WO2010047063A1 - Thin film transistor having high-purity crystalline indium oxide semiconductor film, and method for manufacturing the thin film transistor - Google Patents

Thin film transistor having high-purity crystalline indium oxide semiconductor film, and method for manufacturing the thin film transistor Download PDF

Info

Publication number
WO2010047063A1
WO2010047063A1 PCT/JP2009/005384 JP2009005384W WO2010047063A1 WO 2010047063 A1 WO2010047063 A1 WO 2010047063A1 JP 2009005384 W JP2009005384 W JP 2009005384W WO 2010047063 A1 WO2010047063 A1 WO 2010047063A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
semiconductor film
indium oxide
oxide
Prior art date
Application number
PCT/JP2009/005384
Other languages
French (fr)
Japanese (ja)
Inventor
井上一吉
笠見雅司
矢野公規
笘井重和
川嶋浩和
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010534675A priority Critical patent/JPWO2010047063A1/en
Publication of WO2010047063A1 publication Critical patent/WO2010047063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • the present invention relates to a thin film transistor having a semiconductor film made of high-purity crystalline indium oxide and a method for manufacturing the same.
  • silicon-based semiconductor films are mainly used as switching elements such as thin film transistors (TFTs) for driving the above display devices. This is because, in addition to the stability and workability of the silicon-based thin film, the switching speed is fast.
  • This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
  • the switching speed is relatively slow, and there is a problem that an image cannot be displayed when displaying a high-speed moving image or the like.
  • the switching speed is relatively fast, but a high temperature of 800 ° C. or higher, heating with a laser, etc. are necessary for crystallization. Cost.
  • the silicon-based thin film has excellent performance as a voltage element, a change in the characteristics with time is a problem when a current is passed.
  • Sputtering targets composed of indium oxide, gallium oxide, and zinc oxide, as well as zinc oxide and oxide as materials for obtaining a transparent semiconductor film that is more stable than a silicon-based thin film and has a light transmittance equivalent to that of an ITO film.
  • a transparent semiconductor thin film made of magnesium has been proposed (for example, Patent Document 1).
  • a transparent semiconductor film made of indium oxide, gallium oxide and zinc oxide, or zinc oxide and magnesium oxide has a very fast etching property with a weak acid.
  • the metal thin film on the transparent semiconductor film may be etched at the same time. It was inappropriate.
  • Patent Document 2 describes an indium oxide semiconductor film having a bixbyite structure in which a positive divalent metal oxide is contained in indium oxide. Attempts have been made to reduce the carrier concentration by including a positive divalent metal oxide. However, in the case of a positive divalent metal oxide, an impurity order may be formed in the band gap of the energy band structure of the bixbite structure, which may reduce the mobility.
  • Patent Document 3 describes a thin film transistor using a crystalline indium oxide thin film.
  • the trap density in the channel portion may increase. For this reason, there are problems that the S value cannot be reduced sufficiently and that a normally-on transistor is formed. Further, when the trap density in the thin film is high, there is a problem that the off-current value cannot be sufficiently reduced by the trap.
  • Patent Document 3 describes that the off-current value can be reduced by setting the thickness of the indium oxide thin film to 20 nm. However, it is technically difficult to control the film thickness to 20 nm to form a film uniformly and in a large area. For this reason, there is a possibility that the characteristics of the thin film transistor vary.
  • An object of the present invention is to provide a thin film transistor using a semiconductor film made of crystalline indium oxide and having a high performance by reducing the trap density of the semiconductor film.
  • the present inventors have found that impurities in a semiconductor film made of crystalline indium oxide, specifically, a metal element having a positive tetravalence or more affects the trap density of the semiconductor film.
  • the inventors have found that a high-performance thin film transistor can be obtained by setting the content of the metal element to a predetermined value or less, thereby completing the present invention.
  • a thin film transistor having a crystalline indium oxide semiconductor film, wherein the content of a metal element having a positive tetravalent or higher valence relative to all metal elements contained in the semiconductor film is 0.1 atomic ppm or less. 4). 4.
  • 9. The method for producing a thin film transistor according to 8, wherein the indium oxide target has a purity of 99.995 atomic% or more.
  • 10. The method for producing a thin film transistor according to 8 or 9, wherein the film forming step is performed by sputtering, and an oxygen concentration in an atmosphere during sputtering is 5 to 20% by volume.
  • 11. The method for producing a thin film transistor according to any one of 8 to 10, wherein the semiconductor film is heat-treated at 150 to 450 ° C. for 0.1 to 1200 minutes in the presence of oxygen.
  • the impurity concentration of the crystalline indium oxide thin film is low, the trap density in the thin film, particularly the channel portion, can be reduced. As a result, the S value can be sufficiently reduced.
  • FIG. 6 is a diagram showing an output curve of a thin film transistor manufactured in Example 1.
  • FIG. 6 is a diagram showing a transfer curve of a thin film transistor manufactured in Example 1.
  • FIG. 6 is a schematic cross-sectional view of an etch stopper type thin film transistor fabricated in Example 3.
  • FIG. 10 is a diagram showing a transfer curve of a thin film transistor manufactured in Example 5.
  • the thin film transistor (TFT) of the present invention has a crystalline indium oxide semiconductor film, and the content of positive tetravalent or higher metal elements with respect to all metal elements contained in the semiconductor film is 10 atomic ppm or less. .
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a thin film transistor of the present invention.
  • the thin film transistor 1 has a gate electrode 20 sandwiched between a substrate 10 and an insulating film 30, and a semiconductor film 40 is stacked on the gate insulating film 30 as an active layer. Further, a source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40. A channel portion 60 is formed in a portion surrounded by the semiconductor film 40, the source electrode 50 and the drain electrode 52. 1 is a so-called channel etch type thin film transistor.
  • the thin film transistor of the present invention is not limited to a channel etch type thin film transistor, and an element configuration known in this technical field can be adopted.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the thin film transistor of the present invention.
  • the thin film transistor 2 is an etch stopper type thin film transistor.
  • the thin film transistor 2 has the same configuration as the thin film transistor 1 described above except that an etch stopper 70 is formed so as to cover the channel portion 60.
  • a source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40 and the vicinity of the end of the etch stopper 70.
  • a thin film made of high-purity crystalline indium oxide is used for the semiconductor film 40.
  • high purity means that the crystalline indium oxide thin film contains substantially no positive tetravalent or higher-valent metal element as an impurity.
  • the content of positive tetravalent or higher metal elements in all metal elements forming the semiconductor film is 10 atomic ppm or less.
  • Impurities in the thin film contribute to electron scattering and cause a decrease in mobility. If the impurity concentration is low, scattering can be suppressed and high mobility inherent in indium oxide can be maintained. In addition, the crystal structure may be disturbed by impurities, so that oxygen vacancies cannot be sufficiently reduced, and a thin film transistor exhibiting a normally-on operation may be obtained.
  • a crystalline indium oxide semiconductor film having an extremely low impurity concentration is used, a high-performance thin film transistor that is normally off, has high mobility, low off-current value, and low S value and high operational stability. Is obtained.
  • normally-off is defined as a case where the threshold voltage value is negative (positive). The threshold voltage is determined from the X-intercept of the transfer curve (Id-Vg) graph.
  • the carrier density of the semiconductor film near room temperature can be kept below 2 ⁇ 10 +17 cm ⁇ 3 .
  • the carrier density of the semiconductor film is preferably less than 2 ⁇ 10 +17 cm ⁇ 3 near room temperature. If the carrier density is 2 ⁇ 10 +17 cm ⁇ 3 or more, the TFT may not be driven. Even when the TFT is driven, the threshold voltage may be negatively large and normally on, or the On / Off ratio may be small.
  • a metal element having a positive tetravalence or more and a metal element having a positive divalent or less are present as metal oxides in the thin film.
  • the positive tetravalent or higher metal oxide contained in the semiconductor film include positive oxides such as titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, and manganese oxide.
  • Examples of the metal oxide having a positive or lower valence included in the semiconductor film include a positive or lower valent metal such as lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide.
  • a positive or lower valent metal such as lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide.
  • sodium oxide, potassium oxide, magnesium oxide, calcium oxide, and zinc oxide are preferably strictly controlled.
  • the content of the metal element (M4) of the metal oxide of positive tetravalent or higher with respect to all the metal elements of the semiconductor film is 10 atomic ppm or less, preferably 5 atomic ppm or less, more preferably 1 It is atomic ppm or less, more preferably 0.5 atomic ppm or less, and particularly preferably 0.1 atomic ppm or less.
  • the carrier density may be 2 ⁇ 10 +17 cm ⁇ 3 or more, and the TFT characteristics may not be operated. Even if the TFT is driven, the threshold voltage may increase negatively, indicating normally-on, or the off-current value may increase and the On / Off ratio may decrease. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase.
  • the Sn content is particularly high, the oxidizing power of the element is strong, so the carrier density increases, and even when driven as a TFT, the threshold voltage increases negatively, indicating normally-on, or off-current value May increase and the On / Off ratio may decrease. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase.
  • the Sn content is preferably 1 atom ppm or less, more preferably 0.5 atom ppm or less, and particularly preferably 0.1 atom ppm or less.
  • the content rate of the metal element (M2) of the metal oxide of a positive bivalent or less with respect to all the metal elements of a semiconductor film is 50 atomic ppm or less. If the atomic ratio exceeds 50 atomic ppm, the mobility may be low, and the TFT characteristics may not work. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase.
  • the ratio of the metal element (M2) is more preferably 10 atomic ppm or less, further preferably 5 atomic ppm or less, and particularly preferably 1 atomic ppm or less.
  • the ratio of the metal element (M) can be obtained by measuring the abundance of each element by ICP-Mass (Inductively Coupled Plasma Mass) measurement.
  • the metal element (M) ratio can be implemented, for example, by adjusting the amount of each element in the sputtering target used when forming the semiconductor film.
  • the composition of the semiconductor film substantially matches the composition of the sputtering target.
  • the use of the crystalline indium oxide semiconductor film can suppress the etching of the semiconductor film when the source electrode 50 and the drain electrode 52 are etched. Further, the durability of the TFT can be increased.
  • the “crystalline film” is a film that can be confirmed by confirming a crystal peak by X-ray diffraction.
  • the crystalline film may be any of a single crystal film, an epitaxial film, and a polycrystalline film, and is preferably an epitaxial film and a polycrystalline film because industrial production is easy and the area can be increased. A polycrystalline film is preferred.
  • the polycrystalline film is preferably made of nanocrystals.
  • the average crystal grain size determined by using Scherrer's equation from X-ray diffraction is usually 500 nm or less, preferably 300 nm or less, more preferably 150 nm or less, and even more preferably 80 nm or less. If it is larger than 500 nm, there is a possibility that variation when the transistor is miniaturized becomes large.
  • the substrate can be used for the substrate, gate electrode, gate insulating film, source / drain electrode, and the like, and are not particularly limited.
  • a metal thin film such as Al, Cu, or Au can be used for each electrode, and an oxide thin film such as a silicon oxide film or a hafnium oxide film can be used for the gate insulating film.
  • the manufacturing method of the present invention includes a film forming step of forming an indium oxide semiconductor film, a step of oxidizing the semiconductor film, and / or a step of crystallizing. Note that components such as a gate electrode, a gate insulating film, and a source / drain electrode can be formed by a known method.
  • a gate electrode made of a metal thin film such as Al, Cu, or Au is formed on a substrate, and an oxide thin film made of a silicon oxide film, a hafnium oxide film, or the like is formed thereon as a gate insulating film.
  • a metal mask is attached to form a semiconductor film made of an indium oxide film only in necessary portions.
  • a source / drain electrode is formed in a necessary portion using a metal mask, whereby a thin film transistor can be manufactured.
  • the semiconductor film can be formed by sputtering, ion plating, vapor deposition, or the like. Of these, the sputtering method is preferable. In sputtering, a method using a sintered target is preferable. Specifically, a high-purity indium oxide sintered target of 99.99 atomic% or more, or 99.995 atomic% (4N) or more is preferable. A sintered target can be manufactured by a well-known method in this technical field. By using a high-purity indium oxide sintered compact target, a crystalline indium oxide thin film having an extremely low impurity concentration can be obtained.
  • the sputtering conditions can be appropriately adjusted according to the target to be used, the thickness of the semiconductor film, and the like.
  • As the sputtering method an RF sputtering method, a DC sputtering method, or an AC sputtering method can be used.
  • the DC sputtering method and the AC sputtering method are preferable because the film forming speed is high.
  • Oxygen is preferably present during film formation. By allowing oxygen to be present during sputtering, it can be effectively oxidized in the oxidation process of the next step.
  • the oxygen concentration in the atmosphere during sputtering is preferably 5 to 20% by volume, more preferably 7 to 17%, and particularly preferably 8 to 14% by volume.
  • a step of oxidizing the thin film and / or a step of crystallizing the thin film are performed.
  • a lamp annealing device, a laser annealing device, a hot air heating device, a contact heating device, or the like can be used in the presence of oxygen.
  • the semiconductor film is preferably heat-treated in the presence of oxygen at 150 to 450 ° C. for 0.1 to 1200 minutes. If it is less than 150 ° C., the semiconductor film may not be sufficiently crystallized, and if it exceeds 450 ° C., the substrate and the semiconductor film may be damaged.
  • the heat treatment temperature is more preferably 180 ° C. to 350 ° C., and particularly preferably 200 ° C. to 300 ° C. If the heat treatment time is less than 0.1 minutes, the heat treatment time may be too short and the crystallization of the film may be insufficient. If it exceeds 1200 minutes, it takes too much time and is not productive.
  • the heat treatment time is more preferably 1 minute to 600 minutes, and particularly preferably 5 minutes to 60 minutes.
  • the crystallization and / or oxidation treatment of the semiconductor film may be performed immediately after the formation of the semiconductor film, or may be performed after the formation of other components such as source / drain electrodes.
  • the manufacturing method of the present invention is particularly suitable for a manufacturing method of a channel etch type thin film transistor. Since the semiconductor film of the present invention is crystalline, an etching process using photolithography can be adopted as a method for forming the source / drain electrodes and the channel portion from a metal thin film such as Al. That is, the etching solution for removing the metal thin film can selectively etch the metal thin film without etching the semiconductor film. An etch stopper type thin film transistor manufacturing method may also be used.
  • Example 1 (A) Production of Thin Film Transistor A channel etch type thin film transistor shown in FIG. 3 was produced. A conductive silicon substrate 10 with a thermal oxide film (SiO 2 film) having a thickness of 100 nm was used. The thermal oxide film functions as the gate insulating film 30 and the conductive silicon portion functions as the gate electrode 20.
  • SiO 2 film thermal oxide film
  • a target made of high-purity indium oxide having a purity of 4N or more manufactured by Shonan Electronics Materials Laboratory (total of positive tetravalent or more metal elements: Sn, Ti, Zr: 0.09 ppm (Sn : 0.02 ppm), and a metal element having a positive divalent value or less: total of Na, K, Mg, and Zn: 0.8 ppm) was used to form a semiconductor film 40 of 50 nm by sputtering.
  • the target impurity was measured by ICP-Mass (Inductively Coupled Plasma Mass).
  • Sputtering was performed by evacuating the back pressure to 5 ⁇ 10 ⁇ 4 Pa, then adjusting the pressure to 0.2 Pa while flowing argon 9.0 sccm and oxygen 1.0 sccm, and the distance between TS was 10 cm.
  • the substrate temperature was set to room temperature and the sputtering power was 100 W.
  • a metal mask is placed on the semiconductor film 40, and in the vicinity of both ends of the channel part 60, a channel part 60 having a gap (L) between the source and drain electrodes of 200 ⁇ m and a width (W) of 1000 ⁇ m is formed.
  • Gold was deposited to form the source electrode 50 and the drain electrode 52. Then, it heat-processed in the air at 300 degreeC for 1 hour in the hot-air heating furnace, and produced the thin-film transistor.
  • This thin film transistor has a field effect mobility of 60 cm 2 / V ⁇ sec, an On / Off ratio of 5 ⁇ 10 6 , a threshold voltage (Vth) of 7.1 V, and an S value of 1.1 V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off.
  • Table 1 shows the impurity amount of the target used for forming the semiconductor film, the element configuration, and the performance of the thin film transistor for the examples and comparative examples.
  • FIG. 4 shows the transfer curve between the drain voltage (Vds) and the same current (Ids) when the gate voltage (Vgs) is changed from -5V to 25V.
  • FIG. 5 shows the relationship between the gate voltage (Vgs) and the drain current (Ids).
  • the white circle line is a curve obtained by raising the drain current to the gate voltage by a power of 1/2
  • the black circle line is 4 is a curve showing a drain current with respect to a gate voltage. 4 and 5, “XE-Y” means X ⁇ 10 ⁇ Y .
  • 1.0E-05 is 1.0 ⁇ 10 ⁇ 5 .
  • Example 2 As a sputtering target, a target composed of high-purity indium oxide (a total of positive tetravalent metal elements: Sn, Ti, Zr: 0.4 ppm (Sn: 0.1 ppm), a positive divalent or lower metal element: Na, A thin film transistor was manufactured in the same manner as in Example 1 except that the total of K, Mg, and Zn: 3 ppm), manufactured by Shonan Electronic Materials Laboratory] was used. Field effect mobility of the thin film transistor is 52cm 2 / V ⁇ sec, On / Off ratio is 10 6, Vth is 5.5V, S value is 1.5V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off. The semiconductor film was crystalline.
  • Comparative Example 1 As a sputtering target, a target made of indium oxide with a purity of 3N (total tetravalent or higher metal elements: Sn, Ti, Zr total: 120 ppm (Sn: 30 ppm), positive divalent or lower metal elements: Na, K, Mg , Zn was used in the same manner as in Example 1 except that the total amount of Zn was 60 ppm).
  • This thin film transistor has a field effect mobility of 46 cm 2 / V ⁇ sec, an On / Off ratio of 2.5 ⁇ 10 5 , a Vth of ⁇ 1.2 V, and an S value of 2.4 V / dec. Thus, the thin film transistor exhibits normally-on characteristics. The output characteristics showed a clear pinch-off.
  • the semiconductor film was crystalline.
  • Example 3 The etch stopper type thin film transistor shown in FIG. 6 was manufactured by a photoresist method.
  • a target made of high-purity indium oxide (a total of positive tetravalent or higher metal elements: Sn, Ti, Zr) : 0.09 ppm (Sn: 0.02 ppm), and a metal element having a positive divalent value or less: Total of Na, K, Mg, Zn: 0.8 ppm) is used to form a 50 nm semiconductor film 40 by sputtering. did.
  • SiO 2 was deposited by RF sputtering at 300 nm under conditions of oxygen partial pressure of 15% and argon of 85%.
  • a resist was applied on the semiconductor film with SiO 2 and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes, and SiO 2 was etched by dry etching using CF 4 to form an etch stopper 70 having a desired shape.
  • TMAH 3 wt% tetramethylammonium hydroxide
  • a molybdenum metal film having a thickness of 300 nm was formed on the semiconductor film 40, the gate insulating film (thermal oxide film) 30, and the etch stopper 70.
  • a resist was applied to the molybdenum metal film, and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern having a desired source / drain electrode shape.
  • UV light light intensity: 300 mJ / cm 2
  • TMAH 3 wt% tetramethylammonium hydroxide
  • the substrate with a resist pattern was treated with a mixed acid of phosphoric acid / acetic acid / nitric acid to etch the molybdenum metal film, thereby forming the source electrode 50 and the drain electrode 52.
  • the portion of the semiconductor film 40 in contact with the gate insulating film 30 was also etched.
  • the resist was peeled off, washed with pure water, dried by air blowing, and a thin film transistor (a gap (L) between the source and drain electrodes of the channel portion 60 was 200 ⁇ m and a width (W) was 1000 ⁇ m) was produced. Thereafter, this thin film transistor was heat-treated at 300 ° C. for 1 hour in air in a hot air heating furnace.
  • This thin film transistor has a field effect mobility of 62 cm 2 / V ⁇ sec, an On-Off ratio of 3 ⁇ 10 7 , a Vth of 6.8 V, and an S value of 0.9 V / dec.
  • the thin film transistor exhibits normally-off characteristics.
  • the output characteristics showed a clear pinch-off.
  • the shift voltage (Vth) after applying a 20 V voltage to the gate electrode for 100 minutes was 0.25 V.
  • the semiconductor film was crystalline.
  • Example 4 A thin film transistor was manufactured in the same manner as in Example 3 except that the gap (L) between the source and drain electrodes of the channel portion 60 was 20 ⁇ m and the width (W) was 100 ⁇ m.
  • Example 5 A thin film transistor was manufactured in the same manner as in Example 4 except that the gap (L) between the source and drain electrodes of the channel portion 60 was 10 ⁇ m and the width (W) was 20 ⁇ m.
  • This thin film transistor has a field effect mobility of 36 cm 2 / V ⁇ sec, an On / Off ratio of 4.6 ⁇ 10 8 , a Vth of 3.2 V, and an S value of 0.40 V / dec.
  • the thin film transistor exhibits normally-off characteristics.
  • the output characteristics showed a clear pinch-off.
  • the shift voltage (Vth) after applying a 20V voltage to the gate electrode for 100 minutes was 0.16V.
  • the semiconductor film was crystalline.
  • a transfer curve of the thin film transistor manufactured in Example 5 is shown in FIG.
  • This thin film transistor has a field effect mobility of 27 cm 2 / V ⁇ sec, an On / Off ratio of 4 ⁇ 10 8 , a Vth of ⁇ 2.2 V, and an S value of 1.0 V / dec.
  • the thin film transistor exhibits normally-on characteristics.
  • the output characteristics showed a clear pinch-off.
  • the shift voltage (Vth) after applying 20V voltage to the gate electrode for 100 minutes was 0.38V.
  • the semiconductor film was crystalline.
  • the thin film transistor of Example 4 has the same channel length (L) and width (W) as those of the element described in Patent Document 3. Even in this case, a transistor having good transistor characteristics was obtained in the present invention.
  • the gap (L) between the source and drain electrodes of the thin film transistor of Example 5 is 10 ⁇ m, and the width (W) is 20 ⁇ m. Even when the channel width is narrowed, a transistor having good transistor characteristics is obtained in the present invention.
  • the thin film transistor of the present invention can be suitably used for sensors such as display panels, RFID tags, X-ray detector panels, fingerprint sensors, and photosensors.
  • the thin film transistor manufacturing method of the present invention is particularly suitable for a channel etch type thin film transistor manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Disclosed is a thin film transistor wherein a crystalline indium oxide semiconductor film is provided and the content rate of metal elements having a valency of +4 or higher to the total metal elements contained in the semiconductor film is 10 atm ppm or less.

Description

高純度結晶質酸化インジウム半導体膜を有する薄膜トランジスタ、及びその製造方法Thin film transistor having high-purity crystalline indium oxide semiconductor film and method for manufacturing the same
 本発明は、高純度な結晶質酸化インジウムからなる半導体膜を有する薄膜トランジスタ及びその製造方法に関する。 The present invention relates to a thin film transistor having a semiconductor film made of high-purity crystalline indium oxide and a method for manufacturing the same.
 近年、表示装置の発展は目覚ましく、液晶表示装置やEL表示装置等、種々の表示装置がパソコンやワープロ等のOA機器へ活発に導入されている。これらの表示装置は、いずれも表示素子を透明導電膜で挟み込んだサンドイッチ構造を有している。 In recent years, the development of display devices has been remarkable, and various display devices such as liquid crystal display devices and EL display devices have been actively introduced into office automation equipment such as personal computers and word processors. Each of these display devices has a sandwich structure in which a display element is sandwiched between transparent conductive films.
 上記の表示装置を駆動させる薄膜トランジスタ(TFT)等のスイッチング素子には、現在、シリコン系の半導体膜が主に使用されている。それは、シリコン系薄膜の安定性、加工性の良さの他、スイッチング速度が速い等が良好なためである。このシリコン系薄膜は、一般に化学蒸気析出法(CVD)法により作製されている。 Currently, silicon-based semiconductor films are mainly used as switching elements such as thin film transistors (TFTs) for driving the above display devices. This is because, in addition to the stability and workability of the silicon-based thin film, the switching speed is fast. This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
 しかしながら、シリコン系薄膜が非晶質の場合、スイッチング速度が比較的遅く、高速な動画等を表示する場合は画像を表示できないという難点を有している。また、結晶質のシリコン系薄膜の場合には、スイッチング速度は比較的速いが、結晶化するために800℃以上の高温や、レーザーによる加熱等が必要であり、製造時に多大なエネルギーと工程を要する。また、シリコン系の薄膜は、電圧素子としても性能は優れているものの、電流を流した場合、その特性の経時変化が問題となっている。 However, when the silicon-based thin film is amorphous, the switching speed is relatively slow, and there is a problem that an image cannot be displayed when displaying a high-speed moving image or the like. In addition, in the case of a crystalline silicon-based thin film, the switching speed is relatively fast, but a high temperature of 800 ° C. or higher, heating with a laser, etc. are necessary for crystallization. Cost. In addition, although the silicon-based thin film has excellent performance as a voltage element, a change in the characteristics with time is a problem when a current is passed.
 シリコン系薄膜よりも安定性に優れるとともに、ITO膜と同等の光透過率を有する透明半導体膜を得るための材料等として、酸化インジウム、酸化ガリウム及び酸化亜鉛からなるスパッタリングターゲットや、酸化亜鉛と酸化マグネシウムからなる透明半導体薄膜が提案されている(例えば、特許文献1)。酸化インジウム、酸化ガリウム及び酸化亜鉛、又は酸化亜鉛と酸化マグネシウムからなる透明半導体膜は、弱酸でのエッチング性が非常に早い特徴を持っている。しかしながら、金属薄膜のエッチング液でもエッチングされ、透明半導体膜上の金属薄膜をエッチングする場合に、同時にエッチングされてしまうことがあり、透明半導体膜上の金属薄膜だけを選択的にエッチングする場合には不適であった。 Sputtering targets composed of indium oxide, gallium oxide, and zinc oxide, as well as zinc oxide and oxide as materials for obtaining a transparent semiconductor film that is more stable than a silicon-based thin film and has a light transmittance equivalent to that of an ITO film. A transparent semiconductor thin film made of magnesium has been proposed (for example, Patent Document 1). A transparent semiconductor film made of indium oxide, gallium oxide and zinc oxide, or zinc oxide and magnesium oxide has a very fast etching property with a weak acid. However, when etching a metal thin film on a transparent semiconductor film by etching with a metal thin film etchant, the metal thin film on the transparent semiconductor film may be etched at the same time. It was inappropriate.
 一方、酸化インジウムの結晶質を含む膜、特に多結晶膜は、酸素欠損を生成しやすく、成膜時の酸素分圧を上げたり、酸化処理等をしても、キャリヤー密度を2×10+17cm-3にすることが困難と考えられていた。そのために、半導体膜又はTFTとしての試みはほとんどなされていなかった。
 また、特許文献2に酸化インジウムに正2価の金属酸化物を含有させたビックスバイト構造を有する酸化インジウム半導体膜が記載されている。正2価の金属酸化物を含有させることにより、キャリヤー濃度を低減する試みがなされている。しかしながら、正2価の金属酸化物の場合、ビックスバイト構造のエネルギーバンド構造のバンドギャップ内に不純物順位を形成することがあり、これが、移動度を低下させる場合がある。
On the other hand, a film containing crystalline indium oxide, particularly a polycrystalline film, easily generates oxygen vacancies , and the carrier density is 2 × 10 +17 even if the oxygen partial pressure during film formation is increased or oxidation treatment is performed. It was considered difficult to achieve cm −3 . For this reason, almost no attempt has been made as a semiconductor film or TFT.
Patent Document 2 describes an indium oxide semiconductor film having a bixbyite structure in which a positive divalent metal oxide is contained in indium oxide. Attempts have been made to reduce the carrier concentration by including a positive divalent metal oxide. However, in the case of a positive divalent metal oxide, an impurity order may be formed in the band gap of the energy band structure of the bixbite structure, which may reduce the mobility.
 特許文献3には、結晶質の酸化インジウム薄膜を用いた薄膜トランジスタが記載されている。しかしながら、チャンネル部分のトラップ密度が高くなる場合があった。このため、S値を十分に低減できないことや、ノーマリーオンのトランジスタになる等の問題があった。また、薄膜中のトラップ密度が高いと、トラップによりオフ電流値が十分低減できないという問題があった。
 この点について、特許文献3では酸化インジウム薄膜の膜厚を20nmとすることにより、オフ電流値が低減できることが記載されている。しかしながら、膜厚を20nmに制御して、均一に、かつ大面積に成膜することは技術的に難しい。そのため、薄膜トランジスタの特性がばらつく原因となる可能性があった。
Patent Document 3 describes a thin film transistor using a crystalline indium oxide thin film. However, the trap density in the channel portion may increase. For this reason, there are problems that the S value cannot be reduced sufficiently and that a normally-on transistor is formed. Further, when the trap density in the thin film is high, there is a problem that the off-current value cannot be sufficiently reduced by the trap.
In this regard, Patent Document 3 describes that the off-current value can be reduced by setting the thickness of the indium oxide thin film to 20 nm. However, it is technically difficult to control the film thickness to 20 nm to form a film uniformly and in a large area. For this reason, there is a possibility that the characteristics of the thin film transistor vary.
特開2004-119525号公報JP 2004-119525 A 国際公開第07/058248号パンフレットInternational Publication No. 07/058248 Pamphlet 特開2008-130814号公報JP 2008-130814 A
 本発明の目的は、結晶質酸化インジウムからなる半導体膜を使用した薄膜トランジスタであって、半導体膜のトラップ密度を低減することにより高性能な薄膜トランジスタを提供することである。 An object of the present invention is to provide a thin film transistor using a semiconductor film made of crystalline indium oxide and having a high performance by reducing the trap density of the semiconductor film.
 本発明者らは、結晶質酸化インジウムからなる半導体膜の不純物、具体的には、正4価以上の金属元素が半導体膜のトラップ密度に影響を与えることを見出した。そして、この金属元素の含有率を所定値以下とすることにより、高性能な薄膜トランジスタが得られることをつきとめ、本発明を完成させた。 The present inventors have found that impurities in a semiconductor film made of crystalline indium oxide, specifically, a metal element having a positive tetravalence or more affects the trap density of the semiconductor film. The inventors have found that a high-performance thin film transistor can be obtained by setting the content of the metal element to a predetermined value or less, thereby completing the present invention.
 本発明によれば、以下の薄膜トランジスタ等が提供される。
1.結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が10原子ppm以下である薄膜トランジスタ。
2.結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が1原子ppm以下である薄膜トランジスタ。
3.結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が0.1原子ppm以下である薄膜トランジスタ。
4.前記正4価以上の金属元素がSnである1~3のいずれかに記載の薄膜トランジスタ。
5.さらに、前記半導体膜に含まれる全金属元素に対する正2価以下の金属元素の含有率が50原子ppm以下である1~4のいずれかに記載の薄膜トランジスタ。
6.チャンネルエッチ型である1~5のいずれかに記載の薄膜トランジスタ。
7.エッチストッパー型である1~5のいずれかに記載の薄膜トランジスタ。
8.純度が99.99原子%以上の酸化インジウムターゲットを用いて半導体膜を成膜する成膜工程と、前記半導体膜を酸化処理する工程、及び/又は前記半導体膜を結晶化する工程を含む、1~7のいずれかに記載の薄膜トランジスタの製造方法。
9.前記酸化インジウムターゲットの純度が99.995原子%以上である8に記載の薄膜トランジスタの製造方法。
10.前記成膜工程をスパッタリングで実施し、スパッタリング中の雰囲気の酸素濃度を5~20体積%とする8又は9に記載の薄膜トランジスタの製造方法。
11.前記半導体膜を酸素の存在下に、150~450℃で0.1~1200分間熱処理する8~10のいずれかに記載の薄膜トランジスタの製造方法。
According to the present invention, the following thin film transistors and the like are provided.
1. A thin film transistor having a crystalline indium oxide semiconductor film and having a content of positive tetravalent or higher metal elements with respect to all metal elements contained in the semiconductor film of 10 atomic ppm or less.
2. A thin film transistor having a crystalline indium oxide semiconductor film, wherein the content of a metal element having a positive tetravalent or higher valence relative to all metal elements contained in the semiconductor film is 1 atomic ppm or less.
3. A thin film transistor having a crystalline indium oxide semiconductor film, wherein the content of a metal element having a positive tetravalent or higher valence relative to all metal elements contained in the semiconductor film is 0.1 atomic ppm or less.
4). 4. The thin film transistor according to any one of 1 to 3, wherein the positive tetravalent or higher metal element is Sn.
5). Furthermore, the thin film transistor according to any one of 1 to 4, wherein the content of metal elements having a positive divalent value or less with respect to all metal elements contained in the semiconductor film is 50 atom ppm or less.
6). 6. The thin film transistor according to any one of 1 to 5, which is a channel etch type.
7). 6. The thin film transistor according to any one of 1 to 5, which is an etch stopper type.
8). Including a film forming step of forming a semiconductor film using an indium oxide target having a purity of 99.99 atomic% or more, a step of oxidizing the semiconductor film, and / or a step of crystallizing the semiconductor film. 8. A method for producing a thin film transistor according to any one of items 1 to 7.
9. 9. The method for producing a thin film transistor according to 8, wherein the indium oxide target has a purity of 99.995 atomic% or more.
10. 10. The method for producing a thin film transistor according to 8 or 9, wherein the film forming step is performed by sputtering, and an oxygen concentration in an atmosphere during sputtering is 5 to 20% by volume.
11. 11. The method for producing a thin film transistor according to any one of 8 to 10, wherein the semiconductor film is heat-treated at 150 to 450 ° C. for 0.1 to 1200 minutes in the presence of oxygen.
 本発明によれば、結晶質酸化インジウム薄膜の不純物濃度が低いことにより、薄膜中、特にチャンネル部分のトラップ密度を少なくできる。その結果、S値を十分低減することができる。 According to the present invention, since the impurity concentration of the crystalline indium oxide thin film is low, the trap density in the thin film, particularly the channel portion, can be reduced. As a result, the S value can be sufficiently reduced.
本発明のチャンネルエッチ型薄膜トランジスタの実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the channel etch type thin-film transistor of this invention. 本発明のエッチストッパー型薄膜トランジスタの実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the etch stopper type thin-film transistor of this invention. 実施例1で作製したチャンネルエッチ型薄膜トランジスタの概略断面図である。3 is a schematic cross-sectional view of a channel-etched thin film transistor manufactured in Example 1. FIG. 実施例1で作製した薄膜トランジスタの出力曲線を示す図である。6 is a diagram showing an output curve of a thin film transistor manufactured in Example 1. FIG. 実施例1で作製した薄膜トランジスタの伝達曲線を示す図である。6 is a diagram showing a transfer curve of a thin film transistor manufactured in Example 1. FIG. 実施例3で作製したエッチストッパー型薄膜トランジスタの概略断面図である。6 is a schematic cross-sectional view of an etch stopper type thin film transistor fabricated in Example 3. FIG. 実施例5で作製した薄膜トランジスタの伝達曲線を示す図である。10 is a diagram showing a transfer curve of a thin film transistor manufactured in Example 5. FIG.
 本発明の薄膜トランジスタ(TFT)は、結晶質酸化インジウム半導体膜を有し、半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が10原子ppm以下であることを特徴とする。 The thin film transistor (TFT) of the present invention has a crystalline indium oxide semiconductor film, and the content of positive tetravalent or higher metal elements with respect to all metal elements contained in the semiconductor film is 10 atomic ppm or less. .
 図1は、本発明の薄膜トランジスタの実施形態を示す概略断面図である。
 薄膜トランジスタ1は、基板10及び絶縁膜30の間にゲート電極20を挟持しており、ゲート絶縁膜30上には半導体膜40が活性層として積層されている。さらに、半導体膜40の端部付近を覆うようにしてソース電極50及びドレイン電極52がそれぞれ設けられている。半導体膜40、ソース電極50及びドレイン電極52で囲まれた部分にチャンネル部60を形成している。
 尚、図1の薄膜トランジスタ1はいわゆるチャンネルエッチ型薄膜トランジスタである。本発明の薄膜トランジスタは、チャンネルエッチ型薄膜トランジスタに限定されず、本技術分野で公知の素子構成を採用できる。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a thin film transistor of the present invention.
The thin film transistor 1 has a gate electrode 20 sandwiched between a substrate 10 and an insulating film 30, and a semiconductor film 40 is stacked on the gate insulating film 30 as an active layer. Further, a source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40. A channel portion 60 is formed in a portion surrounded by the semiconductor film 40, the source electrode 50 and the drain electrode 52.
1 is a so-called channel etch type thin film transistor. The thin film transistor of the present invention is not limited to a channel etch type thin film transistor, and an element configuration known in this technical field can be adopted.
 図2は、本発明の薄膜トランジスタの他の実施形態を示す概略断面図である。尚、上述した薄膜トランジスタ1と同じ構成部材には同じ番号を付し、その説明を省略する。
 薄膜トランジスタ2は、エッチストッパー型の薄膜トランジスタである。薄膜トランジスタ2は、チャンネル部60を覆うようにエッチストッパー70が形成されている点を除き、上述した薄膜トランジスタ1と同じ構成である。半導体膜40の端部付近及びエッチストッパー70の端部付近を覆うようにしてソース電極50及びドレイン電極52がそれぞれ設けられている。
FIG. 2 is a schematic cross-sectional view showing another embodiment of the thin film transistor of the present invention. In addition, the same number is attached | subjected to the same structural member as the thin-film transistor 1 mentioned above, and the description is abbreviate | omitted.
The thin film transistor 2 is an etch stopper type thin film transistor. The thin film transistor 2 has the same configuration as the thin film transistor 1 described above except that an etch stopper 70 is formed so as to cover the channel portion 60. A source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40 and the vicinity of the end of the etch stopper 70.
 本発明では半導体膜40に、高純度な結晶質酸化インジウムからなる薄膜を使用する。ここで、高純度とは、結晶質酸化インジウム薄膜が不純物として、正4価以上の金属元素を実質的に含まないことを意味する。具体的には、半導体膜を形成する全金属元素に占める正4価以上の金属元素の含有率が10原子ppm以下であることを意味する。これらの含有率を極めて低くすることにより、薄膜中や絶縁膜-半導体膜界面におけるトラップ密度を低減することができる。その結果、S値を低減することができる。 In the present invention, a thin film made of high-purity crystalline indium oxide is used for the semiconductor film 40. Here, high purity means that the crystalline indium oxide thin film contains substantially no positive tetravalent or higher-valent metal element as an impurity. Specifically, it means that the content of positive tetravalent or higher metal elements in all metal elements forming the semiconductor film is 10 atomic ppm or less. By making these contents extremely low, the trap density in the thin film or at the insulating film-semiconductor film interface can be reduced. As a result, the S value can be reduced.
 薄膜中の不純物は電子の散乱に寄与し、移動度の低下を引き起こす。不純物濃度が低ければ散乱を抑制し、酸化インジウムが本来有する高い移動度を維持することができる。
 また、不純物により結晶構造に乱れが生じ、酸素欠損を十分低減することができずにノーマリーオン動作を示す薄膜トランジスタになる場合がある。本発明では、不純物濃度が極めて低い結晶質酸化インジウムの半導体膜を使用するので、ノーマリーオフで、高移動度、低オフ電流値、さらにS値が低く高い動作安定性を示す高性能な薄膜トランジスタが得られる。
 尚、本発明においてノーマリーオフとは、閾値電圧の値が負(正)である場合と定義する。閾値電圧は伝達曲線(Id-Vg)のグラフのX切片から求める。
Impurities in the thin film contribute to electron scattering and cause a decrease in mobility. If the impurity concentration is low, scattering can be suppressed and high mobility inherent in indium oxide can be maintained.
In addition, the crystal structure may be disturbed by impurities, so that oxygen vacancies cannot be sufficiently reduced, and a thin film transistor exhibiting a normally-on operation may be obtained. In the present invention, since a crystalline indium oxide semiconductor film having an extremely low impurity concentration is used, a high-performance thin film transistor that is normally off, has high mobility, low off-current value, and low S value and high operational stability. Is obtained.
In the present invention, normally-off is defined as a case where the threshold voltage value is negative (positive). The threshold voltage is determined from the X-intercept of the transfer curve (Id-Vg) graph.
 特に、正4価以上の金属元素の含有率を10原子ppm以下とすることにより、室温付近における半導体膜のキャリヤー密度を2×10+17cm-3未満に保つことが可能となる。これにより、良好な薄膜トランジスタ特性が得られる。
 尚、半導体膜のキャリヤー密度は、室温付近において好ましくは2×10+17cm-3未満である。キャリヤー密度が2×10+17cm-3以上では、TFTとして駆動しないおそれがある。また、TFTとして駆動したとしても閾値電圧がマイナスに大きくノーマリーオンを示したり、On/Off比が小さくなる場合がある。
 正2価以下の金属元素の含有率を50原子ppm以下とすることにより、得られるTFTの移動度を高くすることができる。
In particular, by setting the content of the positive tetravalent or higher metal element to 10 atomic ppm or less, the carrier density of the semiconductor film near room temperature can be kept below 2 × 10 +17 cm −3 . Thereby, good thin film transistor characteristics can be obtained.
Note that the carrier density of the semiconductor film is preferably less than 2 × 10 +17 cm −3 near room temperature. If the carrier density is 2 × 10 +17 cm −3 or more, the TFT may not be driven. Even when the TFT is driven, the threshold voltage may be negatively large and normally on, or the On / Off ratio may be small.
By setting the content of the metal element having a positive divalent value or less to 50 atomic ppm or less, the mobility of the obtained TFT can be increased.
 正4価以上の金属元素及び正2価以下の金属元素は、薄膜内において、金属酸化物として存在している。
 半導体膜に含まれる正4価以上の金属酸化物としては、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、等の正4価以上の重金属酸化物、及び酸化ケイ素、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化アンチモン、酸化ビスマス、酸化セリウムから選択される1種又は2種以上の酸化物である。これらの酸化物は、結晶中に取り込まれた場合には、キャリヤーを発生する場合がある。その結果、室温付近の温度においてのキャリヤー密度を、2×10+17cm-3未満に制御できない場合がある。
 上記金属酸化物のうち、特に、酸化チタン、酸化ジルコニウム、酸化スズ、は、厳密に管理することが好ましい。
A metal element having a positive tetravalence or more and a metal element having a positive divalent or less are present as metal oxides in the thin film.
Examples of the positive tetravalent or higher metal oxide contained in the semiconductor film include positive oxides such as titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, and manganese oxide. A heavy metal oxide having a valence of 1 or more, and one or more oxides selected from silicon oxide, germanium oxide, tin oxide, lead oxide, antimony oxide, bismuth oxide, and cerium oxide. These oxides may generate carriers when incorporated in the crystal. As a result, the carrier density at temperatures near room temperature may not be controlled below 2 × 10 +17 cm −3 .
Among the above metal oxides, it is particularly preferable to strictly manage titanium oxide, zirconium oxide, and tin oxide.
 半導体膜に含まれる正2価以下の金属酸化物としては、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウム、酸化セシウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、等の正2価以下のアルカリ、アルカリ土類属酸化物、及び酸化亜鉛、から選択される1種又は2種以上の酸化物である。これらの酸化物は、結晶中に取り込まれた場合には、バンドギャップ内に不純物順位を形成する場合がある。その結果、キャリヤートラップが発生し、移動度が低下する場合がある。
 上記金属酸化物のうち、特に、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化亜鉛は、厳密に管理することが好ましい。
Examples of the metal oxide having a positive or lower valence included in the semiconductor film include a positive or lower valent metal such as lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide. One or more oxides selected from alkali, alkaline earth oxide, and zinc oxide. These oxides may form an impurity order in the band gap when taken into the crystal. As a result, a carrier trap is generated and mobility may be lowered.
Among the above metal oxides, sodium oxide, potassium oxide, magnesium oxide, calcium oxide, and zinc oxide are preferably strictly controlled.
 本発明において、半導体膜の全金属元素に対する正4価以上の金属酸化物の金属元素(M4)の含有率は、10原子ppm以下であり、好ましくは5原子ppm以下であり、より好ましくは1原子ppm以下であり、さらに好ましくは0.5原子ppm以下であり、特に好ましくは0.1原子ppm以下である。原子比が10原子ppm超では、キャリヤー密度が2×10+17cm-3以上になる場合があり、TFT特性として作動しなくなる場合がある。また、TFTとして駆動したとしても閾値電圧がマイナスに大きくなりノーマリーオンを示したり、オフ電流値が増加しOn/Off比が小さくなる場合がある。また薄膜中、及び(又は)絶縁膜-半導体膜の界面のトラップ密度が増加し、S値が増大するおそれがある。 In the present invention, the content of the metal element (M4) of the metal oxide of positive tetravalent or higher with respect to all the metal elements of the semiconductor film is 10 atomic ppm or less, preferably 5 atomic ppm or less, more preferably 1 It is atomic ppm or less, more preferably 0.5 atomic ppm or less, and particularly preferably 0.1 atomic ppm or less. When the atomic ratio exceeds 10 atomic ppm, the carrier density may be 2 × 10 +17 cm −3 or more, and the TFT characteristics may not be operated. Even if the TFT is driven, the threshold voltage may increase negatively, indicating normally-on, or the off-current value may increase and the On / Off ratio may decrease. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase.
 M4のうち、特にSnの含有率が高い場合、元素の酸化力が強いため、キャリヤー密度が増加し、TFTとして駆動したとしても閾値電圧がマイナスに大きくなりノーマリーオンを示したり、オフ電流値が増加しOn/Off比が小さくなる場合がある。また薄膜中、及び(又は)絶縁膜-半導体膜の界面のトラップ密度が増加し、S値が増大するおそれがある。Snの含有率は好ましくは1原子ppm以下であり、さらに好ましくは0.5原子ppm以下であり、特に好ましくは0.1原子ppm以下である。 Among M4, when the Sn content is particularly high, the oxidizing power of the element is strong, so the carrier density increases, and even when driven as a TFT, the threshold voltage increases negatively, indicating normally-on, or off-current value May increase and the On / Off ratio may decrease. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase. The Sn content is preferably 1 atom ppm or less, more preferably 0.5 atom ppm or less, and particularly preferably 0.1 atom ppm or less.
 本発明において、半導体膜の全金属元素に対する正2価以下の金属酸化物の金属元素(M2)の含有率は、50原子ppm以下であることが好ましい。原子比が50原子ppm超では、移動度が低くなる場合があり、TFT特性として作動しなくなる場合がある。また薄膜中、及び(又は)絶縁膜-半導体膜の界面のトラップ密度が増加し、S値が増大するおそれがある。
 金属元素(M2)の比率は、より好ましくは、10原子ppm以下であり、さらに好ましくは5原子ppm以下であり、特に好ましくは1原子ppm以下である。
In this invention, it is preferable that the content rate of the metal element (M2) of the metal oxide of a positive bivalent or less with respect to all the metal elements of a semiconductor film is 50 atomic ppm or less. If the atomic ratio exceeds 50 atomic ppm, the mobility may be low, and the TFT characteristics may not work. Further, the trap density in the thin film and / or the interface between the insulating film and the semiconductor film may increase, and the S value may increase.
The ratio of the metal element (M2) is more preferably 10 atomic ppm or less, further preferably 5 atomic ppm or less, and particularly preferably 1 atomic ppm or less.
 金属元素(M)の比率は、ICP-Mass(Inductively Coupled Plasma Mass)測定により、各元素の存在量を測定することで求めることができる。
 また、金属元素(M)比率は、例えば、半導体膜を形成する際に使用するスパッタリングターゲットの各元素の存在量を調整することで実施できる。半導体膜の組成は、スパッタリングターゲットの組成とほぼ一致する。
The ratio of the metal element (M) can be obtained by measuring the abundance of each element by ICP-Mass (Inductively Coupled Plasma Mass) measurement.
In addition, the metal element (M) ratio can be implemented, for example, by adjusting the amount of each element in the sputtering target used when forming the semiconductor film. The composition of the semiconductor film substantially matches the composition of the sputtering target.
 本発明では、結晶質酸化インジウム半導体膜を使用することにより、ソース電極50及びドレイン電極52のエッチングの際に、半導体膜がエッチングされることを抑制できる。また、TFTの耐久性を高くできる。
 尚、「結晶質膜」とは、X線回折により、結晶ピークを確認できることで確認できる膜である。
 結晶質膜は、単結晶膜、エピタキシャル膜及び多結晶膜のいずれであってもよく、工業生産が容易かつ大面積化が可能であることから、好ましくはエピタキシャル膜及び多結晶膜であり、特に好ましくは多結晶膜である。
In the present invention, the use of the crystalline indium oxide semiconductor film can suppress the etching of the semiconductor film when the source electrode 50 and the drain electrode 52 are etched. Further, the durability of the TFT can be increased.
The “crystalline film” is a film that can be confirmed by confirming a crystal peak by X-ray diffraction.
The crystalline film may be any of a single crystal film, an epitaxial film, and a polycrystalline film, and is preferably an epitaxial film and a polycrystalline film because industrial production is easy and the area can be increased. A polycrystalline film is preferred.
 結晶質膜が多結晶膜の場合、当該多結晶膜がナノクリスタルからなることが好ましい。X線回折からScherrer’s equationを用いて求めた平均結晶粒径は通常500nm以下、好ましくは300nm以下、より好ましくは150nm以下、さらに好ましくは80nm以下である。500nmより大きいとトランジスタを微細化した際のばらつきが大きくなるおそれがある。 When the crystalline film is a polycrystalline film, the polycrystalline film is preferably made of nanocrystals. The average crystal grain size determined by using Scherrer's equation from X-ray diffraction is usually 500 nm or less, preferably 300 nm or less, more preferably 150 nm or less, and even more preferably 80 nm or less. If it is larger than 500 nm, there is a possibility that variation when the transistor is miniaturized becomes large.
 本発明の薄膜トランジスタにおいて、基板、ゲート電極、ゲート絶縁膜、ソース・ドレイン電極等の構成部材は、公知のものが使用でき、特に限定されない。
 例えば、各電極にはAl、Cu、Au等の金属薄膜が使用でき、ゲート絶縁膜には、酸化シリコン膜、酸化ハフニウム膜等の酸化物薄膜を使用できる。
In the thin film transistor of the present invention, known components can be used for the substrate, gate electrode, gate insulating film, source / drain electrode, and the like, and are not particularly limited.
For example, a metal thin film such as Al, Cu, or Au can be used for each electrode, and an oxide thin film such as a silicon oxide film or a hafnium oxide film can be used for the gate insulating film.
 続いて、本発明の薄膜トランジスタの製造方法を説明する。
 本発明の製造方法は、酸化インジウム半導体膜を成膜する成膜工程と、半導体膜を酸化処理する工程、及び/又は結晶化する工程を含む。尚、ゲート電極、ゲート絶縁膜、ソース・ドレイン電極等の構成部材は、公知の方法により形成できる。
Then, the manufacturing method of the thin-film transistor of this invention is demonstrated.
The manufacturing method of the present invention includes a film forming step of forming an indium oxide semiconductor film, a step of oxidizing the semiconductor film, and / or a step of crystallizing. Note that components such as a gate electrode, a gate insulating film, and a source / drain electrode can be formed by a known method.
 例えば、基板上にAl、Cu、Au等の金属薄膜からなるゲート電極を形成し、その上に、酸化シリコン膜、酸化ハフニウム膜等からなる酸化物薄膜をゲート絶縁膜として形成する。その上に、金属マスクを装着して必要な部分だけに酸化インジウム膜からなる半導体膜を形成する。その後、金属マスクを用いて、必要部分にソース・ドレイン電極を形成することで、薄膜トランジスタを製造することができる。 For example, a gate electrode made of a metal thin film such as Al, Cu, or Au is formed on a substrate, and an oxide thin film made of a silicon oxide film, a hafnium oxide film, or the like is formed thereon as a gate insulating film. On top of that, a metal mask is attached to form a semiconductor film made of an indium oxide film only in necessary portions. Thereafter, a source / drain electrode is formed in a necessary portion using a metal mask, whereby a thin film transistor can be manufactured.
 半導体膜の成膜は、スパッタ法、イオンプレーティング法、蒸着法等がある。このなかでは、スパッタ法が好ましい。
 スパッタリングでは、焼結ターゲットを用いる方法が好ましい。具体的に、99.99原子%以上、又は99.995原子%(4N)以上の高純度酸化インジウムの焼結ターゲットが好ましい。焼結ターゲットは、本技術分野において公知の方法により製造できる。
 高純度の酸化インジウム焼結体ターゲットを用いることにより、不純物濃度の極めて低い結晶質酸化インジウム薄膜を得ることができる。
The semiconductor film can be formed by sputtering, ion plating, vapor deposition, or the like. Of these, the sputtering method is preferable.
In sputtering, a method using a sintered target is preferable. Specifically, a high-purity indium oxide sintered target of 99.99 atomic% or more, or 99.995 atomic% (4N) or more is preferable. A sintered target can be manufactured by a well-known method in this technical field.
By using a high-purity indium oxide sintered compact target, a crystalline indium oxide thin film having an extremely low impurity concentration can be obtained.
 スパッタリングの条件は、使用するターゲットや、半導体膜の膜厚等にあわせて適宜調整することができる。スパッタリング方法は、RFスパッタ法、DCスパッタ法、ACスパッタ法が使用できる。中でも、DCスパッタ法、ACスパッタ法が、成膜速度も速く、好ましい。
 成膜中に酸素を存在させることが好ましい。スパッタ中に酸素を存在させることにより、次工程の酸化処理にて、効果的に酸化処理することが出来る。
 スパッタリング中の雰囲気の酸素濃度は5~20体積%であることが好ましく、さらに前記酸素濃度7~17%であることが好ましく、特に8~14体積%であることが好ましい。
The sputtering conditions can be appropriately adjusted according to the target to be used, the thickness of the semiconductor film, and the like. As the sputtering method, an RF sputtering method, a DC sputtering method, or an AC sputtering method can be used. Among these, the DC sputtering method and the AC sputtering method are preferable because the film forming speed is high.
Oxygen is preferably present during film formation. By allowing oxygen to be present during sputtering, it can be effectively oxidized in the oxidation process of the next step.
The oxygen concentration in the atmosphere during sputtering is preferably 5 to 20% by volume, more preferably 7 to 17%, and particularly preferably 8 to 14% by volume.
 本発明の薄膜トランジスタの製造方法では、半導体膜の形成後、薄膜を酸化処理する工程、及び/又は薄膜を結晶化する工程を行う。
 半導体膜の結晶化及び酸化処理には、酸素の存在下にランプアニ―ル装置、レーザーアニール装置、熱風加熱装置、接触加熱装置等を用いることが出来る。
 半導体膜を酸素の存在下に、150~450℃、0.1~1200分の条件で熱処理することが好ましい。150℃未満では、半導体膜が十分に結晶化しない場合があり、450℃超では、基板や半導体膜にダメージを与える場合がある。熱処理温度は、180℃~350℃がさらに好ましく、特に200℃~300℃が好ましい。
 また、熱処理時間が0.1分未満では、熱処理時間が短すぎて膜の結晶化が不十分となる場合があり、1200分超では時間が掛かりすぎ生産的ではない。熱処理時間は、1分~600分がさらに好ましく、特に5分~60分が好ましい。
 尚、半導体膜の結晶化及び/又は酸化処理は、半導体膜の形成後、すぐに実施してもよく、また、ソース・ドレイン電極等、他の構成部材の形成後に実施してもよい。
In the thin film transistor manufacturing method of the present invention, after the semiconductor film is formed, a step of oxidizing the thin film and / or a step of crystallizing the thin film are performed.
For the crystallization and oxidation treatment of the semiconductor film, a lamp annealing device, a laser annealing device, a hot air heating device, a contact heating device, or the like can be used in the presence of oxygen.
The semiconductor film is preferably heat-treated in the presence of oxygen at 150 to 450 ° C. for 0.1 to 1200 minutes. If it is less than 150 ° C., the semiconductor film may not be sufficiently crystallized, and if it exceeds 450 ° C., the substrate and the semiconductor film may be damaged. The heat treatment temperature is more preferably 180 ° C. to 350 ° C., and particularly preferably 200 ° C. to 300 ° C.
If the heat treatment time is less than 0.1 minutes, the heat treatment time may be too short and the crystallization of the film may be insufficient. If it exceeds 1200 minutes, it takes too much time and is not productive. The heat treatment time is more preferably 1 minute to 600 minutes, and particularly preferably 5 minutes to 60 minutes.
The crystallization and / or oxidation treatment of the semiconductor film may be performed immediately after the formation of the semiconductor film, or may be performed after the formation of other components such as source / drain electrodes.
 本発明の製造方法は、特に、チャンネルエッチ型の薄膜トランジスタの製造方法に適している。本発明の半導体膜は結晶質であるため、Al等の金属薄膜からソース・ドレイン電極及びチャンネル部を形成する方法として、フォトリソグラフィーを使用したエッチング工程を採用できる。即ち、金属薄膜を除去するエッチング液では、半導体膜はエッチングされず、金属薄膜を選択的にエッチングできる。尚、エッチストッパー型の薄膜トランジスタの製造方法であってもよい。 The manufacturing method of the present invention is particularly suitable for a manufacturing method of a channel etch type thin film transistor. Since the semiconductor film of the present invention is crystalline, an etching process using photolithography can be adopted as a method for forming the source / drain electrodes and the channel portion from a metal thin film such as Al. That is, the etching solution for removing the metal thin film can selectively etch the metal thin film without etching the semiconductor film. An etch stopper type thin film transistor manufacturing method may also be used.
 実施例において、「ppm」は原子ppmを意味する。
実施例1
(A)薄膜トランジスタの作製
 図3に示すチャンネルエッチ型の薄膜トランジスタを作製した。
 100nm厚みの熱酸化膜(SiO膜)付きの導電性シリコン基板10を使用した。熱酸化膜がゲート絶縁膜30として機能し、導電性シリコン部がゲート電極20として機能する。
 ゲート絶縁膜30上に、純度が4N以上の高純度酸化インジウム(湘南電子材料研究所作製)からなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:0.09ppm(Sn:0.02ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:0.8ppm)を用いて、スパッタリング法で50nmの半導体膜40を成膜した。
 尚、ターゲットの不純物はICP-Mass(Inductively Coupled Plasma Mass)により測定した。
 スパッタリングは、背圧が5×10-4Paとなるまで真空排気したあと、アルゴン9.0sccm、酸素1.0sccmを流しながら、圧力を0.2Paに調整し、T-S間距離を10cm、基板温度を室温とし、スパッタパワー100Wにて行った。
In the examples, “ppm” means atomic ppm.
Example 1
(A) Production of Thin Film Transistor A channel etch type thin film transistor shown in FIG. 3 was produced.
A conductive silicon substrate 10 with a thermal oxide film (SiO 2 film) having a thickness of 100 nm was used. The thermal oxide film functions as the gate insulating film 30 and the conductive silicon portion functions as the gate electrode 20.
On the gate insulating film 30, a target made of high-purity indium oxide having a purity of 4N or more (manufactured by Shonan Electronics Materials Laboratory) (total of positive tetravalent or more metal elements: Sn, Ti, Zr: 0.09 ppm (Sn : 0.02 ppm), and a metal element having a positive divalent value or less: total of Na, K, Mg, and Zn: 0.8 ppm) was used to form a semiconductor film 40 of 50 nm by sputtering.
The target impurity was measured by ICP-Mass (Inductively Coupled Plasma Mass).
Sputtering was performed by evacuating the back pressure to 5 × 10 −4 Pa, then adjusting the pressure to 0.2 Pa while flowing argon 9.0 sccm and oxygen 1.0 sccm, and the distance between TS was 10 cm. The substrate temperature was set to room temperature and the sputtering power was 100 W.
 半導体膜40の上に金属マスクを設置し、ソース・ドレイン電極間間隙(L)が200μm、幅(W)が1000μmのチャンネル部60が形成されるように、チャンネル部60の両端部付近に、金を蒸着してソース電極50及びドレイン電極52を形成した。
 その後、熱風加熱炉内で、空気中、300℃で1時間熱処理し、薄膜トランジスタを作製した。
 この薄膜トランジスタの電界効果移動度は60cm/V・sec、On/Off比は5×10であり、閾値電圧(Vth)は7.1V、S値は1.1V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。
 実施例及び比較例について、半導体膜形成に使用したターゲットの不純物量、素子構成、及び薄膜トランジスタの性能を表1に示す
A metal mask is placed on the semiconductor film 40, and in the vicinity of both ends of the channel part 60, a channel part 60 having a gap (L) between the source and drain electrodes of 200 μm and a width (W) of 1000 μm is formed. Gold was deposited to form the source electrode 50 and the drain electrode 52.
Then, it heat-processed in the air at 300 degreeC for 1 hour in the hot-air heating furnace, and produced the thin-film transistor.
This thin film transistor has a field effect mobility of 60 cm 2 / V · sec, an On / Off ratio of 5 × 10 6 , a threshold voltage (Vth) of 7.1 V, and an S value of 1.1 V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off.
Table 1 shows the impurity amount of the target used for forming the semiconductor film, the element configuration, and the performance of the thin film transistor for the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(B)半導体膜の評価
 石英ガラス基板上に、上記(A)のスパッタリングと同じ条件にて半導体膜を形成した。この半導体膜は非晶質であった。その後、熱風加熱炉内で、空気中、300℃で1時間熱処理した。得られた半導体膜のX線回折(XRD)測定をしたところ、酸化インジウムのビックスバイト構造のピークが観察された。これにより、半導体膜が結晶質であることが確認できた。
 尚、半導体膜の熱処理条件を、空気中、450℃で5時間とし、同じくXRD測定した。300℃にて熱処理したXRDのピーク強度を比較したところ、300℃で得られたピーク強度は、450℃で得られたピーク強度の約98%であった。
(B) Evaluation of Semiconductor Film A semiconductor film was formed on a quartz glass substrate under the same conditions as the sputtering in (A) above. This semiconductor film was amorphous. Then, it heat-processed at 300 degreeC in the air for 1 hour in the hot-air heating furnace. When the X-ray diffraction (XRD) measurement of the obtained semiconductor film was performed, the peak of the bixbite structure of indium oxide was observed. This confirmed that the semiconductor film was crystalline.
Note that the heat treatment conditions for the semiconductor film were set at 450 ° C. for 5 hours in air, and XRD measurement was performed in the same manner. When the peak intensity of XRD heat-treated at 300 ° C. was compared, the peak intensity obtained at 300 ° C. was about 98% of the peak intensity obtained at 450 ° C.
 実施例1で作製した薄膜トランジスタの出力曲線を図4に、伝達曲線を図5に示す。図4は、ゲート電圧(Vgs)を-5V~25Vと変更したときの、ドレイン電圧(Vds)と同電流(Ids)の関係を示したものである。図5は、ゲート電圧(Vgs)とドレイン電流(Ids)の関係を示したものであり、白丸からなる線は、ゲート電圧に対するドレイン電流を1/2乗した曲線であり、黒丸からなる線は、ゲート電圧に対するドレイン電流を示す曲線である。
 図4及び図5において、「XE-Y」はX×10-Yを意味する。例えば、1.0E-05は1.0×10-5である。
The output curve of the thin film transistor manufactured in Example 1 is shown in FIG. 4, and the transfer curve is shown in FIG. FIG. 4 shows the relationship between the drain voltage (Vds) and the same current (Ids) when the gate voltage (Vgs) is changed from -5V to 25V. FIG. 5 shows the relationship between the gate voltage (Vgs) and the drain current (Ids). The white circle line is a curve obtained by raising the drain current to the gate voltage by a power of 1/2, and the black circle line is 4 is a curve showing a drain current with respect to a gate voltage.
4 and 5, “XE-Y” means X × 10 −Y . For example, 1.0E-05 is 1.0 × 10 −5 .
実施例2
 スパッタリングターゲットとして、高純度酸化インジウムからなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:0.4ppm(Sn:0.1ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:3ppm)、湘南電子材料研究所作製]を用いた他は、実施例1と同様にして、薄膜トランジスタを作製した。
 この薄膜トランジスタの電界効果移動度は52cm/V・sec、On/Off比は10であり、Vthは5.5V、S値は1.5V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。
 また、半導体膜は結晶質性であった。
Example 2
As a sputtering target, a target composed of high-purity indium oxide (a total of positive tetravalent metal elements: Sn, Ti, Zr: 0.4 ppm (Sn: 0.1 ppm), a positive divalent or lower metal element: Na, A thin film transistor was manufactured in the same manner as in Example 1 except that the total of K, Mg, and Zn: 3 ppm), manufactured by Shonan Electronic Materials Laboratory] was used.
Field effect mobility of the thin film transistor is 52cm 2 / V · sec, On / Off ratio is 10 6, Vth is 5.5V, S value is 1.5V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off.
The semiconductor film was crystalline.
比較例1
 スパッタリングターゲットとして、純度3Nの酸化インジウムからなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:120ppm(Sn:30ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:60ppm)を用いた他は、実施例1と同様にして、薄膜トランジスタを作製した。
 この薄膜トランジスタの電界効果移動度は46cm/V・sec、On/Off比は2.5×10であり、Vthは-1.2V、S値は2.4V/dec.で、ノーマリーオンの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。
 また、半導体膜は結晶質性であった。
Comparative Example 1
As a sputtering target, a target made of indium oxide with a purity of 3N (total tetravalent or higher metal elements: Sn, Ti, Zr total: 120 ppm (Sn: 30 ppm), positive divalent or lower metal elements: Na, K, Mg , Zn was used in the same manner as in Example 1 except that the total amount of Zn was 60 ppm).
This thin film transistor has a field effect mobility of 46 cm 2 / V · sec, an On / Off ratio of 2.5 × 10 5 , a Vth of −1.2 V, and an S value of 2.4 V / dec. Thus, the thin film transistor exhibits normally-on characteristics. The output characteristics showed a clear pinch-off.
The semiconductor film was crystalline.
 このように、実施例のように純度が高い酸化インジウム焼結体ターゲットから成膜して得られた結晶質酸化インジウム膜を薄膜トランジスタに使用することにより、電界効果移動度、On/Off比及びS値の良好なトランジスタ特性を得ることができる。 Thus, by using a crystalline indium oxide film obtained by forming a film of an indium oxide sintered target having a high purity as in the embodiment for a thin film transistor, field effect mobility, On / Off ratio, and S Transistor characteristics with good values can be obtained.
実施例3
 図6に示すエッチストッパー型の薄膜トランジスタを、フォトレジスト法にて作製した。
 熱酸化膜(SiO膜)付きの導電性シリコン基板10上に、実施例1と同様にして、高純度酸化インジウムからなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:0.09ppm(Sn:0.02ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:0.8ppm)を用いて、スパッタリング法で50nmの半導体膜40を成膜した。
 その後、エッチストッパーとなる層として、SiOをRFスパッタにて、酸素分圧15%、アルゴン85%の条件にて、300nm成膜した。
このSiO付き半導体膜上にレジストを塗布し、80℃で15分間プレベークした。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、CF4を用いたドライエッチングによりSiOをエッチングして所望の形状のエッチストッパー70を形成した。
 その後、半導体膜40、ゲート絶縁膜(熱酸化膜)30及びエッチストッパー70上に、モリブデン金属膜を300nm成膜した。
 モリブデン金属膜にレジストを塗布し、80℃で15分間プレベークした。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、所望の形状のソース・ドレイン電極形状のレジストパターンを形成した。
 レジストパターン付き基板を、燐酸・酢酸・硝酸の混合酸で処理することで、モリブデン金属膜をエッチングし、ソース電極50及びドレイン電極52を形成した。同時に、半導体膜40のゲート絶縁膜30に接する部分も同時にエッチングした。その後レジストを剥離し、純水で洗浄しエアーブローして乾燥させ、薄膜トランジスタ(チャンネル部60のソース・ドレイン電極間間隙(L)が200μm、幅(W)が1000μm)を作製した。
 その後、この薄膜トランジスタを熱風加熱炉内で空気中、300℃で1時間熱処理した。
Example 3
The etch stopper type thin film transistor shown in FIG. 6 was manufactured by a photoresist method.
On a conductive silicon substrate 10 with a thermal oxide film (SiO 2 film), in the same manner as in Example 1, a target made of high-purity indium oxide (a total of positive tetravalent or higher metal elements: Sn, Ti, Zr) : 0.09 ppm (Sn: 0.02 ppm), and a metal element having a positive divalent value or less: Total of Na, K, Mg, Zn: 0.8 ppm) is used to form a 50 nm semiconductor film 40 by sputtering. did.
After that, as a layer to be an etch stopper, SiO 2 was deposited by RF sputtering at 300 nm under conditions of oxygen partial pressure of 15% and argon of 85%.
A resist was applied on the semiconductor film with SiO 2 and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes, and SiO 2 was etched by dry etching using CF 4 to form an etch stopper 70 having a desired shape.
Thereafter, a molybdenum metal film having a thickness of 300 nm was formed on the semiconductor film 40, the gate insulating film (thermal oxide film) 30, and the etch stopper 70.
A resist was applied to the molybdenum metal film, and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern having a desired source / drain electrode shape.
The substrate with a resist pattern was treated with a mixed acid of phosphoric acid / acetic acid / nitric acid to etch the molybdenum metal film, thereby forming the source electrode 50 and the drain electrode 52. At the same time, the portion of the semiconductor film 40 in contact with the gate insulating film 30 was also etched. Thereafter, the resist was peeled off, washed with pure water, dried by air blowing, and a thin film transistor (a gap (L) between the source and drain electrodes of the channel portion 60 was 200 μm and a width (W) was 1000 μm) was produced.
Thereafter, this thin film transistor was heat-treated at 300 ° C. for 1 hour in air in a hot air heating furnace.
 この薄膜トランジスタの電界効果移動度は62cm/V・sec、On-Off比は3×10であり、Vthは6.8V、S値は0.9V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.25Vであった。
 半導体膜は結晶質であった。
This thin film transistor has a field effect mobility of 62 cm 2 / V · sec, an On-Off ratio of 3 × 10 7 , a Vth of 6.8 V, and an S value of 0.9 V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off. The shift voltage (Vth) after applying a 20 V voltage to the gate electrode for 100 minutes was 0.25 V.
The semiconductor film was crystalline.
比較例2
 スパッタリングターゲットに、純度3Nの酸化インジウムからなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:120ppm(Sn:30ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:60ppm)からなるターゲットを使用した他は、実施例3と同様にして薄膜トランジスタを作製した。
Comparative Example 2
Sputtering target made of indium oxide having a purity of 3N (positive tetravalent or higher metal elements: Sn, Ti, Zr total: 120 ppm (Sn: 30 ppm), positive divalent or lower metal elements: Na, K, Mg , Zn total amount: 60 ppm) A thin film transistor was fabricated in the same manner as in Example 3 except that a target consisting of 60 ppm was used.
 この薄膜トランジスタの電界効果移動度は48cm/V・sec、On/Off比は10であり、Vthは-2.8V、S値は1.9V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.4Vであった。
 半導体膜は結晶質であった。
Field effect mobility of the thin film transistor is 48cm 2 / V · sec, On / Off ratio is 10 7, Vth is -2.8 V, S value is 1.9V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off. The shift voltage (Vth) after applying 20V voltage to the gate electrode for 100 minutes was 0.4V.
The semiconductor film was crystalline.
 このようにフォトリソグラフィー及びリフトオフプロセスによりエッチストッパー型の薄膜トランジスタにおいても、純度の高い酸化インジウム焼結体ターゲットにより得た結晶質酸化インジウム薄膜を使用した場合はS値が低く、良好なトランジスタ特性を示す。 Thus, even in an etch stopper type thin film transistor by photolithography and a lift-off process, when a crystalline indium oxide thin film obtained with a high purity indium oxide sintered target is used, the S value is low, and good transistor characteristics are exhibited. .
実施例4
 チャンネル部60のソース・ドレイン電極間間隙(L)を20μm、幅(W)を100μmとした他は、実施例3と同様にして、薄膜トランジスタを作製した。
Example 4
A thin film transistor was manufactured in the same manner as in Example 3 except that the gap (L) between the source and drain electrodes of the channel portion 60 was 20 μm and the width (W) was 100 μm.
 この薄膜トランジスタの電界効果移動度は32cm/V・sec、On/Off比は10であり、Vthは3.5V、S値は0.45V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.18Vであった。
 半導体膜は結晶質であった。
Field effect mobility of the thin film transistor is 32cm 2 / V · sec, On / Off ratio is 10 9, Vth is 3.5 V, S value 0.45 V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off. The shift voltage (Vth) after applying 20V voltage to the gate electrode for 100 minutes was 0.18V.
The semiconductor film was crystalline.
実施例5
 チャンネル部60のソース・ドレイン電極間間隙(L)を10μm、幅(W)を20μmとした他は、実施例4と同様にして、薄膜トランジスタを作製した。
Example 5
A thin film transistor was manufactured in the same manner as in Example 4 except that the gap (L) between the source and drain electrodes of the channel portion 60 was 10 μm and the width (W) was 20 μm.
 この薄膜トランジスタの電界効果移動度は36cm/V・sec、On/Off比は4.6×10であり、Vthは3.2V、S値は0.40V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.16Vであった。
 半導体膜は結晶質であった。
 実施例5で作製した薄膜トランジスタの伝達曲線を図7に示す。
This thin film transistor has a field effect mobility of 36 cm 2 / V · sec, an On / Off ratio of 4.6 × 10 8 , a Vth of 3.2 V, and an S value of 0.40 V / dec. Thus, the thin film transistor exhibits normally-off characteristics. The output characteristics showed a clear pinch-off. The shift voltage (Vth) after applying a 20V voltage to the gate electrode for 100 minutes was 0.16V.
The semiconductor film was crystalline.
A transfer curve of the thin film transistor manufactured in Example 5 is shown in FIG.
比較例3
 スパッタリングターゲットに、純度3Nの酸化インジウムからなるターゲット(正4価以上の金属元素:Sn,Ti,Zrの総合計:120ppm(Sn:30ppm)、正2価以下の金属元素:Na,K,Mg,Znの総合計:60ppm)からなるターゲットを使用した他は、実施例4と同様にして薄膜トランジスタを作製した。
Comparative Example 3
Sputtering target made of indium oxide having a purity of 3N (positive tetravalent or higher metal elements: Sn, Ti, Zr total: 120 ppm (Sn: 30 ppm), positive divalent or lower metal elements: Na, K, Mg , Zn total amount: 60 ppm) A thin film transistor was fabricated in the same manner as in Example 4 except that the target was used.
 この薄膜トランジスタの電界効果移動度は27cm/V・sec、On/Off比は4×10であり、Vthは-2.2V、S値は1.0V/dec.で、ノーマリーオンの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.38Vであった。半導体膜は結晶質であった。 This thin film transistor has a field effect mobility of 27 cm 2 / V · sec, an On / Off ratio of 4 × 10 8 , a Vth of −2.2 V, and an S value of 1.0 V / dec. Thus, the thin film transistor exhibits normally-on characteristics. The output characteristics showed a clear pinch-off. The shift voltage (Vth) after applying 20V voltage to the gate electrode for 100 minutes was 0.38V. The semiconductor film was crystalline.
 実施例4の薄膜トランジスタは、素子サイズを特許文献3に記載の素子と同程度のチャンネル長(L)及び幅(W)を持つ。この場合でも、本発明では良好なトランジスタ特性を有するトランジスタが得られた。 The thin film transistor of Example 4 has the same channel length (L) and width (W) as those of the element described in Patent Document 3. Even in this case, a transistor having good transistor characteristics was obtained in the present invention.
 実施例5の薄膜トランジスタのソース・ドレイン電極間間隙(L)は10μm、幅(W)は20μmである。チャンネル幅を狭くした場合においても、本発明では良好なトランジスタ特性を有するトランジスタが得られた。 The gap (L) between the source and drain electrodes of the thin film transistor of Example 5 is 10 μm, and the width (W) is 20 μm. Even when the channel width is narrowed, a transistor having good transistor characteristics is obtained in the present invention.
 本発明の薄膜トランジスタは、ディスプレイ用パネル、RFIDタグ、X線ディテクタパネル・指紋センサ・フォトセンサ等のセンサ等に好適に使用できる。
 本発明の薄膜トランジスタの製造方法は、特に、チャンネルエッチ型の薄膜トランジスタの製造方法に適している。
The thin film transistor of the present invention can be suitably used for sensors such as display panels, RFID tags, X-ray detector panels, fingerprint sensors, and photosensors.
The thin film transistor manufacturing method of the present invention is particularly suitable for a channel etch type thin film transistor manufacturing method.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (11)

  1.  結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が10原子ppm以下である薄膜トランジスタ。 A thin film transistor having a crystalline indium oxide semiconductor film and having a content of positive tetravalent or higher metal elements with respect to all metal elements contained in the semiconductor film of 10 atomic ppm or less.
  2.  結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が1原子ppm以下である薄膜トランジスタ。 A thin film transistor having a crystalline indium oxide semiconductor film and having a content of positive tetravalent or higher metal elements of 1 atomic ppm or less with respect to all metal elements contained in the semiconductor film.
  3.  結晶質酸化インジウム半導体膜を有し、前記半導体膜に含まれる全金属元素に対する正4価以上の金属元素の含有率が0.1原子ppm以下である薄膜トランジスタ。 A thin film transistor having a crystalline indium oxide semiconductor film and having a content of positive tetravalent or higher metal elements with respect to all metal elements contained in the semiconductor film being 0.1 atomic ppm or less.
  4.  前記正4価以上の金属元素がSnである請求項1~3のいずれかに記載の薄膜トランジスタ。 4. The thin film transistor according to claim 1, wherein the positive tetravalent or higher metal element is Sn.
  5.  さらに、前記半導体膜に含まれる全金属元素に対する正2価以下の金属元素の含有率が50原子ppm以下である請求項1~4のいずれかに記載の薄膜トランジスタ。 The thin film transistor according to any one of claims 1 to 4, wherein the content of metal elements having a positive divalent value or less relative to all metal elements contained in the semiconductor film is 50 atomic ppm or less.
  6.  チャンネルエッチ型である請求項1~5のいずれかに記載の薄膜トランジスタ。 6. The thin film transistor according to claim 1, which is a channel etch type.
  7.  エッチストッパー型である請求項1~5のいずれかに記載の薄膜トランジスタ。 6. The thin film transistor according to claim 1, which is of an etch stopper type.
  8.  純度が99.99原子%以上の酸化インジウムターゲットを用いて半導体膜を成膜する成膜工程と、前記半導体膜を酸化処理する工程、及び/又は前記半導体膜を結晶化する工程を含む、請求項1~7のいずれかに記載の薄膜トランジスタの製造方法。 A film forming step of forming a semiconductor film using an indium oxide target having a purity of 99.99 atomic% or more, a step of oxidizing the semiconductor film, and / or a step of crystallizing the semiconductor film. Item 8. The method for producing a thin film transistor according to any one of Items 1 to 7.
  9.  前記酸化インジウムターゲットの純度が99.995原子%以上である請求項8に記載の薄膜トランジスタの製造方法。 The method of manufacturing a thin film transistor according to claim 8, wherein the purity of the indium oxide target is 99.995 atomic% or more.
  10.  前記成膜工程をスパッタリングで実施し、スパッタリング中の雰囲気の酸素濃度を5~20体積%とする請求項8又は9に記載の薄膜トランジスタの製造方法。 10. The method of manufacturing a thin film transistor according to claim 8, wherein the film forming step is performed by sputtering, and an oxygen concentration in an atmosphere during sputtering is set to 5 to 20% by volume.
  11.  前記半導体膜を酸素の存在下に、150~450℃で0.1~1200分間熱処理する請求項8~10のいずれかに記載の薄膜トランジスタの製造方法。 11. The method of manufacturing a thin film transistor according to claim 8, wherein the semiconductor film is heat-treated at 150 to 450 ° C. for 0.1 to 1200 minutes in the presence of oxygen.
PCT/JP2009/005384 2008-10-23 2009-10-15 Thin film transistor having high-purity crystalline indium oxide semiconductor film, and method for manufacturing the thin film transistor WO2010047063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534675A JPWO2010047063A1 (en) 2008-10-23 2009-10-15 Thin film transistor having high-purity crystalline indium oxide semiconductor film and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008273422 2008-10-23
JP2008-273422 2008-10-23
JP2009160564 2009-07-07
JP2009-160564 2009-07-07

Publications (1)

Publication Number Publication Date
WO2010047063A1 true WO2010047063A1 (en) 2010-04-29

Family

ID=42119118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005384 WO2010047063A1 (en) 2008-10-23 2009-10-15 Thin film transistor having high-purity crystalline indium oxide semiconductor film, and method for manufacturing the thin film transistor

Country Status (3)

Country Link
JP (1) JPWO2010047063A1 (en)
TW (1) TWI482275B (en)
WO (1) WO2010047063A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084939A (en) * 2011-09-29 2013-05-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
JPWO2013021632A1 (en) * 2011-08-11 2015-03-05 出光興産株式会社 Thin film transistor
JP2022024000A (en) * 2011-09-29 2022-02-08 株式会社半導体エネルギー研究所 Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817327B2 (en) 2010-09-29 2015-11-18 東ソー株式会社 Oxide sintered body, method for producing the same, oxide transparent conductive film obtained using the same, and solar cell
JP5101719B2 (en) 2010-11-05 2012-12-19 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
JP5122670B2 (en) 2010-11-05 2013-01-16 日東電工株式会社 Method for producing transparent conductive film
KR102072340B1 (en) 2012-11-08 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Metal oxide film and method for forming metal oxide film
TWI692110B (en) * 2017-06-05 2020-04-21 日商凸版印刷股份有限公司 Semiconductor device, display device, and sputtering target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058248A1 (en) * 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for producing same, and thin film transistor
JP2008130814A (en) * 2006-11-21 2008-06-05 Canon Inc Method for manufacturing thin film transistor
WO2008114588A1 (en) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. Sputtering target, oxide semiconductor film and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058248A1 (en) * 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for producing same, and thin film transistor
JP2008130814A (en) * 2006-11-21 2008-06-05 Canon Inc Method for manufacturing thin film transistor
WO2008114588A1 (en) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. Sputtering target, oxide semiconductor film and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013021632A1 (en) * 2011-08-11 2015-03-05 出光興産株式会社 Thin film transistor
JP2013084939A (en) * 2011-09-29 2013-05-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP2022024000A (en) * 2011-09-29 2022-02-08 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
TW201023357A (en) 2010-06-16
TWI482275B (en) 2015-04-21
JPWO2010047063A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2010047077A1 (en) Thin film transistor and method for manufacturing same
TWI511300B (en) Thin film transistor having a crystalline indium oxide semiconductor film
WO2010047063A1 (en) Thin film transistor having high-purity crystalline indium oxide semiconductor film, and method for manufacturing the thin film transistor
JP5966840B2 (en) Oxide semiconductor thin film and thin film transistor
KR101263538B1 (en) Semiconductor thin film method for producing same and thin film transistor
JP5386179B2 (en) Semiconductor device, image display apparatus, thin film transistor manufacturing method, and thin film transistor substrate
JP6231880B2 (en) Thin film transistor
JP5466939B2 (en) Semiconductor device, polycrystalline semiconductor thin film, method for manufacturing polycrystalline semiconductor thin film, field effect transistor, and method for manufacturing field effect transistor
JP2007109918A (en) Transistor and its manufacturing method
WO2007058232A1 (en) Semiconductor thin film and method for manufacturing same, and thin film transistor
JP2009164393A (en) Amorphous oxide and field effect transistor
WO2010079581A1 (en) Thin film transistor and method for manufacturing same
JP6107085B2 (en) Oxide semiconductor thin film and thin film transistor
JP2007123699A (en) Thin-film transistor and method of manufacturing same
JP2011066070A (en) Polycrystalline thin film, deposition method of the same, and thin film transistor
TWI640492B (en) Oxide semiconductor thin film, manufacturing method of oxide semiconductor thin film, and thin film transistor using the same
JP6036984B2 (en) Oxynitride semiconductor thin film
JP2014056945A (en) Amorphous oxide thin film, method for producing the same, and thin-film transistor using the same
JP2010219214A (en) Method of manufacturing semiconductor thin film, and thin film transistor including the semiconductor thin film
KR102376258B1 (en) oxide semiconductor thin film
JP2010123836A (en) Thin-film transistor having in-sn-ln-based semiconductor film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821763

Country of ref document: EP

Kind code of ref document: A1