US11131824B2 - Alignment of an optical system - Google Patents
Alignment of an optical system Download PDFInfo
- Publication number
- US11131824B2 US11131824B2 US14/865,360 US201514865360A US11131824B2 US 11131824 B2 US11131824 B2 US 11131824B2 US 201514865360 A US201514865360 A US 201514865360A US 11131824 B2 US11131824 B2 US 11131824B2
- Authority
- US
- United States
- Prior art keywords
- lens
- alignment
- light
- supporting surface
- mount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 58
- 239000012790 adhesive layer Substances 0.000 claims abstract description 34
- 239000000853 adhesive Substances 0.000 claims description 40
- 230000001070 adhesive effect Effects 0.000 claims description 40
- 230000033001 locomotion Effects 0.000 claims description 22
- 230000004913 activation Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 23
- 230000001678 irradiating effect Effects 0.000 description 5
- 239000003292 glue Substances 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/0266—Field-of-view determination; Aiming or pointing of a photometer; Adjusting alignment; Encoding angular position; Size of the measurement area; Position tracking; Photodetection involving different fields of view for a single detector
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/62—Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/005—Motorised alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
Definitions
- the present techniques relate generally to optical devices. More specifically the present techniques relate to the alignment of optical systems that are fixed in place by adhesives.
- optical systems An important design consideration in the construction of optical systems is the alignment of the various optical components and the stability and reliability of the alignment during the product life cycle. Miniaturized optical systems often require a highly accurate assembly and alignment, down to a micron or sub-micron accuracy.
- FIG. 1 is a schematic of an apparatus that may be used to actively align an optical device.
- FIG. 2 is a closer view of the lens holder of FIG. 1 .
- FIG. 3 is a cross sectional view showing the adhesive layers that may fix the parts in place.
- FIG. 4A is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 4B is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 4C is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 4D is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 4E is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 4F is a drawing of a motion of a group of optical parts that may be used for alignment.
- FIG. 5 is a block diagram of a method to actively align an optic device.
- the accurate assembly of optical devices may include building highly accurate parts and using high precision passive placement.
- Another approach is to use active alignment, for example, operating the optical system and aligning the parts using feedback from the system, such as light intensity or focus, among others.
- Active alignment generally uses a large travel range for the optical components.
- a large travel range means that for active alignment a large amount of glue is used to hold the optical parts in place.
- a travel range of about 200 micrometers ( ⁇ m) may use a glue layer of up to 200 ⁇ m.
- Such a large amount of glue may be problematic for an optical system.
- the alignment may be good when initially performed, but changes in the dimensions of the glue layer with temperature may cause the alignment to be lost.
- a mechanism is used to allow free movement of the optical component in six degrees of freedom, for example, X, Y, Z, and rotations in the x-plane, y-plane, and z-plane.
- the mechanism lowers the gaps used for adhesives to a few micrometers, e.g., less than about 25 micrometers, less than about 20 micrometers, or less than about 15 micrometers.
- FIG. 1 is a schematic of an apparatus 100 that may be used to actively align an optical device 102 .
- the apparatus 100 includes the optical device 102 , a light detector 104 , an alignment device 106 , and a curing light 108 .
- the optical device 102 includes a supporting surface 110 , e.g., an optical bench, to which other parts may be mounted.
- the supporting surface 110 may also include an interior surface of a case, an optical bench mounted to an interior surface of a case, or any number of other surfaces that may provide a stable surface for mounting the parts.
- a light source 112 may be mounted to the supporting surface 110 , for example, with an adhesive.
- Adhesives that may be used include light cured acrylic adhesives, light cured cyanoacrylate adhesives, light cured epoxy adhesives, and the like.
- the light source 112 may be a light emitting diode (LED), a laser diode, an IR LED, and the like.
- a lens holder 114 may be placed along the supporting surface 110 , using an uncured adhesive to hold the lens holder 114 in place before a cure.
- the lens holder 114 holds a lens mount (described with respect to FIG. 2 ), in which a lens 116 is placed.
- the lens mount may be held in place in the lens holder 114 with another layer of adhesive.
- the lens 116 may also be held in place in the lens mount with an adhesive layer.
- a collimated light beam 118 may be emitted from the lens 116 and directed towards a target 120 .
- the target 120 may include any number of different items, such as a microelectromechanical system (MEMS) device 122 , a mirror, a sample, or any number of other items.
- MEMS device 122 may include a scanning mirror, a digital light processor, and the like.
- the light detector 104 may be used in place of the target 120 for purpose of the alignment.
- a reflected light beam 124 from the target 120 may impinge on the light detector 104 .
- a signal line 126 from the light detector 104 may be used to provide a display 128 of the signal intensity from the light detector 104 .
- the signal line 126 may be coupled to the alignment device 106 in addition to, or instead of, the display 128 to allow for automation of the active alignment process.
- An alignment post 130 may be coupled from the alignment device 106 to the lens 116 , for example, being mounted to the lens 116 with a removable adhesive.
- the alignment post 130 may couple to the mechanism of the alignment device 106 to allow the post to be moved along the x, y, and z axis, or to be rotated in the x, y, and z planes. This may be performed by turning knobs 132 on the alignment device 106 .
- the knobs 132 may turn gears that move the alignment post 130 in the desired direction.
- the alignment post 130 then moves the lens 116 , which also moves the lens mount, and lens holder 114 .
- the alignment post 130 may be coupled to other points instead of, or in addition to, the lens 116 , such as the lens holder 114 .
- the alignment device 106 may use motors to automate the process.
- Suitable alignment devices 106 may be available from, or adapted from instruments available from, commercial vendors, such as Physik Instrumente (PI) GmbH & Co. KG of Düsseldorf, Germany, or Thorlabs Inc. of Newtown, N.J.
- PI Physik Instrumente
- Thorlabs Inc. of Newtown, N.J.
- the 6-Axis NanoMaxTM NanoPositioning Flexure Stages available from Thorlabs may be used as the alignment device 106 .
- the adhesive may be cured to fix the parts in place. This may be performed by activating a curing light 108 that emits a light 134 at a frequency that initiates a curing process in the adhesive upon exposure to the light. This may be in the blue light range, e.g., light with a wavelength of about 450 nm or less, or in the ultraviolet (UV) light range, e.g., with a wavelength of about 275 nm or less. Curing may be assisted or completed by heating the parts, for example, to about 50° C. Once curing is completed, the alignment post 130 may be detached from the lens 116 .
- a curing light 108 that emits a light 134 at a frequency that initiates a curing process in the adhesive upon exposure to the light. This may be in the blue light range, e.g., light with a wavelength of about 450 nm or less, or in the ultraviolet (UV) light range, e.g., with a wavelength of about 275 nm or less
- a pattern of an emitted light beam may be compared to an aligned pattern to indicate alignment.
- the lens may be moved until the pattern matches the aligned pattern, e.g., a beam comes into focus, or forms a circular pattern.
- FIG. 2 is a closer view 200 of the lens holder 114 of FIG. 1 .
- Like numbered items are as described with respect to FIG. 1 .
- a lower portion of the lens mount 202 is visible.
- An upper portion of the lens mount 202 is hidden in this view.
- the lens mount 202 may be two separate pieces on each side of the lens 116 .
- the lens mount 202 may be a single unit, for example, with a round center section having an indented hole or slot to hold the lens 116 , and two tabs, one projecting upward from the lens 116 , and one projecting downward from the lens 116 .
- the tabs fit into the slots 204 in the lens holder 114 , allowing the lens mount 202 to be slid into the lens holder 114 .
- FIG. 3 is a cross sectional view 300 showing the adhesive layers that may fix the parts in place.
- a lens adhesive layer 302 may be used to hold the lens 116 to the lens mount 202 .
- a mount adhesive layer 304 may be used to hold the lens mount 202 to the lens holder 114 .
- a support adhesive layer 306 may be used to hold the lens holder 114 to the supporting surface 110 .
- the adhesive used in the adhesive layers 302 , 304 , and 306 may include any number of photocurable adhesives available from various sources.
- the adhesive may be a BlueWave® LED Prime UVA high-intensity spot-curing adhesive from Dymax® Corporation of Torrington, Conn.
- Other suitable adhesives may be available from Henkel Corporation under the Loctite® brand, and may include photocurable acrylic adhesives, photocurable epoxies, and the like.
- the adhesive layers 302 , 304 , and 306 may be the same or different materials, depending on the stresses of the application.
- the support adhesive may be a more viscous material to hold the lens holder 114 in place before curing.
- the adhesive layers 302 , 304 , and 306 may generally be about 10 to about 25 micrometers or about 15 micrometers in thickness, providing a small amount of motion in each of a number of degrees of freedom. Upon curing, this provides adhesive layers 302 , 304 , and 306 with a very low thickness. The low thickness of the adhesive layers 302 , 304 , and 306 will decrease the changes due to thermal expansion and contraction, making the optical alignment more reliable over time.
- the motions used for the alignment include six degrees of freedom. Three of the motions are translations along an axis, and three of the motions are rotations about an axis. These motions are shown more clearly in FIGS. 4A-4F .
- FIG. 4A is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 .
- the optical parts include the lens 116 , the lens mount 202 , and the lens holder 114 , while the motion is relative to the supporting surface 110 .
- This drawing illustrates a translation of the lens holder 114 along the z-axis 402 , e.g., towards or away from the light source.
- FIG. 4B is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 .
- This drawing illustrates a translation of the lens holder 114 along the y-axis 404 , e.g., upwards or downwards relative to the light source.
- FIG. 4C is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 .
- translation along the x-axis 406 is performed by sliding the lens mount 202 and lens 116 in the lens holder 114 towards or away from the supporting surface 110 .
- FIG. 4D is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 .
- This drawing illustrates a rotation of the lens mount 202 in the lens holder 114 in a plane in the x-axis 406 .
- the rotation may also include a rotation of the lens 116 in the lens mount 116 .
- FIG. 4E is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 . This drawing illustrates a rotation of the lens holder 114 in a plane in the z-axis 402 .
- FIG. 4F is a drawing of a motion of a group of optical parts that may be used for alignment. Like numbered items are as described with respect to FIGS. 1 and 2 .
- the lens 116 itself may be rotated in a plane in the z-axis 402 . This may be used in cases in which the lens 116 is spherical.
- the motions shown in FIGS. 4A-4F may be used to maximize the intensity of a light signal, or to optimize other measures of alignment.
- the light detector 104 may be used to capture an image of the collimated light beam 118 or reflected light beam 124 .
- the shape of the image may be used to control the alignment, e.g., by adjusting the motion until the image is more nearly circular than oblong, among others.
- FIG. 5 is a block diagram of a method 500 to actively align an optical device.
- the method 500 may begin at block 502 with the application of the adhesive to the parts, such as the lens, the lens mount, and the lens holder.
- the parts are then assembled at block 504 . This may be performed in sequential operations for each of the parts, for example, first applying an uncured adhesive to a lens and placing the lens in a lens mount. Then applying an uncured adhesive to the lens mount and placing the lens mount in a lens holder. This is followed by applying an uncured adhesive to the lens holder and placing the lens holder on the supporting surface.
- the parts are placed along the supporting surface.
- the parts are actively aligned. As described herein, this may be performed by attaching an alignment device to the lens or lens holder, and moving the lens as described herein until an optical signal reaches a target level.
- the target level may be indicated by a signal intensity level, an image shape, an image focus, and the like.
- the adhesive is cured to fix the parts in place.
- the curing may be performed by exposing the adhesive to a UV light, a blue light, heat, or any combinations thereof.
- Example 1 includes an apparatus for actively aligning an optical device.
- the apparatus includes an optical device, a light detector, an alignment device, and a curing light.
- the optical device includes a supporting surface, a light source mounted to the supporting surface, a lens mount configured to hold a lens, and a lens holder configured to hold the lens mount, wherein the lens mount is configured to be mounted to the supporting surface.
- the light detector is configured to determine a light intensity of a light beam through the lens, wherein the light intensity indicates the alignment of the lens.
- the alignment device moves the lens until the light intensity indicates that the lens is aligned.
- the curing light cures adhesive layers between the lens and the lens mount, the lens mount and the lens holder, and the lens holder and the supporting surface.
- Example 2 incorporates the subject matter of Example 1.
- the adhesive layers are less than about 25 micrometers in thickness.
- Example 3 incorporates the subject matter of any of Examples 1 to 2.
- the lens is configured to be moved in the lens mount during alignment.
- Example 4 incorporates the subject matter of any of Examples 1 to 3.
- the lens mount is configured to be moved in the lens holder during alignment.
- Example 5 incorporates the subject matter of any of Examples 1 to 4.
- the lens holder is configured to be moved vertically along the supporting surface.
- Example 6 incorporates the subject matter of any of Examples 1 to 5.
- the lens holder is configured to be moved horizontally along the supporting surface.
- Example 7 incorporates the subject matter of any of Examples 1 to 6.
- the lens holder is configured to be rotated along the supporting surface.
- Example 8 incorporates the subject matter of any of Examples 1 to 7.
- the curing light is a blue light.
- Example 9 incorporates the subject matter of any of Examples 1 to 8.
- the curing light is an ultraviolet light.
- Example 10 incorporates the subject matter of any of Examples 1 to 9.
- the apparatus either of claim 1 or 2 , wherein the adhesive layers are cured by a combination of light and heat.
- Example 11 incorporates the subject matter of any of Examples 1 to 10.
- the apparatus either of claim 1 or 2 , wherein the alignment is determined by a maximum in the light intensity.
- Example 12 includes a method for actively aligning a lens in an optical device.
- the method includes applying an uncured adhesive to parts of the optical device, assembling the parts, and placing the assembled parts along a supporting surface.
- the lens is actively aligned, wherein the parts move in six degrees of freedom during the alignment and the uncured adhesive is cured to fix the parts of the optical assembly to each other and to the supporting surface.
- Example 13 incorporates the subject matter of Example 12.
- the method includes applying the uncured adhesive to a lens, placing the lens in a lens mount, applying the uncured adhesive to the lens mount, placing the lens mount in a lens holder, applying the uncured adhesive to the lens holder, and placing the lens holder on the supporting surface.
- Example 14 incorporates the subject matter of any of Examples 12 to 13.
- actively aligning the lens includes attaching an alignment device to the lens, starting a light source, measuring an intensity of a light from the light source with a detector, and moving the lens with the alignment device until the intensity of the light is maximized.
- Example 15 incorporates the subject matter of any of Examples 12 to 14.
- actively aligning the lens includes attaching an alignment device to the lens, starting a light source, and moving the lens with the alignment device until a pattern of an emitted light beam matches an aligned pattern.
- Example 16 incorporates the subject matter of any of Examples 12 to 15.
- the method includes irradiating the uncured adhesive with a blue light to cure the uncured adhesive.
- Example 17 incorporates the subject matter of any of Examples 12 to 16.
- the method includes irradiating the uncured adhesive with an ultraviolet light to cure the uncured adhesive.
- Example 18 incorporates the subject matter of any of Examples 12 to 17.
- the method includes irradiating the uncured adhesive with light to start a curing process, and applying heat to finish the curing process.
- Example 19 includes an optical device.
- the optical device includes a supporting surface, a light source mounted to the supporting surface, a lens mount configured to hold a lens, wherein the lens mount is configured to allow the lens to rotate in the lens mount.
- a lens holder is configured to hold the lens mount.
- the lens mount is configured to be mounted to the supporting surface.
- the lens holder is configured to allow the lens mount to shift in the lens holder, and is configured to shift along the supporting surface.
- a lens adhesive layer is between the lens and the lens mount.
- a mount adhesive layer is between the lens mount and the lens holder.
- a support adhesive layer is between the lens holder and the supporting surface. When uncured, the lens adhesive layer, the mount adhesive layer, and the support adhesive layer adhesive layer hold parts in place.
- Example 20 incorporates the subject matter of Example 19.
- a light detector is configured to determine a light intensity of a light beam through the lens, the light intensity indicating an alignment of the lens.
- An alignment device is to move the lens until the light intensity indicates that the lens is aligned.
- a curing light is to cure the lens adhesive layer, the mount adhesive layer, and the support adhesive layer.
- Example 21 incorporates the subject matter of any of Examples 19 to 20.
- the lens adhesive layer, the mount adhesive layer, and the support adhesive layer are each less than about 25 micrometers in thickness.
- Example 22 incorporates the subject matter of any of Examples 19 to 21.
- the lens is configured to be moved in the lens mount during alignment.
- Example 23 incorporates the subject matter of any of Examples 19 to 22.
- the lens mount is configured to be moved in the lens holder during alignment.
- Example 24 incorporates the subject matter of any of Examples 19 to 23.
- the lens holder is configured to be moved vertically along the supporting surface.
- Example 25 incorporates the subject matter of any of Examples 19 to 24.
- the lens holder is configured to be moved horizontally along the supporting surface.
- Example 26 incorporates the subject matter of any of Examples 19 to 25.
- the lens holder is configured to be rotated along the supporting surface.
- Example 27 incorporates the subject matter of any of Examples 19 to 26.
- the lens adhesive, the mount adhesive, and the support adhesive are selected to cure upon exposure to a curing light.
- Example 28 incorporates the subject matter of any of Examples 19 to 27.
- a curing light is an ultraviolet light.
- Example 29 incorporates the subject matter of any of Examples 19 to 28.
- an alignment is determined by a maximum intensity of a light signal.
- Example 30 includes an apparatus for actively aligning an optical device.
- the apparatus includes means for supporting an optical device, means for mounting a lens, means for holding the lens and a mount to a supporting surface, means for determining a light intensity of a light beam through the lens, means for moving the optical device until the light intensity indicates that the lens is aligned, and means for curing an adhesive to fix the optical device in place.
- Example 31 incorporates the subject matter of Example 30.
- the apparatus includes a means for moving the lens in the mount.
- Example 32 incorporates the subject matter of any of Examples 30 to 31.
- the apparatus includes a means for moving the mount in a lens holder.
- Example 33 incorporates the subject matter of any of Examples 30 to 32.
- the apparatus includes a means for moving the lens holder on the supporting surface.
- Example 34 incorporates the subject matter of any of Examples 30 to 33.
- the apparatus includes a means for irradiating the adhesive with a blue light.
- Example 35 incorporates the subject matter of any of Examples 30 to 34.
- the apparatus includes a means for irradiating the adhesive with an ultraviolet (UV) light.
- UV ultraviolet
- Some embodiments may be implemented in one or a combination of hardware, firmware, and software. Some embodiments may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein.
- a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine, e.g., a computer.
- a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; or electrical, optical, acoustical or other form of propagated signals, e.g., carrier waves, infrared signals, digital signals, or the interfaces that transmit and/or receive signals, among others.
- An embodiment is an implementation or example.
- Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” “various embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the techniques.
- the various appearances of “an embodiment”, “one embodiment”, or “some embodiments” are not necessarily all referring to the same embodiments. Elements or aspects from an embodiment can be combined with elements or aspects of another embodiment.
- the elements in some cases may each have a same reference number or a different reference number to suggest that the elements represented could be different and/or similar.
- an element may be flexible enough to have different implementations and work with some or all of the systems shown or described herein.
- the various elements shown in the figures may be the same or different. Which one is referred to as a first element and which is called a second element is arbitrary.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Lens Barrels (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/865,360 US11131824B2 (en) | 2015-09-25 | 2015-09-25 | Alignment of an optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/865,360 US11131824B2 (en) | 2015-09-25 | 2015-09-25 | Alignment of an optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170090142A1 US20170090142A1 (en) | 2017-03-30 |
US11131824B2 true US11131824B2 (en) | 2021-09-28 |
Family
ID=58408972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/865,360 Active 2039-04-13 US11131824B2 (en) | 2015-09-25 | 2015-09-25 | Alignment of an optical system |
Country Status (1)
Country | Link |
---|---|
US (1) | US11131824B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10121236B2 (en) * | 2016-10-26 | 2018-11-06 | Himax Technologies Limited | Automatic alignment apparatus and associated method |
CN107907959B (en) * | 2017-11-24 | 2020-11-24 | 黑龙江哈工华粹智能装备有限公司 | Ultra-precise six-degree-of-freedom five-axis adjusting device for optical adjustment and detection |
CN112379570B (en) * | 2020-11-25 | 2022-05-03 | 东莞埃科思科技有限公司 | Projector assembling and adjusting method |
CN112526697B (en) * | 2020-12-10 | 2022-07-22 | 业成科技(成都)有限公司 | Lens alignment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687032A (en) * | 1992-08-20 | 1997-11-11 | Mitsubishi Denki Kabushiki Kaisha | Optical device inclination angle adjuster |
US6320706B1 (en) * | 2000-02-24 | 2001-11-20 | Lightwave Electronics | Method and apparatus for positioning and fixating an optical element |
-
2015
- 2015-09-25 US US14/865,360 patent/US11131824B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687032A (en) * | 1992-08-20 | 1997-11-11 | Mitsubishi Denki Kabushiki Kaisha | Optical device inclination angle adjuster |
US6320706B1 (en) * | 2000-02-24 | 2001-11-20 | Lightwave Electronics | Method and apparatus for positioning and fixating an optical element |
Also Published As
Publication number | Publication date |
---|---|
US20170090142A1 (en) | 2017-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11131824B2 (en) | Alignment of an optical system | |
EP3502761B1 (en) | Light source unit | |
KR20120037507A (en) | Light emitting device and manufacturing method for same | |
WO2010047147A1 (en) | Semiconductor laser module and method for manufacturing the same | |
Fisher et al. | Developing engineering model Cobra fiber positioners for the Subaru Telescope’s prime focus spectrometer | |
CN110736424B (en) | Calibration method of structured light projection module group equipment and projection module group measurement method | |
JP2015129795A (en) | Optical fiber connector and optical communication module | |
CN111381328A (en) | Driving mechanism | |
KR101216875B1 (en) | Lens fixing apparatus and light pick-up apparatus | |
JP2010014656A (en) | Noncontact side-surface shape measuring apparatus | |
JP2004301755A (en) | Line display | |
JP2007150028A (en) | Optical device adjustment method | |
CN212963947U (en) | Spectrum confocal sensor linearity calibration device | |
CN116105781A (en) | Optical calibration device and method for calibrating coordinate system where optical platform is located | |
JP2006276156A (en) | Lens actuator structure in optical communication apparatus | |
WO2015133285A1 (en) | Light source apparatus and optical member | |
Tyas et al. | Design and production of DESI slit assemblies | |
KR101258601B1 (en) | focus indicator | |
JP2006267032A (en) | Angle measurement method for holding head, and angle measuring instrument for holding head | |
JP7206860B2 (en) | Lens unit, object detection device | |
US8165464B2 (en) | Image pickup apparatus with AF sensor unit | |
JP2003043339A (en) | Holder and holding method for mirror of optical system | |
JP2018037438A (en) | Alignment method and alignment device | |
JP2000293860A (en) | Method for adjusting optical pickup | |
JP2010048971A (en) | Laser scanning optical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FREEDMAN, BARAK;SHECHTMAN, ADI;SIGNING DATES FROM 20150924 TO 20150925;REEL/FRAME:036791/0670 |
|
STCT | Information on status: administrative procedure adjustment |
Free format text: PROSECUTION SUSPENDED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |