JP2004301755A - Line display - Google Patents

Line display Download PDF

Info

Publication number
JP2004301755A
JP2004301755A JP2003096843A JP2003096843A JP2004301755A JP 2004301755 A JP2004301755 A JP 2004301755A JP 2003096843 A JP2003096843 A JP 2003096843A JP 2003096843 A JP2003096843 A JP 2003096843A JP 2004301755 A JP2004301755 A JP 2004301755A
Authority
JP
Japan
Prior art keywords
cylindrical lens
lens
light
holder
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096843A
Other languages
Japanese (ja)
Other versions
JP4019995B2 (en
Inventor
Naoyuki Nishikawa
尚之 西川
Koji Sakamoto
浩司 阪本
Kuninori Nakamura
国法 中村
Masato Kasaya
正人 傘谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003096843A priority Critical patent/JP4019995B2/en
Publication of JP2004301755A publication Critical patent/JP2004301755A/en
Application granted granted Critical
Publication of JP4019995B2 publication Critical patent/JP4019995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To finely regulate a rotational angle around the center axis of a cylindrical lens as the rotation center, and to make a regulation angle hardly changed with the lapse of time. <P>SOLUTION: This line display A is provided with a semiconductor laser element 1, a projection lens 2, a projection lens holder 4 for holding the projection lens 2, a lens-barrel 5 for holding the semiconductor laser element 1 and the projection lens holder 4, the cylindrical lens 3 for refracting a laser beam incident through the projection lens 2 to emit a line beam spread fan-likely, and a cylindrical lens holder 6 holding the cylindrical lens 3 and attached to a front face of the lens-barrel 5. In the display A, a face of the cylindrical lens holder 6 opposed to the the lens-barrel 5 is formed into a convex face 7 curved along direction parallel to the center axis of the cylindrical lens 3, and a face of the lens-barrel 5 opposed to the cylindrical lens holder 6 is formed into a concave face 8 having the curvature equal to that of the convex face 7 curved along the direction parallel to the center axis of the cylindrical lens 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光線によってライン光を発生させるライン表示器に関するものである。
【0002】
【従来の技術】
図10(a)(b)にライン表示器の原理図を示す。ライン表示器は半導体レーザ素子1と投光レンズ2と円筒レンズ3とで構成され、半導体レーザ素子1から放射されたレーザ光は、コリメートレンズのような投光レンズ2によって平行光となり、円筒レンズ3に入射する。図10(a)に示すように、円筒レンズ3に入射する光は中心軸方向においては屈折されず、この方向においてはレーザ光は収束されない。一方、円筒レンズ3の中心軸方向と直交する方向においては、図10(b)に示すように、円筒レンズ3の周面の曲率によって、円筒レンズ3の界面でレーザ光が屈折するから、円筒レンズ3の中心軸と直交する面内においてレーザ光が扇状に広がる。而して、円筒レンズ3から放射されるレーザ光は、円筒レンズ3へのレーザ光の入射方向と、円筒レンズ3の中心軸方向とにそれぞれ直交する一方向(つまり図10(b)の上下方向)において扇状に広がるようなライン光となる。
【0003】
ところで、円筒レンズ3の中心軸と、円筒レンズ3へのレーザ光の入射方向とが正確に直交していれば、円筒レンズ3から放射されるライン光は真っ直ぐな直線となるが、円筒レンズ3の取付角度や位置がずれると、ライン光が湾曲して真っ直ぐな直線とならず、ライン光と直線との間にずれ(誤差)が発生するので、円筒レンズ3の取付角度や位置を正確に調整する機構が必要になる。
【0004】
ここで、円筒レンズ3の調整機構について説明する前に、まずライン光の誤差の発生要因について図11を参照して説明を行う。図11は、波長λが635nmのレーザ光を放射する半導体レーザ素子1と、屈折率nが1.518で、直径が5mmの円筒レンズ3を使用した場合を示し、円筒レンズ3から5m離れた位置にある観察面(X1−Y1平面)上でライン光Lを観察するものとする。なお円筒レンズ3の中心軸方向をX軸方向にとると、円筒レンズ3へのレーザ光の入射方向と中心軸方向とが正確に直交していれば、円筒レンズ3から放射されるライン光はY1軸と平行な真っ直ぐな直線となる。
【0005】
まず始めに、円筒レンズ3が図11中のα方向、β方向、γ方向にそれぞれ回転した場合の誤差について検討する。
【0006】
図11のX軸(円筒レンズ3の中心軸)を回転中心として円筒レンズ3がα方向に回転する場合は、円筒レンズ3の断面が完全な円であれば、誤差は発生しない。このため、α方向の回転による誤差は考慮する必要がない。
【0007】
図11のY軸(円筒レンズ3へのレーザ光の入射方向と円筒レンズ3の中心軸方向とにそれぞれ直交する方向)を回転中心として円筒レンズ3がβ方向に回転する場合は、Y1軸に対して湾曲するようなライン光となる。一般に屋内の墨出し作業で使用されるライン表示器では、円筒レンズ3から5m離れた平面上(X1−Y1平面上)にY1軸に沿って±5mの範囲でライン光を表示させる際に、ライン光の両端位置での直線とのずれが1mm以内であれば許容される。
【0008】
ここで、図12(a)にβ方向の回転角度が0.005度の時のX1−Y1平面上のライン光、同図(b)にβ方向の回転角度が0.027度の時のX1−Y1平面上のライン光の観測結果をそれぞれ示す。この観測結果から、β方向の回転角度が0.027度の場合はライン光の中心位置から±5mの位置でY1軸からのずれが約1mmとなっているので、β方向の回転角度は約0.027度までしか許容されないことが分かり、この方向では非常に微少な回転角(傾斜角)で大きな誤差が発生することが判明した。このことから、β方向において円筒レンズ3の回転角度を非常に微少な角度まで調整できるようにする必要があり、また調整後に温度変化などの要因で円筒レンズ3がβ方向に回転するのを防止する必要がある。
【0009】
また図11のZ軸(円筒レンズ3へのレーザ光の入射方向)を回転中心として円筒レンズ3がγ方向に回転すると、図13(a)(b)に示すように、ライン光が、X1−Y1平面の原点位置O1を中心にして所定角度だけ回転するような誤差が発生する。なお図4(a)はγ方向の回転角度が0.005度、同図(b)は回転角度が0.01の場合のX1−Y1平面上のライン光の観測結果をそれぞれ示している。この場合、ライン光は湾曲せず、直線のままで回転しているから、半導体レーザ素子1と投光レンズ2と円筒レンズ3とからなる光学系を1ユニットとして、ユニット全体を回転させてやれば、ライン光をY1軸に合わせるように容易に調整できる。
【0010】
次に、円筒レンズ3が図11中のX軸方向、Y軸方向、Z軸方向にそれぞれ移動した場合の誤差について検討する。
【0011】
円筒レンズ3がX軸方向に移動する場合は、円筒レンズ3の中心軸方向の長さが十分長ければ、レーザ光が当たる面の曲率は常に同じであるから、誤差は発生しない。
【0012】
円筒レンズ3がY軸方向に移動する場合は、投光レンズ2から放射されるレーザ光のビーム径との関係を考慮する必要がある。図14(a)に示すように、投光レンズ2の光軸と円筒レンズ3の光軸が一致している場合には、円筒レンズ3から放射される扇状のライン光は、円筒レンズ3の光軸を中心として上下に均等に放射される。しかしながら、図14(b)に示すように、Y軸方向において投光レンズ2の光軸と円筒レンズ3の光軸とにズレが生じると、円筒レンズ3から放射される扇状のライン光は、円筒レンズ3の光軸を中心として上下に均等に放射されなくなる。また光軸のズレが大きくなると、投光レンズ2から放射されたレーザ光の一部が円筒レンズ3に入射せずに、そのまま通り抜けてしまう。このためY軸方向において円筒レンズ3の位置を調整する必要がある。
【0013】
また円筒レンズ3がZ軸方向に移動する場合、その移動量はせいぜい数mm程度であり、このライン表示器を墨出し作業に用いる場合は円筒レンズ3から数m離れたX1−Y1平面上にライン光を表示させるので、Z軸方向のずれは問題にならないほど小さいものである。
【0014】
以上の検討の結果、ライン表示器には、円筒レンズ3のβ方向における微少な傾斜角(回転角)の調整と、Y軸方向における移動量の調整とを同時に独立して行える調整機能が求められる。
【0015】
従来のライン表示器では、例えば特許文献1に示されるように、円筒レンズ3のβ方向における傾斜角(回転角)を調整可能なものがあった。特許文献1に示されるライン表示器では、円筒状の発光素子ホルダーに半導体レーザと投光レンズとを保持させるとともに、発光素子ホルダーの前面に取り付けられる鏡筒に円筒レンズを保持させており、発光素子ホルダー及び鏡筒の対向面にそれぞれ凹凸形状を形成して、鏡筒に設けた突起を支点に鏡筒がシーソー動作を行うようにしている。そして、突起の両側に設けたねじ挿通孔に調整ねじをそれぞれ挿通して、2本の調整ねじを発光素子ホルダーに螺合してあり、2本の調整ねじの締付具合を調整することによって、突起を支点に傾斜する鏡筒の角度を変化させており、この調整機構によって円筒レンズの中心軸(Y軸)を回転中心とするβ方向の傾斜を調整している。
【0016】
【特許文献1】
特開2002−221416号公報(段落番号[0018]、及び、第3図)
【0017】
【発明が解決しようとする課題】
上述したライン表示器では、2本の調整ねじの締付具合を調整することで、円筒レンズを保持した鏡筒を、突起を支点としてシーソー動作させて、円筒レンズの中心軸(Y軸)を回転中心とするβ方向の傾斜を調整しているのであるが、調整ねじの移動量に対して鏡筒(すなわち円筒レンズ)の傾斜角度が大きく変化するため、微少な角度まで調整できないという問題がある。例えば鏡筒の支点から調整ねじまでの距離を5mmとした場合、β方向に0.027度だけ傾斜させようとすると、調整ねじの移動量は2.3μmであり、ねじのバックラッシュに比べて非常に小さい値であるので、調整ねじによる調整では微少な角度まで調整することは困難である。
【0018】
また調整後に調整ねじを接着剤で固定することによって、鏡筒を調整位置で固定しているのであるが、温度変化による接着剤の収縮膨張で鏡筒の傾斜角度が変化する虞があり、鏡筒(すなわち円筒レンズ)の傾斜角度の変化によってライン光が大きく湾曲する可能性があった。
【0019】
また上述のライン表示器には、円筒レンズのY軸方向の移動を調整する機構が設けられていなかった。
【0020】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、円筒レンズの中心軸を回転中心とする回転角度を微少な角度で調整でき、且つ、経時変化によって調整位置が変化しにくいライン表示器を提供することにある。また、請求項3の発明の目的とすることろは、上記の目的に加えて、Y軸方向の移動量を独立して調整可能なライン表示器を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、レーザ光を放射する発光素子と、発光素子を保持する鏡筒と、発光素子からのレーザ光が入射され該レーザ光を屈折させることによって扇状に広がるライン光を放射する円筒レンズと、円筒レンズを保持して鏡筒の前面に取着される円筒レンズホルダーとを備え、鏡筒及び円筒レンズホルダーの対向面を、円筒レンズの中心軸と平行な方向に沿ってそれぞれ曲がる、互いに曲率の等しい曲面に形成し、鏡筒及び円筒レンズホルダーの対向面を面接触させたことを特徴とする。
【0022】
請求項2の発明では、請求項1の発明において、鏡筒及び円筒レンズホルダーの対向面の内の一方を、円筒レンズの中心軸と平行な方向に沿って曲がる凸曲面に形成するとともに、他方を、円筒レンズの中心軸と平行な方向に沿って曲がる、前記凸曲面と曲率が等しい凹曲面に形成したことを特徴とする。
【0023】
請求項3の発明では、請求項1又は2の発明において、鏡筒及び円筒レンズホルダーの対向面は、円筒レンズへのレーザ光の入射方向と円筒レンズの中心軸方向とにそれぞれ直交する方向の曲率がゼロとなるように形成されたことを特徴とする。
【0024】
請求項4の発明では、請求項1乃至3の何れか1つの発明において、前記凸曲面及び前記凹曲面の曲率半径を約40mm以上としたことを特徴とする。
【0025】
【発明の実施の形態】
(実施形態1)
本実施形態のライン表示器Aの分解斜視図を図1に、X軸方向の断面図を図2(a)に、Y軸方向の断面図を図2(b)にそれぞれ示す。
【0026】
このライン表示器Aは、レーザ光を放射する発光素子としての半導体レーザ素子1と、半導体レーザ素子1のレーザ光を平行光に調整する投光レンズ2と、投光レンズ2を通してレーザ光が入射され、入射したレーザ光を屈折させることによって扇状に広がるライン光を放射する円筒レンズ3と、投光レンズ2を保持する投光レンズホルダー4と、半導体レーザ素子1及び投光レンズホルダー4を保持する鏡筒5と、円筒レンズ3を保持して鏡筒5の前面に取着される円筒レンズホルダー6とを備える。
【0027】
投光レンズホルダー4は、略円筒状であって、筒内に投光レンズ2を保持している。
【0028】
鏡筒5は略直方体状であって、前面(円筒レンズホルダー6と対向する面)を円筒レンズ3の軸方向と平行な方向に沿って曲がる凸曲面7に形成してある。鏡筒5の前面には丸穴5aが開口し、丸穴5aの底部には鏡筒5を前後に貫通する貫通孔5bが貫設されている。そして、鏡筒5の丸穴5a内には、投光レンズ2を保持した投光レンズホルダー4が前面側から挿入され、貫通孔5b内には後面側から半導体レーザ素子1が挿入される。なお、鏡筒5に半導体レーザ素子1と投光レンズホルダー4とを保持させた状態では、半導体レーザ素子1の光軸と投光レンズ2の光軸が一致するようになっている。
【0029】
円筒レンズホルダー6は略直方体状であって、後面(鏡筒5と対向する面)を円筒レンズ3の軸方向と平行な方向に沿って曲がる、凸曲面7と曲率が等しい凹曲面8に形成してある。円筒レンズホルダー6の前面には、鏡筒5の丸穴5aに対応する位置に、円筒レンズ3が半分埋まった状態で取り付けられる取付溝6aがX軸方向に沿って形成されており、この取付溝6aの底には円筒レンズホルダー6を前後に貫通する貫通孔6bが形成されている。
【0030】
以上のようなライン表示器Aを組み立てる際には、投光レンズ2を保持した投光レンズホルダー4と、半導体レーザ素子1とを鏡筒5に保持させると共に、円筒レンズ3を円筒レンズホルダー6に保持させた後、鏡筒5の凸曲面7と円筒レンズホルダー6の凹曲面8とを当接させた状態で、鏡筒5及び円筒レンズホルダー6を治具(図示せず)で保持する。そして、凸曲面7と凹曲面8とを摺接させながら、円筒レンズホルダー6を鏡筒5に対して相対移動させて、円筒レンズ3の位置を調整した後、鏡筒5と円筒レンズホルダー6とを接着剤などで固定することによって組立作業が完了する。
【0031】
組立完了状態において半導体レーザ素子1を駆動回路(図示せず)で駆動すると、半導体レーザ素子1から放射されたレーザ光が投光レンズ2に調整されて、平行光が作られる。そして、投光レンズ2を通過した平行光が円筒レンズ3に入射すると、円筒レンズ3の中心軸方向においてはレーザ光が屈折されず、中心軸方向と直交する方向においてはレーザ光が大きく屈折されるので、中心軸方向と直交する平面内において扇状に広がるライン光が得られる。なお、投光レンズ2を通して放射される光は、特に平行光に限定されるものではなく、円筒レンズ3の中心軸方向と略直交する方向に沿って円筒レンズ3に入射するのであれば、遠方で収束するような光でも良い。
【0032】
ここで、図3(a)(b)を参照して円筒レンズ3の取付角度や位置を調整する方法について説明する。
【0033】
上述のように鏡筒5及び円筒レンズホルダー6の対向面は、鏡筒5側が、円筒レンズ3の中心軸と平行な方向に沿って曲がる凸曲面7に形成され、円筒レンズホルダー6側が、円筒レンズ3の中心軸と平行な方向に沿って曲がる、凸曲面7と曲率が等しい凹曲面8に形成されており、鏡筒5及び円筒レンズホルダー6の対向面は互いに面接触している。図3(a)に示すように鏡筒5の凸曲面7に円筒レンズホルダー6の凹曲面8を摺接させた状態で、図中の矢印の方向から円筒レンズホルダー6の端面にマイクロメータ(図示せず)を当てて、マイクロメータの表示を見ながら、X軸方向において円筒レンズホルダー6を鏡筒5に対して所望の位置まで相対移動させることで、円筒レンズ3へのレーザ光の入射方向と円筒レンズ3の中心軸方向とにそれぞれ直交する方向(Y軸方向)を回転中心とする円筒レンズ3の傾斜角(回転角)を調整することができる。この調整に伴って円筒レンズ3はX軸方向に平行移動するが、円筒レンズ3の中心軸方向の長さが十分長ければ、投光レンズ2からの平行光は円筒レンズ3に確実に入射する。また円筒レンズ3が中心軸方向に移動したとしても、レーザ光があたる部位の曲率は常に同じであるから、ライン光に誤差が生じることはなく、特に問題とはならない。
【0034】
また、鏡筒5及び円筒レンズホルダー6の対向面は、円筒レンズ3へのレーザ光の入射方向と円筒レンズ3の中心軸方向とにそれぞれ直交する方向の曲率がゼロになるように形成されているので、図3(b)に示すように、鏡筒5の凸曲面7に円筒レンズホルダー6の凹曲面8を摺接させた状態で、図中の矢印の方向から円筒レンズホルダー6の端面にマイクロメータ(図示せず)を当てて、マイクロメータの表示を見ながら、Y軸方向において円筒レンズホルダー6を鏡筒5に対して所望の位置まで相対移動させることで、投光レンズ2(つまり半導体レーザ素子1の光軸)の光軸と円筒レンズ3の光軸とを一致させることができ、円筒レンズ3の光軸に対して上下に均等にライン光を放射させることができる。なお、従来技術で説明したように、円筒レンズホルダー6を鏡筒5に対してY軸方向に相対移動させることによって、投光レンズ2の光軸と円筒レンズ3の光軸とをY軸方向でずらしたとしても、ライン光が湾曲することはないので、意図的に光軸をずらしてライン光の照射範囲を変化させることも可能である。
【0035】
ところで、上述のように鏡筒5の凸曲面7に円筒レンズホルダー6の凹曲面8を摺接させた状態で、円筒レンズホルダー6を鏡筒5に対してY軸方向に相対移動させることで、Y軸方向を回転中心とする円筒レンズ3のβ方向の傾斜角(回転角)を調整することができるのであるが、この時のY軸方向における円筒レンズ3の移動量をL1、β方向の傾斜角(回転角)をβ1、凸曲面7及び凹曲面8の曲率半径をRとすると、傾斜角β1が非常に微少な角度であれば以下の関係式が成り立つ。
【0036】
R(mm)=L1(mm)/β1(rad) …(1)
ここに、円筒レンズホルダー6を鏡筒5に対して相対移動させる調整では、1回の調整作業で円筒レンズホルダー6を移動させる最小の移動量は約10μmが限界であると考えられ、これ以上短い移動量での調整は実際上困難であると考えられる。また一般的なレーザ墨出し器では、円筒レンズ3から5m離れた平面上に±5mの範囲でライン光を表示させる際に、ライン光の両端位置での誤差(この誤差を湾曲誤差という)を1mm以下とすることが要求されるので、ライン光の湾曲誤差を修正する作業をスムーズに行うためには、1回の調整作業で調整可能な湾曲誤差の大きさ(この大きさを調整分解能という)を許容範囲(1mm)の1/2以下とするのが望ましい。以上の条件をまとめると、円筒レンズホルダー6のY軸方向の移動量の最小分解能(最小分解能とは1回の調整作業で調整可能な最小の移動量のことである)Lminが10μm、湾曲誤差の調整分解能が0.5mm、この場合のβ方向の調整角度の調整分解能β2が0.0135度(1mmの誤差が発生するときの角度β1が0.027度であるからその半分の値)であるから、このときの曲率半径Rは式(1)より、

Figure 2004301755
となる。したがって、確実な調整を行うためには、凸曲面7及び凹曲面8の曲率半径を40mm以上とすることが望ましい。
【0037】
また、円筒レンズホルダー6のY軸方向の移動量は、円筒レンズ3の長さなどを考慮すると、いくらでも大きくできるわけではない。一般的に円筒レンズ3には、直径が約5mmで中心軸方向の長さが約8mmのものが使用される。投光レンズ2から放射されるレーザ光のビーム径は円筒レンズ3の直径と同程度であるから、Y軸方向の移動量の限度はおおよそ±1.5mmである。ただし、円筒レンズ3の軸方向の両端は形状がだれるために、0.5mm程度の余裕が必要であり、このことからY軸方向の移動量の限度は±1mm程度になる。この条件から凸曲面7及び凹曲面8の上限もおおよそ見積もることができ、曲率半径Rは式(1)より、
Figure 2004301755
となる。したがって、確実な調整を行うためには、凸曲面7及び凹曲面8の曲率半径を約4000mm以下とするのが望ましい。
【0038】
以上説明したように本実施形態のライン表示器Aでは、β方向の回転角度(傾斜角度)の調整と、Y軸方向の移動量の調整とを独立して行うことができ、また従来のライン表示器に比べて非常に小さい角度までβ方向の回転角(傾斜角)を調整することができる。また、本実施形態では鏡筒5の凸曲面7と円筒レンズホルダー6の凹曲面8とを摺接させた状態で、鏡筒5と円筒レンズホルダー6とを接着剤で接着固定しているのであるが、本実施形態は温度変化による接着剤の収縮膨張の影響を受けにくいという利点がある。すなわち従来のライン表示器の構造では、円筒レンズホルダー6が鏡筒6に対して数μm移動しただけで、1mm以上の湾曲誤差が発生するのに対して、本実施形態では凸曲面7及び凹曲面8の曲率半径を40mm以上に形成しているので、円筒レンズホルダー6が鏡筒5に対して10μm移動したとしても、湾曲誤差を0.5mm以下に抑えることができる。また、鏡筒5及び円筒レンズホルダー6の対向面は曲率半径の等しい曲面に形成されて面接触しているので、凸曲面7と凹曲面8との間に大きな摩擦力が働き、温度変化によって接着剤が収縮膨張したとしても、円筒レンズホルダー6が鏡筒5に対して相対的に移動しにくくなる。したがって、鏡筒5及び円筒レンズホルダー6が調整位置からずれにくくなり、調整後にライン光が湾曲するといった不具合を防止できる。
【0039】
なお、本実施形態では鏡筒5側の対向面を凸曲面7とし、円筒レンズホルダー6側の対向面を凹曲面8としているが、図5及び図6に示すように、鏡筒5側の対向面を凹曲面9とし、円筒レンズホルダー6側の対向面を凸曲面10としても良い。
【0040】
また、本実施形態では鏡筒5及び円筒レンズホルダー6の対向面を、円筒レンズ3へのレーザ光の入射方向(Z軸方向)と円筒レンズ3の中心軸方向(X軸方向)とにそれぞれ直交する方向(Y軸方向)の曲率がゼロになるように形成しているが、Y軸方向の曲率はゼロであっても、ある曲率を有していても良く、少なくとも円筒レンズ3の中心軸と平行な方向(X軸方向)の曲率が同じで面接触していれば、X軸方向において円筒レンズホルダー6を鏡筒5に対して相対移動させることで、円筒レンズ3のβ方向の傾斜角(回転角)を微少な角度で調整することが可能である。なお本実施形態では鏡筒5及び円筒レンズホルダー6の対向面を、Y軸方向の曲率がゼロになるように形成しているので、Y軸方向において円筒レンズホルダー6を鏡筒5に対して相対移動させることで、Y軸方向における円筒レンズ3と投光レンズ2(半導体レーザ素子1)との光軸のズレを、β方向の傾斜角と独立して調整できるという利点がある。
【0041】
(実施形態2)
本実施形態のライン表示器Aの分解斜視図を図7に、外観斜視図を図8に夫々示す。
【0042】
このライン表示器Aは、レーザ光を放射する発光素子としての半導体レーザ素子1と、半導体レーザ素子1が実装される回路基板11と、半導体レーザ素子(LD)1を保持するLDホルダー12と、半導体レーザ素子1のレーザ光を平行光に調整する投光レンズ2と、投光レンズ2を通してレーザ光が入射され、入射したレーザ光を屈折させることによって扇状に広がるライン光を放射する円筒レンズ3と、投光レンズ2を保持する投光レンズホルダー4と、LDホルダー12及び投光レンズホルダー4を保持する鏡筒5と、円筒レンズ3を保持して鏡筒5の前面に取着される円筒レンズホルダー6とを備える。
【0043】
投光レンズホルダー4は、略円筒状であって、筒内に投光レンズ2を保持している。
【0044】
LDホルダー12は円環状に形成されて、中央の丸孔12a内に後側から半導体レーザ素子1が挿入される。
【0045】
鏡筒5は略円筒状であって、前面(円筒レンズホルダー6と対向する面)を円筒レンズ3の軸方向と平行な方向に沿って曲がる凸曲面7に形成してある。鏡筒5の前面の中心位置には、鏡筒5を前後方向に貫通する丸孔5aが開口する。そして、丸穴5a内に、投光レンズ2を保持した投光レンズホルダー4が前面側から挿入される。また、鏡筒5の後面には、丸孔5aに丸孔12aが連通するようにしてLDホルダー12が装着され、投光レンズ2と半導体レーザ素子1とが光結合される。
【0046】
円筒レンズホルダー6は略円盤状であって、後面(鏡筒5と対向する面)を円筒レンズ3の軸方向と平行な方向に沿って曲がる、凸曲面7と曲率が等しい凹曲面8に形成してある。円筒レンズホルダー6の前面には、鏡筒5の丸穴5aに対応する位置に、円筒レンズ3が半分埋まった状態で取り付けられる取付溝6aが径方向に沿って形成されており、この取付溝6aの底には円筒レンズホルダー6を前後に貫通する貫通孔6bが形成されている。
【0047】
以上説明したように、実施形態1では鏡筒5及び円筒レンズホルダー6をそれぞれ略直方体状に形成しているのに対して、本実施形態では鏡筒5及び円筒レンズホルダー6の前面視の形状を円形に形成してある。そして、鏡筒5及び円筒レンズホルダー6の対向面の内、鏡筒5側の対向面を、円筒レンズ3の中心軸と平行な方向に沿って曲がった凸曲面7に形成するとともに、円筒レンズホルダー6側の対向面を、円筒レンズ3の中心軸と平行な方向に沿って曲がる、凸曲面7と曲率が等しい凹曲面8に形成してあるので、実施形態1と同様、円筒レンズ3の調整を微少な角度まで行え、さらに調整後に調整位置が変化しにくいという効果が得られる。また、鏡筒5及び円筒レンズホルダー6の対向面は、円筒レンズ3へのレーザ光の入射方向と円筒レンズ3の中心軸方向とにそれぞれ直交する方向の曲率がゼロとなるように形成されているので、この方向において円筒レンズホルダー6を鏡筒5に対して相対移動させることで、実施形態1と同様、円筒レンズ3と投光レンズ2(つまり半導体レーザ素子1)との光軸のずれを独立して調整し、円筒レンズ3の光軸に対して上下に均等にライン光を放射させることができる。
【0048】
以上のようなライン表示器Aを組み立てる際には、投光レンズ2を保持した投光レンズホルダー4と、半導体レーザ素子1を保持したLDホルダー12とを鏡筒5に保持させると共に、円筒レンズ3を円筒レンズホルダー6に保持させた後、鏡筒5の凸曲面7と円筒レンズホルダー6の凹曲面8とを面接触させた状態で、鏡筒5及び円筒レンズホルダー6を治具(図示せず)で保持する。そして、凸曲面7と凹曲面8とを摺接させながら、円筒レンズホルダー6を鏡筒5に対して相対移動させて、円筒レンズ3の位置を調整した後、鏡筒5と円筒レンズホルダー6とを接着剤などで固定することによって組立作業が完了する。
【0049】
組立完了状態において半導体レーザ素子1を駆動回路(図示せず)で駆動すると、半導体レーザ素子1から放射されたレーザ光が投光レンズ2に調整されて、平行光が作られる。そして、投光レンズ2を通過した平行光が円筒レンズ3に入射すると、円筒レンズ3の中心軸方向においてはレーザ光が屈折されず、中心軸方向と直交する方向においてはレーザ光が大きく屈折されるので、中心軸方向と直交する平面内において扇状に広がるライン光が得られる。
【0050】
また、図9は本実施形態のライン表示器Aを用いたレーザ墨出し器Bの外観図であり、上述のライン表示器Aをケース21に納めた3個の光学ユニット20をジンバル機構22を介して架台23に取り付けている。ここで、本実施形態では鏡筒5及び円筒レンズホルダー6の前面視の形状を円形に形成しているので、ケース21に円形の穴を開けて、この穴内にライン表示器Aを装着すれば、ライン表示器Aを穴内で微少回転させることによって、上記γ方向に円筒レンズ3が回転することで生じる誤差を容易に補正することができる。
【0051】
なお、本実施形態では鏡筒5側の対向面を凸曲面7とし、円筒レンズホルダー6側の対向面を凹曲面8としているが、鏡筒5側の対向面を凹曲面とし、円筒レンズホルダー6側の対向面を凹曲面と曲率が等しい凸曲面としても良いことは言うまでもない。
【0052】
【発明の効果】
上述のように、請求項1の発明は、レーザ光を放射する発光素子と、発光素子を保持する鏡筒と、発光素子からのレーザ光が入射され該レーザ光を屈折させることによって扇状に広がるライン光を放射する円筒レンズと、円筒レンズを保持して鏡筒の前面に取着される円筒レンズホルダーとを備え、鏡筒及び円筒レンズホルダーの対向面を、円筒レンズの中心軸と平行な方向に沿ってそれぞれ曲がる、互いに曲率の等しい曲面に形成し、鏡筒及び円筒レンズホルダーの対向面を面接触させたことを特徴とし、鏡筒及び円筒レンズホルダーの対向面を摺接させながら、円筒レンズホルダーを、円筒レンズの中心軸と平行な方向に沿って平行移動させると、円筒レンズに保持された円筒レンズを、その中心軸方向とレーザ光の入射方向とにそれぞれ直交する方向を回転中心として回転させることができ、この回転角を調整することで、ライン光の湾曲を補正でき、且つ、従来のライン表示器に比べて微少な角度で調整が可能であるから、ライン光の湾曲をより高精度に補正できるという効果がある。そのうえ、調整後に鏡筒と円筒レンズホルダーとを接着固定する場合は、温度変化による接着剤の収縮膨張で鏡筒と円筒レンズホルダーとの相対位置が変化する虞があるが、鏡筒及び円筒レンズホルダーの対向面を曲率の等しい曲面に形成しているので、鏡筒の前面に円筒レンズホルダーを取り付けると、対向面が面接触することで鏡筒と円筒レンズホルダーとの間に作用する摩擦力が大きくなり、温度変化による接着剤の収縮膨張によって鏡筒と円筒レンズホルダーとの相対位置が変化して、ライン光が湾曲するのを防止できるという効果もある。
【0053】
請求項2の発明は、請求項1の発明において、鏡筒及び円筒レンズホルダーの対向面の内の一方を、円筒レンズの中心軸と平行な方向に沿って曲がる凸曲面に形成するとともに、他方を、円筒レンズの中心軸と平行な方向に沿って曲がる、前記凸曲面と曲率が等しい凹曲面に形成したことを特徴とし、請求項1の発明と同様の効果を奏する。
【0054】
請求項3の発明は、請求項1又は2の発明において、鏡筒及び円筒レンズホルダーの対向面は、円筒レンズへのレーザ光の入射方向と円筒レンズの中心軸方向とにそれぞれ直交する方向の曲率がゼロとなるように形成されたことを特徴とし、円筒レンズへのレーザ光の入射方向と円筒レンズの中心軸方向とにそれぞれ直交する方向において、円筒レンズホルダーを鏡筒に対して相対移動させることで、円筒レンズホルダーに保持された円筒レンズの光軸と、鏡筒に保持された半導体レーザ素子の光軸とのずれを、円筒レンズの中心軸周りの回転角調整と独立して行うことができる。
【0055】
請求項4の発明は、請求項1乃至3の何れか1つの発明において、前記凸曲面及び前記凹曲面の曲率半径を約40mm以上としたことを特徴とし、凸曲面及び前記凹曲面の曲率半径を約40mm以上とすることによって、1回の調整作業で調整可能な湾曲誤差を、許容範囲の半分の値とすることができる。
【図面の簡単な説明】
【図1】本実施形態のライン表示器の分解斜視図である。
【図2】同上を示し、(a)はX軸方向の断面図、(b)はY軸方向の断面図である。
【図3】同上を示し、(a)はβ方向の傾斜を調整する方法の説明図、(b)はY軸方向の移動量を調整する方法の説明図である。
【図4】同上の凸曲面及び凹曲面の曲率半径についての説明図である。
【図5】同上の別のライン表示器の分解斜視図である。
【図6】同上を示し、(a)はX軸方向の断面図、(b)はY軸方向の断面図である。
【図7】同上のまた別のライン表示器の分解斜視図である。
【図8】同上の外観斜視図である。
【図9】各実施形態のライン表示器を用いる墨出し装置の外観図である。
【図10】(a)(b)はライン表示器の原理を説明する説明図である。
【図11】同上のライン光に発生する誤差を説明する説明図である。
【図12】同上のβ方向の回転角度とライン光との関係を示し、(a)は回転角度が0.005度の時のライン光、(b)は回転角度が0.027度の時のライン光の説明図である。
【図13】同上のγ方向の回転角度とライン光との関係を示し、(a)は回転角度が0.005度の時のライン光、(b)は回転角度が0.01度の時のライン光の説明図である。
【図14】(a)(b)は同上の投光レンズと円筒レンズとの光軸のズレによって生じる誤差を説明する説明図である。
【符号の説明】
A ライン表示器
1 半導体レーザ素子
2 投光レンズ
3 円筒レンズ
4 投光レンズホルダー
5 鏡筒
6 円筒レンズホルダー
7 凸曲面
8 凹曲面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a line display that generates line light by a laser beam.
[0002]
[Prior art]
FIGS. 10A and 10B show principle diagrams of the line display. The line display includes a semiconductor laser element 1, a light projecting lens 2, and a cylindrical lens 3. Laser light emitted from the semiconductor laser element 1 is converted into parallel light by a light projecting lens 2 such as a collimating lens, and is turned into a cylindrical lens. 3 is incident. As shown in FIG. 10A, light incident on the cylindrical lens 3 is not refracted in the central axis direction, and the laser light is not converged in this direction. On the other hand, in the direction orthogonal to the central axis direction of the cylindrical lens 3, the laser light is refracted at the interface of the cylindrical lens 3 due to the curvature of the peripheral surface of the cylindrical lens 3 as shown in FIG. The laser beam spreads like a fan in a plane perpendicular to the central axis of the lens 3. Thus, the laser light radiated from the cylindrical lens 3 is perpendicular to the incident direction of the laser light on the cylindrical lens 3 and the center axis direction of the cylindrical lens 3 (that is, the vertical direction in FIG. 10B). In this case, the line light spreads like a fan in the direction (1).
[0003]
By the way, if the central axis of the cylindrical lens 3 and the incident direction of the laser beam on the cylindrical lens 3 are exactly perpendicular to each other, the line light emitted from the cylindrical lens 3 will be a straight line. If the mounting angle or position of the lens is deviated, the line light will not be curved and become a straight line, and a deviation (error) will occur between the line light and the straight line. An adjusting mechanism is required.
[0004]
Here, before describing the adjustment mechanism of the cylindrical lens 3, the cause of the line light error will be described first with reference to FIG. 11. FIG. 11 shows a case in which a semiconductor laser element 1 emitting a laser beam having a wavelength λ of 635 nm and a cylindrical lens 3 having a refractive index n of 1.518 and a diameter of 5 mm are used. It is assumed that the line light L is observed on the observation plane (X1-Y1 plane) at the position. When the central axis direction of the cylindrical lens 3 is set to the X-axis direction, if the incident direction of the laser beam to the cylindrical lens 3 and the central axis direction are exactly orthogonal, the line light radiated from the cylindrical lens 3 will be The straight line is parallel to the Y1 axis.
[0005]
First, an error when the cylindrical lens 3 rotates in the α direction, the β direction, and the γ direction in FIG. 11 will be examined.
[0006]
When the cylindrical lens 3 rotates in the α direction about the X axis (the central axis of the cylindrical lens 3) in FIG. 11 as a center of rotation, no error occurs if the cross section of the cylindrical lens 3 is a perfect circle. Therefore, it is not necessary to consider an error due to rotation in the α direction.
[0007]
When the cylindrical lens 3 rotates in the β direction around the Y axis (the direction orthogonal to the direction of incidence of the laser beam on the cylindrical lens 3 and the central axis direction of the cylindrical lens 3) in FIG. It becomes a line light which curves to the contrary. In general, in a line display used for indoor blackout work, when displaying line light within a range of ± 5 m along a Y1 axis on a plane (on an X1-Y1 plane) 5 m away from the cylindrical lens 3, A deviation from a straight line at both ends of the line light within 1 mm is allowable.
[0008]
Here, FIG. 12A shows the line light on the X1-Y1 plane when the rotation angle in the β direction is 0.005 degrees, and FIG. 12B shows the line light when the rotation angle in the β direction is 0.027 degrees. The observation results of the line light on the X1-Y1 plane are respectively shown. From this observation result, when the rotation angle in the β direction is 0.027 degrees, since the deviation from the Y1 axis is about 1 mm at a position ± 5 m from the center position of the line light, the rotation angle in the β direction is about It was found that only up to 0.027 degrees was allowed, and it was found that a very small rotation angle (tilt angle) caused a large error in this direction. For this reason, it is necessary to adjust the rotation angle of the cylindrical lens 3 to an extremely small angle in the β direction, and to prevent the cylindrical lens 3 from rotating in the β direction due to factors such as a temperature change after the adjustment. There is a need to.
[0009]
When the cylindrical lens 3 rotates in the γ direction about the Z axis (the direction of incidence of the laser beam on the cylindrical lens 3) of FIG. 11 as the center of rotation, the line light becomes X1 as shown in FIGS. An error occurs such that the lens rotates by a predetermined angle around the origin position O1 on the −Y1 plane. 4A shows the observation result of the line light on the X1-Y1 plane when the rotation angle in the γ direction is 0.005 degrees, and FIG. 4B shows the observation result when the rotation angle is 0.01. In this case, since the line light is not curved but is rotating in a straight line, the optical unit including the semiconductor laser element 1, the light projecting lens 2, and the cylindrical lens 3 is regarded as one unit, and the entire unit can be rotated. For example, it is possible to easily adjust the line light so as to match the Y1 axis.
[0010]
Next, an error when the cylindrical lens 3 moves in the X-axis direction, the Y-axis direction, and the Z-axis direction in FIG. 11 will be examined.
[0011]
When the cylindrical lens 3 moves in the X-axis direction, if the length of the cylindrical lens 3 in the central axis direction is sufficiently long, the curvature of the surface on which the laser beam shines is always the same, and no error occurs.
[0012]
When the cylindrical lens 3 moves in the Y-axis direction, it is necessary to consider the relationship with the beam diameter of the laser light emitted from the light projecting lens 2. As shown in FIG. 14A, when the optical axis of the light projecting lens 2 and the optical axis of the cylindrical lens 3 match, the fan-shaped line light emitted from the cylindrical lens 3 It is radiated evenly up and down about the optical axis. However, as shown in FIG. 14B, when a deviation occurs between the optical axis of the light projecting lens 2 and the optical axis of the cylindrical lens 3 in the Y-axis direction, the fan-shaped line light radiated from the cylindrical lens 3 becomes Radiation is not evenly distributed up and down around the optical axis of the cylindrical lens 3. Further, when the deviation of the optical axis becomes large, a part of the laser light emitted from the light projecting lens 2 passes through the cylindrical lens 3 without entering the cylindrical lens 3. Therefore, it is necessary to adjust the position of the cylindrical lens 3 in the Y-axis direction.
[0013]
When the cylindrical lens 3 moves in the Z-axis direction, the amount of movement is at most about several mm. When this line display is used for blackout work, it is placed on the X1-Y1 plane several meters away from the cylindrical lens 3. Since the line light is displayed, the deviation in the Z-axis direction is so small that it does not matter.
[0014]
As a result of the above examination, the line display is required to have an adjustment function capable of simultaneously and independently adjusting the minute inclination angle (rotation angle) of the cylindrical lens 3 in the β direction and the adjustment of the movement amount in the Y axis direction. Can be
[0015]
In a conventional line display, for example, as shown in Patent Literature 1, there is a display capable of adjusting a tilt angle (rotation angle) of a cylindrical lens 3 in a β direction. In the line display device disclosed in Patent Literature 1, a semiconductor laser and a light projecting lens are held in a cylindrical light emitting element holder, and a cylindrical lens is held in a lens barrel attached to a front surface of the light emitting element holder. Concavo-convex shapes are formed on the opposing surfaces of the element holder and the lens barrel, respectively, so that the lens barrel performs a seesaw operation with a projection provided on the lens barrel as a fulcrum. Then, the adjusting screws are respectively inserted into the screw insertion holes provided on both sides of the projection, and the two adjusting screws are screwed into the light emitting element holder. By adjusting the tightening degree of the two adjusting screws, The angle of the lens barrel that is inclined about the projection is changed, and the adjustment mechanism adjusts the inclination in the β direction about the center axis (Y axis) of the cylindrical lens as the center of rotation.
[0016]
[Patent Document 1]
JP-A-2002-221416 (paragraph number [0018] and FIG. 3)
[0017]
[Problems to be solved by the invention]
In the above-described line display, by adjusting the degree of tightening of the two adjustment screws, the lens barrel holding the cylindrical lens is operated as a seesaw using the projection as a fulcrum, and the center axis (Y axis) of the cylindrical lens is adjusted. Although the inclination in the β direction with respect to the rotation center is adjusted, the inclination angle of the lens barrel (that is, the cylindrical lens) greatly changes with respect to the amount of movement of the adjustment screw. is there. For example, when the distance from the fulcrum of the lens barrel to the adjusting screw is 5 mm, if the inclination is to be inclined by 0.027 degrees in the β direction, the moving amount of the adjusting screw is 2.3 μm, which is smaller than the backlash of the screw. Since it is a very small value, it is difficult to adjust to a minute angle with the adjustment screw.
[0018]
In addition, the lens barrel is fixed at the adjustment position by fixing the adjustment screw with an adhesive after the adjustment, but there is a possibility that the inclination angle of the lens barrel changes due to contraction and expansion of the adhesive due to a temperature change, There is a possibility that the line light is largely curved due to a change in the inclination angle of the cylinder (that is, the cylindrical lens).
[0019]
Further, the above-described line display does not include a mechanism for adjusting the movement of the cylindrical lens in the Y-axis direction.
[0020]
The present invention has been made in view of the above-described problems, and an object of the present invention is to adjust a rotation angle about a center axis of a cylindrical lens as a rotation center at a small angle, and to adjust an adjustment position by a change with time. Is to provide a line display that is difficult to change. A third object of the present invention is to provide a line display capable of independently adjusting the amount of movement in the Y-axis direction, in addition to the above objects.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a light emitting element that emits laser light, a lens barrel that holds the light emitting element, and a laser light from the light emitting element that is incident and refracts the laser light A cylindrical lens that emits fan-shaped line light, and a cylindrical lens holder that holds the cylindrical lens and is attached to the front of the lens barrel. The opposing surfaces of the lens barrel and the cylindrical lens holder are aligned with the central axis of the cylindrical lens. Are formed so as to bend in a direction parallel to the direction in which the curvatures are equal to each other, and the opposing surfaces of the lens barrel and the cylindrical lens holder are brought into surface contact.
[0022]
According to a second aspect of the present invention, in the first aspect, one of the opposing surfaces of the lens barrel and the cylindrical lens holder is formed as a convex curved surface that bends along a direction parallel to the central axis of the cylindrical lens. Is formed in a concave curved surface that bends along a direction parallel to the central axis of the cylindrical lens and has the same curvature as the convex curved surface.
[0023]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the opposing surfaces of the lens barrel and the cylindrical lens holder are formed in directions perpendicular to the direction of incidence of the laser beam on the cylindrical lens and the central axis of the cylindrical lens. It is characterized in that the curvature is formed to be zero.
[0024]
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the radius of curvature of the convex curved surface and the concave curved surface is about 40 mm or more.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is an exploded perspective view of the line indicator A of the present embodiment, FIG. 2A is a cross-sectional view in the X-axis direction, and FIG. 2B is a cross-sectional view in the Y-axis direction.
[0026]
The line display A includes a semiconductor laser device 1 as a light emitting device that emits a laser beam, a light projecting lens 2 that adjusts the laser beam of the semiconductor laser device 1 to parallel light, and a laser beam incident through the light projecting lens 2. Then, a cylindrical lens 3 that emits line light that spreads in a fan shape by refracting the incident laser light, a light projecting lens holder 4 that holds the light projecting lens 2, and a semiconductor laser element 1 and a light projecting lens holder 4 that are held And a cylindrical lens holder 6 that holds the cylindrical lens 3 and is attached to the front surface of the lens barrel 5.
[0027]
The light projecting lens holder 4 has a substantially cylindrical shape, and holds the light projecting lens 2 in the cylinder.
[0028]
The lens barrel 5 has a substantially rectangular parallelepiped shape, and has a front surface (a surface facing the cylindrical lens holder 6) formed as a convex curved surface 7 that bends along a direction parallel to the axial direction of the cylindrical lens 3. A round hole 5a is opened in the front surface of the lens barrel 5, and a through hole 5b penetrating the lens barrel 5 back and forth is formed at the bottom of the round hole 5a. The light projecting lens holder 4 holding the light projecting lens 2 is inserted into the round hole 5a of the lens barrel 5 from the front side, and the semiconductor laser device 1 is inserted into the through hole 5b from the rear side. In a state where the semiconductor laser element 1 and the light projecting lens holder 4 are held by the lens barrel 5, the optical axis of the semiconductor laser element 1 and the optical axis of the light projecting lens 2 match.
[0029]
The cylindrical lens holder 6 has a substantially rectangular parallelepiped shape, and a rear surface (a surface facing the lens barrel 5) is formed as a concave curved surface 8 having a curvature equal to the convex curved surface 7, which bends along a direction parallel to the axial direction of the cylindrical lens 3. I have. On the front surface of the cylindrical lens holder 6, a mounting groove 6a is formed along the X-axis direction at a position corresponding to the round hole 5a of the lens barrel 5, in which the cylindrical lens 3 is mounted in a half-buried state. At the bottom of the groove 6a, a through hole 6b penetrating the cylindrical lens holder 6 back and forth is formed.
[0030]
When assembling the line indicator A as described above, the light projecting lens holder 4 holding the light projecting lens 2 and the semiconductor laser element 1 are held in the lens barrel 5 and the cylindrical lens 3 is held in the cylindrical lens holder 6. Then, the lens barrel 5 and the cylindrical lens holder 6 are held by a jig (not shown) with the convex curved surface 7 of the lens barrel 5 and the concave curved surface 8 of the cylindrical lens holder 6 in contact with each other. . Then, the cylindrical lens holder 6 is moved relative to the lens barrel 5 while sliding the convex curved surface 7 and the concave curved surface 8 to adjust the position of the cylindrical lens 3, and then the lens barrel 5 and the cylindrical lens holder 6 are moved. Is fixed with an adhesive or the like, thereby completing the assembling operation.
[0031]
When the semiconductor laser device 1 is driven by a drive circuit (not shown) in the assembled state, the laser light emitted from the semiconductor laser device 1 is adjusted by the light projecting lens 2 to generate parallel light. When the parallel light that has passed through the light projecting lens 2 enters the cylindrical lens 3, the laser light is not refracted in the central axis direction of the cylindrical lens 3, but is largely refracted in the direction orthogonal to the central axis direction. Therefore, line light that spreads like a fan in a plane perpendicular to the central axis direction is obtained. The light radiated through the light projecting lens 2 is not particularly limited to parallel light. If the light is incident on the cylindrical lens 3 along a direction substantially perpendicular to the central axis direction of the cylindrical lens 3, the light is distant. It may be light that converges at.
[0032]
Here, a method of adjusting the mounting angle and the position of the cylindrical lens 3 will be described with reference to FIGS.
[0033]
As described above, the opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are such that the lens barrel 5 side is formed as a convex curved surface 7 that bends along a direction parallel to the central axis of the cylindrical lens 3, and the cylindrical lens holder 6 side is a cylindrical surface. The lens 3 is formed in a concave curved surface 8 having a curvature equal to that of the convex curved surface 7, which bends along a direction parallel to the central axis of the lens 3. The opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are in surface contact with each other. With the concave curved surface 8 of the cylindrical lens holder 6 in sliding contact with the convex curved surface 7 of the lens barrel 5 as shown in FIG. 3A, a micrometer ( (Not shown), and moving the cylindrical lens holder 6 relative to the lens barrel 5 to a desired position in the X-axis direction while watching the display of the micrometer, thereby allowing the laser beam to enter the cylindrical lens 3. It is possible to adjust the tilt angle (rotation angle) of the cylindrical lens 3 about the rotation center in the direction (Y-axis direction) orthogonal to the direction and the central axis direction of the cylindrical lens 3. With this adjustment, the cylindrical lens 3 moves in parallel in the X-axis direction, but if the length of the cylindrical lens 3 in the central axis direction is sufficiently long, the parallel light from the light projecting lens 2 will surely enter the cylindrical lens 3. . Even if the cylindrical lens 3 moves in the direction of the central axis, since the curvature of the portion to which the laser light is applied is always the same, no error occurs in the line light, and there is no particular problem.
[0034]
The facing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are formed such that the curvatures in directions perpendicular to the direction of incidence of the laser beam on the cylindrical lens 3 and the direction of the central axis of the cylindrical lens 3 become zero. 3B, the concave surface 8 of the cylindrical lens holder 6 is slid on the convex surface 7 of the lens barrel 5, and the end surface of the cylindrical lens holder 6 is seen from the direction of the arrow in FIG. , And by moving the cylindrical lens holder 6 relative to the lens barrel 5 to a desired position in the Y-axis direction while watching the display of the micrometer, the projection lens 2 ( That is, the optical axis of the semiconductor laser device 1) and the optical axis of the cylindrical lens 3 can be made to coincide with each other, and line light can be emitted up and down uniformly with respect to the optical axis of the cylindrical lens 3. As described in the related art, by moving the cylindrical lens holder 6 relative to the lens barrel 5 in the Y-axis direction, the optical axis of the light projecting lens 2 and the optical axis of the cylindrical lens 3 are moved in the Y-axis direction. Even if it is shifted, the line light does not bend, so that it is possible to intentionally shift the optical axis to change the irradiation range of the line light.
[0035]
By moving the cylindrical lens holder 6 relative to the lens barrel 5 in the Y-axis direction while the concave curved surface 8 of the cylindrical lens holder 6 is in sliding contact with the convex curved surface 7 of the lens barrel 5 as described above. , The inclination angle (rotation angle) of the cylindrical lens 3 in the β direction about the Y axis direction as the center of rotation can be adjusted. Assuming that the inclination angle (rotation angle) is β1 and the radius of curvature of the convex curved surface 7 and the concave curved surface 8 is R, if the inclination angle β1 is a very small angle, the following relational expression holds.
[0036]
R (mm) = L1 (mm) / β1 (rad) (1)
Here, in the adjustment for moving the cylindrical lens holder 6 relative to the lens barrel 5, it is considered that the minimum movement amount for moving the cylindrical lens holder 6 in one adjustment operation is about 10 μm, and it is considered that the minimum movement amount is more than 10 μm. Adjustment with short travel is considered to be difficult in practice. In a general laser marking device, when displaying line light within a range of ± 5 m on a plane 5 m away from the cylindrical lens 3, errors at both ends of the line light (this error is referred to as a bending error). Since it is required to be 1 mm or less, in order to smoothly perform the work of correcting the bending error of the line light, the size of the bending error that can be adjusted by one adjustment work (this size is called the adjustment resolution) ) Is preferably 1 / or less of the allowable range (1 mm). To summarize the above conditions, the minimum resolution of the moving amount of the cylindrical lens holder 6 in the Y-axis direction (the minimum resolution is the minimum moving amount that can be adjusted in one adjustment operation) Lmin is 10 μm, and the bending error is Is 0.5 mm, and in this case, the adjustment resolution β2 of the adjustment angle in the β direction is 0.0135 degrees (the angle β1 when an error of 1 mm occurs is 0.027 degrees, which is half the value). Therefore, the radius of curvature R at this time is given by the following equation (1).
Figure 2004301755
It becomes. Therefore, in order to perform reliable adjustment, it is desirable that the radius of curvature of the convex curved surface 7 and the concave curved surface 8 be 40 mm or more.
[0037]
In addition, the amount of movement of the cylindrical lens holder 6 in the Y-axis direction cannot be increased as much as possible in consideration of the length of the cylindrical lens 3 and the like. Generally, a cylindrical lens having a diameter of about 5 mm and a length in the central axis direction of about 8 mm is used as the cylindrical lens 3. Since the beam diameter of the laser light emitted from the light projecting lens 2 is substantially the same as the diameter of the cylindrical lens 3, the limit of the amount of movement in the Y-axis direction is approximately ± 1.5 mm. However, both ends in the axial direction of the cylindrical lens 3 need to have a margin of about 0.5 mm in order to lose their shapes, which limits the amount of movement in the Y-axis direction to about ± 1 mm. From these conditions, the upper limits of the convex curved surface 7 and the concave curved surface 8 can also be roughly estimated.
Figure 2004301755
It becomes. Therefore, in order to perform reliable adjustment, it is desirable that the radius of curvature of the convex curved surface 7 and the concave curved surface 8 be approximately 4000 mm or less.
[0038]
As described above, in the line indicator A of the present embodiment, the adjustment of the rotation angle (tilt angle) in the β direction and the adjustment of the amount of movement in the Y-axis direction can be performed independently. The rotation angle (tilt angle) in the β direction can be adjusted to a very small angle as compared with the display. In the present embodiment, the lens barrel 5 and the cylindrical lens holder 6 are bonded and fixed with an adhesive in a state where the convex curved surface 7 of the lens barrel 5 and the concave curved surface 8 of the cylindrical lens holder 6 are in sliding contact with each other. However, this embodiment has an advantage that it is hardly affected by the contraction and expansion of the adhesive due to the temperature change. That is, in the structure of the conventional line display, a bending error of 1 mm or more occurs only by moving the cylindrical lens holder 6 with respect to the lens barrel 6 by a few μm, whereas in the present embodiment, the convex curved surface 7 and the concave Since the radius of curvature of the curved surface 8 is 40 mm or more, even if the cylindrical lens holder 6 moves 10 μm with respect to the lens barrel 5, the bending error can be suppressed to 0.5 mm or less. Further, since the opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are formed as curved surfaces having the same radius of curvature, and are in surface contact, a large frictional force acts between the convex curved surface 7 and the concave curved surface 8, and the temperature change causes Even if the adhesive contracts and expands, it becomes difficult for the cylindrical lens holder 6 to relatively move with respect to the lens barrel 5. Therefore, the lens barrel 5 and the cylindrical lens holder 6 are less likely to be displaced from the adjustment position, and the problem that the line light is curved after the adjustment can be prevented.
[0039]
In this embodiment, the facing surface on the side of the lens barrel 5 is a convex curved surface 7 and the facing surface on the side of the cylindrical lens holder 6 is a concave curved surface 8, but as shown in FIGS. The facing surface may be a concave curved surface 9 and the facing surface on the cylindrical lens holder 6 side may be a convex curved surface 10.
[0040]
In the present embodiment, the opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are set in the direction of incidence of the laser beam on the cylindrical lens 3 (Z-axis direction) and the central axis direction of the cylindrical lens 3 (X-axis direction). The curvature in the orthogonal direction (Y-axis direction) is formed to be zero, but the curvature in the Y-axis direction may be zero or may have a certain curvature. If the curvature in the direction parallel to the axis (X-axis direction) is the same and the surfaces are in contact, the cylindrical lens holder 6 is relatively moved with respect to the lens barrel 5 in the X-axis direction, so that the cylindrical lens 3 in the β-direction It is possible to adjust the inclination angle (rotation angle) at a small angle. In the present embodiment, the opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are formed such that the curvature in the Y-axis direction becomes zero. The relative movement has an advantage that the deviation of the optical axis between the cylindrical lens 3 and the light projecting lens 2 (semiconductor laser element 1) in the Y axis direction can be adjusted independently of the inclination angle in the β direction.
[0041]
(Embodiment 2)
FIG. 7 is an exploded perspective view of the line display A of the present embodiment, and FIG. 8 is an external perspective view thereof.
[0042]
The line display A includes a semiconductor laser device 1 as a light emitting device that emits laser light, a circuit board 11 on which the semiconductor laser device 1 is mounted, an LD holder 12 that holds the semiconductor laser device (LD) 1, A light projecting lens 2 for adjusting the laser light of the semiconductor laser element 1 to parallel light, and a cylindrical lens 3 for emitting a line light which spreads in a fan shape by refracting the incident laser light through the light projecting lens 2 and refracting the incident laser light. And a light projecting lens holder 4 holding the light projecting lens 2, a lens barrel 5 holding the LD holder 12 and the light projecting lens holder 4, and a cylindrical lens 3 being held on the front surface of the lens barrel 5. And a cylindrical lens holder 6.
[0043]
The light projecting lens holder 4 has a substantially cylindrical shape, and holds the light projecting lens 2 in the cylinder.
[0044]
The LD holder 12 is formed in an annular shape, and the semiconductor laser device 1 is inserted into the central round hole 12a from the rear side.
[0045]
The lens barrel 5 has a substantially cylindrical shape, and its front surface (the surface facing the cylindrical lens holder 6) is formed as a convex curved surface 7 that bends along a direction parallel to the axial direction of the cylindrical lens 3. A round hole 5a that penetrates the lens barrel 5 in the front-back direction is opened at a center position on the front surface of the lens barrel 5. Then, the projection lens holder 4 holding the projection lens 2 is inserted into the round hole 5a from the front side. The LD holder 12 is mounted on the rear surface of the lens barrel 5 such that the round hole 12a communicates with the round hole 5a, and the light projecting lens 2 and the semiconductor laser element 1 are optically coupled.
[0046]
The cylindrical lens holder 6 is substantially disk-shaped, and has a rear surface (a surface facing the lens barrel 5) that is bent along a direction parallel to the axial direction of the cylindrical lens 3 and has a concave curved surface 8 having the same curvature as the convex curved surface 7. I have. At the front surface of the cylindrical lens holder 6, a mounting groove 6a is formed along the radial direction at a position corresponding to the round hole 5a of the lens barrel 5, and the mounting groove 6a is mounted in a state where the cylindrical lens 3 is half-buried. At the bottom of 6a, a through hole 6b penetrating the cylindrical lens holder 6 back and forth is formed.
[0047]
As described above, in the first embodiment, the lens barrel 5 and the cylindrical lens holder 6 are each formed in a substantially rectangular parallelepiped shape, whereas in the present embodiment, the shape of the lens barrel 5 and the cylindrical lens holder 6 when viewed from the front. Is formed in a circular shape. Then, of the opposing surfaces of the lens barrel 5 and the cylindrical lens holder 6, the opposing surface on the lens barrel 5 side is formed as a convex curved surface 7 curved along a direction parallel to the central axis of the cylindrical lens 3, and the cylindrical lens The facing surface on the holder 6 side is formed as a concave curved surface 8 having a curvature equal to that of the convex curved surface 7, which bends along a direction parallel to the central axis of the cylindrical lens 3. The effect is obtained that the adjustment can be made to a very small angle and that the adjustment position is hard to change after the adjustment. The facing surfaces of the lens barrel 5 and the cylindrical lens holder 6 are formed such that the curvatures in directions perpendicular to the direction of incidence of the laser beam on the cylindrical lens 3 and the direction of the central axis of the cylindrical lens 3 become zero. Therefore, by moving the cylindrical lens holder 6 relative to the lens barrel 5 in this direction, the displacement of the optical axis between the cylindrical lens 3 and the light projecting lens 2 (that is, the semiconductor laser element 1) is performed as in the first embodiment. Can be adjusted independently, and line light can be emitted uniformly up and down with respect to the optical axis of the cylindrical lens 3.
[0048]
When assembling the line indicator A as described above, the projection lens holder 4 holding the projection lens 2 and the LD holder 12 holding the semiconductor laser element 1 are held by the lens barrel 5 and the cylindrical lens After the cylindrical lens holder 6 is held by the cylindrical lens holder 6 and the convex curved surface 7 of the lens barrel 5 and the concave curved surface 8 of the cylindrical lens holder 6 are in surface contact with each other, the lens barrel 5 and the cylindrical lens holder 6 are jigs (FIG. (Not shown). Then, the cylindrical lens holder 6 is moved relative to the lens barrel 5 while sliding the convex curved surface 7 and the concave curved surface 8 to adjust the position of the cylindrical lens 3, and then the lens barrel 5 and the cylindrical lens holder 6 are moved. Is fixed with an adhesive or the like, thereby completing the assembling operation.
[0049]
When the semiconductor laser device 1 is driven by a drive circuit (not shown) in the assembled state, the laser light emitted from the semiconductor laser device 1 is adjusted by the light projecting lens 2 to generate parallel light. When the parallel light that has passed through the light projecting lens 2 enters the cylindrical lens 3, the laser light is not refracted in the central axis direction of the cylindrical lens 3, but is largely refracted in the direction orthogonal to the central axis direction. Therefore, line light that spreads like a fan in a plane perpendicular to the central axis direction is obtained.
[0050]
FIG. 9 is an external view of a laser marking device B using the line indicator A of the present embodiment. The three optical units 20 in which the line indicator A is housed in a case 21 are connected to a gimbal mechanism 22. It is attached to the gantry 23 via. Here, in the present embodiment, since the shape of the lens barrel 5 and the cylindrical lens holder 6 as viewed from the front is circular, a circular hole is formed in the case 21 and the line indicator A is mounted in this hole. By slightly rotating the line indicator A in the hole, the error caused by the rotation of the cylindrical lens 3 in the γ direction can be easily corrected.
[0051]
In the present embodiment, the facing surface on the lens barrel 5 side is a convex curved surface 7 and the facing surface on the cylindrical lens holder 6 side is a concave curved surface 8, but the facing surface on the lens barrel 5 side is a concave curved surface, and the cylindrical lens holder It goes without saying that the facing surface on the sixth side may be a convex curved surface having the same curvature as the concave curved surface.
[0052]
【The invention's effect】
As described above, according to the first aspect of the present invention, a light emitting element that emits a laser beam, a lens barrel that holds the light emitting element, and a laser beam from the light emitting element that is incident thereon and spreads in a fan shape by refracting the laser light A cylindrical lens that emits line light, and a cylindrical lens holder that holds the cylindrical lens and is attached to the front surface of the lens barrel. The opposing surfaces of the lens barrel and the cylindrical lens holder are parallel to the central axis of the cylindrical lens. Each of them bends along the direction, is formed on a curved surface of equal curvature to each other, characterized in that the opposing surfaces of the lens barrel and the cylindrical lens holder are in surface contact, while sliding the opposing surfaces of the lens barrel and the cylindrical lens holder, When the cylindrical lens holder is moved in parallel along the direction parallel to the central axis of the cylindrical lens, the cylindrical lens held by the cylindrical lens is moved in the direction of the central axis and the incident direction of the laser beam. Since the rotation can be performed with the orthogonal direction as the center of rotation, the curvature of the line light can be corrected by adjusting the rotation angle, and the adjustment can be performed at a smaller angle than the conventional line display. This has the effect that the curvature of the line light can be corrected with higher accuracy. In addition, when the lens barrel and the cylindrical lens holder are bonded and fixed after the adjustment, the relative position between the lens barrel and the cylindrical lens holder may change due to contraction and expansion of the adhesive due to a temperature change. Since the opposite surface of the holder is formed as a curved surface with the same curvature, if a cylindrical lens holder is attached to the front of the lens barrel, the frictional force acting between the lens barrel and the cylindrical lens holder due to the surface contacting the opposite surface And the relative position between the lens barrel and the cylindrical lens holder changes due to the contraction and expansion of the adhesive due to the temperature change, which also has the effect of preventing the line light from bending.
[0053]
According to a second aspect of the present invention, in the first aspect, one of the opposing surfaces of the lens barrel and the cylindrical lens holder is formed as a convex curved surface that is bent along a direction parallel to the central axis of the cylindrical lens. Is formed in a concave curved surface that bends along a direction parallel to the central axis of the cylindrical lens and has the same curvature as the convex curved surface, and has the same effect as the invention of claim 1.
[0054]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the opposing surfaces of the lens barrel and the cylindrical lens holder have a direction perpendicular to the direction of incidence of the laser beam on the cylindrical lens and the direction of the central axis of the cylindrical lens. The cylindrical lens holder is moved relative to the lens barrel in a direction perpendicular to the direction of incidence of the laser beam on the cylindrical lens and the central axis direction of the cylindrical lens, characterized in that the curvature is formed to be zero. By doing so, the deviation between the optical axis of the cylindrical lens held by the cylindrical lens holder and the optical axis of the semiconductor laser element held by the lens barrel is performed independently of the adjustment of the rotation angle about the central axis of the cylindrical lens. be able to.
[0055]
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the radius of curvature of the convex surface and the concave surface is about 40 mm or more, and the radius of curvature of the convex surface and the concave surface. Is about 40 mm or more, the bending error that can be adjusted in one adjustment operation can be set to a value that is a half of the allowable range.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a line display according to an embodiment.
FIGS. 2A and 2B show the same as above, where FIG. 2A is a cross-sectional view in the X-axis direction, and FIG. 2B is a cross-sectional view in the Y-axis direction.
FIGS. 3A and 3B show the same as above, wherein FIG. 3A is an explanatory diagram of a method of adjusting the inclination in the β direction, and FIG.
FIG. 4 is an explanatory diagram of a radius of curvature of a convex curved surface and a concave curved surface of the above.
FIG. 5 is an exploded perspective view of another line indicator of the above.
6A and 6B show the same as above, wherein FIG. 6A is a cross-sectional view in the X-axis direction, and FIG. 6B is a cross-sectional view in the Y-axis direction.
FIG. 7 is an exploded perspective view of another line indicator of the above.
FIG. 8 is an external perspective view of the same.
FIG. 9 is an external view of a blackout device using the line display device of each embodiment.
FIGS. 10A and 10B are explanatory diagrams illustrating the principle of a line display.
FIG. 11 is an explanatory diagram illustrating an error generated in the line light according to the first embodiment.
12A and 12B show the relationship between the rotation angle in the β direction and the line light, wherein FIG. 12A shows the line light when the rotation angle is 0.005 degrees, and FIG. FIG. 4 is an explanatory diagram of line light.
13A and 13B show the relationship between the rotation angle in the γ direction and the line light, in which FIG. 13A shows the line light when the rotation angle is 0.005 degrees, and FIG. FIG. 4 is an explanatory diagram of the line light.
FIGS. 14A and 14B are explanatory diagrams for explaining an error caused by a deviation of the optical axis between the light projecting lens and the cylindrical lens in the above.
[Explanation of symbols]
A line display
1 Semiconductor laser device
2 Floodlight lens
3 Cylindrical lens
4 Floodlight lens holder
5 lens barrel
6 Cylindrical lens holder
7 Convex surface
8 Concave curved surface

Claims (4)

レーザ光を放射する発光素子と、発光素子を保持する鏡筒と、発光素子からのレーザ光が入射され該レーザ光を屈折させることによって扇状に広がるライン光を放射する円筒レンズと、円筒レンズを保持して鏡筒の前面に取着される円筒レンズホルダーとを備え、鏡筒及び円筒レンズホルダーの対向面を、円筒レンズの中心軸と平行な方向に沿ってそれぞれ曲がる、互いに曲率の等しい曲面に形成し、鏡筒及び円筒レンズホルダーの対向面を面接触させたことを特徴とするライン表示器。A light-emitting element that emits laser light, a lens barrel that holds the light-emitting element, a cylindrical lens that emits line light that spreads in a fan shape by receiving laser light from the light-emitting element and refracting the laser light, and a cylindrical lens. A cylindrical lens holder which is held and attached to the front surface of the lens barrel, wherein curved surfaces having the same curvature are formed by bending opposing surfaces of the lens barrel and the cylindrical lens holder along a direction parallel to the central axis of the cylindrical lens. Wherein the lens barrel and the cylindrical lens holder are brought into surface contact with each other. 鏡筒及び円筒レンズホルダーの対向面の内の一方を、円筒レンズの中心軸と平行な方向に沿って曲がる凸曲面に形成するとともに、他方を、円筒レンズの中心軸と平行な方向に沿って曲がる、前記凸曲面と曲率が等しい凹曲面に形成したことを特徴とする請求項1記載のライン表示器。One of the facing surfaces of the lens barrel and the cylindrical lens holder is formed as a convex curved surface that bends along a direction parallel to the central axis of the cylindrical lens, and the other is formed along a direction parallel to the central axis of the cylindrical lens. 2. The line display according to claim 1, wherein the curved line is formed as a concave curved surface having the same curvature as the convex curved surface. 鏡筒及び円筒レンズホルダーの対向面は、円筒レンズへのレーザ光の入射方向と円筒レンズの中心軸方向とにそれぞれ直交する方向の曲率がゼロとなるように形成されたことを特徴とする請求項1又は2記載のライン表示器。The facing surfaces of the lens barrel and the cylindrical lens holder are formed such that the curvatures in directions orthogonal to the direction of incidence of the laser beam on the cylindrical lens and the direction of the central axis of the cylindrical lens are zero. Item 3. The line display according to item 1 or 2. 前記凸曲面及び前記凹曲面の曲率半径を約40mm以上としたことを特徴とする請求項1乃至3の何れか1つに記載のライン表示器。The line display according to any one of claims 1 to 3, wherein the convex surface and the concave surface have a radius of curvature of about 40 mm or more.
JP2003096843A 2003-03-31 2003-03-31 Line indicator Expired - Fee Related JP4019995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096843A JP4019995B2 (en) 2003-03-31 2003-03-31 Line indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096843A JP4019995B2 (en) 2003-03-31 2003-03-31 Line indicator

Publications (2)

Publication Number Publication Date
JP2004301755A true JP2004301755A (en) 2004-10-28
JP4019995B2 JP4019995B2 (en) 2007-12-12

Family

ID=33408781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096843A Expired - Fee Related JP4019995B2 (en) 2003-03-31 2003-03-31 Line indicator

Country Status (1)

Country Link
JP (1) JP4019995B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242735A (en) * 2005-03-03 2006-09-14 Audio Technica Corp Laser line unit and laser marking apparatus
JP2008157784A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Adjusting method of marking laser device
EP2006964A3 (en) * 2007-06-18 2009-02-25 TOPTICA Photonics AG Tunable diode laser system with external resonator
JP2010263070A (en) * 2009-05-07 2010-11-18 Nichia Corp Semiconductor laser module and manufacturing method thereof
JP2020165685A (en) * 2019-03-28 2020-10-08 株式会社マキタ Laser marker
WO2020239129A1 (en) * 2019-05-30 2020-12-03 西安精英光电技术有限公司 Combined lens-based line laser homogenization generation apparatus
WO2021221150A1 (en) * 2020-05-01 2021-11-04 国夫 塚本 Lens device and line laser beam projection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098980B2 (en) 2019-11-21 2021-08-24 Eotech, Llc Modular weapon sight assembly
US11391904B2 (en) 2019-11-21 2022-07-19 Eotech, Llc Temperature stabilized holographic sight
US11467391B2 (en) 2019-11-21 2022-10-11 Eotech, Llc Unitary carrier for holographic components
US11449003B2 (en) 2019-11-21 2022-09-20 Eotech, Llc Position adjustment in holographic sight

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242735A (en) * 2005-03-03 2006-09-14 Audio Technica Corp Laser line unit and laser marking apparatus
JP4526414B2 (en) * 2005-03-03 2010-08-18 株式会社オーディオテクニカ Laser line unit and laser marking device
JP2008157784A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Adjusting method of marking laser device
EP2006964A3 (en) * 2007-06-18 2009-02-25 TOPTICA Photonics AG Tunable diode laser system with external resonator
JP2010263070A (en) * 2009-05-07 2010-11-18 Nichia Corp Semiconductor laser module and manufacturing method thereof
JP2020165685A (en) * 2019-03-28 2020-10-08 株式会社マキタ Laser marker
JP7165089B2 (en) 2019-03-28 2022-11-02 株式会社マキタ laser marking machine
WO2020239129A1 (en) * 2019-05-30 2020-12-03 西安精英光电技术有限公司 Combined lens-based line laser homogenization generation apparatus
US11960097B2 (en) 2019-05-30 2024-04-16 Elite Optoelectronics Co., Ltd Combined lenses-based apparatus for line laser uniformity generation
WO2021221150A1 (en) * 2020-05-01 2021-11-04 国夫 塚本 Lens device and line laser beam projection device
JPWO2021221150A1 (en) * 2020-05-01 2021-11-04
JP7051172B2 (en) 2020-05-01 2022-04-11 国夫 塚本 Lens device and line laser light irradiation device

Also Published As

Publication number Publication date
JP4019995B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
CN108693614B (en) Irradiation device, pay-off instrument, and method for adjusting irradiation device
US5617202A (en) Diode laser co-linear and intersecting light beam generator
US20070124947A1 (en) Light-plane projecting apparatus and lens
US8402665B2 (en) Method, apparatus, and devices for projecting laser planes
US20080192473A1 (en) Fooldlight With Variable Beam
JP2004301755A (en) Line display
US20140241665A1 (en) Light beam collimator particularly sutable for a densely packed array
JP4526414B2 (en) Laser line unit and laser marking device
US20170075068A1 (en) Light beam collimator particularly suitable for a densely packed array
KR101607776B1 (en) Shape variable mirror and laser processing apparatus
CN106918330B (en) Laser module and laser line marking instrument
JP2007150028A (en) Optical device adjustment method
JPH11223785A (en) Mounting structure for optical part
JP2001264453A (en) Optical device
JP2019056926A (en) Curved surface mirror adjusting device
JPH04216514A (en) Laser beam generator
JP2020098111A (en) Prism device instrument
JP7379145B2 (en) Light emitting devices and optical devices
JP7357739B2 (en) Reflector unit and laser processing equipment
JP6480110B2 (en) Curved mirror adjustment device
JP2003161616A (en) Laser ink marking device and method of adjusting the same
JP3160506U (en) High precision mirror mount
JPS61252524A (en) Laser emitting device
JPH11271595A (en) Mirror holder device
EP1369726A1 (en) Pivotably suspended laser module comprising a feedback detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees