WO2010047315A1 - Rubber composition and polyamide laminate - Google Patents

Rubber composition and polyamide laminate Download PDF

Info

Publication number
WO2010047315A1
WO2010047315A1 PCT/JP2009/068030 JP2009068030W WO2010047315A1 WO 2010047315 A1 WO2010047315 A1 WO 2010047315A1 JP 2009068030 W JP2009068030 W JP 2009068030W WO 2010047315 A1 WO2010047315 A1 WO 2010047315A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
compound
mass
range
acid
Prior art date
Application number
PCT/JP2009/068030
Other languages
French (fr)
Japanese (ja)
Inventor
洋司 奥下
修一 前田
佳史 赤川
竜弥 榎本
利雄 森山
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2010534806A priority Critical patent/JP5472116B2/en
Publication of WO2010047315A1 publication Critical patent/WO2010047315A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur

Definitions

  • the present invention relates to a rubber composition capable of providing a polyamide laminate having a high adhesive force, comprising a polyether polyamide elastomer and a crosslinked rubber, and the polyamide laminate.
  • Laminates of polyamide elastomer and rubber are useful as automotive parts, shoe parts, sports parts, belt parts and the like.
  • a rubber is disposed on the grounding portion side of the base portion, and a polyamide elastomer is disposed on the bonding surface side.
  • Patent Document 2 discloses a resin / rubber composite in which a resin member obtained by bringing a polyamide elastomer into contact with a vulcanized rubber member under heating and a vulcanized rubber member are directly bonded.
  • Patent Document 3 discloses a method for producing a composite material in which a composition comprising an elastomer having a block based on polyamide 6, an elastomer having a carboxylic acid group or a dicarboxylic anhydride group, and a crosslinking system is vulcanized in a mold. Is described. However, in these techniques, the adhesive strength (adhesive strength) between the polyamide elastomer and the rubber is not satisfactory.
  • An object of the present invention is to solve the above problems and provide a polyamide laminate having high interlayer adhesion between a polyamide elastomer and a crosslinked rubber, and a rubber composition used as a material for the crosslinked rubber.
  • the inventors of the present invention provide a polyamide laminate in which a crosslinked rubber obtained from a rubber composition containing silica and a plasticizer having a specific structure in a specific ratio and a polyether polyamide elastomer having a specific structure are stacked.
  • the inventors have found that the above problems can be achieved. That is, the present invention provides the following [1] and [2].
  • (C) A rubber composition comprising 0.5 to 10 parts by mass and a crosslinking agent (D) 0.1 to 3 parts by mass.
  • R 1 and R 2 represents an alkyl group having 1 to 10 carbon atoms, the remaining represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group having 1 to 4 carbon atoms.
  • N is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.
  • R 6 represents a linking group containing a hydrocarbon chain.
  • the present invention it is possible to provide a polyamide laminate having high interlayer adhesion between a polyamide elastomer and a crosslinked rubber, and a rubber composition used as a material for the crosslinked rubber.
  • the rubber composition of the present invention is used as a material for the crosslinked rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber (hereinafter referred to as “polyamide laminate”), and contains the following rubber component (A), silica (B), a plasticizer (C), and a crosslinking agent (D) are contained in the ratio shown below, respectively.
  • the rubber composition of the present invention contains natural rubber and / or diene synthetic rubber as the rubber component (A).
  • the diene synthetic rubber is not particularly limited, and any known rubber can be used.
  • polymers of diene monomers such as butadiene rubber (BR), isoprene rubber, butyl rubber and chloroprene rubber; acrylonitrile-diene copolymer rubbers such as acrylonitrile butadiene rubber (NBR), nitrile chloroprene rubber and nitrile isoprene rubber; styrene Examples thereof include styrene-diene copolymer rubbers such as butadiene rubber (SBR), styrene chloroprene rubber, and styrene isoprene rubber, and ethylene propylene diene rubber (EPDM).
  • SBR butadiene rubber
  • EPDM ethylene propylene diene rubber
  • butadiene rubber, acrylonitrile butadiene rubber, styrene are used from the viewpoint of interlayer adhesive strength (hereinafter simply referred to as “adhesive strength”) in a laminate of a polyether polyamide elastomer and a crosslinked rubber obtained from a rubber composition.
  • Adhesive strength interlayer adhesive strength
  • butadiene rubber and isoprene rubber are preferred, butadiene rubber, acrylonitrile butadiene rubber and styrene butadiene rubber are more preferred, and butadiene rubber is even more preferred.
  • the rubber component (A) among natural rubber and the diene synthetic rubber, one kind may be used alone, or two or more kinds may be used in combination.
  • Polybutadiene rubber or a combined system of polybutadiene rubber and natural rubber is preferred.
  • the use ratio of the polybutadiene rubber and the natural rubber is preferably 80:20 to 20:80, more preferably 70:30 to 30:70 in terms of mass ratio.
  • the butadiene rubber preferably contains 90% or more of cis-1,4 bonds from the viewpoint of adhesive strength.
  • Silica (B) in the rubber composition of the present invention is used to increase the adhesive strength.
  • the silica include wet silica (hydrous silicic acid) and dry silica (anhydrous silicic acid), but wet silica is preferable from the viewpoint of adhesive strength.
  • the wet silica preferably has a nitrogen adsorption specific surface area (N 2 SA) of 140 to 280 m 2 / g, more preferably 170 to 250 m 2 / g, according to the BET method.
  • Suitable wet silica includes, for example, AQ, VN3, LP, NA manufactured by Tosoh Silica Co., Ltd., Ultrazil VN3 manufactured by Degussa (N 2 SA: 210 m 2 / g), and the like.
  • the compounding amount of silica (B) is selected in the range of 35 to 80 parts by mass with respect to 100 parts by mass of the rubber component (A). If the content is less than 35 parts by mass, sufficient adhesive strength cannot be obtained. On the other hand, if the content exceeds 80 parts by mass, the adhesive strength decreases. From the above viewpoint, the amount of silica is preferably in the range of 40 to 70 parts by mass. Carbon black can be used in combination with the silica.
  • R 1 and R 2 represents an alkyl group having 1 to 10 carbon atoms, the remaining represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group having 1 to 4 carbon atoms.
  • N is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.
  • the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 of the above formula (1) may be linear, branched or cyclic.
  • One of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms, and the other is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, Examples include various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups, and cyclohexylmethyl groups.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. It is done.
  • n is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.
  • R 1 is an alkyl group having 1 to 10 carbon atoms
  • R 2 is a hydrogen atom
  • R 3 is a methyl group
  • n is 0 or 1 Amide derivatives are preferred.
  • arylsulfonic acid amide derivatives include benzenesulfonic acid alkylamides and toluenesulfonic acid alkylamides.
  • benzenesulfonic acid alkylamides include benzenesulfonic acid propylamide, benzenesulfonic acid butyramide, and benzenesulfonic acid 2-ethylhexylamide.
  • Toluenesulfonic acid alkylamides include N-ethyl-o-toluenesulfonic acid butyramide, N-ethyl-p-toluenesulfonic acid butyramide, N-ethyl-o-toluenesulfonic acid 2-ethylhexylamide, N-ethyl-p. -Toluenesulfonic acid 2-ethylhexylamide and the like.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms represented by R 4 may be linear, branched or cyclic.
  • Examples of the alkyl group having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, various pentyl groups, and various pentyl groups.
  • Examples include hexyl group, various octyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, various hexadecyl groups, various octadecyl groups, various icosyl groups, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group and the like.
  • hydroxybenzoic acid alkyl ester derivative represented by the above formula (2) examples include methyl o- or p-hydroxybenzoate, butyl o- or p-hydroxybenzoate, o- or hexyl p-hydroxybenzoate.
  • N-octyl o- or p-hydroxybenzoate 2-ethylhexyl o- or p-hydroxybenzoate, decyl o- or p-hydroxybenzoate, dodecyl o- or p-hydroxybenzoate, o- or p- Examples include tetradecyl hydroxybenzoate, hexadecyl o- or p-hydroxybenzoate, octadecyl o- or p-hydroxybenzoate, and the like.
  • the plasticizer (C) may be used alone or in combination of two or more.
  • the plasticizer (C) preferably has a solubility parameter (SP value) represented by the following formula that is close to the SP value of the polyether polyamide elastomer described later.
  • the solubility parameter is represented by the square root of CED (cohesive energy density) ((MJ / m 3 ) 1/2 ] indicating intermolecular bonding force.
  • the SP value can be calculated from the Fedors equation described in pages 147 to 154 of “Polymer Engineering and Science” (Vol. 14, No. 2, 1974).
  • the SP value is preferably It is desirable to select those in the range of 19 to 25, more preferably in the range of 19 to 24.5, and still more preferably in the range of 19 to 24.
  • the compounding amount of the plasticizer (C) is 0.5 to 10 parts by mass, preferably 1 to 8 parts by mass, more preferably 1.5 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A). More preferably, it is 1 to 6 parts by mass. If the blending amount of this plasticizer is less than 0.5 parts by mass, the effect of improving the adhesive strength is insufficient. On the other hand, if it exceeds 10 parts by mass, the adhesive strength decreases. In addition, if SP value is in the said range, you may use together plasticizers, softeners, etc. other than the said plasticizer as needed.
  • Crosslinking agent (D) As the crosslinking agent (D) in the rubber composition of the present invention, conventionally known compounds such as sulfur and organic peroxides can be used, and among these, organic peroxides are preferred.
  • organic peroxides that can be used as a crosslinking agent for natural rubber and diene-based synthetic rubber include t-butyl hydroperoxide, cumene hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, Dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane-3, 1,3 -Bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,
  • t- butyl perbenzoate and the like.
  • dicumyl peroxide and 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane are preferable from the viewpoint of crosslinkability and adhesive strength.
  • These organic peroxides may be used alone or in combination of two or more.
  • the compounding amount of the crosslinking agent (D) is selected in the range of 0.1 to 3 parts by mass, preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component (A). If the blending amount of the crosslinking agent is less than 0.1 parts by mass, the crosslinking does not proceed sufficiently and the adhesive strength is insufficient, and if it exceeds 3 parts by mass, the crosslinked rubber becomes too hard.
  • silane coupling agent (E) In the rubber composition of this invention, in order to improve the dispersibility of the silica in a rubber composition and to improve adhesive strength, a silane coupling agent (E) can be contained if desired.
  • a silane coupling agent a sulfur-containing silane coupling agent or an amino group-containing silane coupling agent can be used.
  • the sulfur-containing silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Ethoxysilylethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthio Carbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl te
  • bis (3-triethoxysilylpropyl) tetrasulfide manufactured by Degussa Japan Co., Ltd., trade name “Si69”, average number of S 3.8] and bis (3-triethoxysilylpropyl) polysulfide mixture [Degussa Japan Co., Ltd., trade name “Si75”, average number of S 2.4] is preferable.
  • amino group-containing silane coupling agents include N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltris (2-methoxyethoxy) silane, N-methyl- ⁇ -aminopropyltrimethoxysilane, N -Vinylbenzyl- ⁇ -aminopropyltriethoxysilane and the like.
  • These silane coupling agents may be used singly or in combination of two or more.
  • the blending amount of the silane coupling agent (E) is preferably 1 to 10% by mass with respect to the silica (B). If this compounding amount is 1% by mass or more, the compounding effect of the silane coupling agent is exhibited. On the other hand, if it is 10 mass% or less, gelatinization of a rubber component can be suppressed. From the above viewpoint, the amount of the silane coupling agent (E) is more preferably 3 to 7% by mass.
  • the accelerator may further contain an anti-aging agent, polyethylene glycol, zinc white, stearic acid and the like.
  • the vulcanization accelerator include thiazoles such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide and N-cyclohexyl-2-benzothiazylsulfenamide, and guanidines such as diphenylguanidine.
  • the anti-aging agent examples include N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 6-ethoxy-2, Examples include 2,4-trimethyl-1,2-dihydroquinoline, high-temperature condensate of diphenylamine and acetone.
  • the rubber composition of the present invention includes the rubber component (A), silica (B), plasticizer (C), cross-linking agent (D), and silane coupling agent (E) used as necessary and other various chemicals. Can be prepared by kneading using a kneading machine such as a Banbury mixer, roll, or internal mixer.
  • the rubber composition of the present invention thus obtained can be used as a material for the crosslinked rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber to give a polyamide laminate having high interlayer adhesion. it can.
  • the crosslinked rubber can be formed into a desired shape such as a sheet by a known method such as injection molding, extrusion molding, blow molding, vacuum molding, compression molding, or the like, from a rubber composition as a raw material. Furthermore, you may perform a crosslinking process in a post process as needed.
  • the polyamide laminate of the present invention has a structure in which a polyether polyamide elastomer obtained by polymerizing the following various raw materials and a crosslinked rubber obtained from the above-described rubber composition of the present invention are laminated.
  • a polyether polyamide elastomer obtained by polymerizing the following various raw materials and a crosslinked rubber obtained from the above-described rubber composition of the present invention are laminated.
  • the polyether polyamide elastomer used in the polyamide laminate of the present invention comprises a polyamide-forming monomer [namely, aminocarboxylic acid compound (X1) and / or lactam compound (X2)], XYX type triblock polyetherdiamine compound (Y). (Y is polyoxybutylene) and those obtained by polymerizing dicarboxylic acid (Z) are preferred.
  • the polyether polyamide elastomer there is a ratio such that the terminal carboxylic acid or carboxy group contained in the polyamide-forming monomer, XYX type triblock polyether diamine, and dicarboxylic acid and the terminal amino group are approximately equimolar. preferable.
  • the XYX-type triblock polyether diamine and dicarboxylic acid are the amino group of the polyether diamine and the carboxy group of the dicarboxylic acid.
  • the ratio is preferably such that the groups are approximately equimolar.
  • aminocarboxylic acid compound (X1) and lactam compound (X2) aminocarboxylic acid compound (X1) and lactam compound (X2)
  • the aminocarboxylic acid compound (X1) used for the polyether polyamide elastomer is a compound represented by the following formula (3).
  • R 5 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms, More preferably, the hydrocarbon group having 3 to 18 carbon atoms or the alkylene group having 3 to 18 carbon atoms, more preferably the hydrocarbon group having 4 to 15 carbon atoms or the alkylene group having 4 to 15 carbon atoms, The hydrocarbon group having 10 to 15 carbon atoms or the alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the lactam compound (X2) used for the polyether polyamide elastomer is a compound represented by the following formula (4).
  • R 6 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms, More preferably, the hydrocarbon group having 3 to 18 carbon atoms or the alkylene group having 3 to 18 carbon atoms, more preferably the hydrocarbon group having 4 to 15 carbon atoms or the alkylene group having 4 to 15 carbon atoms, The hydrocarbon group having 10 to 15 carbon atoms or the alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • aminocarboxylic acid compound (X1) and the lactam compound (X2) at least one aliphatic or alicyclic group selected from ⁇ -aminocarboxylic acid, lactam, or a compound synthesized from diamine and dicarboxylic acid and salts thereof And / or polyamide-forming monomers containing aromatics are used.
  • Examples of the diamine synthesized from diamine and dicarboxylic acid and salts thereof include at least one diamine compound selected from aliphatic diamine, alicyclic diamine and aromatic diamine, or derivatives thereof.
  • Examples of the dicarboxylic acid include at least one dicarboxylic acid compound selected from aliphatic dicarboxylic acid, alicyclic dicarboxylic acid and aromatic dicarboxylic acid, or derivatives thereof.
  • a polyether polyamide elastomer having a low specific gravity, large tensile elongation, excellent impact resistance, and good melt moldability can be obtained. it can.
  • the molar ratio of diamine to dicarboxylic acid is preferably in the range of 0.9 to 1.1, more preferably in the range of 0.93 to 1.07, and in the range of 0.95 to 1.05. Is more preferable, and the range of 0.97 to 1.03 is particularly preferable. If this molar ratio is within the above range, high molecular weight can be easily achieved.
  • diamine examples include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, and 3-methylpentamethylenediamine.
  • dicarboxylic acid examples include oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and aliphatic dicarboxylic acid having 2 to 20 carbon atoms such as dodecanedioic acid. Can be mentioned.
  • lactams include aliphatic lactams having 5 to 20 carbon atoms such as ⁇ -caprolactam, ⁇ -enantolactam, ⁇ -undecalactam, ⁇ -dodecalactam, and 2-pyrrolidone.
  • ⁇ -aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like. ⁇ 20 aliphatic ⁇ -aminocarboxylic acids and the like.
  • XYX type triblock polyether diamine (Y) XYX type triblock polyether diamine (Y) used for polyether polyamide elastomer is a compound represented by the following formula (5), and propylene oxide is added to both ends of poly (oxytetramethylene) glycol and the like.
  • Polyether diamine produced by reacting ammonia or the like with the end of the polypropylene glycol can be used after being converted into polypropylene glycol.
  • XYX-type triblock polyether diamine examples include XTJ-533 manufactured by HUNTSMAN (USA) (wherein x is about 12, y is about 11, and z is about 11), XTJ-536 ( In equation (5), x is approximately 8.5, y is approximately 17, z is approximately 7.5), and XTJ-542 (in equation (5), x is approximately 3, y is approximately 9, z is approximately 2) etc. can be used.
  • XYX type triblock polyether diamine (Y)
  • XYX-1 in formula (5), x is about 3, y is about 14, z is about 2
  • XYX-2 in formula (5), x is approximately 5, y is approximately 14, z is approximately 4
  • XYX-3 in formula (5), x is approximately 3, y is approximately 19, z is approximately 2), and the like can also be used.
  • x and z are 1 to 20, preferably 1 to 18, more preferably 1 to 16, more preferably 1 to 14, particularly preferably 1 to 12
  • y is 4 to 50, preferably 5 to 45, more preferably 6 to 40, more preferably 7 to 35, and particularly preferably 8 to 30.
  • the combination of x, y, and z includes x in the range of 2 to 6, y in the range of 6 to 12, z in the range of 1 to 5, or x in the range of 2 to 10, and y in the range of 13 to Preferred examples include a range of 28 and a combination of z in the range of 1 to 9.
  • the dicarboxylic acid compound (Z) used for the polyether polyamide elastomer is a compound represented by the following formula (6).
  • R 7 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 1 to 20 carbon atoms or an alkylene group having 1 to 20 carbon atoms. And more preferably the hydrocarbon group having 1 to 15 carbon atoms or the alkylene group having 1 to 15 carbon atoms, more preferably the hydrocarbon group having 2 to 12 carbon atoms or the alkylene group having 2 to 12 carbon atoms. Particularly preferably, it represents the above hydrocarbon group having 4 to 10 carbon atoms or an alkylene group having 4 to 10 carbon atoms.
  • M represents 0 or 1.
  • dicarboxylic acid compound (Z) at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or derivatives thereof can be used.
  • dicarboxylic acid examples include linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, Or aliphatic dicarboxylic acids such as dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms (dimer acid) obtained by dimerization of unsaturated fatty acids obtained by fractionation of triglycerides and hydrogenated products thereof (hydrogenated dimer acid) And alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • dimer acid and hydrogenated dimer acid trade names “Pripol 1004”, “Plipol 1006”, “Plipol 1009”, “Plipol
  • the ratio of the polyamide-forming monomer to the total components of the polyether polyamide elastomer is preferably 10 to 95% by mass, more preferably 15 to 90% by mass, more preferably 15 to 85% by mass, and particularly preferably 15 to 80% by mass. %, Most preferably 15 to 70 mass. If the ratio of the polyamide-forming monomer to all the components of the polyether polyamide elastomer is 10% by mass or more, the crystallinity of the polyamide component can be improved, and mechanical properties such as strength and elastic modulus can be improved. it can. If it is 95 mass% or less, the function and performance as elastomers, such as rubber elasticity and a softness
  • the ratio of the total amount of the (Y) compound and the (Z) compound with respect to all the components of the polyether polyamide elastomer is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, more preferably 15 to 85%. % By weight, particularly preferably 20 to 85% by weight, most preferably 30 to 85% by weight.
  • the hardness (Shore D) of the polyether polyamide elastomer is preferably in the range of 15 to 70, more preferably in the range of 18 to 70, still more preferably in the range of 20 to 70, and particularly preferably in the range of 25 to 70. is there.
  • the hardness (Shore D) can be measured according to ASTM D2240.
  • the flexural modulus of the polyether polyamide elastomer is preferably 20 to 450 MPa, more preferably 20 to 400 MPa, still more preferably 20 to 350 MPa, and particularly preferably 20 to 300 MPa.
  • the elastic modulus is within the above range, an elastomer having particularly excellent toughness and rubber elasticity can be obtained.
  • the flexural modulus can be measured according to ASTM D790.
  • the flexural strength of the polyether polyamide elastomer is preferably 0.8 to 15 MPa, more preferably 1 to 13 MPa, still more preferably 1.1 to 10 MPa, and particularly preferably 1.2 to 9 MPa.
  • the bending strength of the polyether polyamide elastomer is within the above range, an elastomer having an excellent balance between toughness such as bending strength and rubber elasticity can be obtained.
  • the bending strength can be measured according to ASTM D790.
  • the tensile yield strength of the polyether polyamide elastomer is preferably in the range of 3 to 25 MPa, more preferably in the range of 3 to 22 MPa, still more preferably in the range of 3 to 20 MPa, and particularly preferably in the range of 3 to 18 MPa.
  • the tensile yield point strength is in the above range, an elastomer having particularly excellent toughness and rubber elasticity can be obtained.
  • the tensile yield point strength can be measured according to ASTM D638.
  • the tensile elongation at break of the polyether polyamide elastomer is preferably 300% or more, more preferably 600% or more. If it is less than this range, the performance as an elastomer such as toughness and rubber elasticity becomes difficult to be exhibited, which may not be preferable.
  • the tensile elongation at break can be measured according to ASTM D638.
  • the polyether polyamide elastomer does not break in the measurement of impact strength with an Izod notch at 23 ° C. (abbreviated as NB) because it is particularly excellent in impact resistance.
  • the impact strength with an Izod notch can be measured according to ASTM D256.
  • the deflection temperature under load of the polyether polyamide elastomer is preferably 50 ° C. or higher. Within the above range, the material is less likely to be deformed during use, which is preferable. In the present invention, the deflection temperature under load can be measured according to ASTM D648.
  • the relative viscosity ( ⁇ r) of the polyether polyamide elastomer is preferably in the range of 1.2 to 3.5 (0.5 mass / volume% metacresol solution, 25 ° C.).
  • Method for producing polyether polyamide elastomer As an example of a method for producing a polyether polyamide elastomer, three components of a polyamide-forming monomer, an XYX type triblock polyether diamine and a dicarboxylic acid are melt-polymerized under pressure and / or normal pressure, and further if necessary. A method comprising a step of melt polymerization under reduced pressure can be used, and further, three components of polyamide-forming monomer, XYX type triblock polyetherdiamine and dicarboxylic acid are simultaneously melt polymerized under pressure and / or normal pressure, If necessary, a method comprising a step of melt polymerization under reduced pressure can be used. It is also possible to use a method in which a polyamide-forming monomer and a dicarboxylic acid are first polymerized and then an XYX type triblock polyether diamine is polymerized.
  • the polyamide forming monomer, the XYX type triblock polyether diamine and the dicarboxylic acid are preferably charged with respect to all components. Is in the range of 10 to 95% by mass, more preferably in the range of 15 to 90% by mass, and the XYX type triblock polyether diamine is preferably in the range of 3 to 88% by mass, more preferably in the range of 8 to 79% by mass.
  • the XYX type triblock polyether diamine and the dicarboxylic acid are preferably charged so that the amino group of the XYX type triblock polyether diamine and the carboxy group of the dicarboxylic acid are approximately equimolar.
  • the polymerization temperature is preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and further preferably 180 to 250 ° C. If the polymerization temperature is 150 ° C. or higher, the polymerization reaction proceeds favorably, and if it is 300 ° C. or lower, thermal decomposition is suppressed and a polymer having good physical properties can be obtained.
  • the polyether polyamide elastomer can be produced by a method comprising steps of normal pressure melt polymerization or normal pressure melt polymerization followed by low pressure melt polymerization when ⁇ -aminocarboxylic acid is used as the polyamide-forming monomer.
  • Polymerization time is usually 0.5 to 30 hours. If the polymerization time is 0.5 hours or more, the molecular weight can be increased, and if it is 30 hours or less, coloring due to thermal decomposition and the like can be suppressed, and a polyether polyamide elastomer having desired physical properties can be obtained. .
  • the production of the polyether polyamide elastomer can be carried out batchwise or continuously, and a batch reactor, a single- or multi-tank continuous reactor, a tubular continuous reactor, etc. can be used alone or in combination. Can be used.
  • monoamines and diamines such as laurylamine, stearylamine, hexamethylenediamine, and metaxylylenediamine, acetic acid, Monocarboxylic acids such as benzoic acid, stearic acid, adipic acid, sebacic acid and dodecanedioic acid, or dicarboxylic acids can be added.
  • the addition amount of the above-mentioned monoamine, diamine, monocarboxylic acid, dicarboxylic acid and the like is preferably in a range in which the properties of the obtained polyether polyamide elastomer are not inhibited, and the relative viscosity of the finally obtained elastomer is 1.2. It is preferable to add appropriately so as to be in the range of ⁇ 3.5 (0.5 mass / volume% metacresol solution, 25 ° C.).
  • phosphoric acid In the production of the polyether polyamide elastomer, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc. are used as a catalyst as necessary, and phosphorous acid, hypophosphorous acid, and Inorganic phosphorus compounds such as these alkali metal salts and alkaline earth metal salts can be added.
  • the addition amount is usually 50 to 3000 ppm with respect to the charged raw material.
  • the polyether polyamide elastomer thus obtained has a heat resistance agent, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a lubricant, a slip agent, a crystal nucleating agent, and an adhesive as long as its properties are not hindered.
  • a property-imparting agent, a sealing property improving agent, an antifogging agent, a release agent, a plasticizer, a pigment, a dye, a fragrance, a flame retardant, a reinforcing material, and the like can be added.
  • Polyether polyamide elastomer has low water absorption, excellent melt moldability, excellent moldability, excellent toughness, excellent hydrolysis resistance, excellent bending fatigue resistance, excellent anti-elasticity, and low specific gravity Excellent in low temperature and flexibility, excellent in low temperature impact resistance, excellent in stretch recovery, excellent in sound deadening properties, excellent in rubbery properties and transparency.
  • the polyether polyamide elastomer in the present invention is a commercially available product such as “UBESTA XPA 9040X1, 9040F1, 9048X1, 9048F1, 9055X1, 9055F1, 9063X1, 9063F1, 9068X1, 9068F1, 9040X2, and 9048X2.
  • 9040F2, 9048F2 "(manufactured by Ube Industries, Ltd.) and the like can be used.
  • the polyamide laminate of the present invention is a laminate in which the polyether polyamide elastomer and a crosslinked rubber obtained from the rubber composition are laminated.
  • the polyamide laminate of the present invention has one or more layers composed of a polyether polyamide elastomer and a crosslinked rubber layer.
  • the thickness in particular of each layer is not restrict
  • the number of layers of a laminated body is two or more layers, the whole number of layers in a laminated body is not restrict
  • polyamide laminate of the present invention can be prepared from any base material such as thermoplastic resin, paper, metal-based material, unstretched, uniaxially or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metallic cotton, woody material. Etc. can also be laminated.
  • base material such as thermoplastic resin, paper, metal-based material, unstretched, uniaxially or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metallic cotton, woody material. Etc. can also be laminated.
  • the polyamide laminate of the present invention is (1) a method for simultaneously molding each layer, (2) a method for molding and laminating each layer, (3) a method for laminating while further forming a layer on the layer (tandem method), (4) A method in which a rubber is inserted into a mold and a polyether polyamide elastomer is injection molded and laminated. (5) A polyether polyamide elastomer molded by an arbitrary method is inserted into a mold in a rubber crosslinking step. Then, it can be obtained by a method of laminating and the like, or a method of combining these.
  • the molding temperature is preferably 160 to 300 ° C., more preferably 190 to 270 ° C.
  • the polyether polyamide elastomer when the polyether polyamide elastomer is injection molded.
  • the polyether polyamide elastomer When the polyether polyamide elastomer is inserted to crosslink the rubber, it is desirable to perform the crosslinking at a temperature exceeding the melting point of the polyether polyamide elastomer, and is generally performed at 160 to 170 ° C. for about 5 to 15 minutes. If the temperature is low or the time is short, the rubber may not be cross-linked or the heat welding strength may not be sufficient, and if the temperature is high or the time is too long, the rubber may deteriorate. This is not preferable.
  • Examples of the laminated structure of the polyether polyamide elastomer layer (X layer) and the crosslinked rubber layer (Y layer) in the polyamide laminate of the present invention include X layer / Y layer, X layer / Y layer / X layer, Y layer.
  • X layer / Y layer X layer / Y layer, X layer / Y layer / base material layer, base material layer / X layer / Y layer, X layer / Y layer / X layer / base material layer, Y layer / X layer / Y layer / group Material layer, Y layer / X layer / adhesive layer / base material layer, X layer / Y layer / adhesive layer / base material layer, base material layer / adhesive layer / X layer / Y layer / X layer / adhesive layer / base material Layer, base material layer / adhesive layer / Y layer / X layer / Y layer / adhesive layer / base material layer, and the like.
  • the base layer is obtained from inorganic fibers made from natural / synthetic fibers, glass / ceramics, etc .; films, sheets, membranes and molded articles obtained from other polymer materials, excluding the polymers of the X layer and Y layer Woven fabric, knitted fabric, braided fabric, non-woven fabric, etc .; glass, metal, ceramics, coating film, paper, etc .; leather etc. can be used.
  • adhesive layer known adhesive components, adhesive sheets and films, and the like can be used, and those that do not impair the characteristics of the present invention are preferably used.
  • the peel strength between the X layer and the Y layer of the polyamide laminate of the present invention is preferably 5 N / mm or more, more preferably 8 N / mm or more, and even more preferably 10 N / mm or more.
  • the peel strength can be measured by the method described in the examples.
  • the polyamide laminate of the present invention uses a rubber composition having a high adhesive force to the polyether polyamide elastomer as a material for the crosslinked rubber, it has a strong adhesive strength between the polyether polyamide elastomer and the crosslinked rubber. It is advantageous for tire parts, various vibration absorbing members, door lock members, radiator mounts and other automotive parts, sports shoes, work shoes, shoe parts such as shoe soles, and various industrial parts such as anti-vibration rubber. Can be used.
  • Production Example 1 (Production of polyether polyamide elastomer (PAE)) UBE Industries, Ltd. 12-aminododecanoic acid (ADA) 11.231 kg, ABA in a 70 liter reaction vessel equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet, pressure regulator and polymer outlet Type triblock polyether diamine (XTJ-542 manufactured by HUNTSMAN, amine value: 1.94 meq / g) 7.680 kg, adipic acid (AA) 1.089 kg, sodium hypophosphite monohydrate 6 g and heat-resistant agent (Tomitox 917 manufactured by Yoshitomi Pharmaceutical) 60 g was charged.
  • PAE polyether polyamide elastomer
  • the temperature inside the container was raised to 230 ° C. over 3.5 hours while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a flow rate of 186 liters / hour.
  • Polymerization was carried out at 230 ° C. for 4 hours while adjusting the pressure at 0.05 MPa to obtain a polymer.
  • stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer outlet in a string shape, cooled with water, and pelletized to obtain about 15 kg of pellets.
  • Examples 1 to 6 and Comparative Examples 1 to 3 (1) Production of Polyether Polyamide Elastomer (PAE) Sheet About 25 g of the PAE pellets obtained in Production Example 1 were set in a spacer (150 mm ⁇ 150 mm, thickness 1.5 mm). Next, set the spacer, metal plate, and Teflon (registered trademark, hereinafter the same) sheet so as to have a layer structure of metal plate / Teflon sheet / spacer / Teflon sheet / metal plate, and set it in a press molding machine. The sample was preheated at 190 ° C. for 1 minute without pressure, then pressed and pressed at 190 ° C. for 1 minute at 1 MPa, taken out, cooled and molded for 2 minutes.
  • PAE Polyether Polyamide Elastomer
  • Example 1 instead of the PAE obtained in Production Example 1, nylon 12 (PA12) [product name “3030U” manufactured by Ube Industries, Ltd.] was used, and the nylon 12 sheet was heated at 210 ° C. A laminate sheet was produced in the same manner as in Example 1 except that it was produced, and the T peel strength was measured. The results are shown in Table 1.
  • BR Butadiene rubber, manufactured by Ube Industries, Ltd., trade name “UBEPOL-BR130B” (cis 1,4-bond content 96%)
  • Natural rubber Standard Malaysian natural rubber
  • NBR Acrylonitrile butadiene rubber, manufactured by JSR Corporation, trade name “N230SV”
  • Silica wet silica, manufactured by Tosoh Silica Co., Ltd., trade name “Nipsil AQ”
  • Carbon black Asahi Carbon Co., Ltd., trade name “Asahi # 70”
  • HDPE 2-ethylhexyl p-hydroxybenzoate (SP value 19.5 (MJ / m 3 ) 1/2 ), manufactured by Kao Corporation, trade name “EXCEPARL HD-PB”
  • BBSA Benzenesulfonic acid butyramide (SP value 23.5 (MJ / m 3 ) 1/2 ), manufactured by Daihachi Chemical Industry Co., Ltd., trade name “Val-BS” (8) Processing
  • the polyamide laminate sheets of Examples 1 to 6 have a much higher T peel strength than Comparative Examples 1 to 4. Further, it can be seen from Comparative Example 2 that even if carbon black is used instead of silica, the effect of improving the T peel strength is not observed.
  • the rubber composition of the present invention is used as a material for the rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber, and can give the polyamide laminate having a high interlayer adhesion.
  • the polyamide laminate of the present invention has strong adhesive strength between the polyether polyamide elastomer and the crosslinked rubber. Therefore, the tire member, various vibration absorbing members, door lock members, radiator mounts and other automobile parts, sports shoes, work Shoes, shoe parts such as shoe soles, various industrial parts such as anti-vibration rubber, and parts that are deformed due to insufficient strength with rubber alone, such as non-slip rubber, rubber tubes, sporting goods, electricity It can be suitably used for applications such as product grips.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a rubber composition used as a material for a cross-linked rubber for a laminate of polyether polyamide elastomer and the rubber. The rubber composition includes 35-80 parts by mass of silica (B), 0.5-10 parts by mass of a plasticizer having a prescribed structure (C), and 0.1-3 parts by mass of a cross-linking agent (D) with respect to 100 parts by mass of a natural rubber and/or a diene series synthetic rubber (A); the polyamide laminate is formed by laminating a polyether polyamide elastomer obtained by polymerizing a prescribed material and a cross-linked rubber obtained from the rubber composition; and the polyamide laminate, with a high interlayer adhesive force between the polyamide elastomer and the cross-linked rubber, and the material for the cross-linked rubber are provided.

Description

ゴム組成物及びポリアミド積層体Rubber composition and polyamide laminate
 本発明は、ポリエーテルポリアミドエラストマーと、架橋ゴムからなる、接着力の高いポリアミド積層体を与えることのできるゴム組成物及び前記ポリアミド積層体に関するものである。 The present invention relates to a rubber composition capable of providing a polyamide laminate having a high adhesive force, comprising a polyether polyamide elastomer and a crosslinked rubber, and the polyamide laminate.
 ポリアミドエラストマーとゴムとの積層体は、自動車用部品、靴用部品、スポーツ用部品,ベルト用部品などとして有用である。
 例えば、特許文献1には、接地部、意匠部、ベース部からなるアウトソールにおいて、前記ベース部の接地部側にはラバーが配置され、接着面側はポリアミドエラストマーが配置され、ラバーと熱可塑性エラストマーとが溶融一体化して接合された構造を有するアウトソールが開示されている。
 特許文献2には、ポリアミドエラストマーを、加熱下で、加硫ゴム部材と接触させて得られる樹脂部材と加硫ゴム部材とが直接接合した樹脂/ゴム複合体が開示されている。
 特許文献3には、ポリアミド6をベースとしたブロックを有するエラストマーと、カルボン酸基または無水ジカルボン酸基を有するエラストマーと架橋系とからなる組成物を金型内で加硫する複合材料の製造方法が記載されている。
 しかしながら、これらの技術においては、ポリアミドエラストマーとゴムとの接着力(接着強度)が満足できるものではない。
Laminates of polyamide elastomer and rubber are useful as automotive parts, shoe parts, sports parts, belt parts and the like.
For example, in Patent Document 1, in an outsole composed of a grounding portion, a design portion, and a base portion, a rubber is disposed on the grounding portion side of the base portion, and a polyamide elastomer is disposed on the bonding surface side. An outsole having a structure in which an elastomer is melted and integrated and joined is disclosed.
Patent Document 2 discloses a resin / rubber composite in which a resin member obtained by bringing a polyamide elastomer into contact with a vulcanized rubber member under heating and a vulcanized rubber member are directly bonded.
Patent Document 3 discloses a method for producing a composite material in which a composition comprising an elastomer having a block based on polyamide 6, an elastomer having a carboxylic acid group or a dicarboxylic anhydride group, and a crosslinking system is vulcanized in a mold. Is described.
However, in these techniques, the adhesive strength (adhesive strength) between the polyamide elastomer and the rubber is not satisfactory.
特開2003-289902号公報JP 2003-289902 A 特開2005-36147号公報JP 2005-36147 A 特開平8-3325号公報JP-A-8-3325
 本発明は、前記問題を解決し、ポリアミドエラストマーと架橋ゴムの層間接着力の高いポリアミド積層体、および該架橋ゴムの材料として用いられるゴム組成物を提供することを目的とする。 An object of the present invention is to solve the above problems and provide a polyamide laminate having high interlayer adhesion between a polyamide elastomer and a crosslinked rubber, and a rubber composition used as a material for the crosslinked rubber.
 本発明者らは、シリカ及び特定の構造を有する可塑剤を特定の割合で含むゴム組成物から得られた架橋ゴムと、特定の構造を有するポリエーテルポリアミドエラストマーとが積層されたポリアミド積層体により、上記課題を達成し得ることを見出した。
 すなわち、本発明は、下記[1]及び[2]を提供するものである。
[1]ポリエーテルポリアミドエラストマーと、架橋ゴムとの積層体における該架橋ゴムの材料として用いられるゴム組成物であって、天然ゴム及び/又はジエン系合成ゴム(A)100質量部に対し、シリカ(B)35~80質量部と、下記式(1)で表されるアリールスルホン酸アミド誘導体及び下記式(2)で表されるヒドロキシ安息香酸アルキルエステル誘導体の中から選ばれる少なくとも一種の可塑剤(C)0.5~10質量部と、架橋剤(D)0.1~3質量部とを含むゴム組成物。
The inventors of the present invention provide a polyamide laminate in which a crosslinked rubber obtained from a rubber composition containing silica and a plasticizer having a specific structure in a specific ratio and a polyether polyamide elastomer having a specific structure are stacked. The inventors have found that the above problems can be achieved.
That is, the present invention provides the following [1] and [2].
[1] A rubber composition used as a material for a crosslinked rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber, wherein 100 parts by mass of natural rubber and / or diene synthetic rubber (A) is silica. (B) at least one plasticizer selected from 35 to 80 parts by mass, an arylsulfonic acid amide derivative represented by the following formula (1) and a hydroxybenzoic acid alkyl ester derivative represented by the following formula (2) (C) A rubber composition comprising 0.5 to 10 parts by mass and a crosslinking agent (D) 0.1 to 3 parts by mass.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R1及びR2は、一方が炭素数1~10のアルキル基、残りが水素原子又は炭素数1~10のアルキル基を示し、R3は炭素数1~4のアルキル基を示す。nは0~5の整数であり、nが2以上の場合、複数のR3は同一でも異なっていてもよい。) (In the formula, one of R 1 and R 2 represents an alkyl group having 1 to 10 carbon atoms, the remaining represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group having 1 to 4 carbon atoms. N is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R4は炭素数1~20のアルキル基を示す。)
[2]下記式(3)で表わされるアミノカルボン酸化合物(X1)及び/又は下記式(4)で表わされるラクタム化合物(X2)、下記式(5)で表わされるトリブロックポリエーテルジアミン化合物(Y)、並びに下記式(6)で表わされるジカルボン酸化合物(Z)を重合して得られるポリエーテルポリアミドエラストマーと、上記[1]のゴム組成物から得られた架橋ゴムとが積層されてなるポリアミド積層体。
 H2N-R5-COOH    (3)
[但し、R5は、炭化水素鎖を含む連結基を示す。]
(Wherein R 4 represents an alkyl group having 1 to 20 carbon atoms.)
[2] Aminocarboxylic acid compound (X1) represented by the following formula (3) and / or a lactam compound (X2) represented by the following formula (4), a triblock polyetherdiamine compound represented by the following formula (5) ( Y) and a polyether polyamide elastomer obtained by polymerizing a dicarboxylic acid compound (Z) represented by the following formula (6) and a crosslinked rubber obtained from the rubber composition of the above [1] are laminated. Polyamide laminate.
H 2 N—R 5 —COOH (3)
[However, R 5 represents a linking group containing a hydrocarbon chain. ]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[但し、R6は、炭化水素鎖を含む連結基を示す。] [However, R 6 represents a linking group containing a hydrocarbon chain. ]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[但し、xは1~20の範囲、yは4~50の範囲、zは1~20の範囲である。]
 HOOC-(R7m-COOH  (6)
[但し、R7は、炭化水素鎖を含む連結基を表わし、mは0又は1である。]
[Where x is in the range of 1 to 20, y is in the range of 4 to 50, and z is in the range of 1 to 20. ]
HOOC- (R 7 ) m —COOH (6)
[However, R 7 represents a linking group containing a hydrocarbon chain, and m is 0 or 1. ]
 本発明によれば、ポリアミドエラストマーと架橋ゴムの層間接着力の高いポリアミド積層体、および該架橋ゴムの材料として用いられるゴム組成物を提供することができる。 According to the present invention, it is possible to provide a polyamide laminate having high interlayer adhesion between a polyamide elastomer and a crosslinked rubber, and a rubber composition used as a material for the crosslinked rubber.
 本発明のゴム組成物は、ポリエーテルポリアミドエラストマーと架橋ゴムとの積層体(以下、「ポリアミド積層体」という)における該架橋ゴムの材料として用いられ、かつ、下記のゴム成分(A)、シリカ(B)、可塑剤(C)及び架橋剤(D)を、それぞれ以下に示す割合で含むことを特徴とする。 The rubber composition of the present invention is used as a material for the crosslinked rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber (hereinafter referred to as “polyamide laminate”), and contains the following rubber component (A), silica (B), a plasticizer (C), and a crosslinking agent (D) are contained in the ratio shown below, respectively.
[ゴム成分(A)]
 本発明のゴム組成物においては、ゴム成分(A)として、天然ゴム及び/又はジエン系合成ゴムを含有する。
 前記ジエン系合成ゴムとしては、特に制限なく、公知のものを使用することができる。例えば、ブタジエンゴム(BR)、イソプレンゴム、ブチルゴム、クロロプレンゴムなどのジエン系単量体の重合体;アクリロニトリルブタジエンゴム(NBR)、ニトリルクロロプレンゴム、ニトリルイソプレンゴムなどのアクリロニトリル-ジエン共重合ゴム;スチレンブタジエンゴム(SBR)、スチレンクロロプレンゴム、スチレンイソプレンゴムなどのスチレン-ジエン共重合ゴム,エチレンプロピレンジエンゴム(EPDM)などが挙げられる。
 これらの中で、ポリエーテルポリアミドエラストマーと、ゴム組成物から得られた架橋ゴムとの積層体における層間接着強度(以下、単に「接着強度」という)の観点から、ブタジエンゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、イソプレンゴムが好ましく、ブタジエンゴム、アクリロニトリルブタジエンゴム及びスチレンブタジエンゴムがより好ましく、ブタジエンゴムがさらに好ましい。
[Rubber component (A)]
The rubber composition of the present invention contains natural rubber and / or diene synthetic rubber as the rubber component (A).
The diene synthetic rubber is not particularly limited, and any known rubber can be used. For example, polymers of diene monomers such as butadiene rubber (BR), isoprene rubber, butyl rubber and chloroprene rubber; acrylonitrile-diene copolymer rubbers such as acrylonitrile butadiene rubber (NBR), nitrile chloroprene rubber and nitrile isoprene rubber; styrene Examples thereof include styrene-diene copolymer rubbers such as butadiene rubber (SBR), styrene chloroprene rubber, and styrene isoprene rubber, and ethylene propylene diene rubber (EPDM).
Among these, butadiene rubber, acrylonitrile butadiene rubber, styrene are used from the viewpoint of interlayer adhesive strength (hereinafter simply referred to as “adhesive strength”) in a laminate of a polyether polyamide elastomer and a crosslinked rubber obtained from a rubber composition. Butadiene rubber and isoprene rubber are preferred, butadiene rubber, acrylonitrile butadiene rubber and styrene butadiene rubber are more preferred, and butadiene rubber is even more preferred.
 本発明においては、(A)ゴム成分として、天然ゴム及び前記ジエン系合成ゴムの中から、一種単独でも、または二種以上を併用してもよいが、ゴムの総合的性能発現の観点から、ポリブタジエンゴム、又はポリブタジエンゴムと天然ゴムとの併用系が好ましい。
 この併用系の場合、ポリブタジエンゴムと天然ゴムとの使用割合は、質量比で80:20~20:80であることが好ましく、70:30~30:70であることがより好ましい。
 さらに、ブタジエンゴムとしては、接着強度の観点から、シス-1,4結合を90%以上含むものが好ましい。
In the present invention, as the rubber component (A), among natural rubber and the diene synthetic rubber, one kind may be used alone, or two or more kinds may be used in combination. Polybutadiene rubber or a combined system of polybutadiene rubber and natural rubber is preferred.
In the case of this combined system, the use ratio of the polybutadiene rubber and the natural rubber is preferably 80:20 to 20:80, more preferably 70:30 to 30:70 in terms of mass ratio.
Further, the butadiene rubber preferably contains 90% or more of cis-1,4 bonds from the viewpoint of adhesive strength.
[シリカ(B)]
 本発明のゴム組成物におけるシリカ(B)は接着強度を高めるために用いられる。このシリカとしては、湿式シリカ(含水ケイ酸)及び乾式シリカ(無水ケイ酸)があるが、接着強度の観点から湿式シリカが好ましい。
 前記湿式シリカは、接着強度の観点から、BET法による窒素吸着比表面積(N2SA)が140~280m2/gであることが好ましく、170~250m2/gであることがより好ましい。好適な湿式シリカとしては、例えば東ソー・シリカ株式会社製のAQ、VN3、LP、NA等、デグサ社製のウルトラジルVN3(N2SA:210m2/g)等が挙げられる。
 シリカ(B)の配合量は、前記の(A)ゴム成分100質量部に対し、35~80質量部の範囲で選定される。この含有量が35質量部未満では、充分な接着強度が得られず、一方、80質量部を超えると、逆に接着強度が低下する。以上の観点から、シリカの配合量は、40~70質量部の範囲であることが好ましい。また、カーボンブラックを前記シリカと併用することができる。
[Silica (B)]
Silica (B) in the rubber composition of the present invention is used to increase the adhesive strength. Examples of the silica include wet silica (hydrous silicic acid) and dry silica (anhydrous silicic acid), but wet silica is preferable from the viewpoint of adhesive strength.
From the viewpoint of adhesive strength, the wet silica preferably has a nitrogen adsorption specific surface area (N 2 SA) of 140 to 280 m 2 / g, more preferably 170 to 250 m 2 / g, according to the BET method. Suitable wet silica includes, for example, AQ, VN3, LP, NA manufactured by Tosoh Silica Co., Ltd., Ultrazil VN3 manufactured by Degussa (N 2 SA: 210 m 2 / g), and the like.
The compounding amount of silica (B) is selected in the range of 35 to 80 parts by mass with respect to 100 parts by mass of the rubber component (A). If the content is less than 35 parts by mass, sufficient adhesive strength cannot be obtained. On the other hand, if the content exceeds 80 parts by mass, the adhesive strength decreases. From the above viewpoint, the amount of silica is preferably in the range of 40 to 70 parts by mass. Carbon black can be used in combination with the silica.
[可塑剤(C)]
 本発明のゴム組成物において、接着強度を向上させるために、下記式(1)で表されるアリールスルホン酸アミド誘導体及び下記式(2)で表されるヒドロキシ安息香酸アルキルエステル誘導体の中から選ばれる少なくとも一種の可塑剤(C)を含有する。
[Plasticizer (C)]
In the rubber composition of the present invention, in order to improve the adhesive strength, the arylsulfonic acid amide derivative represented by the following formula (1) and the hydroxybenzoic acid alkyl ester derivative represented by the following formula (2) are selected. At least one plasticizer (C).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R1及びR2は、一方が炭素数1~10のアルキル基、残りが水素原子又は炭素数1~10のアルキル基を示し、R3は炭素数1~4のアルキル基を示す。nは0~5の整数であり、nが2以上の場合、複数のR3は同一でも異なっていてもよい。) (In the formula, one of R 1 and R 2 represents an alkyl group having 1 to 10 carbon atoms, the remaining represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group having 1 to 4 carbon atoms. N is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.)
 上記式(1)のR1及びR2における、炭素数1~10のアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。R1及びR2は、一方は炭素数1~10のアルキル基であり、他方は水素原子又は炭素数1~10のアルキル基である。
 この炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基などが挙げられる。
 R3で表される炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられる。
 nは0~5の整数であって、nが2以上の場合、複数のR3は同一でも異なっていてもよい。
The alkyl group having 1 to 10 carbon atoms in R 1 and R 2 of the above formula (1) may be linear, branched or cyclic. One of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms, and the other is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, Examples include various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups, and cyclohexylmethyl groups.
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. It is done.
n is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.
 上記式(1)において、可塑剤としての効果の観点から、R1が炭素数1~10のアルキル基、R2が水素原子、R3がメチル基及びnが0又は1であるアリールスルホン酸アミド誘導体が好適である。
 このようなアリールスルホン酸アミド誘導体としては、例えば、ベンゼンスルホン酸アルキルアミド類及びトルエンスルホン酸アルキルアミド類などが挙げられる。
 ベンゼンスルホン酸アルキルアミド類としては、ベンゼンスルホン酸プロピルアミド、ベンゼンスルホン酸ブチルアミド及びベンゼンスルホン酸2-エチルヘキシルアミドなどが挙げられる。
 トルエンスルホン酸アルキルアミド類としては、N-エチル-o-トルエンスルホン酸ブチルアミド、N-エチル-p-トルエンスルホン酸ブチルアミド、N-エチル-o-トルエンスルホン酸2-エチルヘキシルアミド、N-エチル-p-トルエンスルホン酸2-エチルヘキシルアミドなどが挙げられる。
In the above formula (1), from the viewpoint of the effect as a plasticizer, R 1 is an alkyl group having 1 to 10 carbon atoms, R 2 is a hydrogen atom, R 3 is a methyl group, and n is 0 or 1 Amide derivatives are preferred.
Examples of such arylsulfonic acid amide derivatives include benzenesulfonic acid alkylamides and toluenesulfonic acid alkylamides.
Examples of benzenesulfonic acid alkylamides include benzenesulfonic acid propylamide, benzenesulfonic acid butyramide, and benzenesulfonic acid 2-ethylhexylamide.
Toluenesulfonic acid alkylamides include N-ethyl-o-toluenesulfonic acid butyramide, N-ethyl-p-toluenesulfonic acid butyramide, N-ethyl-o-toluenesulfonic acid 2-ethylhexylamide, N-ethyl-p. -Toluenesulfonic acid 2-ethylhexylamide and the like.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、R4は炭素数1~20のアルキル基を示す。)
 上記式(2)において、R4で表される炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。
 炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基、各種イコシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基などが挙げられる。
(Wherein R 4 represents an alkyl group having 1 to 20 carbon atoms.)
In the above formula (2), the alkyl group having 1 to 20 carbon atoms represented by R 4 may be linear, branched or cyclic.
Examples of the alkyl group having 1 to 20 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, various pentyl groups, and various pentyl groups. Examples include hexyl group, various octyl groups, various decyl groups, various dodecyl groups, various tetradecyl groups, various hexadecyl groups, various octadecyl groups, various icosyl groups, cyclopentyl group, cyclohexyl group, cyclohexylmethyl group and the like.
 上記式(2)で表されるヒドロキシ安息香酸アルキルエステル誘導体の具体例としては、o-又はp-ヒドロキシ安息香酸メチル、o-又はp-ヒドロキシ安息香酸ブチル、o-又はp-ヒドロキシ安息香酸ヘキシル、o-又はp-ヒドロキシ安息香酸n-オクチル、o-又はp-ヒドロキシ安息香酸2-エチルヘキシル、o-又はp-ヒドロキシ安息香酸デシル、o-又はp-ヒドロキシ安息香酸ドデシル、o-又はp-ヒドロキシ安息香酸テトラデシル、o-又はp-ヒドロキシ安息香酸ヘキサデシル、o-又はp-ヒドロキシ安息香酸オクタデシルなどが挙げられる。可塑剤(C)は一種を単独でも、二種以上を組み合わせて用いてもよい。 Specific examples of the hydroxybenzoic acid alkyl ester derivative represented by the above formula (2) include methyl o- or p-hydroxybenzoate, butyl o- or p-hydroxybenzoate, o- or hexyl p-hydroxybenzoate. N-octyl o- or p-hydroxybenzoate, 2-ethylhexyl o- or p-hydroxybenzoate, decyl o- or p-hydroxybenzoate, dodecyl o- or p-hydroxybenzoate, o- or p- Examples include tetradecyl hydroxybenzoate, hexadecyl o- or p-hydroxybenzoate, octadecyl o- or p-hydroxybenzoate, and the like. The plasticizer (C) may be used alone or in combination of two or more.
 可塑剤(C)は、接着強度を高める観点から、下記式で表される溶解度パラメータ(SP値;Solubility Parameter)が、後記ポリエーテルポリアミドエラストマーのSP値と近いものが好ましい。なお、溶解度パラメータとは、分子間結合力を示すCED(凝集エネルギー密度:cohesive energy density)の平方根〔(MJ/m31/2〕で表されるものである。SP値は、「Polymer Engineering and Science」(Vol.14、No.2、1974)第147~154頁に記載されたFedors式から算出可能である。
 したがって、可塑剤(C)としては、前記式(1)で表されるアリールスルホン酸アミド誘導体及び式(2)で表されるヒドロキシ安息香酸アルキルエステル誘導体の中から、前記SP値が、好ましくは19~25の範囲、より好ましくは19~24.5の範囲、さらに好ましくは19~24の範囲にあるものを選択することが望ましい。
 このような可塑剤としては、例えばベンゼンスルホン酸ブチルアミド(SP値=23.5(MJ/m31/2)、p-ヒドロキシ安息香酸2-エチルヘキシル(SP値=19.5(MJ/m31/2)などを挙げることができる。
From the viewpoint of increasing the adhesive strength, the plasticizer (C) preferably has a solubility parameter (SP value) represented by the following formula that is close to the SP value of the polyether polyamide elastomer described later. The solubility parameter is represented by the square root of CED (cohesive energy density) ((MJ / m 3 ) 1/2 ] indicating intermolecular bonding force. The SP value can be calculated from the Fedors equation described in pages 147 to 154 of “Polymer Engineering and Science” (Vol. 14, No. 2, 1974).
Accordingly, as the plasticizer (C), among the aryl sulfonic acid amide derivative represented by the formula (1) and the hydroxybenzoic acid alkyl ester derivative represented by the formula (2), the SP value is preferably It is desirable to select those in the range of 19 to 25, more preferably in the range of 19 to 24.5, and still more preferably in the range of 19 to 24.
Examples of such plasticizers include benzenesulfonic acid butyramide (SP value = 23.5 (MJ / m 3 ) 1/2 ), 2-ethylhexyl p-hydroxybenzoate (SP value = 19.5 (MJ / m 3 ) 1/2 ) and the like.
 可塑剤(C)の配合量は、前記ゴム成分(A)100質量部に対して、0.5~10質量部、好ましくは1~8質量部、より好ましくは1.5~7質量部、さらに好ましくは1~6質量部である。この可塑剤の配合量が0.5質量部未満では接着強度の向上効果が不十分であり、一方10質量部を超えると、逆に接着強度が低下する。
 なお、SP値が前記の範囲にあれば、当該可塑剤以外の可塑剤や軟化剤などを、必要により併用してもよい。
The compounding amount of the plasticizer (C) is 0.5 to 10 parts by mass, preferably 1 to 8 parts by mass, more preferably 1.5 to 7 parts by mass with respect to 100 parts by mass of the rubber component (A). More preferably, it is 1 to 6 parts by mass. If the blending amount of this plasticizer is less than 0.5 parts by mass, the effect of improving the adhesive strength is insufficient. On the other hand, if it exceeds 10 parts by mass, the adhesive strength decreases.
In addition, if SP value is in the said range, you may use together plasticizers, softeners, etc. other than the said plasticizer as needed.
[架橋剤(D)]
 本発明のゴム組成物における架橋剤(D)としては、従来公知の化合物、例えば硫黄や有機過酸化物などを用いることができるが、これらの中で有機過酸化物が好適である。
 天然ゴムやジエン系合成ゴムに対する架橋剤として用いることのできる有機過酸化物としては、例えばt-ブチルヒドロパーオキシド、クメンヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン-3、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、p-クロルベンゾイルパーオキシド、2,4-ジクロロベンゾイルパーオキシド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカルボナート、t-ブチルペルベンゾエートなどが挙げられる。
 これらの中ではジクミルパーオキシド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサンが、架橋性や接着強度の観点から好適である。
 これらの有機過酸化物は一種単独でも、二種以上を組み合わせて用いてもよい。
[Crosslinking agent (D)]
As the crosslinking agent (D) in the rubber composition of the present invention, conventionally known compounds such as sulfur and organic peroxides can be used, and among these, organic peroxides are preferred.
Examples of the organic peroxide that can be used as a crosslinking agent for natural rubber and diene-based synthetic rubber include t-butyl hydroperoxide, cumene hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, Dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane-3, 1,3 -Bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4-bis (t-butylperoxy) Valerate, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, t-butylperoxybenzoate, t-butyl Peroxyisopropyl carbonate, etc. t- butyl perbenzoate and the like.
Among these, dicumyl peroxide and 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane are preferable from the viewpoint of crosslinkability and adhesive strength.
These organic peroxides may be used alone or in combination of two or more.
 当該架橋剤(D)の配合量は、前記(A)ゴム成分100質量部に対し、0.1~3質量部、好ましくは0.5~2質量部の範囲で選定される。この架橋剤の配合量が0.1質量部未満では架橋が十分に進行せず、接着強度が不十分となり、3質量部を超えると架橋ゴムが硬すぎるものとなる。 The compounding amount of the crosslinking agent (D) is selected in the range of 0.1 to 3 parts by mass, preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the rubber component (A). If the blending amount of the crosslinking agent is less than 0.1 parts by mass, the crosslinking does not proceed sufficiently and the adhesive strength is insufficient, and if it exceeds 3 parts by mass, the crosslinked rubber becomes too hard.
[シランカップリング剤(E)]
 本発明のゴム組成物においては、ゴム組成物中へのシリカの分散性を向上させ、接着強度を向上させるために、所望により、シランカップリング剤(E)を含有させることができる。
 当該シランカップリング剤としては、硫黄含有シランカップリング剤やアミノ基含有シランカップリング剤を用いることができる。硫黄含有シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィドなどが挙げられる。これらの中でビス(3-トリエトキシシリルプロピル)テトラスルフィド[デグサ・ジャパン株式会社製、商品名「Si69」、Sの平均数3.8]や、ビス(3-トリエトキシシリルプロピル)ポリスルフィド混合物[デグサ・ジャパン株式会社製、商品名「Si75」、Sの平均数2.4]が好適である。
[Silane coupling agent (E)]
In the rubber composition of this invention, in order to improve the dispersibility of the silica in a rubber composition and to improve adhesive strength, a silane coupling agent (E) can be contained if desired.
As the silane coupling agent, a sulfur-containing silane coupling agent or an amino group-containing silane coupling agent can be used. Examples of the sulfur-containing silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy). Ethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercapto Ethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthio Carbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3-trimethoxy Ethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl Examples thereof include tetrasulfide and dimethoxymethylsilylpropylbenzothiazolyl tetrasulfide. Among them, bis (3-triethoxysilylpropyl) tetrasulfide [manufactured by Degussa Japan Co., Ltd., trade name “Si69”, average number of S 3.8] and bis (3-triethoxysilylpropyl) polysulfide mixture [Degussa Japan Co., Ltd., trade name “Si75”, average number of S 2.4] is preferable.
 一方、アミノ基含有シランカップリング剤としては、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリス(2-メトキシエトキシ)シラン、N-メチル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシランなどが挙げられる。
 これらのシランカップリング剤は、一種単独でも、二種以上を組み合わせて用いてもよい。
On the other hand, amino group-containing silane coupling agents include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, and γ-aminopropyl. Triethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltris (2-methoxyethoxy) silane, N-methyl-γ-aminopropyltrimethoxysilane, N -Vinylbenzyl-γ-aminopropyltriethoxysilane and the like.
These silane coupling agents may be used singly or in combination of two or more.
 シランカップリング剤(E)の配合量は、前記シリカ(B)に対して、1~10質量%であることが好ましい。この配合量が1質量%以上であれば、当該シランカップリング剤の配合効果が発揮される。一方、10質量%以下であれば、ゴム成分のゲル化を抑制することができる。以上の観点から、シランカップリング剤(E)の配合量は3~7質量%であることがより好ましい。 The blending amount of the silane coupling agent (E) is preferably 1 to 10% by mass with respect to the silica (B). If this compounding amount is 1% by mass or more, the compounding effect of the silane coupling agent is exhibited. On the other hand, if it is 10 mass% or less, gelatinization of a rubber component can be suppressed. From the above viewpoint, the amount of the silane coupling agent (E) is more preferably 3 to 7% by mass.
[ゴム組成物の調製]
 本発明のゴム組成物には、本発明の効果が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば架橋剤として硫黄(加硫剤)を用いる場合には加硫促進剤を、さらには老化防止剤、ポリエチレングリコール、亜鉛華、ステアリン酸などを含有させることができる。
 前記加硫促進剤としては、例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミドなどのチアゾール系、ジフェニルグアニジンなどのグアニジン系などが挙げられる。
 前記老化防止剤としては、例えば、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、ジフェニルアミンとアセトンの高温縮合物などが挙げられる。
 本発明のゴム組成物は、前述したゴム成分(A)、シリカ(B)、可塑剤(C)、架橋剤(D)及び必要に応じて用いられるシランカップリング剤(E)やその他各種薬品を、バンバリーミキサー、ロール、インターナルミキサーなどの混練り機を用いて混練りすることにより、調製することができる。
 このようにして得られた本発明のゴム組成物は、ポリエーテルポリアミドエラストマーと、架橋ゴムとの積層体における該架橋ゴムの材料として用いることにより、層間接着力の高いポリアミド積層体を与えることができる。
 本発明において、架橋ゴムは、原料であるゴム組成物を射出成形、押出成形、ブロー成形、真空成形、圧縮成形等の公知の方法にてシート状等の所望の形状に成形することができる。更に、必要に応じて後工程で更に架橋処理を行ってもよい。
[Preparation of rubber composition]
In the rubber composition of the present invention, as long as the effects of the present invention are not impaired, various chemicals usually used in the rubber industry, for example, sulfur (vulcanizing agent) as a crosslinking agent is used as desired. The accelerator may further contain an anti-aging agent, polyethylene glycol, zinc white, stearic acid and the like.
Examples of the vulcanization accelerator include thiazoles such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide and N-cyclohexyl-2-benzothiazylsulfenamide, and guanidines such as diphenylguanidine.
Examples of the anti-aging agent include N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 6-ethoxy-2, Examples include 2,4-trimethyl-1,2-dihydroquinoline, high-temperature condensate of diphenylamine and acetone.
The rubber composition of the present invention includes the rubber component (A), silica (B), plasticizer (C), cross-linking agent (D), and silane coupling agent (E) used as necessary and other various chemicals. Can be prepared by kneading using a kneading machine such as a Banbury mixer, roll, or internal mixer.
The rubber composition of the present invention thus obtained can be used as a material for the crosslinked rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber to give a polyamide laminate having high interlayer adhesion. it can.
In the present invention, the crosslinked rubber can be formed into a desired shape such as a sheet by a known method such as injection molding, extrusion molding, blow molding, vacuum molding, compression molding, or the like, from a rubber composition as a raw material. Furthermore, you may perform a crosslinking process in a post process as needed.
 次に、本発明のポリアミド積層体について説明する。
 本発明のポリアミド積層体は、以下に示す特定の各種原料を重合して得られたポリエーテルポリアミドエラストマーと、前述した本発明のゴム組成物から得られた架橋ゴムとが積層されてなる構成を有する。
[ポリエーテルポリアミドエラストマー]
 本発明のポリアミド積層体に用いられるポリエーテルポリアミドエラストマーは、ポリアミド形成性モノマー[即ち、アミノカルボン酸化合物(X1)及び/又はラクタム化合物(X2)]、XYX型トリブロックポリエーテルジアミン化合物(Y)(Yはポリオキシブチレンである)、及びジカルボン酸(Z)を重合して得られるものであることが好ましい。
Next, the polyamide laminate of the present invention will be described.
The polyamide laminate of the present invention has a structure in which a polyether polyamide elastomer obtained by polymerizing the following various raw materials and a crosslinked rubber obtained from the above-described rubber composition of the present invention are laminated. Have.
[Polyether polyamide elastomer]
The polyether polyamide elastomer used in the polyamide laminate of the present invention comprises a polyamide-forming monomer [namely, aminocarboxylic acid compound (X1) and / or lactam compound (X2)], XYX type triblock polyetherdiamine compound (Y). (Y is polyoxybutylene) and those obtained by polymerizing dicarboxylic acid (Z) are preferred.
 前記ポリエーテルポリアミドエラストマーにおいて、ポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン、及びジカルボン酸に含まれる末端のカルボン酸又はカルボキシ基と、末端のアミノ基とがほぼ等モルになるような割合が好ましい。
 特に、ポリアミド形成性モノマーの一方の末端がアミノ基で、他方の末端がカルボン酸又はカルボキシ基の場合、XYX型トリブロックポリエーテルジアミン及びジカルボン酸は、ポリエーテルジアミンのアミノ基とジカルボン酸のカルボキシ基がほぼ等モルになるような割合とするのが好ましい。
In the polyether polyamide elastomer, there is a ratio such that the terminal carboxylic acid or carboxy group contained in the polyamide-forming monomer, XYX type triblock polyether diamine, and dicarboxylic acid and the terminal amino group are approximately equimolar. preferable.
In particular, when one end of the polyamide-forming monomer is an amino group and the other end is a carboxylic acid or a carboxy group, the XYX-type triblock polyether diamine and dicarboxylic acid are the amino group of the polyether diamine and the carboxy group of the dicarboxylic acid. The ratio is preferably such that the groups are approximately equimolar.
(アミノカルボン酸化合物(X1)及びラクタム化合物(X2))
 次に、アミノカルボン酸化合物(X1)及びラクタム化合物(X2)について説明する。
 ポリエーテルポリアミドエラストマーに使用するアミノカルボン酸化合物(X1)は、下記式(3)で表される化合物である。

   H2N-R5-COOH    (3)
 ここで、R5は炭化水素鎖を含む連結基を表わし、炭素数2~20の脂肪族、脂環族若しくは芳香族の炭化水素基又は炭素数2~20のアルキレン基であることが好ましく、さらに好ましくは炭素数3~18の上記炭化水素基又は炭素数3~18のアルキレン基であり、より好ましくは炭素数4~15の上記炭化水素基又は炭素数4~15のアルキレン基であり、特に好ましくは炭素数10~15の上記炭化水素基又は炭素数10~15アルキレン基を示す。
(Aminocarboxylic acid compound (X1) and lactam compound (X2))
Next, the aminocarboxylic acid compound (X1) and the lactam compound (X2) will be described.
The aminocarboxylic acid compound (X1) used for the polyether polyamide elastomer is a compound represented by the following formula (3).

H 2 N—R 5 —COOH (3)
Here, R 5 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms, More preferably, the hydrocarbon group having 3 to 18 carbon atoms or the alkylene group having 3 to 18 carbon atoms, more preferably the hydrocarbon group having 4 to 15 carbon atoms or the alkylene group having 4 to 15 carbon atoms, The hydrocarbon group having 10 to 15 carbon atoms or the alkylene group having 10 to 15 carbon atoms is particularly preferable.
 ポリエーテルポリアミドエラストマーに使用するラクタム化合物(X2)は、下記式(4)で表される化合物である。ここで、R6は炭化水素鎖を含む連結基を表わし、炭素数3~20の脂肪族、脂環族若しくは芳香族の炭化水素基又は炭素数3~20のアルキレン基であることが好ましく、さらに好ましくは炭素数3~18の上記炭化水素基又は炭素数3~18のアルキレン基であり、さらに好ましくは炭素数4~15の上記炭化水素基又は炭素数4~15のアルキレン基であり、特に好ましくは炭素数10~15の上記炭化水素基又は炭素数10~15のアルキレン基を示す。 The lactam compound (X2) used for the polyether polyamide elastomer is a compound represented by the following formula (4). Here, R 6 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms, More preferably, the hydrocarbon group having 3 to 18 carbon atoms or the alkylene group having 3 to 18 carbon atoms, more preferably the hydrocarbon group having 4 to 15 carbon atoms or the alkylene group having 4 to 15 carbon atoms, The hydrocarbon group having 10 to 15 carbon atoms or the alkylene group having 10 to 15 carbon atoms is particularly preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 アミノカルボン酸化合物(X1)及びラクタム化合物(X2)としては、ω-アミノカルボン酸、ラクタム、又はジアミンとジカルボン酸から合成されるもの及びそれらの塩から選ばれる少なくとも一種の脂肪族、脂環族及び/又は芳香族を含むポリアミド形成性モノマーが使用される。 As the aminocarboxylic acid compound (X1) and the lactam compound (X2), at least one aliphatic or alicyclic group selected from ω-aminocarboxylic acid, lactam, or a compound synthesized from diamine and dicarboxylic acid and salts thereof And / or polyamide-forming monomers containing aromatics are used.
 ジアミンとジカルボン酸から合成されるもの及びそれらの塩において、ジアミンとしては、脂肪族ジアミン、脂環式ジアミン及び芳香族ジアミン、又はこれらの誘導体から選ばれる少なくとも一種のジアミン化合物などを挙げることができる。ジカルボン酸としては、脂肪族ジカルボン酸、脂環式ジカルボン酸及び芳香族ジカルボン酸、又はこれらの誘導体から選ばれる少なくとも一種のジカルボン酸化合物などを挙げることができる。特に、脂肪族ジアミン化合物と脂肪族ジカルボン酸化合物との組合せを使用することにより、低比重で、引張り伸びが大きく、耐衝撃性に優れ、溶融成形性が良好なポリエーテルポリアミドエラストマーを得ることができる。 Examples of the diamine synthesized from diamine and dicarboxylic acid and salts thereof include at least one diamine compound selected from aliphatic diamine, alicyclic diamine and aromatic diamine, or derivatives thereof. . Examples of the dicarboxylic acid include at least one dicarboxylic acid compound selected from aliphatic dicarboxylic acid, alicyclic dicarboxylic acid and aromatic dicarboxylic acid, or derivatives thereof. In particular, by using a combination of an aliphatic diamine compound and an aliphatic dicarboxylic acid compound, a polyether polyamide elastomer having a low specific gravity, large tensile elongation, excellent impact resistance, and good melt moldability can be obtained. it can.
 ジアミンとジカルボン酸とのモル比(ジアミン/ジカルボン酸)は、0.9~1.1の範囲が好ましく、0.93~1.07の範囲がさらに好ましく、0.95~1.05の範囲がより好ましく、0.97~1.03の範囲が特に好ましい。このモル比が上記範囲内にあれば、高分子量化が容易となる。 The molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) is preferably in the range of 0.9 to 1.1, more preferably in the range of 0.93 to 1.07, and in the range of 0.95 to 1.05. Is more preferable, and the range of 0.97 to 1.03 is particularly preferable. If this molar ratio is within the above range, high molecular weight can be easily achieved.
 上記のジアミンの具体例としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミンなどの炭素数2~20の脂肪族ジアミンなどのジアミン化合物が挙げられる。 Specific examples of the diamine include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, and 3-methylpentamethylenediamine.
 ジカルボン酸の具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸のような炭素数2~20の脂肪族ジカルボン酸などが挙げられる。 Specific examples of the dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and aliphatic dicarboxylic acid having 2 to 20 carbon atoms such as dodecanedioic acid. Can be mentioned.
 ラクタムの具体例としては、ε-カプロラクタム、ω-エナントラクタム、ω-ウンデカラクタム、ω-ドデカラクタム、2-ピロリドンなどの炭素数5~20の脂肪族ラクタムなどが挙げられる。 Specific examples of lactams include aliphatic lactams having 5 to 20 carbon atoms such as ε-caprolactam, ω-enantolactam, ω-undecalactam, ω-dodecalactam, and 2-pyrrolidone.
 ω-アミノカルボン酸の具体例としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などの炭素数5~20の脂肪族ω-アミノカルボン酸などが挙げられる。 Specific examples of ω-aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like. ˜20 aliphatic ω-aminocarboxylic acids and the like.
(XYX型トリブロックポリエーテルジアミン(Y))
 ポリエーテルポリアミドエラストマーに使用するXYX型トリブロックポリエーテルジアミン(Y)は、下記式(5)で表される化合物であり、ポリ(オキシテトラメチレン)グリコールなどの両末端にプロピレンオキシドを付加することによりポリプロピレングリコールとした後、このポリプロピレングリコールの末端にアンモニアなどを反応させることによって製造されるポリエーテルジアミンなどを用いることができる。
(XYX type triblock polyether diamine (Y))
XYX type triblock polyether diamine (Y) used for polyether polyamide elastomer is a compound represented by the following formula (5), and propylene oxide is added to both ends of poly (oxytetramethylene) glycol and the like. Polyether diamine produced by reacting ammonia or the like with the end of the polypropylene glycol can be used after being converted into polypropylene glycol.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 XYX型トリブロックポリエーテルジアミン(Y)の具体例としては、米国HUNTSMAN社製XTJ-533(式(5)において、xがおよそ12、yがおよそ11、zがおよそ11)、XTJ-536(式(5)において、xがおよそ8.5、yがおよそ17、zがおよそ7.5)、そしてXTJ-542(式(5)において、xがおよそ3、yがおよそ9、zがおよそ2)などを用いることができる。 Specific examples of the XYX-type triblock polyether diamine (Y) include XTJ-533 manufactured by HUNTSMAN (USA) (wherein x is about 12, y is about 11, and z is about 11), XTJ-536 ( In equation (5), x is approximately 8.5, y is approximately 17, z is approximately 7.5), and XTJ-542 (in equation (5), x is approximately 3, y is approximately 9, z is approximately 2) etc. can be used.
 また、XYX型トリブロックポリエーテルジアミン(Y)として、XYX-1(式(5)において、xがおよそ3、yがおよそ14、zがおよそ2)、XYX-2(式(5)において、xがおよそ5、yがおよそ14、zがおよそ4)、そしてXYX-3(式(5)において、xがおよそ3、yがおよそ19、zがおよそ2)なども用いることができる。 Further, as XYX type triblock polyether diamine (Y), XYX-1 (in formula (5), x is about 3, y is about 14, z is about 2), XYX-2 (in formula (5), x is approximately 5, y is approximately 14, z is approximately 4), and XYX-3 (in formula (5), x is approximately 3, y is approximately 19, z is approximately 2), and the like can also be used.
 XYX型トリブロックポリエーテルジアミン(Y)において、x及びzは1~20、好ましくは1~18、さらに好ましくは1~16、より好ましくは1~14、特に好ましいのは1~12であり、yは4~50、好ましくは5~45、さらに好ましくは6~40、より好ましくは7~35、特に好ましいのは8~30である。またx、y及びzの組合せとしては、xが2~6の範囲、yが6~12の範囲、zが1~5の範囲の組合せ、あるいはxが2~10の範囲、yが13~28の範囲、zが1~9の範囲の組合せなどを好ましく例示することができる。 In the XYX type triblock polyether diamine (Y), x and z are 1 to 20, preferably 1 to 18, more preferably 1 to 16, more preferably 1 to 14, particularly preferably 1 to 12, y is 4 to 50, preferably 5 to 45, more preferably 6 to 40, more preferably 7 to 35, and particularly preferably 8 to 30. The combination of x, y, and z includes x in the range of 2 to 6, y in the range of 6 to 12, z in the range of 1 to 5, or x in the range of 2 to 10, and y in the range of 13 to Preferred examples include a range of 28 and a combination of z in the range of 1 to 9.
 XYX型トリブロックポリエーテルジアミン(Y)において、x及びzがそれぞれ上記の範囲より小さい場合には、得られるエラストマーの透明性が劣るため好ましくなく、yが上記範囲より小さい場合には、ゴム弾性が低くなるので好ましくない。また、x及びzが上記範囲より大きい場合又は、yが上記範囲より大きい場合ポリアミド成分との相溶性が低くなり強靭なエラストマーが得られにくいため好ましくない。 In the XYX type triblock polyether diamine (Y), when x and z are each smaller than the above range, the resulting elastomer is inferior in transparency, which is not preferable. When y is smaller than the above range, rubber elasticity Is not preferable because of a low. Further, when x and z are larger than the above range, or when y is larger than the above range, the compatibility with the polyamide component becomes low and it is difficult to obtain a tough elastomer, which is not preferable.
(ジカルボン酸化合物(Z))
 ポリエーテルポリアミドエラストマーに使用するジカルボン酸化合物(Z)は、下記式(6)で表される化合物である。
   HOOC-(R7m-COOH  (6)
 ここで、R7は、炭化水素鎖を含む連結基を表わし、炭素数1~20の脂肪族、脂環族若しくは芳香族の炭化水素基又は炭素数1~20のアルキレン基であることが好ましく、さらに好ましくは炭素数1~15の上記炭化水素基又は炭素数1~15のアルキレン基であり、より好ましくは炭素数2~12の上記炭化水素基又は炭素数2~12のアルキレン基であり、特に好ましくは炭素数4~10の上記炭化水素基又は炭素数4~10のアルキレン基を示すものである。また、mは0又は1を示す。
(Dicarboxylic acid compound (Z))
The dicarboxylic acid compound (Z) used for the polyether polyamide elastomer is a compound represented by the following formula (6).
HOOC- (R 7 ) m —COOH (6)
Here, R 7 represents a linking group containing a hydrocarbon chain, and is preferably an aliphatic, alicyclic or aromatic hydrocarbon group having 1 to 20 carbon atoms or an alkylene group having 1 to 20 carbon atoms. And more preferably the hydrocarbon group having 1 to 15 carbon atoms or the alkylene group having 1 to 15 carbon atoms, more preferably the hydrocarbon group having 2 to 12 carbon atoms or the alkylene group having 2 to 12 carbon atoms. Particularly preferably, it represents the above hydrocarbon group having 4 to 10 carbon atoms or an alkylene group having 4 to 10 carbon atoms. M represents 0 or 1.
 ジカルボン酸化合物(Z)としては、脂肪族、脂環族及び芳香族ジカルボン酸から選ばれる少なくとも一種のジカルボン酸又はこれらの誘導体を用いることができる。 As the dicarboxylic acid compound (Z), at least one dicarboxylic acid selected from aliphatic, alicyclic and aromatic dicarboxylic acids or derivatives thereof can be used.
 ジカルボン酸の具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~25の直鎖脂肪族ジカルボン酸、又は、トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、および、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。ダイマー酸及び水添ダイマー酸としては、ユニケマ社製商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」などを用いることができる。 Specific examples of the dicarboxylic acid include linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, Or aliphatic dicarboxylic acids such as dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms (dimer acid) obtained by dimerization of unsaturated fatty acids obtained by fractionation of triglycerides and hydrogenated products thereof (hydrogenated dimer acid) And alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid. As the dimer acid and hydrogenated dimer acid, trade names “Pripol 1004”, “Plipol 1006”, “Plipol 1009”, “Plipol 1013” and the like manufactured by Unikema Corporation can be used.
 ポリエーテルポリアミドエラストマーの全成分に対する、ポリアミド形成性モノマーの割合は、好ましくは10~95質量%、さらに好ましくは15~90質量%、より好ましくは15~85質量%、特に好ましくは15~80質量%、最も好ましくは15~70質量である。ポリエーテルポリアミドエラストマーの全成分に対するポリアミド形成性モノマーの割合が、10質量%以上であれば、ポリアミド成分の結晶性を向上させることができ、強度、弾性率などの機械的物性を向上させることができる。95質量%以下であれば、ゴム弾性や柔軟性などのエラストマーとしての機能、性能を発現させることができる。 The ratio of the polyamide-forming monomer to the total components of the polyether polyamide elastomer is preferably 10 to 95% by mass, more preferably 15 to 90% by mass, more preferably 15 to 85% by mass, and particularly preferably 15 to 80% by mass. %, Most preferably 15 to 70 mass. If the ratio of the polyamide-forming monomer to all the components of the polyether polyamide elastomer is 10% by mass or more, the crystallinity of the polyamide component can be improved, and mechanical properties such as strength and elastic modulus can be improved. it can. If it is 95 mass% or less, the function and performance as elastomers, such as rubber elasticity and a softness | flexibility, can be expressed.
 また、ポリエーテルポリアミドエラストマーの全成分に対する(Y)化合物と(Z)化合物との合計量の割合は、好ましくは5~90質量%、さらに好ましくは10~85質量%、より好ましくは15~85質量%、特に好ましくは20~85質量%、最も好ましくは30~85質量である。 The ratio of the total amount of the (Y) compound and the (Z) compound with respect to all the components of the polyether polyamide elastomer is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, more preferably 15 to 85%. % By weight, particularly preferably 20 to 85% by weight, most preferably 30 to 85% by weight.
(ポリエーテルポリアミドエラストマーの性状)
 ポリエーテルポリアミドエラストマーの硬度(ショアD)は、好ましくは15~70の範囲、より好ましくは18~70の範囲、さらに好ましくは20~70の範囲、特に好ましいのは25~70の範囲のものである。なお、本発明において、硬度(ショアD)は、ASTM D2240に準拠して測定することができる。
(Properties of polyether polyamide elastomer)
The hardness (Shore D) of the polyether polyamide elastomer is preferably in the range of 15 to 70, more preferably in the range of 18 to 70, still more preferably in the range of 20 to 70, and particularly preferably in the range of 25 to 70. is there. In the present invention, the hardness (Shore D) can be measured according to ASTM D2240.
 ポリエーテルポリアミドエラストマーの曲げ弾性率は、好ましくは20~450MPa、より好ましくは20~400MPa、さらに好ましくは20~350MPa、特に好ましくは20~300MPaが好ましい。弾性率が上記範囲であることにより、特に強靭性とゴム弾性に優れるエラストマーが得られる。なお、本発明において、曲げ弾性率は、ASTM D790に準拠して測定することができる。 The flexural modulus of the polyether polyamide elastomer is preferably 20 to 450 MPa, more preferably 20 to 400 MPa, still more preferably 20 to 350 MPa, and particularly preferably 20 to 300 MPa. When the elastic modulus is within the above range, an elastomer having particularly excellent toughness and rubber elasticity can be obtained. In the present invention, the flexural modulus can be measured according to ASTM D790.
 ポリエーテルポリアミドエラストマーの曲げ強さは、好ましくは0.8~15MPa、より好ましくは1~13MPa、さらに好ましくは1.1~10MPa、特に好ましくは1.2~9MPaが好ましい。ポリエーテルポリアミドエラストマーの曲げ強さが、上記範囲内では、曲げ強さなどの強靭性とゴム弾性とのバランスの優れるエラストマーが得られるために好ましい。なお、本発明において、曲げ強さは、ASTM D790に準拠して測定することができる。 The flexural strength of the polyether polyamide elastomer is preferably 0.8 to 15 MPa, more preferably 1 to 13 MPa, still more preferably 1.1 to 10 MPa, and particularly preferably 1.2 to 9 MPa. When the bending strength of the polyether polyamide elastomer is within the above range, an elastomer having an excellent balance between toughness such as bending strength and rubber elasticity can be obtained. In the present invention, the bending strength can be measured according to ASTM D790.
 ポリエーテルポリアミドエラストマーの引張り降伏点強度は、好ましくは3~25MPaの範囲、より好ましくは3~22MPaの範囲、さらに好ましくは3~20MPaの範囲、特に好ましくは3~18MPaの範囲が好ましい。引張り降伏点強度が上記範囲であることにより、特に強靭性とゴム弾性に優れるエラストマーが得られる。なお、本発明において、引張り降伏点強度は、ASTM D638に準拠して測定することができる。 The tensile yield strength of the polyether polyamide elastomer is preferably in the range of 3 to 25 MPa, more preferably in the range of 3 to 22 MPa, still more preferably in the range of 3 to 20 MPa, and particularly preferably in the range of 3 to 18 MPa. When the tensile yield point strength is in the above range, an elastomer having particularly excellent toughness and rubber elasticity can be obtained. In the present invention, the tensile yield point strength can be measured according to ASTM D638.
 ポリエーテルポリアミドエラストマーの引張り破断伸びは、300%以上が好ましく、600%以上がより好ましい。この範囲よりも少ないと、強靭性、ゴム弾性などのエラストマーとしての性能が発現しにくくなるために好ましくない場合がある。なお、本発明において、引張り破断伸びは、ASTM D638に準拠して測定することができる。 The tensile elongation at break of the polyether polyamide elastomer is preferably 300% or more, more preferably 600% or more. If it is less than this range, the performance as an elastomer such as toughness and rubber elasticity becomes difficult to be exhibited, which may not be preferable. In the present invention, the tensile elongation at break can be measured according to ASTM D638.
 ポリエーテルポリアミドエラストマーは、23℃におけるアイゾットノッチ付き衝撃強さの測定において破壊しないこと(NBと略す)が、特に耐衝撃性に優れるために好ましい。なお、本発明において、アイゾットノッチ付き衝撃強さは、ASTM D256に準拠して測定することができる。 It is preferable that the polyether polyamide elastomer does not break in the measurement of impact strength with an Izod notch at 23 ° C. (abbreviated as NB) because it is particularly excellent in impact resistance. In the present invention, the impact strength with an Izod notch can be measured according to ASTM D256.
 ポリエーテルポリアミドエラストマーの荷重たわみ温度は、50℃以上が好ましい。上記範囲内であると使用時に材料が変形しにくくなるために好ましい。なお、本発明において、荷重たわみ温度は、ASTM D648に準拠して測定することができる。 The deflection temperature under load of the polyether polyamide elastomer is preferably 50 ° C. or higher. Within the above range, the material is less likely to be deformed during use, which is preferable. In the present invention, the deflection temperature under load can be measured according to ASTM D648.
 ポリエーテルポリアミドエラストマーの相対粘度(ηr)は、1.2~3.5(0.5質量/容量%メタクレゾール溶液、25℃)の範囲にあることが好ましい。 The relative viscosity (ηr) of the polyether polyamide elastomer is preferably in the range of 1.2 to 3.5 (0.5 mass / volume% metacresol solution, 25 ° C.).
(ポリエーテルポリアミドエラストマーの製造方法)
 ポリエーテルポリアミドエラストマーの製造方法として、一例を挙げると、ポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができ、さらにポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の三成分を同時に、加圧及び/又は常圧下で溶融重合し、必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることができる。なお、ポリアミド形成性モノマーとジカルボン酸の二成分を先に重合させ、ついで、XYX型トリブロックポリエーテルジアミンを重合させる方法も利用できる。
(Method for producing polyether polyamide elastomer)
As an example of a method for producing a polyether polyamide elastomer, three components of a polyamide-forming monomer, an XYX type triblock polyether diamine and a dicarboxylic acid are melt-polymerized under pressure and / or normal pressure, and further if necessary. A method comprising a step of melt polymerization under reduced pressure can be used, and further, three components of polyamide-forming monomer, XYX type triblock polyetherdiamine and dicarboxylic acid are simultaneously melt polymerized under pressure and / or normal pressure, If necessary, a method comprising a step of melt polymerization under reduced pressure can be used. It is also possible to use a method in which a polyamide-forming monomer and a dicarboxylic acid are first polymerized and then an XYX type triblock polyether diamine is polymerized.
 ポリエーテルポリアミドエラストマーの製造に当たり、原料の仕込む方法に特に制限はないが、ポリアミド形成性モノマー、XYX型トリブロックポリエーテルジアミン及びジカルボン酸の仕込み割合は、全成分に対してポリアミド形成性モノマーが好ましくは10~95質量%、より好ましくは15~90質量%の範囲、XYX型トリブロックポリエーテルジアミンが好ましくは3~88質量%、より好ましくは8~79質量%の範囲である。原料のうち、XYX型トリブロックポリエーテルジアミンとジカルボン酸は、XYX型トリブロックポリエーテルジアミンのアミノ基とジカルボン酸のカルボキシ基がほぼ等モルになるように仕込むことが好ましい。 In the production of the polyether polyamide elastomer, there is no particular limitation on the raw material charging method, but the polyamide forming monomer, the XYX type triblock polyether diamine and the dicarboxylic acid are preferably charged with respect to all components. Is in the range of 10 to 95% by mass, more preferably in the range of 15 to 90% by mass, and the XYX type triblock polyether diamine is preferably in the range of 3 to 88% by mass, more preferably in the range of 8 to 79% by mass. Among the raw materials, the XYX type triblock polyether diamine and the dicarboxylic acid are preferably charged so that the amino group of the XYX type triblock polyether diamine and the carboxy group of the dicarboxylic acid are approximately equimolar.
 重合温度は、好ましくは150~300℃、より好ましくは160~280℃、さらに好ましくは180~250℃である。重合温度が150℃以上であれば、重合反応が良好に進行し、300℃以下であれば、熱分解が抑えられ、良好な物性のポリマーを得ることができる。 The polymerization temperature is preferably 150 to 300 ° C, more preferably 160 to 280 ° C, and further preferably 180 to 250 ° C. If the polymerization temperature is 150 ° C. or higher, the polymerization reaction proceeds favorably, and if it is 300 ° C. or lower, thermal decomposition is suppressed and a polymer having good physical properties can be obtained.
 ポリエーテルポリアミドエラストマーは、ポリアミド形成性モノマーとしてω-アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合とそれに続く減圧溶融重合での工程からなる方法で製造することができる。 The polyether polyamide elastomer can be produced by a method comprising steps of normal pressure melt polymerization or normal pressure melt polymerization followed by low pressure melt polymerization when ω-aminocarboxylic acid is used as the polyamide-forming monomer.
 一方、ポリアミド形成性モノマーとしてラクタム、又はジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩を用いる場合には、適量の水を共存させ、通常0.1~5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合からなる方法で製造することができる。 On the other hand, when using a lactam or a diamine and a dicarboxylic acid synthesized as a polyamide-forming monomer and / or a salt thereof, an appropriate amount of water is allowed to coexist and is usually melted under a pressure of 0.1 to 5 MPa. It can be produced by a method comprising polymerization followed by normal pressure melt polymerization and / or reduced pressure melt polymerization.
 重合時間は、通常0.5~30時間である。重合時間が0.5時間以上であれば、分子量を上昇させることができ、30時間以下であれば、熱分解による着色などが抑えられ、所望の物性を有するポリエーテルポリアミドエラストマーが得ることができる。 Polymerization time is usually 0.5 to 30 hours. If the polymerization time is 0.5 hours or more, the molecular weight can be increased, and if it is 30 hours or less, coloring due to thermal decomposition and the like can be suppressed, and a polyether polyamide elastomer having desired physical properties can be obtained. .
 ポリエーテルポリアミドエラストマーの製造は、回分式でも、連続式でも実施することができ、またバッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置などを単独であるいは適宜組み合わせて用いることができる。 The production of the polyether polyamide elastomer can be carried out batchwise or continuously, and a batch reactor, a single- or multi-tank continuous reactor, a tubular continuous reactor, etc. can be used alone or in combination. Can be used.
 ポリエーテルポリアミドエラストマーの製造の際に、必要に応じて分子量調節や成形加工時の溶融粘度安定のために、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、メタキシリレンジアミンなどのモノアミン及びジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、ドデカン二酸などのモノカルボン酸、或はジカルボン酸などを添加することができる。
 上記のモノアミン、ジアミン、モノカルボン酸、及びジカルボン酸等の添加量は、得られるポリエーテルポリアミドエラストマーの特性が阻害されない範囲とするのが好ましく、最終的に得られるエラストマーの相対粘度が1.2~3.5(0.5質量/容量%メタクレゾール溶液、25℃)の範囲になるように適宜添加することが好ましい。
When producing a polyether polyamide elastomer, monoamines and diamines such as laurylamine, stearylamine, hexamethylenediamine, and metaxylylenediamine, acetic acid, Monocarboxylic acids such as benzoic acid, stearic acid, adipic acid, sebacic acid and dodecanedioic acid, or dicarboxylic acids can be added.
The addition amount of the above-mentioned monoamine, diamine, monocarboxylic acid, dicarboxylic acid and the like is preferably in a range in which the properties of the obtained polyether polyamide elastomer are not inhibited, and the relative viscosity of the finally obtained elastomer is 1.2. It is preferable to add appropriately so as to be in the range of ~ 3.5 (0.5 mass / volume% metacresol solution, 25 ° C.).
 ポリエーテルポリアミドエラストマーの製造の際に、必要に応じて触媒として、リン酸、ピロリン酸、ポリリン酸などを、また触媒と耐熱剤の両方の効果をねらって亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物を添加することができる。添加量は、通常、仕込み原料に対して50~3000ppmである。 In the production of the polyether polyamide elastomer, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc. are used as a catalyst as necessary, and phosphorous acid, hypophosphorous acid, and Inorganic phosphorus compounds such as these alkali metal salts and alkaline earth metal salts can be added. The addition amount is usually 50 to 3000 ppm with respect to the charged raw material.
 このようにして得られたポリエーテルポリアミドエラストマーは、その特性が阻害されない範囲で、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、補強材などを添加することができる。 The polyether polyamide elastomer thus obtained has a heat resistance agent, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a lubricant, a slip agent, a crystal nucleating agent, and an adhesive as long as its properties are not hindered. A property-imparting agent, a sealing property improving agent, an antifogging agent, a release agent, a plasticizer, a pigment, a dye, a fragrance, a flame retardant, a reinforcing material, and the like can be added.
 ポリエーテルポリアミドエラストマーは、吸水性が低く、溶融成形性に優れ、成形加工性に優れ、強靭性に優れ、耐加水分解性に優れ、耐屈曲疲労性に優れ、反ぱつ弾性に優れ、低比重性、低温柔軟性に優れ、低温耐衝撃性に優れ、伸長回復性に優れ、消音特性に優れ、ゴム的な性質及び透明性などに優れている。 Polyether polyamide elastomer has low water absorption, excellent melt moldability, excellent moldability, excellent toughness, excellent hydrolysis resistance, excellent bending fatigue resistance, excellent anti-elasticity, and low specific gravity Excellent in low temperature and flexibility, excellent in low temperature impact resistance, excellent in stretch recovery, excellent in sound deadening properties, excellent in rubbery properties and transparency.
 本発明におけるポリエーテルポリアミドエラストマーは、市販品として「UBESTA XPA 9040X1、同9040F1、同9048X1、同9048F1、同9055X1、同9055F1、同9063X1、同9063F1、同9068X1、同9068F1、同9040X2、同9048X2、同9040F2、同9048F2」(宇部興産株式会社製)などを使用することができる。 The polyether polyamide elastomer in the present invention is a commercially available product such as “UBESTA XPA 9040X1, 9040F1, 9048X1, 9048F1, 9055X1, 9055F1, 9063X1, 9063F1, 9068X1, 9068F1, 9040X2, and 9048X2. 9040F2, 9048F2 "(manufactured by Ube Industries, Ltd.) and the like can be used.
[ポリアミド積層体]
 本発明のポリアミド積層体は、前記ポリエーテルポリアミドエラストマーと、前記ゴム組成物から得られた架橋ゴムとが積層された積層体である。
 本発明のポリアミド積層体は、ポリエーテルポリアミドエラストマーからなる層と、架橋ゴム層を1層又は2層以上有する。各層の厚さは特に制限されず、各層を構成する重合体の種類、積層体における全体の層数、用途などに応じて調節することができる。
 また、積層体の層数は2層以上であるが、積層体における全体の層数は特に制限されず、いずれでもよい。積層体製造装置の機構から判断して、好ましくは7層以下、さらに好ましくは2層~5層である。
[Polyamide laminate]
The polyamide laminate of the present invention is a laminate in which the polyether polyamide elastomer and a crosslinked rubber obtained from the rubber composition are laminated.
The polyamide laminate of the present invention has one or more layers composed of a polyether polyamide elastomer and a crosslinked rubber layer. The thickness in particular of each layer is not restrict | limited, It can adjust according to the kind of polymer which comprises each layer, the whole number of layers in a laminated body, a use, etc.
Moreover, although the number of layers of a laminated body is two or more layers, the whole number of layers in a laminated body is not restrict | limited in particular, Any may be sufficient. Judging from the mechanism of the laminate manufacturing apparatus, it is preferably 7 layers or less, more preferably 2 to 5 layers.
 また、本発明のポリアミド積層体は、任意の基材、例えば、熱可塑性樹脂、紙、金属系材料、無延伸、一軸又は二軸延伸プラスチックフィルム又はシート、織布、不織布、金属綿状、木質等を積層することも可能である。 In addition, the polyamide laminate of the present invention can be prepared from any base material such as thermoplastic resin, paper, metal-based material, unstretched, uniaxially or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metallic cotton, woody material. Etc. can also be laminated.
 本発明のポリアミド積層体は(1)各層を同時に成形する方法、(2)各層を成形して貼り合わせる方法、(3)層の上にさらに層を成形しながら積層する方法(タンデム法)、(4)金型の中にゴムをインサートしてポリエーテルポリアミドエラストマーを射出成形して積層する方法、(5)任意の方法で成形されたポリエーテルポリアミドエラストマーをゴムの架橋工程の金型にインサートして積層する方法等により、又はこれらを組み合わせた方法により得ることができる。
 成形温度としては、ポリエーテルポリアミドエラストマーを射出成形する場合は、160~300℃が好ましく、190~270℃が更に好ましい。ポリエーテルポリアミドエラストマーをインサートしてゴムの架橋を行う場合は、ポリエーテルポリアミドエラストマーの融点を超える温度で行うことが望ましく、一般的には160~170℃で5~15分程度で行う。温度が低い場合や、時間が短い場合は、ゴムの架橋が進まなかったり、熱溶着強度が十分出なかったりすることがあり、また温度が高い場合や時間が長すぎるとゴムが劣化するおそれがあるため好ましくない。
The polyamide laminate of the present invention is (1) a method for simultaneously molding each layer, (2) a method for molding and laminating each layer, (3) a method for laminating while further forming a layer on the layer (tandem method), (4) A method in which a rubber is inserted into a mold and a polyether polyamide elastomer is injection molded and laminated. (5) A polyether polyamide elastomer molded by an arbitrary method is inserted into a mold in a rubber crosslinking step. Then, it can be obtained by a method of laminating and the like, or a method of combining these.
The molding temperature is preferably 160 to 300 ° C., more preferably 190 to 270 ° C. when the polyether polyamide elastomer is injection molded. When the polyether polyamide elastomer is inserted to crosslink the rubber, it is desirable to perform the crosslinking at a temperature exceeding the melting point of the polyether polyamide elastomer, and is generally performed at 160 to 170 ° C. for about 5 to 15 minutes. If the temperature is low or the time is short, the rubber may not be cross-linked or the heat welding strength may not be sufficient, and if the temperature is high or the time is too long, the rubber may deteriorate. This is not preferable.
 本発明のポリアミド積層体におけるポリエーテルポリアミドエラストマー層(X層)と、架橋ゴム層(Y層)の積層構成の例としては、X層/Y層、X層/Y層/X層、Y層/X層/Y層、X層/Y層/基材層、基材層/X層/Y層、X層/Y層/X層/基材層、Y層/X層/Y層/基材層、Y層/X層/接着層/基材層、X層/Y層/接着層/基材層、基材層/接着層/X層/Y層/X層/接着層/基材層、基材層/接着層/Y層/X層/Y層/接着層/基材層などを挙げることができる。
 基材層は、X層及びY層のポリマーを除く、他のポリマー材料から得られるフィルム、シート、膜及び成形物など;天然・合成繊維、ガラス・セラミックスなどを原料とする無機繊維から得られる織物、編物、組み物及び不織布など;ガラス、金属、セラミックス、塗膜、紙など;皮革などを用いることができる。
 接着層は、公知の各接着成分、接着性を有するシートやフィルムなどを用いることができ、本発明の特性を損なわないものを用いることが好ましい。
Examples of the laminated structure of the polyether polyamide elastomer layer (X layer) and the crosslinked rubber layer (Y layer) in the polyamide laminate of the present invention include X layer / Y layer, X layer / Y layer / X layer, Y layer. / X layer / Y layer, X layer / Y layer / base material layer, base material layer / X layer / Y layer, X layer / Y layer / X layer / base material layer, Y layer / X layer / Y layer / group Material layer, Y layer / X layer / adhesive layer / base material layer, X layer / Y layer / adhesive layer / base material layer, base material layer / adhesive layer / X layer / Y layer / X layer / adhesive layer / base material Layer, base material layer / adhesive layer / Y layer / X layer / Y layer / adhesive layer / base material layer, and the like.
The base layer is obtained from inorganic fibers made from natural / synthetic fibers, glass / ceramics, etc .; films, sheets, membranes and molded articles obtained from other polymer materials, excluding the polymers of the X layer and Y layer Woven fabric, knitted fabric, braided fabric, non-woven fabric, etc .; glass, metal, ceramics, coating film, paper, etc .; leather etc. can be used.
As the adhesive layer, known adhesive components, adhesive sheets and films, and the like can be used, and those that do not impair the characteristics of the present invention are preferably used.
 本発明のポリアミド積層体のX層とY層との剥離強さは、好ましくは5N/mm以上、より好ましくは8N/mm以上、さらに好ましくは10N/mm以上である。剥離強さは、実施例に記載の方法により測定することができる。 The peel strength between the X layer and the Y layer of the polyamide laminate of the present invention is preferably 5 N / mm or more, more preferably 8 N / mm or more, and even more preferably 10 N / mm or more. The peel strength can be measured by the method described in the examples.
 本発明のポリアミド積層体は、架橋ゴムの材料として、ポリエーテルポリアミドエラストマーに対して高い接着力を有するゴム組成物を用いているために、ポリエーテルポリアミドエラストマーと架橋ゴムとの強固な接着強度を有し、タイヤ部材,各種振動吸収部材,ドアロック部材,ラジエターマウントなどの自動車部品、スポーツシューズ,作業用靴,靴底などの靴用部品,防振ゴムなどの各種産業用部材などに有利に使用することができる。 Since the polyamide laminate of the present invention uses a rubber composition having a high adhesive force to the polyether polyamide elastomer as a material for the crosslinked rubber, it has a strong adhesive strength between the polyether polyamide elastomer and the crosslinked rubber. It is advantageous for tire parts, various vibration absorbing members, door lock members, radiator mounts and other automotive parts, sports shoes, work shoes, shoe parts such as shoe soles, and various industrial parts such as anti-vibration rubber. Can be used.
 以下、実施例および比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、ポリエーテルポリアミドエラストマーの特性値は、次のようにして測定した。
(1)相対粘度(ηr)(0.5質量/容量%メタクレゾール溶液、25℃)
 試薬特級品のm-クレゾールを溶媒として、5g/dm3の濃度で、オストワルド粘度計を用いて25℃で測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited to these Examples. The characteristic values of the polyether polyamide elastomer were measured as follows.
(1) Relative viscosity (ηr) (0.5 mass / volume% metacresol solution, 25 ° C.)
Using a reagent-grade m-cresol as a solvent, it was measured at 25 ° C. using an Ostwald viscometer at a concentration of 5 g / dm 3 .
製造例1(ポリエーテルポリアミドエラストマー(PAE)の製造)
 攪拌機、温度計、トルクメーター、圧力計、窒素ガス導入口、圧力調整装置及びポリマー取り出し口を備えた容積70リットル反応容器に宇部興産株式会社製12-アミノドデカン酸(ADA)11.231kg、ABA型のトリブロックポリエーテルジアミン(HUNTSMAN社製XTJ-542、アミン価:1.94meq/g)7.680kg及びアジピン酸(AA)1.089kg、次亜リン酸ナトリウム1水和物6g及び耐熱剤(吉富製薬製トミノックス917)60gを仕込んだ。容器内を十分窒素置換した後、窒素ガスを流速186リットル/時間で供給しながら、容器内の圧力を0.05MPaに調整しながら3.5時間かけて230℃に昇温し、さらに容器内の圧力を0.05MPaに調整しながら230℃で4時間重合を行い、重合体を得た。重合終了後、攪拌を停止し、ポリマー取り出し口から溶融状態の無色透明の重合体を紐状に抜き出し、水冷した後、ペレタイズして、約15kgのペレットを得た。得られた重合物は白色強靭でゴム弾性に富むポリマーであり、ηr=1.98であった。
Production Example 1 (Production of polyether polyamide elastomer (PAE))
UBE Industries, Ltd. 12-aminododecanoic acid (ADA) 11.231 kg, ABA in a 70 liter reaction vessel equipped with a stirrer, thermometer, torque meter, pressure gauge, nitrogen gas inlet, pressure regulator and polymer outlet Type triblock polyether diamine (XTJ-542 manufactured by HUNTSMAN, amine value: 1.94 meq / g) 7.680 kg, adipic acid (AA) 1.089 kg, sodium hypophosphite monohydrate 6 g and heat-resistant agent (Tomitox 917 manufactured by Yoshitomi Pharmaceutical) 60 g was charged. After sufficiently replacing the inside of the container with nitrogen, the temperature inside the container was raised to 230 ° C. over 3.5 hours while adjusting the pressure in the container to 0.05 MPa while supplying nitrogen gas at a flow rate of 186 liters / hour. Polymerization was carried out at 230 ° C. for 4 hours while adjusting the pressure at 0.05 MPa to obtain a polymer. After completion of the polymerization, stirring was stopped, and the colorless and transparent polymer in a molten state was drawn out from the polymer outlet in a string shape, cooled with water, and pelletized to obtain about 15 kg of pellets. The obtained polymer was a white tough polymer rich in rubber elasticity, and ηr = 1.98.
実施例1~6及び比較例1~3
(1)ポリエーテルポリアミドエラストマー(PAE)シートの作製
 前記製造例1で得られたPAEのペレット約25gをスペーサー(150mm×150mm、厚み1.5mm)にセットした。次に、上記スペーサー、金属プレート及びテフロン(登録商標、以下同じ)シートを、金属プレート/テフロンシート/スペーサー/テフロンシート/金属プレートの層構成となるようにセットし、これをプレス成形機にセットし、加圧なしで1分間、190℃で予熱した後、1MPaで1分間、190℃で加圧プレスした後に取り出し、2分間冷却し成形した。
Examples 1 to 6 and Comparative Examples 1 to 3
(1) Production of Polyether Polyamide Elastomer (PAE) Sheet About 25 g of the PAE pellets obtained in Production Example 1 were set in a spacer (150 mm × 150 mm, thickness 1.5 mm). Next, set the spacer, metal plate, and Teflon (registered trademark, hereinafter the same) sheet so as to have a layer structure of metal plate / Teflon sheet / spacer / Teflon sheet / metal plate, and set it in a press molding machine. The sample was preheated at 190 ° C. for 1 minute without pressure, then pressed and pressed at 190 ° C. for 1 minute at 1 MPa, taken out, cooled and molded for 2 minutes.
(2)架橋ゴムシートの作製
 表1に示したゴム配合成分を、バンバリーミキサーを用いて、混練温度90℃で、時間4.5分混練した。次に、得られた混合物をプレス機中で、165℃,10MPa、15分間の条件で硬化させ、150mm×150mm×2mmの架橋ゴムシートを作製した。
(2) Preparation of crosslinked rubber sheet The rubber compounding components shown in Table 1 were kneaded at a kneading temperature of 90 ° C for 4.5 minutes using a Banbury mixer. Next, the obtained mixture was cured in a press machine under the conditions of 165 ° C., 10 MPa, and 15 minutes to produce a crosslinked rubber sheet of 150 mm × 150 mm × 2 mm.
(3)積層体シートの作製
 上記(1)、(2)で作製したPAEシート及び架橋ゴムシートを、PAEシート/架橋ゴムシート/PAEシートとなるように3層に重ねて、150mm×150mm及び厚み5mmのスペーサーにセットした。
 次に、上記スペーサー、金属プレート層及びテフロンシートを、層構成が金属プレート/テフロンシート/スペーサー/テフロンシート/金属プレートとなるようにセットし、これをプレス成形機にセットした。温度180℃にて加圧なしで5分間、上記温度で予熱した後、1MPaで5分間、同温で加圧プレスした後に取り出し、2分間冷却して成形した。上記サンプルを25mm幅で切り出し、試験用サンプルとしてT剥離試験に使用した。
(3) Production of Laminate Sheet The PAE sheet and the crosslinked rubber sheet produced in (1) and (2) above are stacked in three layers so as to be a PAE sheet / crosslinked rubber sheet / PAE sheet, and 150 mm × 150 mm and It was set on a spacer with a thickness of 5 mm.
Next, the spacer, the metal plate layer, and the Teflon sheet were set so that the layer configuration was metal plate / Teflon sheet / spacer / Teflon sheet / metal plate, and this was set on a press molding machine. After preheating at the above temperature for 5 minutes without pressure at a temperature of 180 ° C., pressurizing and pressing at 1 MPa for 5 minutes at the same temperature, taking out and cooling for 2 minutes to form. The sample was cut out with a width of 25 mm and used for a T peel test as a test sample.
(4)剥離強度
 剥離強度は、T剥離試験装置として、オリエンテック株式会社製、「テンシロン2500」を用い、引張速度50mm/分で行った。結果を表1に示す。
(4) Peel strength Peel strength was measured at a tensile speed of 50 mm / min using “Tensilon 2500” manufactured by Orientec Co., Ltd. as a T peel test apparatus. The results are shown in Table 1.
比較例4
 実施例1(1)において、製造例1で得たPAEの代わりに、ナイロン12(PA12)[宇部興産株式会社製、商品名「3030U」]を用いて、ナイロン12シートを温度210℃にて作製した以外は、実施例1と同様にして積層体シートを作製し、T剥離強度を測定した。結果を表1に示す。
Comparative Example 4
In Example 1 (1), instead of the PAE obtained in Production Example 1, nylon 12 (PA12) [product name “3030U” manufactured by Ube Industries, Ltd.] was used, and the nylon 12 sheet was heated at 210 ° C. A laminate sheet was produced in the same manner as in Example 1 except that it was produced, and the T peel strength was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(1)BR:ブタジエンゴム、宇部興産株式会社製、商品名「UBEPOL-BR130B」(シス1,4-結合含有量96%)
(2)天然ゴム:標準マレーシア産天然ゴム
(3)NBR:アクリロニトリルブタジエンゴム、JSR株式会社製、商品名「N230SV」
(4)シリカ:湿式シリカ、東ソー・シリカ株式会社製、商品名「Nipsil AQ」
(5)カーボンブラック:旭カーボン株式会社製、商品名「旭#70」
(6)HDPE:p-ヒドロキシ安息香酸2-エチルヘキシル(SP値19.5(MJ/m31/2)、花王株式会社製、商品名「エキセパールHD-PB」
(7)BBSA:ベンゼンスルホン酸ブチルアミド(SP値23.5(MJ/m31/2)、大八化学工業株式会社製、商品名「バル-BS」
(8)加工油:エクソンモービルケミカル社製、商品名「VARSOL 110 FLUID」
(9)DCP:ジクミルパーオキシド、日油株式会社製、商品名「パークミルD」
(10)3M:1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、日油株式会社製、商品名「パーヘキサ3M」
(11)シランカップリング剤:デグサ・ジャパン社製、商品名「Si69」
(12)老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
(13)積層体シートのポリアミド側シートとして、実施例1~6及び比較例1~3は、製造例1で得たPAEのシートを用い、比較例4は、PA12のシート(宇部興産株式会社製、商品名「3030U」)を用いた。
(1) BR: Butadiene rubber, manufactured by Ube Industries, Ltd., trade name “UBEPOL-BR130B” (cis 1,4-bond content 96%)
(2) Natural rubber: Standard Malaysian natural rubber (3) NBR: Acrylonitrile butadiene rubber, manufactured by JSR Corporation, trade name “N230SV”
(4) Silica: wet silica, manufactured by Tosoh Silica Co., Ltd., trade name “Nipsil AQ”
(5) Carbon black: Asahi Carbon Co., Ltd., trade name “Asahi # 70”
(6) HDPE: 2-ethylhexyl p-hydroxybenzoate (SP value 19.5 (MJ / m 3 ) 1/2 ), manufactured by Kao Corporation, trade name “EXCEPARL HD-PB”
(7) BBSA: Benzenesulfonic acid butyramide (SP value 23.5 (MJ / m 3 ) 1/2 ), manufactured by Daihachi Chemical Industry Co., Ltd., trade name “Val-BS”
(8) Processing oil: Product name “VARSOL 110 FLUID” manufactured by ExxonMobil Chemical Co., Ltd.
(9) DCP: Dicumyl peroxide, manufactured by NOF Corporation, trade name “Park Mill D”
(10) 3M: 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, manufactured by NOF Corporation, trade name “Perhexa 3M”
(11) Silane coupling agent: manufactured by Degussa Japan, trade name “Si69”
(12) Anti-aging agent 6C: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK 6C”
(13) As the polyamide side sheet of the laminate sheet, the PAE sheet obtained in Production Example 1 was used in Examples 1 to 6 and Comparative Examples 1 to 3, and the PA12 sheet (Ube Industries, Ltd.) Product name “3030U”).
 実施例1~6のポリアミド積層体シートは、T剥離強度が比較例1~4よりもはるかに高い。また、比較例2から、シリカの代わりにカーボンブラックを用いても、T剥離強度の向上効果は見られないことが分かる。 The polyamide laminate sheets of Examples 1 to 6 have a much higher T peel strength than Comparative Examples 1 to 4. Further, it can be seen from Comparative Example 2 that even if carbon black is used instead of silica, the effect of improving the T peel strength is not observed.
産業上の利用分野Industrial application fields
 本発明のゴム組成物は、ポリエーテルポリアミドエラストマーと架橋ゴムとの積層体における該ゴムの材料として用いられ、層間接着力の高い前記ポリアミド積層体を与えることができる。
 また、本発明のポリアミド積層体は、ポリエーテルポリアミドエラストマーと架橋ゴムとの強固な接着強度を有するため、タイヤ部材、各種振動吸収部材、ドアロック部材、ラジエターマウントなどの自動車部品、スポーツシューズ、作業用靴、靴底などの靴用部品、防振ゴムなどの各種産業用部材、さらにゴムだけでは強度が足りず大きな変形をしてしまう部分、例えば滑り止めのゴム、ゴムチューブ・スポーツ用品・電気製品のグリップなどの用途に好適に利用することができる。
The rubber composition of the present invention is used as a material for the rubber in a laminate of a polyether polyamide elastomer and a crosslinked rubber, and can give the polyamide laminate having a high interlayer adhesion.
In addition, the polyamide laminate of the present invention has strong adhesive strength between the polyether polyamide elastomer and the crosslinked rubber. Therefore, the tire member, various vibration absorbing members, door lock members, radiator mounts and other automobile parts, sports shoes, work Shoes, shoe parts such as shoe soles, various industrial parts such as anti-vibration rubber, and parts that are deformed due to insufficient strength with rubber alone, such as non-slip rubber, rubber tubes, sporting goods, electricity It can be suitably used for applications such as product grips.

Claims (14)

  1.  ポリエーテルポリアミドエラストマーと、架橋ゴムとの積層体における該架橋ゴムの材料として用いられるゴム組成物であって、天然ゴム及び/又はジエン系合成ゴム(A)100質量部に対し、シリカ(B)35~80質量部と、下記式(1)で表されるアリールスルホン酸アミド誘導体及び下記式(2)で表されるヒドロキシ安息香酸アルキルエステル誘導体の中から選ばれる少なくとも一種の可塑剤(C)0.5~10質量部と、架橋剤(D)0.1~3質量部とを含むゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、一方が炭素数1~10のアルキル基、残りが水素原子又は炭素数1~10のアルキル基を示し、R3は炭素数1~4のアルキル基を示す。nは0~5の整数であり、nが2以上の場合、複数のR3は同一でも異なっていてもよい。)
    (式中、R4は炭素数1~20のアルキル基を示す。)
    A rubber composition used as a material for a cross-linked rubber in a laminate of a polyether polyamide elastomer and a cross-linked rubber, wherein 100 parts by mass of natural rubber and / or diene synthetic rubber (A) is silica (B) 35 to 80 parts by mass and at least one plasticizer (C) selected from an aryl sulfonic acid amide derivative represented by the following formula (1) and a hydroxybenzoic acid alkyl ester derivative represented by the following formula (2) A rubber composition comprising 0.5 to 10 parts by mass and 0.1 to 3 parts by mass of a crosslinking agent (D).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, one of R 1 and R 2 represents an alkyl group having 1 to 10 carbon atoms, the remaining represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkyl group having 1 to 4 carbon atoms. N is an integer of 0 to 5, and when n is 2 or more, a plurality of R 3 may be the same or different.)
    (Wherein R 4 represents an alkyl group having 1 to 20 carbon atoms.)
  2.  可塑剤(C)が、ベンゼンスルホン酸ブチルアミド及び/又はp-ヒドロキシ安息香酸2-エチルヘキシルである請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the plasticizer (C) is benzenesulfonic acid butyramide and / or 2-ethylhexyl p-hydroxybenzoate.
  3.  天然ゴム及び/又はジエン系合成ゴム(A)が、ポリブタジエンゴム、又はポリブタジエンゴムと天然ゴムとの併用系である、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the natural rubber and / or the diene-based synthetic rubber (A) is a polybutadiene rubber or a combined system of polybutadiene rubber and natural rubber.
  4.  ポリブタジエンゴムが、シス-1,4結合を90%以上含むものである、請求項3に記載のゴム組成物。 4. The rubber composition according to claim 3, wherein the polybutadiene rubber contains 90% or more of cis-1,4 bonds.
  5.  さらに、シランカップリング剤(E)を、シリカ(B)に対して、1~10質量%の範囲で含む、請求項1~4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, further comprising a silane coupling agent (E) in a range of 1 to 10% by mass relative to silica (B).
  6.  下記式(3)で表わされるアミノカルボン酸化合物(X1)及び/又は下記式(4)で表わされるラクタム化合物(X2)、下記式(5)で表わされるトリブロックポリエーテルジアミン化合物(Y)、並びに下記式(6)で表わされるジカルボン酸化合物(Z)を重合して得られるポリエーテルポリアミドエラストマーと、請求項1~5のいずれかに記載のゴム組成物から得られた架橋ゴムとが積層されてなるポリアミド積層体。

       H2N-R5-COOH    (3)
    [但し、R5は、炭化水素鎖を含む連結基を示す。]
    Figure JPOXMLDOC01-appb-C000003
    [但し、R6は、炭化水素鎖を含む連結基を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [但し、xは1~20の範囲、yは4~50の範囲、zは1~20の範囲である。]

       HOOC-(R7m-COOH  (6)
    [但し、R7は、炭化水素鎖を含む連結基を表わし、mは0又は1である。]
    An aminocarboxylic acid compound (X1) represented by the following formula (3) and / or a lactam compound (X2) represented by the following formula (4), a triblock polyetherdiamine compound (Y) represented by the following formula (5), A polyether polyamide elastomer obtained by polymerizing a dicarboxylic acid compound (Z) represented by the following formula (6) and a crosslinked rubber obtained from the rubber composition according to any one of claims 1 to 5 are laminated: A polyamide laminate obtained.

    H 2 N—R 5 —COOH (3)
    [However, R 5 represents a linking group containing a hydrocarbon chain. ]
    Figure JPOXMLDOC01-appb-C000003
    [However, R 6 represents a linking group containing a hydrocarbon chain. ]
    Figure JPOXMLDOC01-appb-C000004
    [Where x is in the range of 1 to 20, y is in the range of 4 to 50, and z is in the range of 1 to 20. ]

    HOOC- (R 7 ) m —COOH (6)
    [However, R 7 represents a linking group containing a hydrocarbon chain, and m is 0 or 1. ]
  7.  (X1)化合物、(X2)化合物、(Y)化合物、及び(Z)化合物の総量に対する、アミノカルボン酸化合物(X1)及び/又はラクタム化合物(X2)の量が10~95質量%である、請求項6に記載のポリアミド積層体。 The amount of the aminocarboxylic acid compound (X1) and / or the lactam compound (X2) is 10 to 95% by mass with respect to the total amount of the compound (X1), the compound (X2), the compound (Y), and the compound (Z). The polyamide laminate according to claim 6.
  8.  (X1)化合物及び/又は(X2)化合物が15~70質量%、(Y)化合物と(Z)化合物との合計量が30~85質量%で用いられる、請求項6又は7に記載のポリアミド積層体。 The polyamide according to claim 6 or 7, wherein the compound (X1) and / or (X2) is used in an amount of 15 to 70% by mass, and the total amount of the (Y) compound and the (Z) compound is 30 to 85% by mass. Laminated body.
  9.  式(3)のR5が炭素原子数2~20のアルキレン基を含む、請求項6~8のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 8, wherein R 5 in the formula (3) contains an alkylene group having 2 to 20 carbon atoms.
  10.  式(4)のR6が炭素原子数3~20のアルキレン基を含む、請求項6~9のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 9, wherein R 6 in the formula (4) contains an alkylene group having 3 to 20 carbon atoms.
  11.  式(5)のxが2~6の範囲、yが6~12の範囲、zが1~5の範囲である、請求項6~10のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 10, wherein x in the formula (5) is in the range of 2 to 6, y is in the range of 6 to 12, and z is in the range of 1 to 5.
  12.  式(5)のxが2~10の範囲、yが13~28の範囲、zが1~9の範囲である、請求項6~10のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 10, wherein x in the formula (5) is in the range of 2 to 10, y is in the range of 13 to 28, and z is in the range of 1 to 9.
  13.  式(6)のジカルボン酸化合物が脂肪族ジカルボン酸又は脂環族ジカルボン酸である、請求項6~12のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 12, wherein the dicarboxylic acid compound of the formula (6) is an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid.
  14.  式(6)のmが1で、R7が炭素原子数1~20のアルキレン基を表わす、請求項6~13のいずれかに記載のポリアミド積層体。 The polyamide laminate according to any one of claims 6 to 13, wherein m in the formula (6) is 1 and R 7 represents an alkylene group having 1 to 20 carbon atoms.
PCT/JP2009/068030 2008-10-21 2009-10-19 Rubber composition and polyamide laminate WO2010047315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534806A JP5472116B2 (en) 2008-10-21 2009-10-19 Rubber composition and polyamide laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-271353 2008-10-21
JP2008271353 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047315A1 true WO2010047315A1 (en) 2010-04-29

Family

ID=42119353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068030 WO2010047315A1 (en) 2008-10-21 2009-10-19 Rubber composition and polyamide laminate

Country Status (3)

Country Link
JP (1) JP5472116B2 (en)
TW (1) TW201030098A (en)
WO (1) WO2010047315A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291962A (en) * 2008-06-02 2009-12-17 Ube Ind Ltd Multilayered structure
JP2013006387A (en) * 2011-06-27 2013-01-10 Yokohama Rubber Co Ltd:The Laminate of polyamide-based resin film and rubber, and tire
WO2013129293A1 (en) * 2012-02-29 2013-09-06 Nok株式会社 Rubber laminated resin complex
WO2014027650A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether-polyamide composition
WO2014027649A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide resin composition
WO2014027651A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide composition
JP2014037467A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide resin composition
JP2014037465A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037462A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037464A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037463A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037466A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide resin composition
JP2015145129A (en) * 2015-03-30 2015-08-13 横浜ゴム株式会社 Laminate of polyamide resin film and rubber, and tire
WO2016052705A1 (en) * 2014-10-01 2016-04-07 株式会社ブリヂストン Tire skeleton and tire
WO2016067842A1 (en) * 2014-10-27 2016-05-06 株式会社ブリヂストン Tire
JPWO2019208798A1 (en) * 2018-04-26 2021-05-13 株式会社ブリヂストン Resin-rubber composite, tire, and method for manufacturing resin-rubber composite
US20220033624A1 (en) * 2018-12-20 2022-02-03 Total Marketing Services Rubber composition comprising esters from renewable sources as plasticizers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083325A (en) * 1994-05-06 1996-01-09 Elf Atochem Sa Material comprising combination of thermoplastic elastomer and vulcanized elastomer
JPH10265677A (en) * 1997-03-24 1998-10-06 Asahi Denka Kogyo Kk Antibacterial polymeric material composition
JP2000041702A (en) * 1998-07-31 2000-02-15 Mizuno Corp Shoe sole of three-layered structure and its production
JP2002273826A (en) * 2001-01-15 2002-09-25 Daicel Degussa Ltd Composite and its manufacturing method
JP2003286341A (en) * 2002-01-28 2003-10-10 Ube Ind Ltd Polyamide elastomer
JP2004161964A (en) * 2001-11-27 2004-06-10 Ube Ind Ltd Polyetherpolyamide elastomer having low water-absorbing property
JP2004352895A (en) * 2003-05-29 2004-12-16 Nippon Zeon Co Ltd Copolymer latex composition
JP2005036147A (en) * 2003-07-17 2005-02-10 Daicel Degussa Ltd Composite and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083325A (en) * 1994-05-06 1996-01-09 Elf Atochem Sa Material comprising combination of thermoplastic elastomer and vulcanized elastomer
JPH10265677A (en) * 1997-03-24 1998-10-06 Asahi Denka Kogyo Kk Antibacterial polymeric material composition
JP2000041702A (en) * 1998-07-31 2000-02-15 Mizuno Corp Shoe sole of three-layered structure and its production
JP2002273826A (en) * 2001-01-15 2002-09-25 Daicel Degussa Ltd Composite and its manufacturing method
JP2004161964A (en) * 2001-11-27 2004-06-10 Ube Ind Ltd Polyetherpolyamide elastomer having low water-absorbing property
JP2003286341A (en) * 2002-01-28 2003-10-10 Ube Ind Ltd Polyamide elastomer
JP2004352895A (en) * 2003-05-29 2004-12-16 Nippon Zeon Co Ltd Copolymer latex composition
JP2005036147A (en) * 2003-07-17 2005-02-10 Daicel Degussa Ltd Composite and method for manufacturing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291962A (en) * 2008-06-02 2009-12-17 Ube Ind Ltd Multilayered structure
JP2013006387A (en) * 2011-06-27 2013-01-10 Yokohama Rubber Co Ltd:The Laminate of polyamide-based resin film and rubber, and tire
WO2013129293A1 (en) * 2012-02-29 2013-09-06 Nok株式会社 Rubber laminated resin complex
US9586383B2 (en) 2012-02-29 2017-03-07 Nok Corporation Rubber laminated resin composite
CN104114364A (en) * 2012-02-29 2014-10-22 Nok株式会社 Rubber laminated resin complex
JP2014037467A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide resin composition
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition
JP2014037465A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037462A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037464A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037463A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition
JP2014037466A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide resin composition
WO2014027649A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide resin composition
WO2014027650A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether-polyamide composition
WO2014027651A1 (en) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 Polyether polyamide composition
JP5989279B1 (en) * 2014-10-01 2016-09-07 株式会社ブリヂストン Tire frame and tire
WO2016052705A1 (en) * 2014-10-01 2016-04-07 株式会社ブリヂストン Tire skeleton and tire
WO2016067842A1 (en) * 2014-10-27 2016-05-06 株式会社ブリヂストン Tire
JP2016084424A (en) * 2014-10-27 2016-05-19 株式会社ブリヂストン Tyre
US10301450B2 (en) 2014-10-27 2019-05-28 Bridgestone Corporation Tire
JP2015145129A (en) * 2015-03-30 2015-08-13 横浜ゴム株式会社 Laminate of polyamide resin film and rubber, and tire
JPWO2019208798A1 (en) * 2018-04-26 2021-05-13 株式会社ブリヂストン Resin-rubber composite, tire, and method for manufacturing resin-rubber composite
JP7312411B2 (en) 2018-04-26 2023-07-21 株式会社ブリヂストン RESIN-RUBBER COMPOSITE, TIRE, AND METHOD FOR MANUFACTURING RESIN-RUBBER COMPOSITE
US20220033624A1 (en) * 2018-12-20 2022-02-03 Total Marketing Services Rubber composition comprising esters from renewable sources as plasticizers
US11945952B2 (en) * 2018-12-20 2024-04-02 Total Marketing Services Rubber composition comprising esters from renewable sources as plasticizers

Also Published As

Publication number Publication date
JPWO2010047315A1 (en) 2012-03-22
TW201030098A (en) 2010-08-16
JP5472116B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5472116B2 (en) Rubber composition and polyamide laminate
WO2011027703A1 (en) Polyether-polyamide elastomer and polyamide laminate
JP5521314B2 (en) Rubber composition for retread tire and retread tire
JP5544814B2 (en) Rubber composition and method for producing the same
JP5376112B2 (en) Multilayer structure
WO2009093695A1 (en) Rubber composition, rubber composition for base tread, rubber composition for chafer, rubber composition for sidewall, and tire using the rubber compositions
EP1971642B1 (en) Carbon fiber reinforced polyamide resin composition
JP4978425B2 (en) Polyamide laminate
JP5168432B2 (en) Reactive polyamide resin and polyamide resin composition
US20080064826A1 (en) Polyamide resin composition
JP2009255489A (en) Multi-layered structure
KR20100018451A (en) Thermoplastic elastomer composition and pneumatic tire using the same
KR20180102111A (en) Method for producing thermoplastic elastomer composition
CN105764941A (en) Functionalized copolymer rubber containing nitrile groups
JP6121995B2 (en) Method for producing heat-stabilized polyamide-filled acrylate polymer
CN111492002A (en) Cured HNBR products having improved hot air resistance
JP2018021145A (en) Rubber composition and tire
JP6477194B2 (en) Polyamide elastomer and laminate
JP2010095604A (en) Rubber composition
JP5167965B2 (en) Joints for fuel piping, quick connectors for fuel piping and fuel piping parts
WO2013129293A1 (en) Rubber laminated resin complex
JP6799716B2 (en) Thermoplastic resin composition
JPS63221163A (en) Resin composition
JP2016204490A (en) Composition and molded article consisting of the same
KR20170002207A (en) Polyamide elastomer composition and molded product of the same, and polymer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822012

Country of ref document: EP

Kind code of ref document: A1