WO2010047147A1 - Semiconductor laser module and method for manufacturing the same - Google Patents

Semiconductor laser module and method for manufacturing the same Download PDF

Info

Publication number
WO2010047147A1
WO2010047147A1 PCT/JP2009/059977 JP2009059977W WO2010047147A1 WO 2010047147 A1 WO2010047147 A1 WO 2010047147A1 JP 2009059977 W JP2009059977 W JP 2009059977W WO 2010047147 A1 WO2010047147 A1 WO 2010047147A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
semiconductor laser
case
laser diode
ultraviolet curable
Prior art date
Application number
PCT/JP2009/059977
Other languages
French (fr)
Japanese (ja)
Inventor
泰雄 天野
直樹 松嶋
達朗 井手
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010047147A1 publication Critical patent/WO2010047147A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis

Definitions

  • the present invention relates to a semiconductor laser module for obtaining collimated light or convergent light close to collimated light from a semiconductor laser diode.
  • FIG. 1 A schematic diagram of the structure is shown in FIG. In the case 21, a green semiconductor laser module 22, a red semiconductor laser module 23, a blue semiconductor laser module 24, a prism 25, a drive mirror called a MEMS 26, and a screen 27 are arranged as shown in the figure.
  • the laser beam collimated from each semiconductor laser module or adjusted so as to be focused on the screen passes through the prism 25 and the MEMS 26 and is focused on the screen 27 at one point. It has been adjusted.
  • Various colors can be expressed by controlling the intensity of each of R, G, and B from the light collected at one point.
  • a color moving image is expressed by reflecting the light collected at one point so that the MEMS 26 scans in the rotation direction and the tilt direction.
  • FIG. 3 shows an example of a semiconductor laser module.
  • the semiconductor laser module 20 includes a semiconductor laser diode 31, a collimating lens 32, and a lens can case 33 for holding the lens.
  • the semiconductor laser element 34 in the semiconductor laser diode 31 is mounted on a heat sink 35 and sealed with a transparent glass 36 and a cylindrical cap 37 provided in the laser irradiation direction.
  • the beam shape of the laser light 39 emitted in such a configuration is changed by the collimating lens 32. If the semiconductor laser diode 31 is moved in the XY direction 38a, the beam also moves in the XY direction, and if it is moved in the Z direction 38b, the beam divergence angle can be changed.
  • the specs differ from those in other fields, such as focusing the spot on a distant screen such as this micro projector and maintaining the smallest spot shape as much as possible even if the distance to the screen is changed to some extent. Is done.
  • the laser beam can be adjusted to parallel light to make the same spot diameter at any distance, but in order to make the spot diameter as small as possible, it is necessary to shorten the distance between the semiconductor laser element as the light source and the collimating lens. There is. Conversely, if the distance between the semiconductor laser element and the collimating lens is shortened, it can be calculated that the adjustment sensitivity in the Z direction 38b for making parallel light becomes higher and the position adjustment becomes very difficult.
  • FIG. FIG. 4 shows a result of calculating the moving distance of the collimator lens 32 for each spot diameter and for each of R, G, and B when the laser spot is applied to a screen 1 m ahead and the spot diameter changes from ⁇ 0.8 to ⁇ 1.0. is there.
  • Patent Document 1 an adhesive is interposed as an elastic body between a substrate that holds a semiconductor laser that is an optical element and a substrate that holds a lens that is an optical component, and the distance between both substrates is compressed. Set with a screw. With this configuration, it is easy to finely adjust the variation in the distance between the two substrates due to the combination of the adhesive and the screw, and positioning can be performed with high accuracy and the yield is increased.
  • the stopping method applied with a force in the Z direction moves when the force is applied, and this is also difficult to assemble and adjust.
  • adjusting the dimension in the Z direction with the screw mechanism is, for example, when using a screw with a pitch of 0.5 mm, screw control at 1/1000 rotation is required to adjust 0.5 ⁇ m. I have to say that it is difficult.
  • An object of the present invention is to provide a method of positioning and fixing with high accuracy by adjusting the collimator of a semiconductor laser module in the Z direction.
  • a collimating lens is fixed to a lens can case, and is bonded and fixed with an ultraviolet curable resin between a cylindrical surface of the semiconductor laser diode cap.
  • a gap is provided between the cylindrical portion of the semiconductor laser diode and the cylindrical portion of the lens can case so that they do not contact each other when the position in the Z direction is adjusted.
  • the position adjustment in the Z direction is performed by causing the semiconductor laser diode to emit light and moving the lens can case in the Z direction while measuring the spot diameter on the screen.
  • slits are provided at equal intervals on the side of the lens can case.
  • the curing shrinkage force of the UV curable resin does not work in the Z direction, and no change in the Z direction occurs due to the curing shrinkage of the UV curable resin.
  • adjustment and fixing can be performed with high accuracy.
  • FIG. 1 is an overall view showing a completed product of the semiconductor laser module 20 based on the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a method for adjusting and assembling the semiconductor laser module 20 of the present invention.
  • the semiconductor laser module 20 includes a semiconductor laser diode 31 and a lens can case 33 to which a collimating lens 32 is bonded and fixed (in the present invention, this bonding and fixing method does not matter).
  • a slit 14 is provided, and the slit 14 is bonded and fixed to the cap 37 portion of the semiconductor laser diode 31 with an ultraviolet curing adhesive 15. This assembly method will be described with reference to FIG. In FIG. 5, the semiconductor laser diode 31 is fixed to a laser diode fixing jig 51.
  • the lens can case 33 to which the collimating lens 32 is fixed is fixed to a lens can case fixing jig 52, and the lens can case fixing jig 52 is fixed to a fine movement XYZ stage 53.
  • an optical axis evaluation device 55 is located at a distance (for example, 1 m) on the vibration isolator 54 same as the laser diode fixing jig 51 and the lens can case fixing jig 52.
  • the semiconductor laser diode 31 emits light (the light emission control device is not shown), and the beam position and beam diameter of the laser light 39 are monitored through the optical axis evaluation device 55. Adjust while evaluating.
  • the lens can case 33 to which the collimating lens 32 is attached can be finely moved in the XY direction 38 a and the Z direction 38 b by the fine coarse movement XYZ stage 53.
  • the XY direction 38a (radial direction) relates to the adjustment of the beam position
  • the Z direction 38b (axial direction) relates to the adjustment of the beam size.
  • the laser light 39 is evaluated while the lens can case 33 is finely moved by the fine coarse movement XYZ stage 53.
  • a piezo element applied to a fine movement XYZ stage is used, and the resolution is 0.1 ⁇ m or less, which is sufficient for the position control of 0.5 ⁇ m targeted in the present invention.
  • the UV curable adhesive 15 (not shown in FIG. 5 and will be described in detail later) is applied to the lens can case 33 from the slit 14 provided in the lens can case 33 in advance. It is applied between the semiconductor laser diode 31 and irradiated with ultraviolet rays (not shown) as it is to cure the ultraviolet curing adhesive 15. Since the ultraviolet curing adhesive 15 is cured in a short time, the work efficiency is high, the thermal distortion is small, and the precision adjustment jig is not heated, and is suitable for the bonding of the present invention.
  • FIG. 6 shows a case where the ultraviolet curing adhesive 15 is applied to the open end portion of the lens can case 33 and cured without the slit being provided in the lens can case 33.
  • the adhesive 15 is applied to the end of the lens can case 33 in the Z direction.
  • the adhesive is cured, it shrinks not a little due to its nature. In the case of the ultraviolet curable adhesive 15, it is generally about 2%.
  • shrinkage occurs in the state shown in FIG. 6, shrinkage also occurs in the Z direction, causing a dimensional change in the Z direction of the width 61 of the adhesive in the Z direction, and the lens can case 33 is formed by the semiconductor laser diode 31. However, it will fluctuate from the adjusted position.
  • an adhesive when an adhesive is applied with a width of 0.5 mm, a change of 10 ⁇ m occurs due to curing shrinkage, and the adjustment specification is not satisfied.
  • an adhesive when an adhesive is applied to the radial gap 62 between the lens can case 33 and the cap portion 37 of the semiconductor laser diode, which has little relation to the dimensional change in the Z direction, ultraviolet rays are bonded in the case of an ultraviolet curable adhesive. If the adhesive does not reach the adhesive and the adhesive is not cured, or if a thermosetting adhesive is used instead of the ultraviolet curable adhesive, the above-described adverse effects due to thermal distortion occur, and it cannot be fixed with high accuracy.
  • the ultraviolet curable adhesive 15 is preferably applied only in the circumferential directions 71a and 71b of the slit 14 as shown in FIG. 7A.
  • the adhesive applied to the circumferential adhesive portion in this way hardly exerts a force in the Z direction on the lens can case 33 when the adhesive is cured. There is almost no movement.
  • the resin located in the Z direction of the slit exerts a force in the direction of moving the lens can case with respect to the semiconductor laser diode during curing.
  • the shrinking directions are opposite to each other and cancel each other, so that they can be bonded almost without moving as a whole.
  • FIG. 8 shows a second embodiment of the present invention.
  • one end of the slit shape 14a of the lens can case 33 is extended to the open end of the lens can case 33, and a portion between the slits 14a of the lens can case 33 is formed as a protruding connection portion 14b. It is. Others are the same as those in the second embodiment, and a description thereof will be omitted.
  • the shrinkage described in the first embodiment reduces the rigidity in the radial direction of the connecting portion 14b and easily bends, so that the shrinkage of the ultraviolet curable adhesive 15 can be easily absorbed. .
  • the area of the part which does not have influence in the Z direction is larger than that in Example 1, and a better result than Example 1 was obtained in terms of ease of application of adhesive or strength.
  • FIG. 9 shows a third embodiment of the present invention.
  • the slit shape of the lens can case 33 is further widened and the size of the remaining portion of the lens can case 33 is narrowed, that is, the base side of the connecting portion is thick, and the ultraviolet curable adhesive 15 This is a thinned tip portion 14c to which is bonded.
  • Others are the same as those in the second embodiment, and a description thereof will be omitted.
  • such a shape makes the connecting portion 14b more easily bent in the radial direction than in the second embodiment, and more easily absorbs the shrinkage of the ultraviolet curable adhesive 15. Further, the area of the portion having an influence on the Z direction is reduced due to the shrinkage described in the first embodiment, and even if the adhesive is applied to the end portion 91 of the slit, the influence on the Z direction is small, and the adhesive is applied. The ease of handling has been further improved.
  • the semiconductor laser modules shown in the first to third embodiments are adjusted to highly accurate collimated light or convergent light determined by design specifications by the module itself, for example, the light source of the micro projector shown in FIG. To adjust the optical axis, only the semiconductor laser modules are adjusted so that the remaining three light sources are adjusted to one point.

Abstract

It is necessary to determine, with extremely high precision, the distance between a laser light source and a collimating lens to obtain collimated light or a laser beam close to that in a semiconductor light emitting device.  A collimating lens is fixed to a lens can case, and is bonded and fixed between a cylindrical surface of the lens can case and that of a cap of a semiconductor laser diode with an ultraviolet curable resin.  At that time, a gap is arranged on the cylindrical section of the semiconductor laser diode and that of the lens can case, and the size of the gap is set such that the cylindrical sections are not in contact with each other when positional adjustment is made in a Z direction.  The positional adjustment in the Z direction is made by moving the lens can case in the Z direction, while having the semiconductor laser diode emit light and measuring a spot diameter on a screen.  On the side surface of a lens can case, slits are arranged at same intervals on the circumference.  When the spot diameter on the screen is at a desired dimension, the ultraviolet curable resin is applied to the slit sections and is cured by ultraviolet.

Description

半導体レーザモジュール及びその製造方法Semiconductor laser module and manufacturing method thereof
 本発明は、半導体レーザダイオードのレーザ光をコリメート光あるいはコリメート光に近い収束光を得るための半導体レーザモジュールに関する。 The present invention relates to a semiconductor laser module for obtaining collimated light or convergent light close to collimated light from a semiconductor laser diode.
 近年光通信やDVDの光ピックアップに代表されるように半導体レーザが産業用、民生用問わず盛んに利用されるようになってきた。特に最近では可視光の赤、青に加えて緑色のレーザダイオードの開発に伴い、このR,G,Bの三光源を使い画像として表現する装置が開発されるようになってきた。例えばその装置の一つにマイクロプロジェクタ装置が考えられている。その構造の模式図を図2に示す。ケース21に緑色半導体レーザモジュール22、赤色半導体レーザモジュール23、青色半導体レーザモジュール24、プリズム25、MEMS26と呼ばれる駆動ミラー、スクリーン27が図のように配置される。後述するが、各々の半導体レーザモジュールからはコリメートされた、あるいはスクリーン上で集光するように調整されたレーザ光は各々プリズム25、MEMS26を通りスクリーン27上で一点に集光するように光軸調整されている。この一点に集まった光をR,G,B各々の強さを制御することで各種の色を表現できる。その一点に集まった光をMEMS26で回転方向、チルト方向にスキャンするように反射することによりカラーの動画が表現されるものである。この構成で光軸を調整する際R,G,B各々のレーザビームを一点に集光させるには、各々の半導体レーザモジュール22,23,24をケース21に対して調整することになるが、各々の半導体レーザモジュールから発光するコリメート光あるいはスクリーン27上で集光するような光に調整するには各々の半導体レーザモジュール単体で調整可能である。次にこのコリメートあるいは収束光の調整につき説明する。図3は半導体レーザモジュールの一例を示すものである。この半導体レーザモジュール20は半導体レーザダイオード31とコリメートレンズ32およびレンズを保持するためのレンズカンケース33から成っている。半導体レーザダイオード31中の半導体レーザ素子34はヒートシンク35上に取り付けられ、レーザ照射方向に設けられた透明ガラス36と円筒状のキャップ37で機密封止されている。このような構成の中で発射されたレーザ光39はコリメートレンズ32によりビーム形状が変更される。半導体レーザダイオード31に対してXY方向38aに動かせばビームもXY方向に移動し、Z方向38bに動かせばビームの広がり角度を変えることができる。ここで、このマイクロプロジェクタのような遠くのスクリーンにスポットを集光させ、かつそのスクリーンまでの距離をある程度変化させてもなるべく小さなスポット形状を保持したいという他の分野の装置と違った仕様を要求される。すなわちどの距離でも同じスポット径にするには前記レーザ光を平行光に調整すれば良いが、なるべく小さなスポット径にするには前記光源である半導体レーザ素子とコリメートレンズの距離を短くしていく必要がある。逆に前記半導体レーザ素子とコリメートレンズの距離を短くしていくと、平行光にするためのZ方向38bの調整感度が高くなり位置調整が非常に難しくなることが計算できる。計算結果の一例を図4に示す。図4は1m先のスクリーンにレーザスポットを当て、スポット径がφ0.8からφ1.0に変化するときのコリメータレンズ32の移動距離をスポット径毎及びR,G,B毎に計算した結果である。すなわち一例を示せば、φ1.5のビーム径の時は青色レーザダイオードでは0.5μm即ち、コリメータレンズのZ方向の調整は±0.5μm以下にする必要があるということになる。
 このようなコリメータレンズのZ方向の微調整機構については多くの提案がなされている(例えば特許文献1参照)。特許文献1では、光学素子である半導体レーザを保持する基板と光学部品であるレンズを保持する基板との間に弾性体として接着剤を介在させ、接着剤が圧縮された状態で両基板の間隔をネジで設定する。この構成により、接着剤とネジが相俟って両基板間の間隔のばらつきを微調整することが容易で、位置決めを精度よく行え歩留まりが上がる。
In recent years, as represented by optical communication and DVD optical pickups, semiconductor lasers have been actively used for both industrial and consumer use. In recent years, with the development of green laser diodes in addition to visible red and blue light, devices that use the three light sources R, G, and B as an image have been developed. For example, a micro projector device is considered as one of the devices. A schematic diagram of the structure is shown in FIG. In the case 21, a green semiconductor laser module 22, a red semiconductor laser module 23, a blue semiconductor laser module 24, a prism 25, a drive mirror called a MEMS 26, and a screen 27 are arranged as shown in the figure. As will be described later, the laser beam collimated from each semiconductor laser module or adjusted so as to be focused on the screen passes through the prism 25 and the MEMS 26 and is focused on the screen 27 at one point. It has been adjusted. Various colors can be expressed by controlling the intensity of each of R, G, and B from the light collected at one point. A color moving image is expressed by reflecting the light collected at one point so that the MEMS 26 scans in the rotation direction and the tilt direction. In order to focus the laser beams of R, G, and B at one point when adjusting the optical axis in this configuration, each semiconductor laser module 22, 23, 24 is adjusted with respect to the case 21, In order to adjust to collimated light emitted from each semiconductor laser module or light condensed on the screen 27, it is possible to adjust each semiconductor laser module alone. Next, adjustment of this collimation or convergent light will be described. FIG. 3 shows an example of a semiconductor laser module. The semiconductor laser module 20 includes a semiconductor laser diode 31, a collimating lens 32, and a lens can case 33 for holding the lens. The semiconductor laser element 34 in the semiconductor laser diode 31 is mounted on a heat sink 35 and sealed with a transparent glass 36 and a cylindrical cap 37 provided in the laser irradiation direction. The beam shape of the laser light 39 emitted in such a configuration is changed by the collimating lens 32. If the semiconductor laser diode 31 is moved in the XY direction 38a, the beam also moves in the XY direction, and if it is moved in the Z direction 38b, the beam divergence angle can be changed. Here, the specs differ from those in other fields, such as focusing the spot on a distant screen such as this micro projector and maintaining the smallest spot shape as much as possible even if the distance to the screen is changed to some extent. Is done. In other words, the laser beam can be adjusted to parallel light to make the same spot diameter at any distance, but in order to make the spot diameter as small as possible, it is necessary to shorten the distance between the semiconductor laser element as the light source and the collimating lens. There is. Conversely, if the distance between the semiconductor laser element and the collimating lens is shortened, it can be calculated that the adjustment sensitivity in the Z direction 38b for making parallel light becomes higher and the position adjustment becomes very difficult. An example of the calculation result is shown in FIG. FIG. 4 shows a result of calculating the moving distance of the collimator lens 32 for each spot diameter and for each of R, G, and B when the laser spot is applied to a screen 1 m ahead and the spot diameter changes from φ0.8 to φ1.0. is there. That is, for example, when the beam diameter is φ1.5, the blue laser diode needs to be 0.5 μm, that is, the adjustment of the collimator lens in the Z direction needs to be ± 0.5 μm or less.
Many proposals have been made on such a fine adjustment mechanism in the Z direction of the collimator lens (see, for example, Patent Document 1). In Patent Document 1, an adhesive is interposed as an elastic body between a substrate that holds a semiconductor laser that is an optical element and a substrate that holds a lens that is an optical component, and the distance between both substrates is compressed. Set with a screw. With this configuration, it is easy to finely adjust the variation in the distance between the two substrates due to the combination of the adhesive and the screw, and positioning can be performed with high accuracy and the yield is increased.
特開平9-54233号公報Japanese Patent Laid-Open No. 9-54233
 前記したように半導体レーザとコリメートレンズの間隔を±0.5μmで位置決めするためには、コリメートレンズの固定部材を機械精度で組み立てるのは困難であることは容易に推定できる。また、Z方向に力のかかる止め方は力をかけた段階で動いてしまいこれも組み立て調整が困難である。さらに、ネジ機構でZ方向の寸法を調整するのは、例えば使用ネジのピッチを0.5mmのものを使用したとすると、0.5μmを調整する為には1/1000回転でのネジ制御をする必要があり困難と言わざるを得ない。また、接着剤での固定では、その接着剤の硬化収縮率を2%とすると接着剤を0.1mm厚で接着したとしても、2μm動いてしまい、一般的な固定方法では仕様を満足することはできない。 As described above, it can be easily estimated that it is difficult to assemble the fixing member of the collimating lens with mechanical accuracy in order to position the gap between the semiconductor laser and the collimating lens at ± 0.5 μm. In addition, the stopping method applied with a force in the Z direction moves when the force is applied, and this is also difficult to assemble and adjust. Furthermore, adjusting the dimension in the Z direction with the screw mechanism is, for example, when using a screw with a pitch of 0.5 mm, screw control at 1/1000 rotation is required to adjust 0.5 μm. I have to say that it is difficult. Also, when fixing with adhesive, if the cure shrinkage rate of the adhesive is 2%, even if the adhesive is bonded with a thickness of 0.1 mm, it moves 2 μm, and the general fixing method satisfies the specifications. I can't.
 本発明の課題は、半導体レーザモジュールのコリメータのZ方向の調整で高精度に位置決めし、固定する方法を提供することである。 An object of the present invention is to provide a method of positioning and fixing with high accuracy by adjusting the collimator of a semiconductor laser module in the Z direction.
 上記目的を達成するために本発明は、コリメートレンズをレンズカンケースに固定し、半導体レーザダイオードのキャップとの円筒面間で紫外線硬化樹脂で接着固定する。その際半導体レーザダイオードの円筒部とレンズカンケースの円筒部には隙間を設け、Z方向の位置調整時にはお互いが接触しない寸法とする。Z方向の位置調整は、半導体レーザダイオードを発光させ、スクリーン上でスポット径を測定しながらレンズカンケースをZ方向に移動させ調整する。なお、レンズカンケースの側面には円周上等間隔にスリットを設けておく。スクリーン上のスポット径が所望の寸法になったところで、スリット部に紫外線硬化樹脂を塗布し、紫外線にて硬化させる。 In order to achieve the above object, according to the present invention, a collimating lens is fixed to a lens can case, and is bonded and fixed with an ultraviolet curable resin between a cylindrical surface of the semiconductor laser diode cap. At this time, a gap is provided between the cylindrical portion of the semiconductor laser diode and the cylindrical portion of the lens can case so that they do not contact each other when the position in the Z direction is adjusted. The position adjustment in the Z direction is performed by causing the semiconductor laser diode to emit light and moving the lens can case in the Z direction while measuring the spot diameter on the screen. In addition, slits are provided at equal intervals on the side of the lens can case. When the spot diameter on the screen reaches a desired dimension, an ultraviolet curable resin is applied to the slit portion and cured with ultraviolet rays.
 本発明によれば、スリット部で固定することにより紫外線硬化樹脂の硬化収縮の力がZ方向には働かず、紫外線硬化樹脂の硬化収縮によるZ方向の変化は起きず、調整した状態のまま固定できるので、結果として高精度に調整固定ができることになる。 According to the present invention, by fixing at the slit portion, the curing shrinkage force of the UV curable resin does not work in the Z direction, and no change in the Z direction occurs due to the curing shrinkage of the UV curable resin. As a result, adjustment and fixing can be performed with high accuracy.
本発明の第1の実施例にかかる半導体レーザモジュールを示す図である。It is a figure which shows the semiconductor laser module concerning the 1st Example of this invention. 本発明の実施例にかかるマイクロプロジェクタの構造の模式図である。It is a schematic diagram of the structure of the micro projector concerning the Example of this invention. 本発明の一実施例にかかる半導体レーザモジュールの一例を示す図である。It is a figure which shows an example of the semiconductor laser module concerning one Example of this invention. 本発明の一実施例にかかる調整感度を示すシミュレーション結果を示す図である。It is a figure which shows the simulation result which shows the adjustment sensitivity concerning one Example of this invention. 本発明の一実施例にかかるコリメートレンズ組み立て調整装置の全体を示す図である。It is a figure which shows the whole collimating-lens assembly adjustment apparatus concerning one Example of this invention. 従来技術にかかる、スリットを設けないで接着した例を示す図である。It is a figure which shows the example concerning which it adhere | attached without providing a slit concerning a prior art. 本発明の接着剤の塗布方法を示す図である。It is a figure which shows the application | coating method of the adhesive agent of this invention. 本発明の接着剤の塗布方法を示す図である。It is a figure which shows the application | coating method of the adhesive agent of this invention. 本発明の第2の実施例にかかる半導体レーザモジュールを示す図である。It is a figure which shows the semiconductor laser module concerning the 2nd Example of this invention. 本発明の第3の実施例にかかる半導体レーザモジュールを示す図である。It is a figure which shows the semiconductor laser module concerning the 3rd Example of this invention.
 以下、本発明を具体化した実施例を図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の実施例1に基づく半導体レーザモジュール20の完成品を示す全体図である。また図5は本発明の半導体レーザモジュール20の調整組み立て方法を説明する図である。図1において、半導体レーザモジュール20は半導体レーザダイオード31と、コリメートレンズ32を接着固定(本発明ではこの接着固定方法については問わない)したレンズカンケース33とから構成され、レンズカンケース33にはスリット14が設けられ、そのスリット14部において紫外線硬化接着剤15で半導体レーザダイオード31のキャップ37部に接着固定されている。この組み立て方法を図5で説明する。図5において、半導体レーザダイオード31はレーザダイオード固定冶具51に固定されている。一方、コリメートレンズ32が固定されたレンズカンケース33はレンズカンケース固定冶具52に固定され、さらにレンズカンケース固定冶具52は微粗動XYZステージ53上に固定されている。さらに前記レーザダイオード固定冶具51、レンズカンケース固定冶具52と同じ除振台54上の離れたところ(例えば1m)に光軸評価装置55が位置されている。このような一連のコリメートレンズ組み立て調整装置50において、半導体レーザダイオード31を発光させ(発光制御装置は図示せず)そのレーザ光39のビーム位置及びビーム径を光軸評価装置55を通したモニタ56で評価しながら調整する。 FIG. 1 is an overall view showing a completed product of the semiconductor laser module 20 based on the first embodiment of the present invention. FIG. 5 is a diagram for explaining a method for adjusting and assembling the semiconductor laser module 20 of the present invention. In FIG. 1, the semiconductor laser module 20 includes a semiconductor laser diode 31 and a lens can case 33 to which a collimating lens 32 is bonded and fixed (in the present invention, this bonding and fixing method does not matter). A slit 14 is provided, and the slit 14 is bonded and fixed to the cap 37 portion of the semiconductor laser diode 31 with an ultraviolet curing adhesive 15. This assembly method will be described with reference to FIG. In FIG. 5, the semiconductor laser diode 31 is fixed to a laser diode fixing jig 51. On the other hand, the lens can case 33 to which the collimating lens 32 is fixed is fixed to a lens can case fixing jig 52, and the lens can case fixing jig 52 is fixed to a fine movement XYZ stage 53. Further, an optical axis evaluation device 55 is located at a distance (for example, 1 m) on the vibration isolator 54 same as the laser diode fixing jig 51 and the lens can case fixing jig 52. In such a series of collimating lens assembly adjusting devices 50, the semiconductor laser diode 31 emits light (the light emission control device is not shown), and the beam position and beam diameter of the laser light 39 are monitored through the optical axis evaluation device 55. Adjust while evaluating.
 調整方法を詳細に説明する。コリメートレンズ32が装着されたレンズカンケース33は微粗動XYZステージ53によりXY方向38a及びZ方向38bに微動することができる。XY方向38a(径方向)がビームの位置、Z方向38b(軸方向)がビームの大きさの調整にかかわるものである。この状態で微粗動XYZステージ53によりレンズカンケース33を微動させながらレーザ光39の評価を行う。なお、本発明では微動XYZステージにピエゾ素子を応用したものを用い、分解能は0.1μm以下であり、本発明で目標とした0.5μmの位置制御には十分である。さらに半導体レーザダイオード31のキャップ37とレンズカンケース33の径方向寸法には隙間があるため、両者がこの段階で接触することは無く、従って調整により両者に応力がかかることも無く、冶具から開放された際にも調整時の応力開放による位置ずれは起きることはない。 The adjustment method will be explained in detail. The lens can case 33 to which the collimating lens 32 is attached can be finely moved in the XY direction 38 a and the Z direction 38 b by the fine coarse movement XYZ stage 53. The XY direction 38a (radial direction) relates to the adjustment of the beam position, and the Z direction 38b (axial direction) relates to the adjustment of the beam size. In this state, the laser light 39 is evaluated while the lens can case 33 is finely moved by the fine coarse movement XYZ stage 53. In the present invention, a piezo element applied to a fine movement XYZ stage is used, and the resolution is 0.1 μm or less, which is sufficient for the position control of 0.5 μm targeted in the present invention. Furthermore, since there is a gap in the radial dimension between the cap 37 of the semiconductor laser diode 31 and the lens can case 33, they do not come into contact at this stage, and therefore, they are not stressed by the adjustment and are released from the jig. Even when the adjustment is performed, the position shift due to the stress release at the time of adjustment does not occur.
 このようにして所望のビーム形状が得られた後、レンズカンケース33に予め設けられたスリット14より紫外線硬化接着剤15(図5には示さず、詳細は後述する)をレンズカンケース33と半導体レーザダイオード31との間に塗布し、そのままの状態で紫外線(図示せず)を照射し、紫外線硬化接着剤15を硬化させる。紫外線硬化接着剤15は短時間で硬化するため、作業の効率も高く、熱的な歪も少なくさらに、精密な調整冶具を加熱させることも無く本発明の接着には適している。 After the desired beam shape is obtained in this way, the UV curable adhesive 15 (not shown in FIG. 5 and will be described in detail later) is applied to the lens can case 33 from the slit 14 provided in the lens can case 33 in advance. It is applied between the semiconductor laser diode 31 and irradiated with ultraviolet rays (not shown) as it is to cure the ultraviolet curing adhesive 15. Since the ultraviolet curing adhesive 15 is cured in a short time, the work efficiency is high, the thermal distortion is small, and the precision adjustment jig is not heated, and is suitable for the bonding of the present invention.
 接着に関してさらに詳細に説明する。図6はレンズカンケース33にスリットを設けない状態でレンズカンケース33の開放端部に紫外線硬化接着剤15を塗布し硬化させた場合を示したものである。この場合、レンズカンケース33のZ方向の端に接着剤15を塗布する。接着剤は硬化する際、その性質上、少なからず収縮する。紫外線硬化型接着剤15の場合一般的には2%程度である。図6に示すような状態で硬化収縮をした場合Z方向にも収縮が起こり、接着剤のZ方向の幅61の硬化収縮分Z方向に寸法変化を起こし、レンズカンケース33が半導体レーザダイオード31に対して、調整した位置から変動することになる。例えば0.5mmの幅で接着剤を塗布した場合、硬化収縮により10μmの変化を起こすことになり、調整仕様を満足することにならない。またZ方向の寸法変化に関係の少ないレンズカンケース33と半導体レーザダイオードのキャップ部37との径方向の隙間62に接着剤を塗布した場合は、紫外線硬化型接着剤の場合には紫外線が接着剤に届かず接着剤が硬化しない、あるいは紫外線硬化型接着剤ではなく熱硬化型接着剤を用いれば前記したような熱的な歪による弊害が起こり、やはり精度よく固定することはできない。 ) More detailed explanation about adhesion. FIG. 6 shows a case where the ultraviolet curing adhesive 15 is applied to the open end portion of the lens can case 33 and cured without the slit being provided in the lens can case 33. In this case, the adhesive 15 is applied to the end of the lens can case 33 in the Z direction. When the adhesive is cured, it shrinks not a little due to its nature. In the case of the ultraviolet curable adhesive 15, it is generally about 2%. When curing shrinkage occurs in the state shown in FIG. 6, shrinkage also occurs in the Z direction, causing a dimensional change in the Z direction of the width 61 of the adhesive in the Z direction, and the lens can case 33 is formed by the semiconductor laser diode 31. However, it will fluctuate from the adjusted position. For example, when an adhesive is applied with a width of 0.5 mm, a change of 10 μm occurs due to curing shrinkage, and the adjustment specification is not satisfied. Further, when an adhesive is applied to the radial gap 62 between the lens can case 33 and the cap portion 37 of the semiconductor laser diode, which has little relation to the dimensional change in the Z direction, ultraviolet rays are bonded in the case of an ultraviolet curable adhesive. If the adhesive does not reach the adhesive and the adhesive is not cured, or if a thermosetting adhesive is used instead of the ultraviolet curable adhesive, the above-described adverse effects due to thermal distortion occur, and it cannot be fixed with high accuracy.
 次に図7A、図7Bを用いて、本実施例にかかるスリット14への紫外線硬化型接着剤の塗布方法につき説明する。紫外線硬化型接着剤15は図7Aに示すようにスリット14の円周方向71a及び71bのみに塗布するのが良い。このように円周方向の接着部に塗布された接着剤は、接着剤が硬化する際レンズカンケース33に対してZ方向に力を及ぼすことは少ないため、硬化時半導体レーザダイオード31との間で移動することはほとんど無い。また図7Bのようにスリット14全体に接着剤が塗布された場合、スリットのZ方向に位置する樹脂は硬化時レンズカンケースを半導体レーザダイオードに対して移動させる方向に力が働くが、Z方向の両端部72a及び72bに塗布されていることによりお互いに収縮方向が逆で打消し合うため、全体としては移動することはほとんど無く接着することができる。 Next, a method of applying the ultraviolet curable adhesive to the slit 14 according to the present embodiment will be described with reference to FIGS. 7A and 7B. The ultraviolet curable adhesive 15 is preferably applied only in the circumferential directions 71a and 71b of the slit 14 as shown in FIG. 7A. The adhesive applied to the circumferential adhesive portion in this way hardly exerts a force in the Z direction on the lens can case 33 when the adhesive is cured. There is almost no movement. When the adhesive is applied to the entire slit 14 as shown in FIG. 7B, the resin located in the Z direction of the slit exerts a force in the direction of moving the lens can case with respect to the semiconductor laser diode during curing. By applying to both ends 72a and 72b, the shrinking directions are opposite to each other and cancel each other, so that they can be bonded almost without moving as a whole.
 本発明の第2の実施例を図8に示す。本実施例では、レンズカンケース33のスリット形状14aの片方の端部をレンズカンケースの開放端まで伸ばし、レンズカンケース33のスリット14aの間の部分を突起状の接続部14bとしたたものである。他は実施例2と同じであり、説明を省略する。 FIG. 8 shows a second embodiment of the present invention. In this embodiment, one end of the slit shape 14a of the lens can case 33 is extended to the open end of the lens can case 33, and a portion between the slits 14a of the lens can case 33 is formed as a protruding connection portion 14b. It is. Others are the same as those in the second embodiment, and a description thereof will be omitted.
 スリットをこのような形状にすることにより実施例1で説明した収縮により、接続部14bの径方向への剛性が小さくなり曲がりやすくなったので、紫外線硬化型接着剤15の収縮を吸収しやすくなる。また、Z方向への影響がない部分の面積が実施例1より多くなり、接着剤の塗布のし易さあるいは強度的にも実施例1より良い結果が得られた。 By making the slit into such a shape, the shrinkage described in the first embodiment reduces the rigidity in the radial direction of the connecting portion 14b and easily bends, so that the shrinkage of the ultraviolet curable adhesive 15 can be easily absorbed. . Moreover, the area of the part which does not have influence in the Z direction is larger than that in Example 1, and a better result than Example 1 was obtained in terms of ease of application of adhesive or strength.
 本発明の第3の実施例を図9に示す。本実施例では、レンズカンケース33のスリット形状をさらに開放部の寸法を広く、逆にレンズカンケース33の残り部分の形状を細く、すなわち接続部の根元側を太く、紫外線硬化型接着剤15が接着される先端の部分14cを細くしたものである。他は実施例2と同じであり、説明を省略する。 FIG. 9 shows a third embodiment of the present invention. In this embodiment, the slit shape of the lens can case 33 is further widened and the size of the remaining portion of the lens can case 33 is narrowed, that is, the base side of the connecting portion is thick, and the ultraviolet curable adhesive 15 This is a thinned tip portion 14c to which is bonded. Others are the same as those in the second embodiment, and a description thereof will be omitted.
 本実施例では、このような形状にすることにより、実施例2よりも接続部14bが径方向に曲がりやすくなり、紫外線硬化型接着剤15の収縮をさらに吸収しやすくなる。また、実施例1で説明した収縮によりZ方向への影響のある部分の面積が少なくなり、接着剤がこのスリットの端部91に塗布されてもZ方向への影響が少なく、接着剤の塗布のし易さがさらに向上した。 In the present embodiment, such a shape makes the connecting portion 14b more easily bent in the radial direction than in the second embodiment, and more easily absorbs the shrinkage of the ultraviolet curable adhesive 15. Further, the area of the portion having an influence on the Z direction is reduced due to the shrinkage described in the first embodiment, and even if the adhesive is applied to the end portion 91 of the slit, the influence on the Z direction is small, and the adhesive is applied. The ease of handling has been further improved.
 以上実施例1~3に示した半導体レーザモジュールはそのモジュール自体で精度の良いコリメート光あるいは設計仕様で決められた収束光に調整されたものであるので、例えば図2に示したマイクロプロジェクタの光源として使用するには、あと3光源を1点にあわせるように各々の半導体レーザモジュールを調整するだけで光軸調整は完成する。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
Since the semiconductor laser modules shown in the first to third embodiments are adjusted to highly accurate collimated light or convergent light determined by design specifications by the module itself, for example, the light source of the micro projector shown in FIG. To adjust the optical axis, only the semiconductor laser modules are adjusted so that the remaining three light sources are adjusted to one point.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 可視光の半導体レーザ、特に緑色の半導体レーザダイオードが開発されつつあるため今後マイクロプロジェクタ他可視光半導体レーザダイオードを用いて画像として表現する装置の開発が盛んになることが予想される。光源から遠く離れたスクリーン上に焦点を結ぶ、あるいはコリメート光を調整する機構としては本発明による安価な方法で得られるモジュールを利用することは産業上有利となるものと思われる。 Since visible semiconductor lasers, particularly green semiconductor laser diodes, are being developed, it is expected that development of devices that display images using microprojectors and other visible light semiconductor laser diodes will become active in the future. It seems to be industrially advantageous to use a module obtained by an inexpensive method according to the present invention as a mechanism for focusing on a screen far from the light source or adjusting collimated light.
 14 スリット
 15 紫外線効果接着剤
 20 半導体レーザモジュール
 21 ケース
 22 緑色半導体レーザモジュール
 23 赤色半導体レーザモジュール
 24 半導体レーザモジュール
 25 プリズム
 26 MEMS
 27 スクリーン
 31 半導体レーザダイオード
 32 コリメートレンズ
 33 レンズカンケース
 34 半導体レーザ素子
 35 ヒートシンク
 36 透明ガラス
 37 キャップ
 38a XY方向
 38b Z方向
 39 レーザ光
 50 コリメートレンズ組み立て調整装置
 51 レーザダイオード固定冶具
 52 レンズカンケース固定冶具
 53 微粗動XYZステージ
 54 除振台
 55 光軸評価装置
 56 モニタ
 61 接着剤のZ方向の幅
 62 隙間
 71 スリットの径方向部
 72 スリットのZ方向部
 91 スリット残りの端部
14 Slit 15 UV Effect Adhesive 20 Semiconductor Laser Module 21 Case 22 Green Semiconductor Laser Module 23 Red Semiconductor Laser Module 24 Semiconductor Laser Module 25 Prism 26 MEMS
27 Screen 31 Semiconductor Laser Diode 32 Collimating Lens 33 Lens Can Case 34 Semiconductor Laser Element 35 Heat Sink 36 Transparent Glass 37 Cap 38a XY Direction 38b Z Direction 39 Laser Light 50 Collimating Lens Assembly Adjusting Device 51 Laser Diode Fixing Tool 52 Lens Can Case Fixing Tool 53 Fine Coarse XYZ Stage 54 Vibration Isolation Table 55 Optical Axis Evaluation Device 56 Monitor 61 Adhesive Z Width 62 Gap 71 Slit Radial Portion 72 Slit Z Direction Portion 91 Slit Remaining End

Claims (10)

  1.  レーザ光を発生させる半導体レーザダイオードと、
     前記レーザ光をコリメート光に変換するコリメートレンズと、
     前記コリメートレンズを保持し、前記半導体レーザダイオードの周囲に配置されるレンズカンケースと、
     前記半導体レーザモジュールと前記レンズカンケースとを固定する接着剤とを備えた半導体レーザモジュールにおいて、
     前記半導体レーザダイオードと前記レンズカンケースとの径方向における間で、前記接着剤である紫外線硬化型接着剤が当該半導体レーザダイオードと当該レンズカンケースとを固定していることを特徴とする半導体レーザモジュール。
    A semiconductor laser diode for generating laser light;
    A collimating lens for converting the laser light into collimated light;
    A lens can case that holds the collimating lens and is arranged around the semiconductor laser diode;
    In the semiconductor laser module comprising an adhesive for fixing the semiconductor laser module and the lens can case,
    A semiconductor laser characterized in that an ultraviolet curable adhesive, which is the adhesive, fixes the semiconductor laser diode and the lens can case between the semiconductor laser diode and the lens can case in the radial direction. module.
  2.  請求項1において、
     前記レンズカンケースは、その周方向に並んだ複数のスリットを有し、
     前記紫外線硬化型接着剤は、前記レンズカンケースの複数のスリットの間の部分と前記半導体レーザダイオードとを接続していることを特徴とする半導体レーザモジュール。
    In claim 1,
    The lens can case has a plurality of slits arranged in the circumferential direction thereof,
    The ultraviolet curable adhesive connects a portion between a plurality of slits of the lens can case and the semiconductor laser diode.
  3.  請求項1において、
     前記スリットは、前記レンズカンケースの前記コリメータレンズと反対側の端面に開放された形状であり、前記レンズカンケースの前記スリットの間の部分を接続部として、前記紫外線硬化型接着剤を接続したことを特徴とする半導体レーザモジュール。
    In claim 1,
    The slit has a shape opened to an end surface of the lens can case opposite to the collimator lens, and the ultraviolet curable adhesive is connected using a portion between the slits of the lens can case as a connection portion. A semiconductor laser module.
  4.  請求項3において、
     前記接続部は、前記紫外線硬化型接着剤を接続する部分は、当該接続部の前記レンズカンケース本体側よりも細くなっていることを特徴とする半導体レーザモジュール。
    In claim 3,
    The semiconductor laser module according to claim 1, wherein a portion of the connection portion that connects the ultraviolet curable adhesive is thinner than the lens can case main body side of the connection portion.
  5.  請求項1に記載の半導体レーザモジュールと、
     前記半導体レーザモジュールから発せられた前記コリメート光を、スクリーン上をスキャンするように反射させる駆動ミラーとを具備したマイクロプロジェクタ。
    A semiconductor laser module according to claim 1;
    A microprojector comprising: a drive mirror that reflects the collimated light emitted from the semiconductor laser module so as to scan on a screen.
  6.  レーザ光を発生させる半導体レーザダイオードを第一の治具で保持する工程と、
     コリメートレンズを有するレンズカンケースを第二の治具で保持する工程と、
     保持された前記コリメートレンズを、保持された前記半導体レーザダイオードに対して相対的に移動させて位置決めする工程と、
     前記半導体レーザダイオードと前記レンズカンケースとの間に紫外線硬化接着剤を塗布する工程と、
     前記コリメータレンズを前記位置決めされた位置に保持した状態で、前記レンズカンケースに設けられたスリットを通して紫外線を照射して、前記塗布された紫外線硬化接着剤を硬化させる工程とを含む半導体レーザモジュールの製造方法。
    A step of holding a semiconductor laser diode for generating laser light with a first jig;
    Holding the lens can case having a collimating lens with a second jig;
    Moving and positioning the held collimating lens relative to the held semiconductor laser diode; and
    Applying an ultraviolet curable adhesive between the semiconductor laser diode and the lens can case;
    A step of irradiating ultraviolet rays through a slit provided in the lens can case in a state where the collimator lens is held at the positioned position, and curing the applied ultraviolet curable adhesive. Production method.
  7.  請求項6において、
     前記紫外線硬化型接着剤は、前記レンズカンケースと前記半導体レーザダイオードとの径方向における間に塗布したことを特徴とする半導体レーザモジュールの製造方法。
    In claim 6,
    The method of manufacturing a semiconductor laser module, wherein the ultraviolet curable adhesive is applied between the lens can case and the semiconductor laser diode in a radial direction.
  8.  請求項7において、
     前記スリットは、前記レンズカンケースの周方向に並んだ複数のスリットであり、
     前記紫外線硬化型接着剤は、前記レンズカンケースの複数のスリットの間の部分と前記半導体レーザダイオードとを接続していることを特徴とする半導体レーザモジュールの製造方法。
    In claim 7,
    The slits are a plurality of slits arranged in the circumferential direction of the lens can case,
    The method of manufacturing a semiconductor laser module, wherein the ultraviolet curable adhesive connects a portion between a plurality of slits of the lens can case and the semiconductor laser diode.
  9.  請求項6において、
     前記スリットは、前記レンズカンケースの前記コリメータレンズと反対側の端面に開放された形状であり、
     ことを特徴とする半導体レーザモジュールの製造方法。
    In claim 6,
    The slit is a shape opened to the end surface of the lens can case opposite to the collimator lens,
    A method of manufacturing a semiconductor laser module.
  10.  請求項9において、
     前記スリットは前記レンズカンケースの端面の開放部が反対側より広くなった形状であることを特徴とする半導体レーザモジュールの製造方法。
    In claim 9,
    The method of manufacturing a semiconductor laser module, wherein the slit has a shape in which an open portion of an end surface of the lens can case is wider than the opposite side.
PCT/JP2009/059977 2008-10-24 2009-06-01 Semiconductor laser module and method for manufacturing the same WO2010047147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008273722A JP2010103323A (en) 2008-10-24 2008-10-24 Semiconductor laser module and method for manufacturing the same
JP2008-273722 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010047147A1 true WO2010047147A1 (en) 2010-04-29

Family

ID=42119197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059977 WO2010047147A1 (en) 2008-10-24 2009-06-01 Semiconductor laser module and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2010103323A (en)
WO (1) WO2010047147A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076506A1 (en) * 2009-12-23 2011-06-30 Osram Gesellschaft mit beschränkter Haftung Method for producing a laser device
CN107210580A (en) * 2015-01-29 2017-09-26 三菱电机株式会社 Light supply apparatus
US20210305775A1 (en) * 2020-03-30 2021-09-30 Namuga, Co., Ltd. Light Source Module for Emitting Hight Density Beam and Method for Controlling the Same
DE102011005014B4 (en) 2011-03-03 2022-03-03 Osram Gmbh Method of manufacturing a laser device
EP4092477A1 (en) * 2021-05-20 2022-11-23 TriLite Technologies GmbH Light projector module and method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664197B2 (en) * 2010-12-14 2015-02-04 セイコーエプソン株式会社 Light source element, light source device, and projector
JP6155960B2 (en) * 2013-08-20 2017-07-05 セイコーエプソン株式会社 Projector and projector manufacturing method
JP6635725B2 (en) * 2015-09-08 2020-01-29 シャープ株式会社 Projection device
US10439358B2 (en) 2016-04-28 2019-10-08 Nichia Corporation Manufacturing method of light-emitting device
JP6866843B2 (en) 2017-12-26 2021-04-28 日亜化学工業株式会社 Manufacturing method of light emitting device
CN112119336B (en) * 2018-05-14 2022-06-07 夏普株式会社 Two-lens optical system, beam combining module, projector, and method for assembling two-lens optical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350048A (en) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd Jig for centering and fixing optical coupling module in waveguide element
JP2007121802A (en) * 2005-10-31 2007-05-17 Seiko Epson Corp Picture display apparatus and method of displaying picture
WO2007119723A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Image display device
JP2008116861A (en) * 2006-11-08 2008-05-22 Opnext Japan Inc Optical module
JP2009086615A (en) * 2007-03-14 2009-04-23 Enplas Corp Optical module holder, optical module, and optical connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350048A (en) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd Jig for centering and fixing optical coupling module in waveguide element
JP2007121802A (en) * 2005-10-31 2007-05-17 Seiko Epson Corp Picture display apparatus and method of displaying picture
WO2007119723A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Image display device
JP2008116861A (en) * 2006-11-08 2008-05-22 Opnext Japan Inc Optical module
JP2009086615A (en) * 2007-03-14 2009-04-23 Enplas Corp Optical module holder, optical module, and optical connector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076506A1 (en) * 2009-12-23 2011-06-30 Osram Gesellschaft mit beschränkter Haftung Method for producing a laser device
US8913641B2 (en) 2009-12-23 2014-12-16 Osram Gmbh Method for producing a laser device
DE102011005014B4 (en) 2011-03-03 2022-03-03 Osram Gmbh Method of manufacturing a laser device
CN107210580A (en) * 2015-01-29 2017-09-26 三菱电机株式会社 Light supply apparatus
EP3252888A4 (en) * 2015-01-29 2018-09-05 Mitsubishi Electric Corporation Light-source device
CN107210580B (en) * 2015-01-29 2019-07-30 三菱电机株式会社 Light supply apparatus
US10539280B2 (en) 2015-01-29 2020-01-21 Mitsubishi Electric Corporation Light-source device
US20210305775A1 (en) * 2020-03-30 2021-09-30 Namuga, Co., Ltd. Light Source Module for Emitting Hight Density Beam and Method for Controlling the Same
US11843221B2 (en) * 2020-03-30 2023-12-12 Namuga, Co., Ltd. Light source module for emitting high density beam and method for controlling the same
EP4092477A1 (en) * 2021-05-20 2022-11-23 TriLite Technologies GmbH Light projector module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010103323A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2010047147A1 (en) Semiconductor laser module and method for manufacturing the same
KR20180039704A (en) An optical component having a beam-orienting element, a method for its manufacture, and beam-
JP2006284851A (en) Lens holder and laser array unit using the same
KR20120037507A (en) Light emitting device and manufacturing method for same
JP6394134B2 (en) Projector and head-up display device
JP2011511318A (en) Method and system for aligning optical packages
JP2015143732A (en) Optical component fixing structure
JP4647314B2 (en) LIGHT SOURCE DEVICE, ITS MANUFACTURING METHOD, AND RECORDING DEVICE
JP5273182B2 (en) Optical scanning device manufacturing method and optical scanning device
JP2006301597A (en) Laser apparatus and method for assembling the same
WO2014136708A1 (en) Semiconductor laser module and production method for same
JP7117138B2 (en) laser module
US11131824B2 (en) Alignment of an optical system
JP2007219337A (en) Method of adhesion and fixing of optical component and laser light source apparatus
JP6129066B2 (en) Semiconductor laser module and manufacturing method thereof
KR20140102114A (en) Fixed structure of optical component, method of fixing optical component, optical pickup device, and module device with rgb three primary color light source
JP4349475B2 (en) Manufacturing method of optical module
JP5084423B2 (en) Light source device
JP2007109979A (en) Semiconductor light source module
WO2015133285A1 (en) Light source apparatus and optical member
JP5740819B2 (en) Spatial light modulator manufacturing method, spatial light modulator, illumination light generator, and exposure apparatus
JP2009139464A (en) Light source device for image forming apparatus
JP2009198884A (en) Light source device
JP2003085782A (en) Method of mounting pickup head with sensor and pickup head
JP2004273545A (en) Semiconductor laser device, semiconductor laser system, and method of manufacturing semiconductor laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821847

Country of ref document: EP

Kind code of ref document: A1