WO2010047196A1 - Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate - Google Patents

Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate Download PDF

Info

Publication number
WO2010047196A1
WO2010047196A1 PCT/JP2009/066086 JP2009066086W WO2010047196A1 WO 2010047196 A1 WO2010047196 A1 WO 2010047196A1 JP 2009066086 W JP2009066086 W JP 2009066086W WO 2010047196 A1 WO2010047196 A1 WO 2010047196A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
substrate
treatment liquid
pattern
silylating agent
Prior art date
Application number
PCT/JP2009/066086
Other languages
French (fr)
Japanese (ja)
Inventor
淳 越山
和正 脇屋
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008270556A external-priority patent/JP5483858B2/en
Priority claimed from JP2008305719A external-priority patent/JP2010129932A/en
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020197021023A priority Critical patent/KR102155494B1/en
Priority to US13/123,341 priority patent/US9244358B2/en
Priority to KR1020187023427A priority patent/KR102189379B1/en
Priority to KR1020177021607A priority patent/KR20170092714A/en
Priority to KR1020167026252A priority patent/KR20160114736A/en
Publication of WO2010047196A1 publication Critical patent/WO2010047196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a surface treatment liquid used for hydrophobizing a substrate, a surface treatment method using the surface treatment liquid, a hydrophobic treatment method using the surface treatment liquid, and a hydrophobized substrate.
  • Lithography is frequently used to manufacture fine structures in various electronic devices such as semiconductor devices.
  • various electronic devices such as semiconductor devices.
  • miniaturization of device structures there has been a demand for finer resist patterns and higher aspect ratios in lithography processes.
  • improvement of the exposure apparatus and development of a resist material corresponding thereto are the first points.
  • Development points of exposure equipment include shortening the exposure wavelength and increasing the numerical aperture (NA) of lenses such as F 2 excimer laser, EUV (extreme ultraviolet light), electron beam, X-ray, and soft X-ray. It is common.
  • NA numerical aperture
  • liquid immersion lithography (hereinafter sometimes referred to as liquid immersion exposure) has been proposed as a lithography technique for solving such problems (see Non-Patent Document 1).
  • exposure immersion exposure
  • immersion exposure is performed by interposing a liquid (immersion medium) having a higher refractive index than air between the objective lens of the exposure apparatus and the resist film (or resist protective film).
  • immersion exposure even when a light source with the same exposure wavelength is used, the same high resolution can be achieved as when using a light source with a shorter wavelength or a high NA lens, and the depth of focus range. It is said that there is no decline.
  • immersion exposure can be performed using an existing exposure apparatus. For this reason, immersion exposure is expected to be able to form resist patterns with low cost, high resolution, and excellent depth of focus.
  • lithography characteristics such as resolution
  • the semiconductor industry is attracting a great deal of attention.
  • This immersion exposure is effective in the formation of all pattern shapes, and can be combined with super-resolution techniques such as the phase shift method and the modified illumination method that are currently being studied.
  • super-resolution techniques such as the phase shift method and the modified illumination method that are currently being studied.
  • an immersion exposure technique a technique mainly using an ArF excimer laser as a light source is being actively researched.
  • water is mainly studied as an immersion medium.
  • water is interposed as an immersion medium between the objective lens of the exposure apparatus and the resist film (or resist protective film), so that water flows around the edge portion (outer edge portion) and the back surface of the substrate.
  • resist film or resist protective film
  • HMDS hexamethyldisilazane
  • the vapor treatment of the silylating agent as in Patent Documents 1 and 2 requires heating, nitrogen bubbling and the like, and is not a simple method.
  • an inorganic antireflection film (inorganic BARC) or an organic antireflection film (organic BARC) is often formed in the central portion of the substrate, and it is considered that hydrophobic treatment is not necessary for such a portion.
  • the portion that does not require the hydrophobization treatment is necessarily treated, so that it is not efficient.
  • pattern collapse occurs.
  • This pattern collapse is such that when a large number of resin patterns are formed in parallel on a substrate, adjacent resin patterns are close to each other so that the resin pattern may break or peel off from the base in some cases. It is a phenomenon. When such a pattern collapse occurs, a desired product cannot be obtained, which causes a decrease in product yield and reliability.
  • Recently, not only a resin pattern but also a pattern to be etched has a problem of pattern collapse.
  • This pattern collapse is known to occur due to the surface tension of the cleaning liquid when the cleaning liquid dries in the cleaning process after pattern formation. That is, when the cleaning liquid is removed during the drying process, stress based on the surface tension of the cleaning liquid acts between the patterns, resulting in pattern collapse.
  • the present invention has been made in view of such a conventional situation, and can easily and efficiently realize the hydrophobizing treatment of the substrate, or effectively prevent the pattern collapse of the resin pattern or the pattern to be etched. It is an object of the present invention to provide a surface treatment liquid that can be used, a surface treatment method using the surface treatment liquid, a hydrophobic treatment method using the surface treatment liquid, and a hydrophobic substrate.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that if a silylating agent is diluted with a solvent to form a surface treatment liquid, only a portion requiring hydrophobic treatment, for example, only an outer edge portion of a substrate can be hydrophobized. Furthermore, when the silylating agent is diluted in a normal solvent and applied to the substrate, the degree of hydrophobicity is significantly reduced as compared with the case where the vapor treatment is performed. It has been found that when applied, the degree of hydrophobicity increases to the same extent as when the vapor treatment is performed.
  • the present inventors treated the surface of the resin pattern or the pattern to be etched with a surface treatment liquid containing a silylating agent and a solvent to make it hydrophobic, and increase the contact angle of the cleaning liquid, thereby increasing the resin pattern or the pattern to be etched. It was found that the pattern collapse can be effectively prevented.
  • the present invention has been made on the basis of such knowledge, and is specifically as follows.
  • a first aspect of the present invention is a surface treatment liquid used for the hydrophobization treatment of a substrate, which is a surface treatment liquid containing a silylating agent and a hydrocarbon nonpolar solvent.
  • the second aspect of the present invention is a hydrophobic treatment method in which a surface treatment liquid according to the present invention is applied to a substrate to make it hydrophobic.
  • the third aspect of the present invention is a substrate hydrophobized by the hydrophobizing method according to the present invention.
  • the fourth aspect of the present invention is a process of treating the surface of a resin pattern provided on a substrate or a pattern to be etched formed on a substrate by etching with a surface treatment liquid containing a silylating agent and a solvent; Cleaning the resin pattern or the pattern to be etched after the treatment with the surface treatment liquid.
  • a fifth aspect of the present invention is a surface treatment liquid that contains a silylating agent and a solvent and is used in the surface treatment method according to the present invention.
  • the surface treatment liquid which can implement
  • a hydrophobizing method using the surface treating solution, and a hydrophobized substrate can be provided.
  • the surface treatment liquid in the first embodiment contains a silylating agent and a hydrocarbon nonpolar solvent.
  • the surface treatment liquid in the first embodiment contains a silylating agent for hydrophobizing the substrate surface.
  • the silylating agent is not particularly limited, and any conventionally known silylating agent can be used. Specifically, for example, silylating agents represented by the following formulas (1) to (3) can be used.
  • R 1 represents a hydrogen atom or a saturated or unsaturated alkyl group
  • R 2 represents a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, or a saturated or unsaturated heterocycloalkyl group.
  • R 1 and R 2 may combine with each other to form a saturated or unsaturated heterocycloalkyl group having a nitrogen atom.
  • R 3 represents a hydrogen atom, a methyl group, a trimethylsilyl group, or a dimethylsilyl group
  • R 4 and R 5 each independently represent a hydrogen atom, a methyl group, an alkyl group, or a vinyl group.
  • X represents O, CHR 7 , CHOR 7 , CR 7 R 7 , or NR 8
  • R 6 and R 7 are each independently a hydrogen atom, a saturated or unsaturated alkyl group, saturated or unsaturated.
  • R 8 represents a hydrogen atom, an alkyl group, or a trialkylsilyl group.
  • Examples of the silylating agent represented by the above formula (1) include N, N-dimethylaminotrimethylsilane, N, N-diethylaminotrimethylsilane, t-butylaminotrimethylsilane, allylaminotrimethylsilane, trimethylsilylacetamide, and trimethylsilyl.
  • Examples include piperidine, trimethylsilylimidazole, trimethylsilylmorpholine, 3-trimethylsilyl-2-oxazolidinone, trimethylsilylpyrazole, trimethylsilylpyrrolidine, 2-trimethylsilyl-1,2,3-triazole, 1-trimethylsilyl-1,2,4-triazole and the like.
  • Examples of the silylating agent represented by the above formula (2) include hexamethyldisilazane, N-methylhexamethyldisilazane, 1,2-di-N-octyltetramethyldisilazane, 1,2-divinyltetra. Examples include methyldisilazane, heptamethyldisilazane, nonamethyltrisilazane, and tris (dimethylsilyl) amine.
  • silylating agent represented by the above formula (3) examples include trimethylsilyl acetate, trimethylsilylpropionate, trimethylsilylbutyrate, trimethylsilyloxy-3-penten-2-one, and the like.
  • N, N-dimethylaminotrimethylsilane is preferable because the hydrophobicity of the substrate can be further increased.
  • This DMATMS can further increase the hydrophobicity of the substrate as compared with the conventionally used HMDS.
  • the content of the silylating agent is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass in the surface treatment liquid.
  • the surface treatment liquid in the first embodiment contains a hydrocarbon nonpolar solvent for diluting the silylating agent.
  • a hydrocarbon nonpolar solvent for diluting the silylating agent.
  • a polar solvent having a carbonyl group such as cyclohexanone, propylene glycol monomethyl ether acetate (PGMEA) or ethyl lactate, an ester bond, a hydroxyl group or a carboxyl group is used, it can be hydrophobized even if the same silylating agent is used. The degree is significantly reduced. This is because the silylating agent is highly reactive and thus reacts with a polar solvent.
  • hydrocarbon nonpolar solvent examples include linear, branched or cyclic hydrocarbon solvents, aromatic hydrocarbon solvents, terpene solvents and the like.
  • a linear or branched hydrocarbon solvent having 6 to 12 carbon atoms or a terpene solvent is preferable.
  • linear or branched hydrocarbon solvents having 6 to 12 carbon atoms include n-hexane, n-heptane, n-octane, n-nonane, methyloctane, n-decane, n-undecane, n- And dodecane.
  • terpene solvent examples include p-menthane, o-menthane, m-menthan and other menthane, diphenylmenthane, limonene, ⁇ -terpinene, ⁇ -terpinene, ⁇ -terpinene and other terpinenes, bornane, norbornane, pinane, ⁇ -Pinenes such as pinene and ⁇ -pinene, monoterpenes such as karan and longifolene, diterpenes such as abiethane, and the like.
  • a straight-chain hydrocarbon solvent having 7 to 10 carbon atoms, menthane, and pinane are preferable because of excellent effects of the present invention.
  • These hydrocarbon nonpolar solvents may be used alone or in combination of two or more.
  • the hydrophobizing method in the first embodiment is to apply a surface treatment liquid in the first embodiment to a substrate to make it hydrophobic. Since the surface treatment liquid in the first embodiment is in a solution state, the substrate can be hydrophobized by a simple method such as spin coating. It is also possible to hydrophobize only the part that needs to be hydrophobized, for example, only the outer edge of the substrate.
  • the substrate examples include substrates made of Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al—Si, and the like. Among these, a silicon wafer is preferable.
  • the method for applying the surface treatment liquid to the substrate is not particularly limited, but spin coating is preferred. At the time of application, the surface treatment liquid may be applied to the entire surface of the substrate. However, as described above, an inorganic antireflection film (inorganic BARC) or an organic antireflection film (organic BARC) is usually provided at the center of the substrate. Is formed, and it is preferable to spin-coat only on the outer edge portion because no hydrophobizing treatment is required.
  • inorganic BARC inorganic antireflection film
  • organic BARC organic antireflection film
  • the “outer edge portion” in this specification is a concept indicating one or both of the substrate end surface (side surface) and the peripheral portion of the substrate upper surface (about 3 mm from the outer periphery).
  • FIG. 1 shows the configuration of the main part of a substrate processing apparatus capable of spin-coating the surface treatment liquid only on the outer edge of the substrate.
  • the circular substrate W is held in a substantially horizontal posture by a spin chuck 30.
  • a motor shaft 31 of a motor 32 is suspended from the center portion on the lower surface side of the spin chuck 30.
  • the motor 32 is driven to rotate the motor shaft 31 in the forward direction or the reverse direction, the spin chuck 30 and the substrate W held thereon rotate in a horizontal plane.
  • the substrate processing apparatus 1 is provided with a cup 33 that receives and collects a resist material or a surface treatment liquid scattered from the substrate W rotating during the coating process.
  • the cup 33 is movable up and down relatively with respect to the spin chuck 30.
  • a resist material or a surface treatment liquid is applied to the substrate W, the cup 33 is held by the spin chuck 30 as shown in FIG.
  • a cup 33 is located around the substrate W.
  • the resist material and the surface treatment liquid scattered from the rotating substrate W are received by the inner wall surface of the cup 33 and guided to a lower discharge port (not shown).
  • the spin chuck 30 protrudes from the upper end of the cup 33.
  • the coating nozzle 10 that discharges the resist material is connected to a resist material supply source 12 through a pipe 11.
  • the pipe 11 is provided with a filter, a pump, an electromagnetic valve, etc. (all not shown).
  • the application nozzle 10 is configured so that a resist material can be deposited near the center of the substrate W when the substrate W is held on the spin chuck 30.
  • the coating nozzle 20 that discharges the surface treatment liquid is connected to the surface treatment liquid supply source 22 through the pipe 21.
  • the pipe 21 is provided with a filter, a pump, an electromagnetic valve, etc. (all not shown).
  • the coating nozzle 20 is configured so that the surface treatment liquid can be deposited on the outer edge of the substrate W when the substrate W is held on the spin chuck 30.
  • the coating nozzle 20 is preferably provided exclusively for the surface treatment liquid in the first embodiment, but when an EBR coating nozzle used for EBR (Edge Bead Remover) processing can be used. May also be used as an EBR coating nozzle.
  • the surface treatment liquid When performing the hydrophobic treatment of the substrate W, the surface treatment liquid may be discharged from the coating nozzle 20 to the outer edge of the substrate W while rotating the substrate W by the motor 32. Thereby, the landing point of the discharged surface treatment liquid moves along the outer edge portion of the substrate W held by the spin chuck 30, and the outer edge portion becomes hydrophobic.
  • the substrate hydrophobized by the hydrophobizing method according to the first embodiment is suitable for forming a resist pattern on the substrate by immersion exposure. Therefore, hereinafter, a resist pattern forming method for forming a resist pattern on a substrate by immersion exposure will be described.
  • a resist material is applied on the substrate hydrophobized by the hydrophobizing method in the first embodiment with a spinner or the like, and the resist pattern is applied at 80 to 150 ° C. at 40 ° C.
  • the resist film is formed by heating for 120 seconds, preferably 60 to 90 seconds.
  • an inorganic antireflection film inorganic BARC
  • an organic antireflection film organic BARC
  • the resist material is not particularly limited, and any conventionally known resist material can be arbitrarily used, including negative and positive resist materials.
  • resist materials include (i) a positive resist material containing a naphthoquinonediazide compound and a novolac resin, (ii) a compound that generates an acid upon exposure, and a compound that increases solubility in an alkaline solution by the action of an acid.
  • a positive resist material containing an alkali-soluble resin (iii) a compound that generates an acid upon exposure, and a positive resist material containing an alkali-soluble resin having a group that increases the solubility in an alkaline solution by the action of the acid
  • a negative resist material containing a compound that generates an acid or a radical by light, a crosslinking agent, and an alkali-soluble resin (iii) a compound that generates an acid upon exposure, and a positive resist material containing an alkali-soluble resin having a group that increases the solubility in an alkaline solution by the action of the acid
  • a negative resist material containing a compound that generates an acid or a radical by light, a crosslinking agent, and an alkali-soluble resin.
  • a resist protective film forming material is applied onto the resist film with a spinner or the like, and heated at 80 to 150 ° C. for 40 to 120 seconds, preferably 60 to 90 seconds to form a resist protective film.
  • the material for forming the resist protective film is not particularly limited as long as it contains a fluorine-containing resin and can prevent the resist film from being deteriorated by the immersion medium or the immersion medium from being dissolved by the component elution from the resist film.
  • a conventionally known resist protective film forming material can be arbitrarily used.
  • an immersion medium is interposed between the objective lens of the exposure apparatus and the resist film (or resist protective film), and exposure (immersion exposure) is performed with or without a desired mask pattern in that state.
  • the exposure apparatus for example, an immersion exposure apparatus manufactured by NIKON or ASML can be used.
  • the substrate hydrophobized by the hydrophobizing method according to the present invention it is possible to prevent water from flowing around the edge portion (outer edge portion) or the back surface of the substrate even during exposure.
  • a solvent having a refractive index larger than that of air is preferable.
  • a solvent include water, a fluorine-based inert liquid, a silicon-based solvent, and the like.
  • the fluorine-based inert liquid include a fluorine-based compound such as C 3 HCl 2 F 5 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , and C 5 H 3 F 7 as a main component.
  • examples thereof include liquids, and those having a boiling point of 70 to 180 ° C are preferable, and those having a boiling point of 80 to 160 ° C are more preferable.
  • water is preferable from the viewpoint of handling.
  • the exposure light is not particularly limited, and KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), EB (electron beam), X-ray, soft X-ray, etc. Can be used.
  • the exposed substrate is heated at 80 to 150 ° C. for 40 to 120 seconds, preferably 60 to 90 seconds.
  • the resist film is developed using an alkali developer, for example, a 0.1 to 10% by mass tetramethylammonium hydroxide (TMAH) aqueous solution. Thereafter, a resist pattern is obtained by drying.
  • TMAH tetramethylammonium hydroxide
  • the surface treatment method in 2nd Embodiment is the process of processing the surface of the to-be-etched pattern formed in the board
  • the resin pattern etc. which were formed by apply
  • the photosensitive resin composition may be positive or negative, and may be chemically amplified or non-chemically amplified.
  • the pattern to be etched is not particularly limited, but includes a pattern formed by etching the substrate using the above resin pattern as a mask. Examples of the material of the pattern to be etched include silicon, silicon nitride, titanium nitride, and tungsten.
  • the development residue and the attached developer are generally removed by washing with a cleaning solution such as water or an activator rinse. Further, even after the pattern to be etched is formed, the pattern surface is generally cleaned with a cleaning solution such as SPM (sulfuric acid / hydrogen peroxide solution) or APM (ammonia / hydrogen peroxide solution). .
  • a cleaning solution such as SPM (sulfuric acid / hydrogen peroxide solution) or APM (ammonia / hydrogen peroxide solution).
  • the pattern surface is treated with a surface treatment liquid (described later) to make the pattern surface hydrophobic before cleaning such a resin pattern or a pattern to be etched. .
  • a force F acting between patterns such as a resin pattern and a pattern to be etched at the time of cleaning is expressed as the following formula (I).
  • represents the surface tension of the cleaning liquid
  • represents the contact angle of the cleaning liquid
  • A represents the aspect ratio of the pattern
  • D represents the distance between the pattern sidewalls.
  • the pattern surface can be hydrophobized and the contact angle of the cleaning liquid can be increased, the force acting between patterns during subsequent cleaning can be reduced, and pattern collapse can be prevented.
  • This surface treatment is performed by immersing the substrate on which the resin pattern or the etching target pattern is formed in the surface processing liquid, or by applying or spraying the surface processing liquid onto the resin pattern or the etching target pattern.
  • the treatment time is preferably 1 to 60 seconds.
  • the contact angle of water on the pattern surface is preferably 40 to 120 degrees, and more preferably 60 to 100 degrees.
  • the resin pattern or the pattern to be etched is washed.
  • a cleaning solution that has been used for cleaning a resin pattern or a pattern to be etched.
  • water, an activator rinse, etc. are mentioned about a resin pattern, SPM, APM, etc. are mentioned about a to-be-etched pattern.
  • the surface treatment and the cleaning treatment are continuous treatments. For this reason, it is preferable to select a surface treatment liquid that is excellent in substituting property with the cleaning liquid.
  • the surface treatment liquid in the second embodiment contains a silylating agent and a solvent.
  • a silylating agent and a solvent.
  • the silylating agent is not particularly limited, and any conventionally known silylating agent can be used.
  • the silylating agent described above in the first embodiment can be used.
  • any conventionally known solvent can be used as long as it can dissolve the silylating agent and causes little damage to the resin pattern to be surface-treated or the pattern to be etched.
  • sulfoxides such as dimethylsulfoxide; sulfones such as dimethylsulfone, diethylsulfone, bis (2-hydroxyethyl) sulfone, tetramethylenesulfone; N, N-dimethylformamide, N-methylformamide, N, N Amides such as dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2 -Lactams such as pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3
  • dialkyl glycol ethers and terpenes are preferable from the viewpoint of surface treatment effect and substitution with a cleaning solution.
  • These solvents can be used alone or in combination of two or more.
  • N, N-dimethylaminotrimethylsilane (DMATMS) was used as a silylating agent, and this was made 1% by mass with n-heptane, n-decane, p-menthane, pinane, cyclohexanone, or propylene glycol monomethyl ether acetate (PGMEA).
  • a surface treatment solution was prepared by dilution. This surface treatment solution was set on the EBR coating nozzle of the coater and spin coated on an 8-inch silicon wafer rotating at 1000 rpm to hydrophobize the silicon wafer. Then, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), a pure water droplet (2.5 ⁇ L) was dropped on the coated portion, and the contact angle was measured. The results are shown in Table 1.
  • N, N-dimethylaminotrimethylsilane (DMATMS) is used as a silylating agent, and this is set in a HMDS processing unit of a resist coating apparatus SK-W80A (Dainippon Screen Mfg. Co., Ltd.), and heated at 90 ° C. for 30 seconds with a vapor. Under the conditions, the hydrophobic treatment of the 8-inch silicon wafer was performed. In the same manner as in Example 1, the contact angle when a pure water droplet was dropped was measured. The results are shown in Table 1.
  • Comparative Example 3 in which the contact angle of pure water was vapor-treated with a silylating agent was used. , 6 and 9.
  • the contact angle was improved as compared with the case where other silylating agents were used.
  • Comparative Examples 1, 2, 4, 5, 7, and 8 in which the silylating agent was diluted with cyclohexanone or PGMEA instead of a hydrocarbon nonpolar solvent, the same silylating agent was diluted with a hydrocarbon nonpolar solvent. Compared to the case, the contact angle was significantly reduced.
  • N, N-dimethylaminotrimethylsilane (DMATMS) or hexamethyldisilazane (HMDS) is used as the silylating agent, and this is 5 masses with diethyldiglycol (DEDG), p-menthane, dimethylsulfoxide (DMSO), or cyclohexanone.
  • DEDG diethyldiglycol
  • p-menthane dimethylsulfoxide
  • DMSO dimethylsulfoxide
  • cyclohexanone cyclohexanone
  • the wafer was rotated at 3000 rpm for 20 seconds to dry the wafer. Then, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), a pure water droplet (1.5 ⁇ L) was dropped on the wafer surface, and the contact angle 10 seconds after the dropping was measured.
  • Table 2 As the surface treatment liquid, in addition to the surface treatment liquid immediately after preparation (after about 6 minutes), a surface treatment liquid having a storage period of 30 minutes, 3 hours, 12 hours, 24 hours, and 1 week at room temperature is used. It was. Moreover, in the comparative example 11, the contact angle was measured similarly to the above about the silicon wafer before surface treatment.
  • the evaluation of the substitutability is as follows.
  • Table 2 when the surface treatment liquid immediately after adjustment (after about 6 minutes) was used, the contact angle of 75% or more was compared with ⁇ or 20% or more. A sample having a contact angle of less than 75% was evaluated as ⁇ , and a sample having a contact angle of less than 20% was evaluated as ⁇ .
  • Examples 13 to 20 treated with a surface treatment solution containing a silylating agent and a solvent, the hydrophobicity of the silicon wafer could be increased. Therefore, when the surface treatment of the pattern to be etched is performed using this surface treatment liquid, the force acting between the patterns is weakened by increasing the contact angle of the cleaning liquid, and pattern collapse is effectively prevented. Conceivable.
  • the surface treatment solutions of Examples 13 and 14 using N, N-dimethylaminotrimethylsilane as the silylating agent and diethyldiglycol or p-menthane as the solvent achieve an extremely high contact angle of 80 degrees or more. And storage stability was excellent.
  • Example 13 the surface treatment solution of Example 13 using N, N-dimethylaminotrimethylsilane as the silylating agent and diethyldiglycol as the solvent was excellent in substitution with water. . Therefore, it is considered suitable when the surface treatment and the cleaning treatment are performed continuously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

Disclosed is a surface treatment liquid which enables simple and efficient hydrophobilization of a substrate and prevention of collapse of a resin pattern or etched pattern.  Also disclosed are a surface treatment method using the surface treatment liquid, a hydrophobilization method using the surface treatment liquid, and a hydrophobilized substrate. When a substrate is hydrophobilized, the substrate is coated with a surface treatment liquid containing a silylating agent and a hydrocarbon non-polar solvent.  When a pattern is prevented from collapse, the surface of a resin pattern formed on a substrate or etched pattern formed on a substrate by etching is treated using a surface treatment liquid containing a silylating agent and a solvent.

Description

表面処理液及び表面処理方法、並びに疎水化処理方法及び疎水化された基板Surface treatment liquid, surface treatment method, hydrophobization method and hydrophobized substrate
 本発明は、基板の疎水化処理等に用いられる表面処理液及びその表面処理液を用いた表面処理方法、並びにその表面処理液を用いた疎水化処理方法及び疎水化された基板に関する。 The present invention relates to a surface treatment liquid used for hydrophobizing a substrate, a surface treatment method using the surface treatment liquid, a hydrophobic treatment method using the surface treatment liquid, and a hydrophobized substrate.
 半導体デバイス等の各種電子デバイスにおける微細構造の製造には、リソグラフィー法が多用されている。近年、デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンの微細化・高アスペクト比化が要求されている。このような微細なパターン形成を達成するためには、露光装置の改良、及びそれに対応するレジスト材料の開発が第1のポイントとなる。露光装置においては、Fエキシマレーザー、EUV(極端紫外光)、電子線、X線、軟X線等の露光波長の短波長化やレンズの開口数(NA)の増大等が開発ポイントとしては一般的である。 Lithography is frequently used to manufacture fine structures in various electronic devices such as semiconductor devices. In recent years, with the miniaturization of device structures, there has been a demand for finer resist patterns and higher aspect ratios in lithography processes. In order to achieve such a fine pattern formation, improvement of the exposure apparatus and development of a resist material corresponding thereto are the first points. Development points of exposure equipment include shortening the exposure wavelength and increasing the numerical aperture (NA) of lenses such as F 2 excimer laser, EUV (extreme ultraviolet light), electron beam, X-ray, and soft X-ray. It is common.
 しかしながら、露光波長の短波長化には高額な新たな露光装置が必要となり、また、レンズの高NA化では、解像度と焦点深度幅とがトレードオフの関係にあるため、解像度を上げても焦点深度幅が低下するという問題がある。 However, shortening the exposure wavelength requires an expensive new exposure device, and increasing the lens NA has a trade-off relationship between the resolution and the depth of focus. There is a problem that the depth range decreases.
 そこで、このような問題を解決するリソグラフィー技術として、液浸リソグラフィー(Liquid Immersion Lithography;以下、液浸露光ということがある。)が提案されている(非特許文献1を参照)。この液浸露光では、露光装置の対物レンズとレジスト膜(又はレジスト保護膜)との間に、空気よりも高屈折率の液体(液浸媒体)を介在させて露光(浸漬露光)を行う。この液浸露光によれば、同じ露光波長の光源を用いても、より短波長の光源を用いた場合や高NAレンズを用いた場合と同様の高解像性を達成でき、しかも焦点深度幅の低下もないといわれている。また、液浸露光は、既存の露光装置を用いて行うことができる。そのため、液浸露光は、低コストで、高解像性で、かつ焦点深度幅にも優れるレジストパターンの形成を実現できると予想され、多額な設備投資を必要とする半導体素子の製造において、コスト的にも、解像度等のリソグラフィー特性的にも、半導体産業に多大な効果を与えるものとして大変注目されている。 Therefore, liquid immersion lithography (hereinafter sometimes referred to as liquid immersion exposure) has been proposed as a lithography technique for solving such problems (see Non-Patent Document 1). In this immersion exposure, exposure (immersion exposure) is performed by interposing a liquid (immersion medium) having a higher refractive index than air between the objective lens of the exposure apparatus and the resist film (or resist protective film). According to this immersion exposure, even when a light source with the same exposure wavelength is used, the same high resolution can be achieved as when using a light source with a shorter wavelength or a high NA lens, and the depth of focus range. It is said that there is no decline. Moreover, immersion exposure can be performed using an existing exposure apparatus. For this reason, immersion exposure is expected to be able to form resist patterns with low cost, high resolution, and excellent depth of focus. In particular, in terms of lithography characteristics such as resolution, the semiconductor industry is attracting a great deal of attention.
 この液浸露光は、あらゆるパターン形状の形成において有効であり、さらに、現在検討されている位相シフト法、変形照明法等の超解像技術と組み合わせることも可能であるとされている。現在、液浸露光技術としては、主に、ArFエキシマレーザーを光源とする技術が活発に研究されている。また、現在、液浸媒体としては、主に水が検討されている。 This immersion exposure is effective in the formation of all pattern shapes, and can be combined with super-resolution techniques such as the phase shift method and the modified illumination method that are currently being studied. Currently, as an immersion exposure technique, a technique mainly using an ArF excimer laser as a light source is being actively researched. Currently, water is mainly studied as an immersion medium.
 液浸露光に際しては、露光装置の対物レンズとレジスト膜(又はレジスト保護膜)との間に、液浸媒体として例えば水を介在させるため、基板のエッジ部分(外縁部)や裏面に水が回り込む問題が考えられる。このような水の回り込みを防ぐためには、基板を疎水化することが有効である。 In immersion exposure, for example, water is interposed as an immersion medium between the objective lens of the exposure apparatus and the resist film (or resist protective film), so that water flows around the edge portion (outer edge portion) and the back surface of the substrate. There may be a problem. It is effective to make the substrate hydrophobic in order to prevent such wraparound of water.
 従来、基板を疎水化する方法としては、ヘキサメチルジシラザン(HMDS)の窒素バブリングによるベーパー処理が広く適用されている(特許文献1を参照)。また、疎水性をさらに高めるため、HMDSに代わり、フッ素で置換されたアルキル基又はアルケニル基を有するシリル化剤を用いる方法も提案されている(特許文献2を参照)。 Conventionally, as a method for hydrophobizing a substrate, a vapor treatment by nitrogen bubbling of hexamethyldisilazane (HMDS) has been widely applied (see Patent Document 1). In order to further increase the hydrophobicity, a method using a silylating agent having an alkyl group or an alkenyl group substituted with fluorine instead of HMDS has been proposed (see Patent Document 2).
 しかしながら、特許文献1,2のようなシリル化剤のベーパー処理は、加熱、窒素バブリング等が必要であり、簡便な方法とは言い難かった。また、基板中心部分には無機反射防止膜(無機BARC)や有機反射防止膜(有機BARC)が形成されることが多く、そのような部分には疎水化処理は必要ないと考えられるが、シリル化剤のベーパー処理では、このような疎水化処理が必要ない部分についても必然的に処理されることになるため、効率的ではなかった。 However, the vapor treatment of the silylating agent as in Patent Documents 1 and 2 requires heating, nitrogen bubbling and the like, and is not a simple method. In addition, an inorganic antireflection film (inorganic BARC) or an organic antireflection film (organic BARC) is often formed in the central portion of the substrate, and it is considered that hydrophobic treatment is not necessary for such a portion. In the vapor treatment of the agent, the portion that does not require the hydrophobization treatment is necessarily treated, so that it is not efficient.
 また、上述のようにリソグラフィー工程におけるレジストパターンの微細化・高アスペクト比化が進むに従い、いわゆるパターン倒れの問題が生じるようになっている。このパターン倒れは、基板上に多数の樹脂パターンを並列状に形成させる際、隣接する樹脂パターン同士がもたれ合うように近接し、場合によっては樹脂パターンが基部から折損したり、剥離したりするという現象のことである。このようなパターン倒れが生じると、所望の製品が得られないため、製品の歩留りや信頼性の低下を引き起こすことになる。
 また、最近では、樹脂パターンのみならず被エッチングパターンについても、パターン倒れの問題が生じるようになっている。
As described above, as the resist pattern is miniaturized and the aspect ratio is increased in the lithography process, a problem of so-called pattern collapse occurs. This pattern collapse is such that when a large number of resin patterns are formed in parallel on a substrate, adjacent resin patterns are close to each other so that the resin pattern may break or peel off from the base in some cases. It is a phenomenon. When such a pattern collapse occurs, a desired product cannot be obtained, which causes a decrease in product yield and reliability.
Recently, not only a resin pattern but also a pattern to be etched has a problem of pattern collapse.
 このパターン倒れは、パターン形成後の洗浄処理において、洗浄液が乾燥する際、その洗浄液の表面張力により発生することが分かっている。つまり、乾燥過程で洗浄液が除去される際に、パターン間に洗浄液の表面張力に基づく応力が作用し、パターン倒れが生じることになる。 This pattern collapse is known to occur due to the surface tension of the cleaning liquid when the cleaning liquid dries in the cleaning process after pattern formation. That is, when the cleaning liquid is removed during the drying process, stress based on the surface tension of the cleaning liquid acts between the patterns, resulting in pattern collapse.
 そこで、これまで洗浄液に表面張力を低下させる物質を添加し、パターン倒れを防止する試みが多くなされている。例えば、イソプロピルアルコールを添加した洗浄液やフッ素系界面活性剤を添加した洗浄液等が提案されている(特許文献3,4を参照)。 Therefore, many attempts have been made to prevent pattern collapse by adding a substance that lowers the surface tension to the cleaning solution. For example, a cleaning solution to which isopropyl alcohol has been added, a cleaning solution to which a fluorosurfactant has been added, and the like have been proposed (see Patent Documents 3 and 4).
 しかしながら、特許文献3,4のような洗浄液の工夫ではパターン倒れの防止が不十分であるという問題があった。 However, there has been a problem that the prevention of pattern collapse is insufficient with the device of the cleaning solution as in Patent Documents 3 and 4.
特開昭60-25231号公報JP-A-60-25231 特開2007-19465号公報JP 2007-19465 A 特開平6-163391号公報JP-A-6-163391 特開平7-142349号公報JP-A-7-142349
 本発明は、このような従来の実情に鑑みてなされたものであり、基板の疎水化処理を簡便かつ効率的に実現可能であり、或いは樹脂パターンや被エッチングパターンのパターン倒れを効果的に防止することが可能な表面処理液及びその表面処理液を用いた表面処理方法、並びにその表面処理液を用いた疎水化処理方法及び疎水化された基板を提供することを目的とする。 The present invention has been made in view of such a conventional situation, and can easily and efficiently realize the hydrophobizing treatment of the substrate, or effectively prevent the pattern collapse of the resin pattern or the pattern to be etched. It is an object of the present invention to provide a surface treatment liquid that can be used, a surface treatment method using the surface treatment liquid, a hydrophobic treatment method using the surface treatment liquid, and a hydrophobic substrate.
 本発明者らは、上記課題を解決するため鋭意研究を重ねた。その結果、シリル化剤を溶剤に希釈して表面処理液とすれば、疎水化処理が必要な部分のみ、例えば基板の外縁部のみを疎水化することも可能になることを見出した。さらに、シリル化剤を通常の溶剤に希釈して基板に塗布した場合には、ベーパー処理を行った場合と比較して疎水化の程度が著しく低下するが、特定の溶剤に希釈して基板に塗布した場合には、ベーパー処理を行った場合と同程度に疎水化の程度が高まることを見出した。
 また、本発明者らは、樹脂パターンや被エッチングパターンの表面をシリル化剤及び溶剤を含有する表面処理液で処理して疎水化し、洗浄液の接触角を高めることで、樹脂パターンや被エッチングパターンのパターン倒れを効果的に防止することができることを見出した。
 本発明は、このような知見に基づいてなされたものであり、具体的には以下のとおりである。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that if a silylating agent is diluted with a solvent to form a surface treatment liquid, only a portion requiring hydrophobic treatment, for example, only an outer edge portion of a substrate can be hydrophobized. Furthermore, when the silylating agent is diluted in a normal solvent and applied to the substrate, the degree of hydrophobicity is significantly reduced as compared with the case where the vapor treatment is performed. It has been found that when applied, the degree of hydrophobicity increases to the same extent as when the vapor treatment is performed.
In addition, the present inventors treated the surface of the resin pattern or the pattern to be etched with a surface treatment liquid containing a silylating agent and a solvent to make it hydrophobic, and increase the contact angle of the cleaning liquid, thereby increasing the resin pattern or the pattern to be etched. It was found that the pattern collapse can be effectively prevented.
The present invention has been made on the basis of such knowledge, and is specifically as follows.
 本発明の第一の態様は、基板の疎水化処理に用いられる表面処理液であって、シリル化剤と、炭化水素系非極性溶剤とを含有する表面処理液である。 A first aspect of the present invention is a surface treatment liquid used for the hydrophobization treatment of a substrate, which is a surface treatment liquid containing a silylating agent and a hydrocarbon nonpolar solvent.
 本発明の第二の態様は、基板に本発明に係る表面処理液を塗布し、疎水化する疎水化処理方法である。 The second aspect of the present invention is a hydrophobic treatment method in which a surface treatment liquid according to the present invention is applied to a substrate to make it hydrophobic.
 本発明の第三の態様は、本発明に係る疎水化処理方法によって疎水化された基板である。 The third aspect of the present invention is a substrate hydrophobized by the hydrophobizing method according to the present invention.
 本発明の第四の態様は、基板上に設けられた樹脂パターン、又はエッチングにより基板に形成された被エッチングパターンの表面を、シリル化剤及び溶剤を含有する表面処理液で処理する工程と、前記表面処理液による処理後の樹脂パターン又は被エッチングパターンを洗浄する工程と、を含む表面処理方法である。 The fourth aspect of the present invention is a process of treating the surface of a resin pattern provided on a substrate or a pattern to be etched formed on a substrate by etching with a surface treatment liquid containing a silylating agent and a solvent; Cleaning the resin pattern or the pattern to be etched after the treatment with the surface treatment liquid.
 本発明の第五の態様は、シリル化剤及び溶剤を含有し、本発明に係る表面処理方法で用いられる表面処理液である。 A fifth aspect of the present invention is a surface treatment liquid that contains a silylating agent and a solvent and is used in the surface treatment method according to the present invention.
 本発明によれば、基板の疎水化処理を簡便かつ効率的に実現可能であり、或いは樹脂パターンや被エッチングパターンのパターン倒れを効果的に防止することが可能な表面処理液及びその表面処理液を用いた表面処理方法、並びにその表面処理液を用いた疎水化処理方法及び疎水化された基板を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the surface treatment liquid which can implement | achieve the hydrophobic treatment of a board | substrate simply and efficiently, or can prevent the pattern collapse of a resin pattern or a to-be-etched pattern effectively, and its surface treatment liquid , A hydrophobizing method using the surface treating solution, and a hydrophobized substrate can be provided.
表面処理液を基板外縁部のみに回転塗布可能な基板処理装置の要部構成を示す図である。It is a figure which shows the principal part structure of the substrate processing apparatus which can apply | coat a surface treatment liquid only to a substrate outer edge part.
[第1の実施形態]
≪表面処理液≫
 第1の実施形態における表面処理液は、シリル化剤と、炭化水素系非極性溶剤とを含有するものである。以下、各成分について詳細に説明する。
[First Embodiment]
≪Surface treatment liquid≫
The surface treatment liquid in the first embodiment contains a silylating agent and a hydrocarbon nonpolar solvent. Hereinafter, each component will be described in detail.
<シリル化剤>
 第1の実施形態における表面処理液は、基板表面を疎水化するためのシリル化剤を含有する。
 シリル化剤としては、特に限定されず、従来公知のあらゆるシリル化剤を用いることができる。具体的には、例えば下記式(1)~(3)で表されるシリル化剤を用いることができる。
<Silylating agent>
The surface treatment liquid in the first embodiment contains a silylating agent for hydrophobizing the substrate surface.
The silylating agent is not particularly limited, and any conventionally known silylating agent can be used. Specifically, for example, silylating agents represented by the following formulas (1) to (3) can be used.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Rは水素原子、又は飽和若しくは不飽和アルキル基を示し、Rは飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、又は飽和若しくは不飽和ヘテロシクロアルキル基を示す。R及びRは互いに結合して窒素原子を有する飽和又は不飽和ヘテロシクロアルキル基を形成してもよい。)
Figure JPOXMLDOC01-appb-C000001
(In formula (1), R 1 represents a hydrogen atom or a saturated or unsaturated alkyl group, and R 2 represents a saturated or unsaturated alkyl group, a saturated or unsaturated cycloalkyl group, or a saturated or unsaturated heterocycloalkyl group. R 1 and R 2 may combine with each other to form a saturated or unsaturated heterocycloalkyl group having a nitrogen atom.
Figure JPOXMLDOC01-appb-C000002
(式(2)中、Rは水素原子、メチル基、トリメチルシリル基、又はジメチルシリル基を示し、R,Rはそれぞれ独立に水素原子、メチル基、アルキル基、又はビニル基を示す。)
Figure JPOXMLDOC01-appb-C000002
(In Formula (2), R 3 represents a hydrogen atom, a methyl group, a trimethylsilyl group, or a dimethylsilyl group, and R 4 and R 5 each independently represent a hydrogen atom, a methyl group, an alkyl group, or a vinyl group. )
Figure JPOXMLDOC01-appb-C000003
(式(3)中、XはO、CHR、CHOR、CR、又はNRを示し、R,Rはそれぞれ独立に水素原子、飽和若しくは不飽和アルキル基、飽和若しくは不飽和シクロアルキル基、トリアルキルシリル基、トリアルキルシロキシ基、アルコキシ基、フェニル基、フェネチル基、又はアセチル基を示し、Rは水素原子、アルキル基、又はトリアルキルシリル基を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula (3), X represents O, CHR 7 , CHOR 7 , CR 7 R 7 , or NR 8 , and R 6 and R 7 are each independently a hydrogen atom, a saturated or unsaturated alkyl group, saturated or unsaturated. A saturated cycloalkyl group, a trialkylsilyl group, a trialkylsiloxy group, an alkoxy group, a phenyl group, a phenethyl group, or an acetyl group, and R 8 represents a hydrogen atom, an alkyl group, or a trialkylsilyl group.
 上記式(1)で表されるシリル化剤としては、N,N-ジメチルアミノトリメチルシラン、N,N-ジエチルアミノトリメチルシラン、t-ブチルアミノトリメチルシラン、アリルアミノトリメチルシラン、トリメチルシリルアセタミド、トリメチルシリルピペリジン、トリメチルシリルイミダゾール、トリメチルシリルモルホリン、3-トリメチルシリル-2-オキサゾリジノン、トリメチルシリルピラゾール、トリメチルシリルピロリジン、2-トリメチルシリル-1,2,3-トリアゾール、1-トリメチルシリル-1,2,4-トリアゾール等が挙げられる。 Examples of the silylating agent represented by the above formula (1) include N, N-dimethylaminotrimethylsilane, N, N-diethylaminotrimethylsilane, t-butylaminotrimethylsilane, allylaminotrimethylsilane, trimethylsilylacetamide, and trimethylsilyl. Examples include piperidine, trimethylsilylimidazole, trimethylsilylmorpholine, 3-trimethylsilyl-2-oxazolidinone, trimethylsilylpyrazole, trimethylsilylpyrrolidine, 2-trimethylsilyl-1,2,3-triazole, 1-trimethylsilyl-1,2,4-triazole and the like.
 また、上記式(2)で表されるシリル化剤としては、ヘキサメチルジシラザン、N-メチルヘキサメチルジシラザン、1,2-ジ-N-オクチルテトラメチルジシラザン、1,2-ジビニルテトラメチルジシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、トリス(ジメチルシリル)アミン等が挙げられる。 Examples of the silylating agent represented by the above formula (2) include hexamethyldisilazane, N-methylhexamethyldisilazane, 1,2-di-N-octyltetramethyldisilazane, 1,2-divinyltetra. Examples include methyldisilazane, heptamethyldisilazane, nonamethyltrisilazane, and tris (dimethylsilyl) amine.
 また、上記式(3)で表されるシリル化剤としては、トリメチルシリルアセテート、トリメチルシリルプロピオネート、トリメチルシリルブチレート、トリメチルシリルオキシ-3-ペンテン-2-オン等が挙げられる。 Examples of the silylating agent represented by the above formula (3) include trimethylsilyl acetate, trimethylsilylpropionate, trimethylsilylbutyrate, trimethylsilyloxy-3-penten-2-one, and the like.
 これらの中でも、基板の疎水性をより高めることができる点から、N,N-ジメチルアミノトリメチルシラン(DMATMS)が好ましい。このDMATMSは、従来汎用されているHMDSと比較して、基板の疎水性をより一層高めることができる。 Among these, N, N-dimethylaminotrimethylsilane (DMATMS) is preferable because the hydrophobicity of the substrate can be further increased. This DMATMS can further increase the hydrophobicity of the substrate as compared with the conventionally used HMDS.
 シリル化剤の含有量は、表面処理液中、0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1.0~20質量%がさらに好ましい。上記範囲とすることにより、表面処理液の塗布性を確保した上で基板の疎水性を十分に高めることができる。 The content of the silylating agent is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass in the surface treatment liquid. By setting it as the said range, after ensuring the applicability | paintability of a surface treatment liquid, the hydrophobicity of a board | substrate can fully be improved.
<炭化水素系非極性溶剤>
 第1の実施形態における表面処理液は、シリル化剤を希釈するための炭化水素系非極性溶剤を含有する。シリル化剤を希釈する溶剤としてこのような炭化水素系非極性溶剤を用いることにより、基板を処理した際の疎水化の程度を高めることができる。一方、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル等のカルボニル基、エステル結合、水酸基、カルボキシル基等を有する極性溶剤を用いた場合には、同じシリル化剤を用いても疎水化の程度は著しく低下する。これは、シリル化剤の反応性が高いために極性溶剤と反応してしまうためである。
<Hydrocarbon nonpolar solvent>
The surface treatment liquid in the first embodiment contains a hydrocarbon nonpolar solvent for diluting the silylating agent. By using such a hydrocarbon nonpolar solvent as a solvent for diluting the silylating agent, the degree of hydrophobicity when the substrate is treated can be increased. On the other hand, when a polar solvent having a carbonyl group such as cyclohexanone, propylene glycol monomethyl ether acetate (PGMEA) or ethyl lactate, an ester bond, a hydroxyl group or a carboxyl group is used, it can be hydrophobized even if the same silylating agent is used. The degree is significantly reduced. This is because the silylating agent is highly reactive and thus reacts with a polar solvent.
 炭化水素系非極性溶剤としては、直鎖状、分岐鎖状、又は環状の炭化水素系溶剤、芳香族炭化水素系溶剤、テルペン系溶剤等が挙げられる。その中でも、炭素数6~12の直鎖状若しくは分岐鎖状の炭化水素系溶剤、又はテルペン系溶剤が好ましい。
 炭素数6~12の直鎖状若しくは分岐鎖状の炭化水素系溶剤としては、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、メチルオクタン、n-デカン、n-ウンデカン、n-ドデカン等が挙げられる。
 また、テルペン系溶剤としては、p-メンタン、o-メンタン、m-メンタン等のメンタン、ジフェニルメンタン、リモネン、α-テルピネン、β-テルピネン、γ-テルピネン等のテルピネン、ボルナン、ノルボルナン、ピナン、α-ピネン、β-ピネン等のピネン、カラン、ロンギホレン等のモノテルペン類、アビエタン等のジテルペン類、等が挙げられる。
 特に、炭素数7~10の直鎖状の炭化水素系溶剤、メンタン、及びピナンは、本発明の効果に優れるため好ましい。
 これらの炭化水素系非極性溶剤は、単独で用いても2種以上混合して用いてもよい。
Examples of the hydrocarbon nonpolar solvent include linear, branched or cyclic hydrocarbon solvents, aromatic hydrocarbon solvents, terpene solvents and the like. Among these, a linear or branched hydrocarbon solvent having 6 to 12 carbon atoms or a terpene solvent is preferable.
Examples of linear or branched hydrocarbon solvents having 6 to 12 carbon atoms include n-hexane, n-heptane, n-octane, n-nonane, methyloctane, n-decane, n-undecane, n- And dodecane.
Examples of the terpene solvent include p-menthane, o-menthane, m-menthan and other menthane, diphenylmenthane, limonene, α-terpinene, β-terpinene, γ-terpinene and other terpinenes, bornane, norbornane, pinane, α -Pinenes such as pinene and β-pinene, monoterpenes such as karan and longifolene, diterpenes such as abiethane, and the like.
In particular, a straight-chain hydrocarbon solvent having 7 to 10 carbon atoms, menthane, and pinane are preferable because of excellent effects of the present invention.
These hydrocarbon nonpolar solvents may be used alone or in combination of two or more.
≪疎水化処理方法≫
 第1の実施形態における疎水化処理方法は、基板に第1の実施形態における表面処理液を塗布し、疎水化するものである。第1の実施形態における表面処理液は溶液の状態であるため、回転塗布等の簡便な方法により、基板の疎水化処理を行うことができる。また、疎水化処理が必要な部分のみ、例えば基板の外縁部のみを疎水化することも可能である。
≪Hydrophobicization method≫
The hydrophobizing method in the first embodiment is to apply a surface treatment liquid in the first embodiment to a substrate to make it hydrophobic. Since the surface treatment liquid in the first embodiment is in a solution state, the substrate can be hydrophobized by a simple method such as spin coating. It is also possible to hydrophobize only the part that needs to be hydrophobized, for example, only the outer edge of the substrate.
 基板としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等からなる基板が挙げられる。その中でも、シリコンウェーハが好ましい。
 基板に表面処理液を塗布する方法としては、特に限定されるものではないが、回転塗布が好ましい。塗布に際しては、表面処理液を基板表面に全面塗布するようにしてもよいが、前述したように、基板中心部分には通常、無機反射防止膜(無機BARC)や有機反射防止膜(有機BARC)が形成され、疎水化処理は必要ないため、外縁部のみに回転塗布することが好ましい。特にシリコンウェーハの場合には、ウェーハ端面の傾斜部(ベベル)に回転塗布することが好ましい。なお、本明細書における「外縁部」とは、基板端面(側面)と基板上面の周縁部(外周から3mm程度)との一方又は両方を示す概念である。
Examples of the substrate include substrates made of Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, Al—Si, and the like. Among these, a silicon wafer is preferable.
The method for applying the surface treatment liquid to the substrate is not particularly limited, but spin coating is preferred. At the time of application, the surface treatment liquid may be applied to the entire surface of the substrate. However, as described above, an inorganic antireflection film (inorganic BARC) or an organic antireflection film (organic BARC) is usually provided at the center of the substrate. Is formed, and it is preferable to spin-coat only on the outer edge portion because no hydrophobizing treatment is required. In particular, in the case of a silicon wafer, it is preferable to spin-coat on the inclined part (bevel) of the wafer end face. In addition, the “outer edge portion” in this specification is a concept indicating one or both of the substrate end surface (side surface) and the peripheral portion of the substrate upper surface (about 3 mm from the outer periphery).
 参考のため、表面処理液を基板外縁部のみに回転塗布可能な基板処理装置の要部構成を図1に示す。図1において、円形の基板Wは、スピンチャック30によって略水平姿勢に保持されている。スピンチャック30の下面側中央部には、モータ32のモータ軸31が垂設されている。モータ32が駆動してモータ軸31を正方向又は逆方向に回転させることにより、スピンチャック30及びそれに保持された基板Wが水平面内にて回転する。 For reference, FIG. 1 shows the configuration of the main part of a substrate processing apparatus capable of spin-coating the surface treatment liquid only on the outer edge of the substrate. In FIG. 1, the circular substrate W is held in a substantially horizontal posture by a spin chuck 30. A motor shaft 31 of a motor 32 is suspended from the center portion on the lower surface side of the spin chuck 30. When the motor 32 is driven to rotate the motor shaft 31 in the forward direction or the reverse direction, the spin chuck 30 and the substrate W held thereon rotate in a horizontal plane.
 基板処理装置1には、塗布処理時に回転する基板Wから飛散するレジスト材料や表面処理液を受け止めて回収するカップ33が設けられている。カップ33は、スピンチャック30に対して相対的に昇降自在とされており、基板Wにレジスト材料や表面処理液を塗布する際には、図1に示すように、スピンチャック30に保持された基板Wの周囲にカップ33が位置する。この状態においては、回転する基板Wから飛散するレジスト材料や表面処理液がカップ33の内壁面によって受け止められ、下方の排出口(図示せず)へと導かれる。また、外部の搬送ロボットが基板処理装置1に対して基板Wの搬出入を行う際には、カップ33の上端よりもスピンチャック30が突き出た状態となる。 The substrate processing apparatus 1 is provided with a cup 33 that receives and collects a resist material or a surface treatment liquid scattered from the substrate W rotating during the coating process. The cup 33 is movable up and down relatively with respect to the spin chuck 30. When a resist material or a surface treatment liquid is applied to the substrate W, the cup 33 is held by the spin chuck 30 as shown in FIG. A cup 33 is located around the substrate W. In this state, the resist material and the surface treatment liquid scattered from the rotating substrate W are received by the inner wall surface of the cup 33 and guided to a lower discharge port (not shown). Further, when the external transfer robot carries the substrate W in and out of the substrate processing apparatus 1, the spin chuck 30 protrudes from the upper end of the cup 33.
 レジスト材料を吐出する塗布ノズル10は配管11を介してレジスト材料供給源12と連通接続されている。配管11にはフィルター、ポンプ、電磁バルブ等(いずれも図示せず)が介設されている。塗布ノズル10は、スピンチャック30に基板Wが保持されているときに、その基板Wの中心近傍にレジスト材料を着液できるように構成されている。 The coating nozzle 10 that discharges the resist material is connected to a resist material supply source 12 through a pipe 11. The pipe 11 is provided with a filter, a pump, an electromagnetic valve, etc. (all not shown). The application nozzle 10 is configured so that a resist material can be deposited near the center of the substrate W when the substrate W is held on the spin chuck 30.
 一方、表面処理液を吐出する塗布ノズル20は、配管21を介して表面処理液供給源22と連通接続されている。配管21にはフィルター、ポンプ、電磁バルブ等(いずれも図示せず)が介設されている。塗布ノズル20は、スピンチャック30に基板Wが保持されているときに、その基板Wの外縁部に表面処理液を着液できるように構成されている。なお、この塗布ノズル20は、第1の実施形態における表面処理液のために専用に設けられたものが好ましいが、EBR(Edge Bead Remover)処理に用いられるEBR塗布ノズルが流用可能である場合には、EBR塗布ノズルと兼用であってもよい。 On the other hand, the coating nozzle 20 that discharges the surface treatment liquid is connected to the surface treatment liquid supply source 22 through the pipe 21. The pipe 21 is provided with a filter, a pump, an electromagnetic valve, etc. (all not shown). The coating nozzle 20 is configured so that the surface treatment liquid can be deposited on the outer edge of the substrate W when the substrate W is held on the spin chuck 30. The coating nozzle 20 is preferably provided exclusively for the surface treatment liquid in the first embodiment, but when an EBR coating nozzle used for EBR (Edge Bead Remover) processing can be used. May also be used as an EBR coating nozzle.
 基板Wの疎水化処理を行う際には、モータ32によって基板Wを回転させつつ、塗布ノズル20から基板Wの外縁部に表面処理液を吐出すればよい。これにより、吐出された表面処理液の着液地点がスピンチャック30に保持された基板Wの外縁部に沿って移動し、外縁部が疎水化されることになる。 When performing the hydrophobic treatment of the substrate W, the surface treatment liquid may be discharged from the coating nozzle 20 to the outer edge of the substrate W while rotating the substrate W by the motor 32. Thereby, the landing point of the discharged surface treatment liquid moves along the outer edge portion of the substrate W held by the spin chuck 30, and the outer edge portion becomes hydrophobic.
≪レジストパターン形成方法≫
 第1の実施形態における疎水化処理方法によって疎水化された基板は、液浸露光により基板上にレジストパターンを形成する際に好適である。そこで、以下では、液浸露光により基板上にレジストパターンを形成するレジストパターン形成方法について説明する。
≪Resist pattern formation method≫
The substrate hydrophobized by the hydrophobizing method according to the first embodiment is suitable for forming a resist pattern on the substrate by immersion exposure. Therefore, hereinafter, a resist pattern forming method for forming a resist pattern on a substrate by immersion exposure will be described.
 液浸露光により基板上にレジストパターンを形成するには、先ず、第1の実施形態における疎水化処理方法によって疎水化された基板上にレジスト材料をスピンナー等で塗布し、80~150℃で40~120秒間、好ましくは60~90秒間加熱し、レジスト膜を形成する。なお、基板には無機反射防止膜(無機BARC)や有機反射防止膜(有機BARC)が形成されていてもよい。 In order to form a resist pattern on a substrate by immersion exposure, first, a resist material is applied on the substrate hydrophobized by the hydrophobizing method in the first embodiment with a spinner or the like, and the resist pattern is applied at 80 to 150 ° C. at 40 ° C. The resist film is formed by heating for 120 seconds, preferably 60 to 90 seconds. Note that an inorganic antireflection film (inorganic BARC) or an organic antireflection film (organic BARC) may be formed on the substrate.
 レジスト材料としては、特に限定されず、ネガ型及びポジ型のレジスト材料を含め、従来公知のレジスト材料を任意に使用できる。このようなレジスト材料としては、(i)ナフトキノンジアジド化合物とノボラック樹脂とを含有するポジ型レジスト材料、(ii)露光により酸を発生する化合物、酸の作用によりアルカリ溶液に対する溶解性が増大する化合物、及びアルカリ可溶性樹脂を含有するポジ型レジスト材料、(iii)露光により酸を発生する化合物、及び酸の作用によりアルカリ溶液に対する溶解性が増大する基を有するアルカリ可溶性樹脂を含有するポジ型レジスト材料、(iv)光により酸又はラジカルを発生する化合物、架橋剤、及びアルカリ可溶性樹脂を含有するネガ型レジスト材料等が挙げられる。 The resist material is not particularly limited, and any conventionally known resist material can be arbitrarily used, including negative and positive resist materials. Examples of such resist materials include (i) a positive resist material containing a naphthoquinonediazide compound and a novolac resin, (ii) a compound that generates an acid upon exposure, and a compound that increases solubility in an alkaline solution by the action of an acid. And a positive resist material containing an alkali-soluble resin, (iii) a compound that generates an acid upon exposure, and a positive resist material containing an alkali-soluble resin having a group that increases the solubility in an alkaline solution by the action of the acid And (iv) a negative resist material containing a compound that generates an acid or a radical by light, a crosslinking agent, and an alkali-soluble resin.
 次に、必要に応じて、レジスト膜上にレジスト保護膜形成用材料をスピンナー等で塗布し、80~150℃で40~120秒間、好ましくは60~90秒間加熱し、レジスト保護膜を形成する。レジスト保護膜形成用材料としては、特に限定されず、フッ素含有樹脂を含有し、液浸媒体によるレジスト膜の変質や、レジスト膜からの成分溶出による液浸媒体の変質を防止できるものであれば、従来公知のレジスト保護膜形成用材料を任意に使用できる。 Next, if necessary, a resist protective film forming material is applied onto the resist film with a spinner or the like, and heated at 80 to 150 ° C. for 40 to 120 seconds, preferably 60 to 90 seconds to form a resist protective film. . The material for forming the resist protective film is not particularly limited as long as it contains a fluorine-containing resin and can prevent the resist film from being deteriorated by the immersion medium or the immersion medium from being dissolved by the component elution from the resist film. A conventionally known resist protective film forming material can be arbitrarily used.
 次いで、露光装置の対物レンズとレジスト膜(又はレジスト保護膜)との間に液浸媒体を介在させ、その状態で所望のマスクパターンを介して、又は介さずに、露光(浸漬露光)を行う。露光装置としては、例えばNIKON社製、ASML社製の液浸露光装置を用いることができる。本発明に係る疎水化処理方法によって疎水化された基板を用いた場合には、露光に際しても、基板のエッジ部分(外縁部)や裏面に水が回り込むことを防ぐことができる。 Next, an immersion medium is interposed between the objective lens of the exposure apparatus and the resist film (or resist protective film), and exposure (immersion exposure) is performed with or without a desired mask pattern in that state. . As the exposure apparatus, for example, an immersion exposure apparatus manufactured by NIKON or ASML can be used. When the substrate hydrophobized by the hydrophobizing method according to the present invention is used, it is possible to prevent water from flowing around the edge portion (outer edge portion) or the back surface of the substrate even during exposure.
 液浸媒体としては、空気の屈折率よりも大きい屈折率を有する溶媒が好ましい。このような溶媒としては、例えば、水、フッ素系不活性液体、シリコン系溶剤等が挙げられる。フッ素系不活性液体の具体例としては、CHCl、COCH、COC、C等のフッ素系化合物を主成分とする液体等が挙げられ、沸点が70~180℃のものが好ましく、80~160℃のものがより好ましい。これらの中でも、取扱い等の点から水が好ましい。 As the immersion medium, a solvent having a refractive index larger than that of air is preferable. Examples of such a solvent include water, a fluorine-based inert liquid, a silicon-based solvent, and the like. Specific examples of the fluorine-based inert liquid include a fluorine-based compound such as C 3 HCl 2 F 5 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , and C 5 H 3 F 7 as a main component. Examples thereof include liquids, and those having a boiling point of 70 to 180 ° C are preferable, and those having a boiling point of 80 to 160 ° C are more preferable. Among these, water is preferable from the viewpoint of handling.
 また、露光光としては、特に限定されず、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等の放射線を用いることができる。 Further, the exposure light is not particularly limited, and KrF excimer laser, ArF excimer laser, F 2 excimer laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), EB (electron beam), X-ray, soft X-ray, etc. Can be used.
 次いで、露光後の基板を80~150℃で40~120秒間、好ましくは60~90秒間加熱する。次いで、必要に応じてレジスト保護膜を剥離した後、アルカリ現像液、例えば0.1~10質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いてレジスト膜の現像処理を行う。その後、乾燥を行うことにより、レジストパターンが得られる。 Next, the exposed substrate is heated at 80 to 150 ° C. for 40 to 120 seconds, preferably 60 to 90 seconds. Next, after removing the resist protective film as necessary, the resist film is developed using an alkali developer, for example, a 0.1 to 10% by mass tetramethylammonium hydroxide (TMAH) aqueous solution. Thereafter, a resist pattern is obtained by drying.
[第2の実施形態]
≪表面処理方法≫
 第2の実施形態における表面処理方法は、基板上に設けられた樹脂パターン、又はエッチングにより基板に形成された被エッチングパターンの表面を、シリル化剤及び溶剤を含有する表面処理液で処理する工程と、表面処理液による処理後の樹脂パターン又は被エッチングパターンを洗浄する工程と、を含むものである。
[Second Embodiment]
≪Surface treatment method≫
The surface treatment method in 2nd Embodiment is the process of processing the surface of the to-be-etched pattern formed in the board | substrate by the resin pattern provided on the board | substrate by etching, or the surface treatment liquid containing a silylating agent and a solvent. And a step of cleaning the resin pattern or the pattern to be etched after the treatment with the surface treatment liquid.
 樹脂パターンとしては、特に限定されるものではないが、従来公知の感光性樹脂組成物を基板上に塗布し、露光・現像することにより形成された樹脂パターン等が挙げられる。感光性樹脂組成物は、ポジ型であってもネガ型であってもよく、化学増幅型であっても非化学増幅型であってもよい。
 被エッチングパターンとしては、特に限定されるものではないが、上記のような樹脂パターンをマスクとして基板をエッチングすることにより形成されたパターンが挙げられる。また、被エッチングパターンの材質としては、シリコン、窒化シリコン、窒化チタン、タングステン等が挙げられる。
Although it does not specifically limit as a resin pattern, The resin pattern etc. which were formed by apply | coating a conventionally well-known photosensitive resin composition on a board | substrate, and exposing and developing are mentioned. The photosensitive resin composition may be positive or negative, and may be chemically amplified or non-chemically amplified.
The pattern to be etched is not particularly limited, but includes a pattern formed by etching the substrate using the above resin pattern as a mask. Examples of the material of the pattern to be etched include silicon, silicon nitride, titanium nitride, and tungsten.
 通常、上記のような樹脂パターンを形成した後には、水や活性剤リンス等の洗浄液により現像残渣や付着現像液を洗浄除去するのが一般的である。また、上記のような被エッチングパターンを形成した後にも、SPM(硫酸・過酸化水素水)やAPM(アンモニア・過酸化水素水)等の洗浄液により、パターン表面を洗浄するのが一般的である。
 これに対して、第2の実施形態における表面処理方法では、このような樹脂パターン又は被エッチングパターンを洗浄する前に、パターン表面を表面処理液(後述)で処理し、パターン表面を疎水化する。
Usually, after the resin pattern as described above is formed, the development residue and the attached developer are generally removed by washing with a cleaning solution such as water or an activator rinse. Further, even after the pattern to be etched is formed, the pattern surface is generally cleaned with a cleaning solution such as SPM (sulfuric acid / hydrogen peroxide solution) or APM (ammonia / hydrogen peroxide solution). .
On the other hand, in the surface treatment method according to the second embodiment, the pattern surface is treated with a surface treatment liquid (described later) to make the pattern surface hydrophobic before cleaning such a resin pattern or a pattern to be etched. .
 ここで、洗浄時に樹脂パターンや被エッチングパターンといったパターン間に働く力Fは、以下の式(I)のように表される。ただし、γは洗浄液の表面張力を表し、θは洗浄液の接触角を表し、Aはパターンのアスペクト比を表し、Dはパターン側壁間の距離を表す。
   F=2γ・cosθ・A/D ・・・(I)
Here, a force F acting between patterns such as a resin pattern and a pattern to be etched at the time of cleaning is expressed as the following formula (I). Where γ represents the surface tension of the cleaning liquid, θ represents the contact angle of the cleaning liquid, A represents the aspect ratio of the pattern, and D represents the distance between the pattern sidewalls.
F = 2γ · cos θ · A / D (I)
 したがって、パターン表面を疎水化し、洗浄液の接触角を高めることができれば、後続の洗浄時にパターン間に働く力を低減することができ、パターン倒れを防止することができる。 Therefore, if the pattern surface can be hydrophobized and the contact angle of the cleaning liquid can be increased, the force acting between patterns during subsequent cleaning can be reduced, and pattern collapse can be prevented.
 この表面処理は、樹脂パターン又は被エッチングパターンが形成された基板を表面処理液中に浸漬するか、あるいは表面処理液を樹脂パターン又は被エッチングパターンに塗布又は噴き付けることによって行われる。処理時間は、1~60秒間が好ましい。また、この表面処理後には、パターン表面における水の接触角が40~120度となることが好ましく、60~100度となることがより好ましい。 This surface treatment is performed by immersing the substrate on which the resin pattern or the etching target pattern is formed in the surface processing liquid, or by applying or spraying the surface processing liquid onto the resin pattern or the etching target pattern. The treatment time is preferably 1 to 60 seconds. Further, after this surface treatment, the contact angle of water on the pattern surface is preferably 40 to 120 degrees, and more preferably 60 to 100 degrees.
 以上の表面処理が終わると、樹脂パターン又は被エッチングパターンを洗浄する。この洗浄処理には、従来、樹脂パターンや被エッチングパターンの洗浄処理に用いられていた洗浄液をそのまま採用することができる。例えば、樹脂パターンについては水や活性剤リンス等が挙げられ、被エッチングパターンについてはSPMやAPM等が挙げられる。 When the above surface treatment is completed, the resin pattern or the pattern to be etched is washed. For this cleaning process, it is possible to employ a cleaning solution that has been used for cleaning a resin pattern or a pattern to be etched. For example, water, an activator rinse, etc. are mentioned about a resin pattern, SPM, APM, etc. are mentioned about a to-be-etched pattern.
 なお、スループットの点からは、表面処理と洗浄処理とが連続した処理であることが好ましい。このため、表面処理液としては、洗浄液との置換性に優れたものを選択することが好ましい。 In addition, from the viewpoint of throughput, it is preferable that the surface treatment and the cleaning treatment are continuous treatments. For this reason, it is preferable to select a surface treatment liquid that is excellent in substituting property with the cleaning liquid.
≪表面処理液≫
 第2の実施形態における表面処理液は、シリル化剤及び溶剤を含有するものである。以下、各成分について詳細に説明する。
≪Surface treatment liquid≫
The surface treatment liquid in the second embodiment contains a silylating agent and a solvent. Hereinafter, each component will be described in detail.
<シリル化剤>
 シリル化剤としては、特に限定されず、従来公知のあらゆるシリル化剤を用いることができる。例えば、第1の実施形態で上述したシリル化剤を用いることができる。
<Silylating agent>
The silylating agent is not particularly limited, and any conventionally known silylating agent can be used. For example, the silylating agent described above in the first embodiment can be used.
<溶剤>
 溶剤としては、シリル化剤を溶解でき、かつ、表面処理対象となる樹脂パターン又は被エッチングパターンに対するダメージの少ないものであれば、特に限定されずに従来公知の溶剤を使用することができる。
 具体的には、ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2-ヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルアセトアミド、N,N-ジエチルアセトアミド等のアミド類;N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-プロピル-2-ピロリドン、N-ヒドロキシメチル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル等のジアルキルエーテル類;ジメチルグリコール、ジメチルジグリコール、ジメチルトリグリコール、メチルエチルジグリコール、ジエチルグリコール等のジアルキルグリコールエーテル類;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン類;p-メンタン、ジフェニルメンタン、リモネン、テルピネン、ボルナン、ノルボルナン、ピナン等のテルペン類;等が挙げられる。
<Solvent>
As the solvent, any conventionally known solvent can be used as long as it can dissolve the silylating agent and causes little damage to the resin pattern to be surface-treated or the pattern to be etched.
Specifically, sulfoxides such as dimethylsulfoxide; sulfones such as dimethylsulfone, diethylsulfone, bis (2-hydroxyethyl) sulfone, tetramethylenesulfone; N, N-dimethylformamide, N-methylformamide, N, N Amides such as dimethylacetamide, N-methylacetamide, N, N-diethylacetamide; N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2 -Lactams such as pyrrolidone and N-hydroxyethyl-2-pyrrolidone; 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, 1,3-diisopropyl-2-imidazolidi Non-imidazolidinones such as non-dimethyl ether, diethyl ether Dialkyl ethers such as tellurium, methyl ethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether; dialkyl glycol ethers such as dimethyl glycol, dimethyl diglycol, dimethyl triglycol, methyl ethyl diglycol, diethyl glycol; methyl ethyl ketone, cyclohexanone, Ketones such as 2-heptanone and 3-heptanone; and terpenes such as p-menthane, diphenylmenthane, limonene, terpinene, bornane, norbornane and pinane;
 これらの中でも、表面処理効果及び洗浄液との置換性の点から、ジアルキルグリコールエーテル類及びテルペン類が好ましい。これらの溶剤は、1種又は2種以上組み合わせて使用することができる。 Among these, dialkyl glycol ethers and terpenes are preferable from the viewpoint of surface treatment effect and substitution with a cleaning solution. These solvents can be used alone or in combination of two or more.
 以下、本発明について実施例を参照して詳細に説明する。なお、本発明は、下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example at all.
[実施例1~4、比較例1,2]
 シリル化剤としてN,N-ジメチルアミノトリメチルシラン(DMATMS)を用い、これをn-ヘプタン、n-デカン、p-メンタン、ピナン、シクロヘキサノン、又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)で1質量%に希釈して、表面処理液を調製した。この表面処理液をコーターのEBR塗布ノズルにセットし、1000rpmで回転している8インチシリコンウェーハに回転塗布して、シリコンウェーハの疎水化処理を行った。そして、Dropmaster700(協和界面科学社製)を用い、塗布部分に純水液滴(2.5μL)を滴下して、その接触角を測定した。結果を表1に示す。
[Examples 1 to 4, Comparative Examples 1 and 2]
N, N-dimethylaminotrimethylsilane (DMATMS) was used as a silylating agent, and this was made 1% by mass with n-heptane, n-decane, p-menthane, pinane, cyclohexanone, or propylene glycol monomethyl ether acetate (PGMEA). A surface treatment solution was prepared by dilution. This surface treatment solution was set on the EBR coating nozzle of the coater and spin coated on an 8-inch silicon wafer rotating at 1000 rpm to hydrophobize the silicon wafer. Then, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), a pure water droplet (2.5 μL) was dropped on the coated portion, and the contact angle was measured. The results are shown in Table 1.
[比較例3]
 シリル化剤としてN,N-ジメチルアミノトリメチルシラン(DMATMS)を用い、これをレジスト塗布装置SK-W80A(大日本スクリーン製造社製)のHMDS処理ユニットにセットし、90℃-30秒間のベーパー加熱条件で、8インチシリコンウェーハの疎水化処理を行った。そして、実施例1と同様にして、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Comparative Example 3]
N, N-dimethylaminotrimethylsilane (DMATMS) is used as a silylating agent, and this is set in a HMDS processing unit of a resist coating apparatus SK-W80A (Dainippon Screen Mfg. Co., Ltd.), and heated at 90 ° C. for 30 seconds with a vapor. Under the conditions, the hydrophobic treatment of the 8-inch silicon wafer was performed. In the same manner as in Example 1, the contact angle when a pure water droplet was dropped was measured. The results are shown in Table 1.
[実施例5~8、比較例4,5]
 シリル化剤としてヘキサメチルジシラザン(HMDS)を用いたほかは、実施例1~4、比較例1,2と同様にして8インチシリコンウェーハの疎水化処理を行い、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Examples 5 to 8, Comparative Examples 4 and 5]
Except for using hexamethyldisilazane (HMDS) as a silylating agent, an 8-inch silicon wafer was hydrophobized in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2, and pure water droplets were dropped. The contact angle was measured. The results are shown in Table 1.
[比較例6]
 シリル化剤としてヘキサメチルジシラザン(HMDS)を用いたほかは、比較例3と同様にして8インチシリコンウェーハの疎水化処理を行い、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Comparative Example 6]
Except that hexamethyldisilazane (HMDS) was used as a silylating agent, an 8-inch silicon wafer was hydrophobized in the same manner as in Comparative Example 3, and the contact angle when a pure water droplet was dropped was measured. The results are shown in Table 1.
[実施例9~12、比較例7,8]
 シリル化剤としてトリメチルシリルオキシ-3-ペンテン-2-オン(TMSP)を用いたほかは、実施例1~4、比較例1,2と同様にして8インチシリコンウェーハの疎水化処理を行い、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Examples 9 to 12, Comparative Examples 7 and 8]
Except that trimethylsilyloxy-3-penten-2-one (TMSP) was used as a silylating agent, an 8-inch silicon wafer was hydrophobized in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2, and The contact angle when a water droplet was dropped was measured. The results are shown in Table 1.
[比較例9]
 シリル化剤としてトリメチルシリルオキシ-3-ペンテン-2-オン(TMSP)を用いたほかは、比較例3と同様にして8インチシリコンウェーハの疎水化処理を行い、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Comparative Example 9]
Except that trimethylsilyloxy-3-penten-2-one (TMSP) was used as a silylating agent, an 8-inch silicon wafer was hydrophobized in the same manner as in Comparative Example 3, and pure water droplets were dropped. The contact angle was measured. The results are shown in Table 1.
[比較例10]
 疎水化処理を行っていない8インチシリコンウェーハについて、純水液滴を滴下したときの接触角を測定した。結果を表1に示す。
[Comparative Example 10]
The contact angle when a pure water droplet was dropped on an 8-inch silicon wafer that had not been subjected to a hydrophobic treatment was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から分かるように、シリル化剤と炭化水素系非極性溶剤とを含有する表面処理液を用いた実施例1~12では、純水の接触角がシリル化剤をベーパー処理した比較例3,6,9と同程度に向上していた。特に、シリル化剤としてDMATMSを用いた実施例1,2では、他のシリル化剤を用いた場合よりも接触角が向上していた。一方、シリル化剤を炭化水素系非極性溶剤ではなくシクロヘキサノンやPGMEAに希釈した比較例1,2,4,5,7,8では、それぞれ同じシリル化剤を炭化水素系非極性溶剤に希釈した場合と比較して、接触角が著しく低下していた。 As can be seen from Table 1, in Examples 1 to 12 using a surface treatment liquid containing a silylating agent and a hydrocarbon nonpolar solvent, Comparative Example 3 in which the contact angle of pure water was vapor-treated with a silylating agent was used. , 6 and 9. In particular, in Examples 1 and 2 using DMATMS as the silylating agent, the contact angle was improved as compared with the case where other silylating agents were used. On the other hand, in Comparative Examples 1, 2, 4, 5, 7, and 8 in which the silylating agent was diluted with cyclohexanone or PGMEA instead of a hydrocarbon nonpolar solvent, the same silylating agent was diluted with a hydrocarbon nonpolar solvent. Compared to the case, the contact angle was significantly reduced.
[実施例13~20、比較例11]
 シリル化剤としてN,N-ジメチルアミノトリメチルシラン(DMATMS)又はヘキサメチルジシラザン(HMDS)を用い、これをジエチルジグリコール(DEDG)、p-メンタン、ジメチルスルホキシド(DMSO)、又はシクロヘキサノンで5質量%に希釈して、表面処理液を調製した。この表面処理液を8インチシリコンウェーハ上に回転塗布し、100rpmで30秒間回転させながらパドル表面処理を行い、続けて1000rpmで20秒間回転させながら、乳酸エチルで洗浄処理を行った。その後、3000rpmで20秒間回転させて、ウェーハを乾燥させた。そして、Dropmaster700(協和界面科学社製)を用い、ウェーハ表面に純水液滴(1.5μL)を滴下して、滴下10秒後における接触角を測定した。結果を表2に示す。
 なお、表面処理液としては、調製直後(約6分後)の表面処理液のほかに、室温での保管期間が30分間、3時間、12時間、24時間、1週間の表面処理液を用いた。
 また、比較例11では、表面処理前のシリコンウェーハについて、上記と同様に接触角を測定した。
[Examples 13 to 20, Comparative Example 11]
N, N-dimethylaminotrimethylsilane (DMATMS) or hexamethyldisilazane (HMDS) is used as the silylating agent, and this is 5 masses with diethyldiglycol (DEDG), p-menthane, dimethylsulfoxide (DMSO), or cyclohexanone. A surface treatment solution was prepared by diluting to a concentration of 1%. This surface treatment solution was spin-coated on an 8-inch silicon wafer, subjected to paddle surface treatment while rotating at 100 rpm for 30 seconds, and subsequently washed with ethyl lactate while rotating at 1000 rpm for 20 seconds. Thereafter, the wafer was rotated at 3000 rpm for 20 seconds to dry the wafer. Then, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), a pure water droplet (1.5 μL) was dropped on the wafer surface, and the contact angle 10 seconds after the dropping was measured. The results are shown in Table 2.
As the surface treatment liquid, in addition to the surface treatment liquid immediately after preparation (after about 6 minutes), a surface treatment liquid having a storage period of 30 minutes, 3 hours, 12 hours, 24 hours, and 1 week at room temperature is used. It was.
Moreover, in the comparative example 11, the contact angle was measured similarly to the above about the silicon wafer before surface treatment.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 さらに、8インチシリコンウェーハを1000rpmで20秒間回転させながら水を塗布し、続けて上記の表面処理液を塗布し、100rpmで30秒間回転させながらパドル表面処理を行い、さらに続けて1000rpmで20秒間回転させながら、乳酸エチルで洗浄処理を行った。その後、3000rpmで20秒間回転させて、ウェーハを乾燥させた。そして、Dropmaster700(協和界面科学社製)を用い、ウェーハ表面に純水液滴(1.5μL)を滴下して、滴下10秒後における接触角を測定した。結果を表3に示す。
 なお、表面処理液としては、調製直後(約6分後)の表面処理液を用いた。
 また、置換性評価は、表2において調整直後(約6分後)の表面処理液を用いた場合の接触角と比較して、75%以上の接触角を示したものを○、20%以上75%未満の接触角を示したものを△、20%未満の接触角を示したものを×として行った。
Further, water is applied while rotating an 8-inch silicon wafer at 1000 rpm for 20 seconds, then the above surface treatment solution is applied, paddle surface treatment is performed while rotating at 100 rpm for 30 seconds, and then continued at 1000 rpm for 20 seconds. Washing with ethyl lactate was performed while rotating. Thereafter, the wafer was rotated at 3000 rpm for 20 seconds to dry the wafer. Then, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), a pure water droplet (1.5 μL) was dropped on the wafer surface, and the contact angle 10 seconds after the dropping was measured. The results are shown in Table 3.
In addition, as the surface treatment liquid, the surface treatment liquid immediately after preparation (after about 6 minutes) was used.
Further, the evaluation of the substitutability is as follows. In Table 2, when the surface treatment liquid immediately after adjustment (after about 6 minutes) was used, the contact angle of 75% or more was compared with ○ or 20% or more. A sample having a contact angle of less than 75% was evaluated as Δ, and a sample having a contact angle of less than 20% was evaluated as ×.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2から分かるように、シリル化剤及び溶剤を含有する表面処理液で処理した実施例13~20では、シリコンウェーハの疎水性を高めることができた。したがって、この表面処理液を用いて被エッチングパターンの表面処理を行った場合には、洗浄液の接触角が高くなることによりパターン間に働く力が弱められ、パターン倒れが効果的に防止されると考えられる。特に、シリル化剤としてN,N-ジメチルアミノトリメチルシランを用い、溶剤としてジエチルジグリコール又はp-メンタンを用いた実施例13,14の表面処理液は、80度以上という極めて高い接触角を実現することができ、かつ、保存安定性にも優れていた。
 また、表3から分かるように、シリル化剤としてN,N-ジメチルアミノトリメチルシランを用い、溶剤としてジエチルジグリコールを用いた実施例13の表面処理液は、水との置換性に優れていた。したがって、表面処理と洗浄処理とを連続して行う場合に適していると考えられる。
As can be seen from Table 2, in Examples 13 to 20 treated with a surface treatment solution containing a silylating agent and a solvent, the hydrophobicity of the silicon wafer could be increased. Therefore, when the surface treatment of the pattern to be etched is performed using this surface treatment liquid, the force acting between the patterns is weakened by increasing the contact angle of the cleaning liquid, and pattern collapse is effectively prevented. Conceivable. In particular, the surface treatment solutions of Examples 13 and 14 using N, N-dimethylaminotrimethylsilane as the silylating agent and diethyldiglycol or p-menthane as the solvent achieve an extremely high contact angle of 80 degrees or more. And storage stability was excellent.
Further, as can be seen from Table 3, the surface treatment solution of Example 13 using N, N-dimethylaminotrimethylsilane as the silylating agent and diethyldiglycol as the solvent was excellent in substitution with water. . Therefore, it is considered suitable when the surface treatment and the cleaning treatment are performed continuously.
 1 基板処理装置
 10 塗布ノズル
 11 配管
 12 レジスト材料供給源
 20 塗布ノズル
 21 配管
 22 表面処理液供給源
 30 スピンチャック
 31 モータ軸
 32 モータ
 33 カップ
 W 基板
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 10 Coating nozzle 11 Piping 12 Resist material supply source 20 Coating nozzle 21 Piping 22 Surface treatment liquid supply source 30 Spin chuck 31 Motor shaft 32 Motor 33 Cup W Substrate

Claims (11)

  1.  基板の疎水化処理に用いられる表面処理液であって、
     シリル化剤と、炭化水素系非極性溶剤とを含有する表面処理液。
    A surface treatment solution used for hydrophobizing a substrate,
    A surface treatment liquid containing a silylating agent and a hydrocarbon nonpolar solvent.
  2.  前記シリル化剤の含有量が0.1~50質量%である請求項1記載の表面処理液。 The surface treatment liquid according to claim 1, wherein the content of the silylating agent is 0.1 to 50% by mass.
  3.  前記炭化水素系非極性溶剤が炭素数6~12の直鎖状若しくは分岐鎖状の炭化水素系溶剤、又はテルペン系溶剤である請求項1又は2記載の表面処理液。 The surface treatment liquid according to claim 1 or 2, wherein the hydrocarbon-based nonpolar solvent is a linear or branched hydrocarbon solvent having 6 to 12 carbon atoms, or a terpene solvent.
  4.  前記シリル化剤がN,N-ジメチルアミノトリメチルシラン(DMATMS)である請求項1から3のいずれか1項記載の表面処理液。 The surface treatment liquid according to any one of claims 1 to 3, wherein the silylating agent is N, N-dimethylaminotrimethylsilane (DMATMS).
  5.  基板に請求項1から4のいずれか1項記載の表面処理液を塗布し、疎水化する疎水化処理方法。 A hydrophobic treatment method in which the surface treatment liquid according to any one of claims 1 to 4 is applied to a substrate to make it hydrophobic.
  6.  前記基板の外縁部にのみ前記表面処理液を塗布する請求項5記載の疎水化処理方法。 The hydrophobic treatment method according to claim 5, wherein the surface treatment liquid is applied only to an outer edge portion of the substrate.
  7.  請求項5又は6記載の疎水化処理方法によって疎水化された基板。 A substrate hydrophobized by the hydrophobizing method according to claim 5 or 6.
  8.  基板上に設けられた樹脂パターン、又はエッチングにより基板に形成された被エッチングパターンの表面を、シリル化剤及び溶剤を含有する表面処理液で処理する工程と、
     前記表面処理液による処理後の樹脂パターン又は被エッチングパターンを洗浄する工程と、を含む表面処理方法。
    A step of treating the surface of a resin pattern provided on the substrate or a pattern to be etched formed on the substrate by etching with a surface treatment liquid containing a silylating agent and a solvent;
    Cleaning the resin pattern or the pattern to be etched after the treatment with the surface treatment liquid.
  9.  前記表面処理液中の前記シリル化剤の含有量が0.1~50質量%である請求項8記載の表面処理方法。 The surface treatment method according to claim 8, wherein the content of the silylating agent in the surface treatment liquid is 0.1 to 50% by mass.
  10.  前記シリル化剤がN,N-ジメチルアミノトリメチルシラン(DMATMS)である請求項8又は9記載の表面処理方法。 The surface treatment method according to claim 8 or 9, wherein the silylating agent is N, N-dimethylaminotrimethylsilane (DMATMS).
  11.  シリル化剤及び溶剤を含有し、請求項8から10のいずれか1項記載の表面処理方法で用いられる表面処理液。 A surface treatment liquid containing a silylating agent and a solvent and used in the surface treatment method according to claim 8.
PCT/JP2009/066086 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate WO2010047196A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197021023A KR102155494B1 (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
US13/123,341 US9244358B2 (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
KR1020187023427A KR102189379B1 (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
KR1020177021607A KR20170092714A (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
KR1020167026252A KR20160114736A (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-270556 2008-10-21
JP2008270556A JP5483858B2 (en) 2008-10-21 2008-10-21 Surface treatment liquid, hydrophobization method, and hydrophobized substrate
JP2008305719A JP2010129932A (en) 2008-11-28 2008-11-28 Surface treatment method and liquid
JP2008-305719 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010047196A1 true WO2010047196A1 (en) 2010-04-29

Family

ID=42119242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066086 WO2010047196A1 (en) 2008-10-21 2009-09-15 Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate

Country Status (4)

Country Link
US (1) US9244358B2 (en)
KR (5) KR20160114736A (en)
TW (1) TWI502621B (en)
WO (1) WO2010047196A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209299A (en) * 2011-03-29 2012-10-25 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
WO2013069499A1 (en) * 2011-11-11 2013-05-16 セントラル硝子株式会社 Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
JP2013103962A (en) * 2011-11-11 2013-05-30 Central Glass Co Ltd Surface-treatment agent for silicon nitride-containing wafer, surface-treatment liquid and surface-treatment method
JPWO2012157507A1 (en) * 2011-05-17 2014-07-31 東亞合成株式会社 Surface treatment agent and surface treatment method
US8828144B2 (en) 2010-12-28 2014-09-09 Central Grass Company, Limited Process for cleaning wafers
US8932390B2 (en) 2011-01-12 2015-01-13 Central Glass Company, Limited Liquid chemical for forming protecting film
US8957005B2 (en) 2009-01-21 2015-02-17 Central Glass Company, Limited Silicon wafer cleaning agent
US9053924B2 (en) 2008-12-26 2015-06-09 Central Glass Company, Limited Cleaning agent for silicon wafer
US9349582B2 (en) 2011-04-28 2016-05-24 Central Glass Company, Limited Liquid chemical for forming water repellent protecting film, and process for cleaning wafers using the same
US9478407B2 (en) 2009-10-28 2016-10-25 Central Glass Company, Limited Liquid chemical for forming protecting film
US20170088722A1 (en) * 2015-09-24 2017-03-30 Tokyo Ohka Kogyo Co., Ltd. Surface treatment agent and surface treatment method
US10090148B2 (en) 2012-07-20 2018-10-02 Central Glass Company, Limited Water-repellent protective film, and chemical solution for forming protective film
KR20190072532A (en) 2016-10-21 2019-06-25 제이에스알 가부시끼가이샤 Treating agent and method of treating substrate
WO2023199824A1 (en) * 2022-04-11 2023-10-19 セントラル硝子株式会社 Surface treatment composition and method for producing wafer

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266620B1 (en) 2010-08-20 2013-05-22 다이닛뽕스크린 세이조오 가부시키가이샤 Substrate processing method and substrate processing apparatus
JP5782279B2 (en) 2011-01-20 2015-09-24 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP5288147B2 (en) * 2011-11-29 2013-09-11 セントラル硝子株式会社 Method for preparing protective film forming chemical
WO2013115021A1 (en) * 2012-02-01 2013-08-08 セントラル硝子株式会社 Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
US9570343B2 (en) 2012-06-22 2017-02-14 Avantor Performance Materials, Llc Rinsing solution to prevent TiN pattern collapse
US9847302B2 (en) * 2013-08-23 2017-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer surface conditioning for stability in fab environment
RU2644911C2 (en) 2013-10-11 2018-02-14 Трэнсиженс Оптикал, Инк. Method of manufacturing photochromic optical product using preliminary processing by organic solvent and photochromic coating
JP6027523B2 (en) * 2013-12-05 2016-11-16 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and recording medium recording substrate processing program
TWI546376B (en) * 2014-08-25 2016-08-21 柯伊珊 Wafer treatment solution for edge-bead removal, edge film hump reduction and resist surface smooth, its apparatus and edge-bead removal method by using the same
JP6534263B2 (en) * 2015-02-05 2019-06-26 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
US9703202B2 (en) 2015-03-31 2017-07-11 Tokyo Ohka Kogyo Co., Ltd. Surface treatment process and surface treatment liquid
KR20170132283A (en) * 2015-05-13 2017-12-01 후지필름 가부시키가이샤 A pre-rinsing liquid, a method of treating a pre-rinsing, and a method of forming a pattern
CN110462525B (en) 2017-03-24 2024-07-26 富士胶片电子材料美国有限公司 Surface treatment method and composition for use in the method
JP7053247B2 (en) * 2017-12-21 2022-04-12 東京応化工業株式会社 Surface treatment liquid, surface treatment method, and pattern collapse suppression method
JP6916731B2 (en) 2017-12-28 2021-08-11 東京応化工業株式会社 A method for making a substrate water repellent, a surface treatment agent, and a method for suppressing the collapse of an organic pattern or an inorganic pattern when cleaning the substrate surface with a cleaning liquid.
US11174394B2 (en) 2018-01-05 2021-11-16 Fujifilm Electronic Materials U.S.A., Inc. Surface treatment compositions and articles containing same
WO2019193967A1 (en) 2018-04-05 2019-10-10 セントラル硝子株式会社 Surface treatment method of wafer and composition used for said method
JP7328564B2 (en) * 2018-11-22 2023-08-17 セントラル硝子株式会社 Bevel treatment agent composition and wafer manufacturing method
KR102581806B1 (en) * 2020-12-30 2023-09-25 세메스 주식회사 Apparatus for treating substrate and method for treating substrate
CN113265087A (en) * 2021-04-19 2021-08-17 优尔材料工业(深圳)有限公司 Hydrophobic oleophylic foamed plastic and preparation method and equipment thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299336A (en) * 1992-04-23 1993-11-12 Soltec:Kk Resist pattern forming method
JPH07142349A (en) * 1993-11-16 1995-06-02 Mitsubishi Electric Corp Method for preventing tilting of photoresist pattern in developing step
JPH09306822A (en) * 1996-05-20 1997-11-28 Toshiba Corp Plasma etching and manufacture of photomask
JP2005114973A (en) * 2003-10-07 2005-04-28 Semiconductor Leading Edge Technologies Inc Method for forming fine resist pattern
WO2005103831A1 (en) * 2004-04-23 2005-11-03 Tokyo Ohka Kogyo Co., Ltd. Rinsing fluid for lithography
JP2006145897A (en) * 2004-11-19 2006-06-08 Tokyo Ohka Kogyo Co Ltd Rinsing liquid for lithography
JP2007019465A (en) * 2005-06-10 2007-01-25 Shin Etsu Chem Co Ltd Pattern forming method
JP2008209433A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
JP2008235542A (en) * 2007-03-20 2008-10-02 Dainippon Printing Co Ltd Wafer for oil immersion lithography and its manufacturing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649526A (en) 1979-09-29 1981-05-06 Toshiba Corp Manufacture of semiconductor device
JPS6025231A (en) 1983-07-20 1985-02-08 Rikagaku Kenkyusho Application of hexamethyldisilazane and device thereof
JPH0630338B2 (en) 1986-02-14 1994-04-20 日本電気株式会社 Silane coupling completed treatment method
JPS62211643A (en) 1986-03-12 1987-09-17 Mitsubishi Electric Corp Coating method for adhesion intensifying agent
JPS62261123A (en) 1986-05-08 1987-11-13 Ricoh Co Ltd Coating of photoresist and device therefor
US4898907A (en) * 1986-12-03 1990-02-06 Dow Corning Corporation Compositions of platinum and rhodium catalyst in combination with hydrogen silsesquioxane resin
JPH0521335A (en) 1991-07-15 1993-01-29 Mitsubishi Electric Corp Antireflection adhesion reinforcing agent
JPH06163391A (en) 1992-05-13 1994-06-10 Soltec:Kk Resist pattern formation method
US5747561A (en) * 1992-10-14 1998-05-05 Smirnov; Aleksandr Vitalievich Solid surface modifier
US6156223A (en) * 1993-04-26 2000-12-05 Armstrong World Industries, Inc. Xerogels and their preparation
US5429673A (en) * 1993-10-01 1995-07-04 Silicon Resources, Inc. Binary vapor adhesion promoters and methods of using the same
EP0792195A4 (en) 1994-11-22 1999-05-26 Complex Fluid Systems Inc Non-aminic photoresist adhesion promoters for microelectronic applications
JPH08255736A (en) 1995-03-16 1996-10-01 Hitachi Ltd Pattern forming method and resist coating apparatus
US6258972B1 (en) 1995-08-03 2001-07-10 Matsushita Electric Industrial Co., Ltd. Pattern formation method and surface treating agent
JP3387740B2 (en) 1995-08-03 2003-03-17 松下電器産業株式会社 Pattern formation method
US6165907A (en) * 1996-05-20 2000-12-26 Kabushiki Kaisha Toshiba Plasma etching method and plasma etching apparatus
JPH1041213A (en) 1996-07-24 1998-02-13 Matsushita Electric Ind Co Ltd Pattern forming method
TW351834B (en) * 1996-10-16 1999-02-01 Matsushita Electric Ind Co Ltd Method of round formation and surface treatment agent
JP5953721B2 (en) * 2011-10-28 2016-07-20 セントラル硝子株式会社 Method for preparing protective film forming chemical

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299336A (en) * 1992-04-23 1993-11-12 Soltec:Kk Resist pattern forming method
JPH07142349A (en) * 1993-11-16 1995-06-02 Mitsubishi Electric Corp Method for preventing tilting of photoresist pattern in developing step
JPH09306822A (en) * 1996-05-20 1997-11-28 Toshiba Corp Plasma etching and manufacture of photomask
JP2005114973A (en) * 2003-10-07 2005-04-28 Semiconductor Leading Edge Technologies Inc Method for forming fine resist pattern
WO2005103831A1 (en) * 2004-04-23 2005-11-03 Tokyo Ohka Kogyo Co., Ltd. Rinsing fluid for lithography
JP2006145897A (en) * 2004-11-19 2006-06-08 Tokyo Ohka Kogyo Co Ltd Rinsing liquid for lithography
JP2007019465A (en) * 2005-06-10 2007-01-25 Shin Etsu Chem Co Ltd Pattern forming method
JP2008209433A (en) * 2007-02-23 2008-09-11 Shin Etsu Chem Co Ltd Pattern forming method
JP2008235542A (en) * 2007-03-20 2008-10-02 Dainippon Printing Co Ltd Wafer for oil immersion lithography and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053924B2 (en) 2008-12-26 2015-06-09 Central Glass Company, Limited Cleaning agent for silicon wafer
US9281178B2 (en) 2008-12-26 2016-03-08 Central Glass Company, Limited Cleaning agent for silicon wafer
US9481858B2 (en) 2009-01-21 2016-11-01 Central Glass Company, Limited Silicon wafer cleaning agent
US8957005B2 (en) 2009-01-21 2015-02-17 Central Glass Company, Limited Silicon wafer cleaning agent
US10236175B2 (en) 2009-10-28 2019-03-19 Central Glass Company, Limited Liquid chemical for forming protecting film
US9478407B2 (en) 2009-10-28 2016-10-25 Central Glass Company, Limited Liquid chemical for forming protecting film
US8828144B2 (en) 2010-12-28 2014-09-09 Central Grass Company, Limited Process for cleaning wafers
US8932390B2 (en) 2011-01-12 2015-01-13 Central Glass Company, Limited Liquid chemical for forming protecting film
US9496131B2 (en) 2011-01-12 2016-11-15 Central Glass Company, Limited Liquid chemical for forming protecting film
JP2012209299A (en) * 2011-03-29 2012-10-25 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus
US9349582B2 (en) 2011-04-28 2016-05-24 Central Glass Company, Limited Liquid chemical for forming water repellent protecting film, and process for cleaning wafers using the same
US10077365B2 (en) 2011-04-28 2018-09-18 Central Glass Company, Limited Liquid chemical for forming water repellent protecting film, and process for cleaning wafers using the same
JPWO2012157507A1 (en) * 2011-05-17 2014-07-31 東亞合成株式会社 Surface treatment agent and surface treatment method
JP2013103962A (en) * 2011-11-11 2013-05-30 Central Glass Co Ltd Surface-treatment agent for silicon nitride-containing wafer, surface-treatment liquid and surface-treatment method
WO2013069499A1 (en) * 2011-11-11 2013-05-16 セントラル硝子株式会社 Wafer surface-treatment method and surface-treatment liquid, and surface-treatment agent, surface-treatment liquid, and surface-treatment method for silicon-nitride-containing wafers
US10090148B2 (en) 2012-07-20 2018-10-02 Central Glass Company, Limited Water-repellent protective film, and chemical solution for forming protective film
US20170088722A1 (en) * 2015-09-24 2017-03-30 Tokyo Ohka Kogyo Co., Ltd. Surface treatment agent and surface treatment method
US10093815B2 (en) * 2015-09-24 2018-10-09 Tokyo Ohka Kogyo Co., Ltd. Surface treatment agent and surface treatment method
KR20190072532A (en) 2016-10-21 2019-06-25 제이에스알 가부시끼가이샤 Treating agent and method of treating substrate
WO2023199824A1 (en) * 2022-04-11 2023-10-19 セントラル硝子株式会社 Surface treatment composition and method for producing wafer

Also Published As

Publication number Publication date
TWI502621B (en) 2015-10-01
KR20190088577A (en) 2019-07-26
KR102189379B1 (en) 2020-12-11
US9244358B2 (en) 2016-01-26
KR20160114736A (en) 2016-10-05
KR20180095121A (en) 2018-08-24
KR20170092714A (en) 2017-08-11
US20110195190A1 (en) 2011-08-11
KR20110086028A (en) 2011-07-27
KR102155494B1 (en) 2020-09-14
TW201025419A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
WO2010047196A1 (en) Surface treatment liquid, surface treatment method, hydrophobilization method, and hydrophobilized substrate
JP4842981B2 (en) How to avoid crushing development patterns
JP4354964B2 (en) Development pattern collapse avoidance method and defect reduction method in semiconductor device manufacturing
KR101202860B1 (en) Process solutions containing surfactants
JP2010129932A (en) Surface treatment method and liquid
JP4041037B2 (en) Acetylene diol surfactant solution and method of using the same
TWI772552B (en) Use of compositions comprising a siloxane-type additive for avoiding pattern collapse when treating patterned materials with line-space dimensions of 50 nm or below
KR20180128965A (en) Gap filling composition and method of pattern formation using low molecular weight compounds
JP5483858B2 (en) Surface treatment liquid, hydrophobization method, and hydrophobized substrate
CN113711130A (en) Composition comprising ammonia-activated siloxane for avoiding pattern collapse when processing patterned materials having line pitch dimensions of 50nm or less

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117010520

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09821895

Country of ref document: EP

Kind code of ref document: A1