い、スポンジ状グリーン成形体を作製した。   The obtained foamed slurry was formed on a zirconia plate by a doctor blade method with a blade gap: 0.4 mm, and this slurry layer was placed on the zirconia plate and supplied to a high temperature / high humidity tank. Therefore, after foaming under the conditions of temperature: 40 ° C., humidity: 90%, holding for 20 minutes, hot air drying was performed under the conditions of temperature: 80 ° C., holding for 15 minutes, to produce a sponge-like green molded body.

このスポンジ状グリーン成形体をジルコニア製板の上に載せたまま脱脂装置の中を通しながら、真空雰囲気中、温度:550℃、5時間保持の条件で脱脂した。得られた脱脂体をジルコニア製板の上に載せたまま焼成炉の中を通しながら温度:1200℃、3時間保持の条件で焼結することにより気孔率:85%を有するスポンジ状チタン焼結体を作製した。このスポンジ状チタン焼結体から切り出して幅:2cm、長さ:4cm、厚さ:0.5mmの寸法を有する試験片(表面積:78cm)を作製した。この試験片の骨格表面をSEMで観察したところ骨格表面にチタン炭化物が生成しているのを確認した。 The sponge-like green molded body was degreased in a vacuum atmosphere at a temperature of 550 ° C. for 5 hours while passing through a degreasing apparatus while being placed on a zirconia plate. Sponge-like titanium sintered having a porosity of 85% by sintering the obtained degreased body while passing through a firing furnace while being placed on a zirconia plate under conditions of temperature: 1200 ° C. and holding for 3 hours. The body was made. A test piece (surface area: 78 cm 2 ) having dimensions of width: 2 cm, length: 4 cm, thickness: 0.5 mm was cut out from this sponge-like titanium sintered body. When the skeleton surface of this test piece was observed by SEM, it was confirmed that titanium carbide was formed on the skeleton surface.

このようにして得られた試験片を、温度:50℃に保持された硝酸濃度:30%、硫酸濃度:5%の酸化性酸水溶液に3時間振動を加えながら浸漬することにより酸化性酸処理を施し、その後、純水で洗浄、乾燥し、試験片の骨格表面をSEMで観察した。その結果、スポンジ状チタン焼結体における骨格表面にチタン炭化物は見られなかった。この試験片をインキュベーターにより37℃に保持された1%乳酸水溶液(pH:2.5)に7日間浸漬したのち、1%乳酸水溶液に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は1.25μg/cmであった。 Oxidizing acid treatment was performed by immersing the test piece thus obtained in an oxidizing acid aqueous solution having a nitric acid concentration of 30% and a sulfuric acid concentration of 5% held at a temperature of 50 ° C. for 3 hours with vibration. After that, it was washed with pure water and dried, and the skeleton surface of the test piece was observed with SEM. As a result, titanium carbide was not found on the skeleton surface of the sponge-like titanium sintered body. This test piece was immersed in a 1% lactic acid aqueous solution (pH: 2.5) maintained at 37 ° C. for 7 days by an incubator, and the amount of Ti eluted in the 1% lactic acid aqueous solution was measured by ICP-MS. As a result, the Ti elution amount was 1.25 μg / cm 2 .

従来例1
実施例1得られた試験片を酸化性酸処理することなくインキュベーターにより37℃に保持された1%乳酸水溶液に7日間浸漬したのち、1%乳酸水溶液に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は2.5μg/cmであった。
Conventional Example 1
Example 1 The obtained test piece was immersed in a 1% lactic acid aqueous solution maintained at 37 ° C. by an incubator for 7 days without being treated with an oxidizing acid, and the amount of Ti eluted in the 1% lactic acid aqueous solution was measured by ICP-MS. It was measured. As a result, the Ti elution amount was 2.5 μg / cm 2 .

実施例1および従来例1に示される結果から、酸化性酸処理を施してチタン炭化物を除去した試験片は、酸化性酸処理を施さない試験片に比べて乳酸水溶液に対する耐食性が優れていることが分かる。
From the results shown in Example 1 and Conventional Example 1, the test piece that had been subjected to the oxidizing acid treatment to remove titanium carbide had better corrosion resistance to the lactic acid aqueous solution than the test piece that had not been subjected to the oxidizing acid treatment. I understand.

実施例2
実施例1で得られた試験片に、温度:70℃に保持された硝酸濃度:40%の酸化性酸水溶液中に2時間浸漬する酸化性酸処理を施し、その後、純水で洗浄、乾燥後この酸化性酸処理した試験片の骨格表面をSEMで観察した。その結果、スポンジ状チタン焼結体における骨格表面にチタン炭化物は見られなかった。この酸化性酸処理を施した試験片をインキュベーターにより60℃に保持された1%HCl水溶液に24時間浸漬したのち、1%HCl水溶液に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は25μg/cmであった。
Example 2
The test piece obtained in Example 1 was subjected to an oxidizing acid treatment that was immersed in an oxidizing acid aqueous solution having a temperature of 70 ° C. and a nitric acid concentration of 40% for 2 hours, and then washed with pure water and dried. Thereafter, the skeletal surface of the test piece treated with the oxidizing acid was observed with an SEM. As a result, titanium carbide was not found on the skeleton surface of the sponge-like titanium sintered body. The test piece treated with the oxidizing acid was immersed in a 1% HCl aqueous solution maintained at 60 ° C. for 24 hours by an incubator, and then the amount of Ti eluted in the 1% HCl aqueous solution was measured by ICP-MS. As a result, the Ti elution amount was 25 μg / cm 2 .

従来例2
実施例1得られた酸化性酸処理を施さない試験片をインキュベーターにより60℃に保持された1%HCl水溶液に24時間浸漬したのち、1%HCl水溶液に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は80μg/cmであった。
Conventional example 2
Example 1 The obtained test piece not subjected to the oxidizing acid treatment was immersed in a 1% HCl aqueous solution maintained at 60 ° C. for 24 hours by an incubator, and then the amount of Ti eluted in the 1% HCl aqueous solution was measured by ICP-MS. It was measured. As a result, the Ti elution amount was 80 μg / cm 2 .

実施例2および従来例2に示される結果から、酸化性酸処理を施してチタン炭化物を除去した試験片は、酸化性酸処理を施さない試験片に比べて塩酸水溶液に対する耐食性が優れていることが分かる。 From the results shown in Example 2 and Conventional Example 2, the test piece that had been subjected to the oxidizing acid treatment to remove titanium carbide had better corrosion resistance to the hydrochloric acid aqueous solution than the test piece that had not been subjected to the oxidizing acid treatment. I understand.

実施例3
実施例1で得られた酸化性酸処理を施した試験片をインキュベーターにより40℃に保持された2%硫酸水溶液に24時間浸漬したのち、硫酸水溶液中に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は12μg/cmであった。
Example 3
After immersing the test piece treated with the oxidizing acid obtained in Example 1 in a 2% aqueous sulfuric acid solution maintained at 40 ° C. for 24 hours with an incubator, the amount of Ti eluted in the aqueous sulfuric acid solution was measured by ICP-MS. It was measured. As a result, the Ti elution amount was 12 μg / cm 2 .

従来例3
実施例1得られた酸化性酸処理を施さない試験片を用い、この試験片をインキュベーター中で40℃に保持された2%硫酸水溶液に24時間浸漬したのち、硫酸水溶液中に溶出したTi量をICP−MSにて測定した。その結果、Ti溶出量は50μg/cmであった。
Conventional example 3
Example 1 Using the obtained test piece not subjected to the oxidizing acid treatment, this test piece was immersed in a 2% sulfuric acid aqueous solution maintained at 40 ° C. in an incubator for 24 hours, and then the amount of Ti eluted in the sulfuric acid aqueous solution Was measured by ICP-MS. As a result, the Ti elution amount was 50 μg / cm 2 .

実施例3および従来例3に示される結果から、酸化性酸処理を施してチタン炭化物を除去した試験片は、酸化性酸処理を施さない試験片に比べて硫酸水溶液に対する耐食性が優れていることが分かる。 From the results shown in Example 3 and Conventional Example 3, the test piece that had been subjected to the oxidizing acid treatment to remove the titanium carbide had better corrosion resistance to the sulfuric acid aqueous solution than the test piece that had not been subjected to the oxidizing acid treatment. I understand.

Claims (2)

チタン粉末を含むスポンジ状グリーン体を焼結して得たスポンジ状チタン焼結体を酸化性酸水溶液中に浸漬することによりスポンジ状チタン焼結体における3次元網目構造の骨格表面に生成しているチタン炭化物を除去することを特徴とする耐食性に優れたスポンジ状チタン焼結体の製造方法。 A sponge-like titanium sintered body obtained by sintering a sponge-like green body containing titanium powder is immersed in an oxidizing acid aqueous solution to form a three-dimensional network structure on the surface of the sponge-like titanium sintered body. A method for producing a sponge-like titanium sintered body excellent in corrosion resistance, characterized by removing titanium carbide. 前記酸化性酸は、硝酸であることを特徴とする請求項1記載の耐食性に優れたスポンジ状チタン焼結体の製造方法。   The method for producing a sponge-like titanium sintered body having excellent corrosion resistance according to claim 1, wherein the oxidizing acid is nitric acid.
JP2006070478A 2006-03-15 2006-03-15 Method for producing sponge-like titanium sintered body with excellent corrosion resistance Expired - Fee Related JP4721113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070478A JP4721113B2 (en) 2006-03-15 2006-03-15 Method for producing sponge-like titanium sintered body with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070478A JP4721113B2 (en) 2006-03-15 2006-03-15 Method for producing sponge-like titanium sintered body with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2007246965A JP2007246965A (en) 2007-09-27
JP4721113B2 true JP4721113B2 (en) 2011-07-13

Family

ID=38591583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070478A Expired - Fee Related JP4721113B2 (en) 2006-03-15 2006-03-15 Method for producing sponge-like titanium sintered body with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4721113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044321A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Manufacturing method of separator with gas diffusion layer for fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134508A (en) * 1994-11-10 1996-05-28 Asahi Tec Corp Production of porous metal
JP2000087271A (en) * 1998-09-04 2000-03-28 Toho Titanium Co Ltd Method for cleaning titanium material
JP2001049304A (en) * 1999-08-04 2001-02-20 Hitachi Metals Ltd Titanium base injection molded sintered body and its production
JP2002012962A (en) * 2000-02-23 2002-01-15 Nippon Steel Corp Titanium hardly generating color change in atmospheric environment and manufacturing method therefor
JP2002060984A (en) * 2000-08-18 2002-02-28 Sumitomo Metal Ind Ltd Method for producing titanium cold rolled sheet
JP2003328144A (en) * 2002-05-02 2003-11-19 Nippon Steel Corp Method for manufacturing titanium which hardly discolors in atmospheric environment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134508A (en) * 1994-11-10 1996-05-28 Asahi Tec Corp Production of porous metal
JP2000087271A (en) * 1998-09-04 2000-03-28 Toho Titanium Co Ltd Method for cleaning titanium material
JP2001049304A (en) * 1999-08-04 2001-02-20 Hitachi Metals Ltd Titanium base injection molded sintered body and its production
JP2002012962A (en) * 2000-02-23 2002-01-15 Nippon Steel Corp Titanium hardly generating color change in atmospheric environment and manufacturing method therefor
JP2002060984A (en) * 2000-08-18 2002-02-28 Sumitomo Metal Ind Ltd Method for producing titanium cold rolled sheet
JP2003328144A (en) * 2002-05-02 2003-11-19 Nippon Steel Corp Method for manufacturing titanium which hardly discolors in atmospheric environment

Also Published As

Publication number Publication date
JP2007246965A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4535281B2 (en) Method for producing high-strength titanium sintered body
WO2006051939A1 (en) Titanium or titanium alloy sintered article of a sponge form excellent in compression strength
EP2415543B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
CN103774149B (en) A kind of preparation method of high-strength nanoporous nickel film
JP5391391B2 (en) Method for producing NiO-ceramic composite powder
WO2010140290A1 (en) Process for production of aluminum complex comprising sintered porous aluminum body
CN1961443A (en) Nickel foam and felt-based anode for solid oxide fuel cells
JP2009256788A (en) Porous aluminum sintered compact and method for producing the same
JP4811793B2 (en) Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same
JPWO2007126118A1 (en) Macroporous carbon material and mesoporous carbon material made from wood as raw material and method for producing the same, and porous metal carbon material and method for producing the same
CN101745432B (en) Wet-chemical method for preparing MAX phase porous catalyst carrier material
JP4721113B2 (en) Method for producing sponge-like titanium sintered body with excellent corrosion resistance
JP6830696B2 (en) Electrochemical reaction electrode with SiC ceramic film and its manufacturing method
JP3631923B2 (en) Substrate tube for fuel cell and its material
CN101748460A (en) Method for coating nanometer rare earth oxide or composite material thereof catalyst by electrochemical method
JP2008088461A (en) Porous body having two or more skeleton layers, and method for producing the same
JP2012111988A (en) Metal porous body, and method for manufacturing the same
JP5099467B2 (en) Porous titanium foam electrode for water-based electrochemical cell with titanium carbonitride layer on the skeleton surface
EP2374177A1 (en) Method for making a nickel cermet electrode
KR102243511B1 (en) Water electrolysis electrode and fabrication method thereof
Vafaeenezhad et al. Tailoring the solid oxide fuel cell anode support composition and microstructure for low‐temperature applications
JP4633449B2 (en) Silicon carbide based porous material and method for producing the same
Ruiz‐Morales et al. Cost‐Effective Microstructural Engineering of Solid Oxide Fuel Cell Components for Planar and Tubular Designs
JP2001329380A (en) Method for manufacturing porous plate material
Mizera et al. Synthesis of Highly Porous SrTiO₃ Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees