WO2010046450A1 - Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité - Google Patents

Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité Download PDF

Info

Publication number
WO2010046450A1
WO2010046450A1 PCT/EP2009/063923 EP2009063923W WO2010046450A1 WO 2010046450 A1 WO2010046450 A1 WO 2010046450A1 EP 2009063923 W EP2009063923 W EP 2009063923W WO 2010046450 A1 WO2010046450 A1 WO 2010046450A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heat exchanger
circuit
cooling circuit
heating
Prior art date
Application number
PCT/EP2009/063923
Other languages
German (de)
English (en)
Inventor
Heinrich Baas
Original Assignee
Mwm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mwm Gmbh filed Critical Mwm Gmbh
Priority to EP09756689A priority Critical patent/EP2342442A1/fr
Publication of WO2010046450A1 publication Critical patent/WO2010046450A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a cogeneration power plant with an exhaust system for an internal combustion engine, with a cooling circuit for an internal combustion engine and with a heating or low pressure heating circuit for heat utilization, wherein an exhaust gas heat exchanger is provided in the exhaust line and in the heating circuit, a cooling heat exchanger is provided via the heating circuit is coupled to the cooling circuit of the internal combustion engine, wherein an exhaust gas cooling circuit and a heating heat exchanger are provided and the exhaust gas cooling circuit is coupled via the exhaust gas heat exchanger to the exhaust system and via the heating heat exchanger to the heating circuit.
  • the invention also relates to a combined heat and power plant and a method for operating a combined heat and power plant, in which the direct waste heat of the internal combustion engine via a cooling circuit and the waste heat of the exhaust gas of the internal combustion engine are removed by means of an exhaust gas heat exchanger to a heating or low pressure heating circuit, and at the waste heat of the exhaust gas of the internal combustion engine is discharged via the exhaust gas heat exchanger to a coolant of a separate exhaust gas cooling circuit and the exhaust gas cooling circuit to the heating circuit.
  • DE 10 2007 057 164 A1 describes an organic Rankine cycle with a system having at least one first circuit for cooling the internal combustion engine, with at least one exhaust gas heat exchanger and with at least one organic Rankine cycle for an expansion machine, the organic Rankine cycle in addition to a preheating stage, a second heat exchanger stage for vaporizing and / or overheating of the medium, wherein the second heat exchanger stage is coupled only to the exhaust gas heat exchanger.
  • the media used in the Organic Rankine cycle generally have a boiling temperature well below 100 0 C, so that the desired and required in Organic Rankine cycle temperature levels are as small as possible. This has the advantage that heat sources with a relatively low temperature can be used.
  • the Organic Rankine cycle must be designed as a high-pressure circuit at least between the compressor and the expansion machine.
  • the formaldehyde emissions of stationary gas engines must not exceed a limit of 60 mg / mN.
  • the threshold value is exceeded by installing a corresponding oxidation catalytic converter.
  • the use of this oxidation catalyst is not possible because sulfur in the biogas attacks the catalyst.
  • SO 2 is also oxidized to SO 3 in this oxidation catalyst.
  • the dew point temperature rises above the operating temperature of the exhaust gas heat exchanger wall, causing acidic condensate to precipitate. This leads to corrosion damage to the exhaust gas heat exchanger. This could be remedied by a fuel gas desulphurisation plant with corresponding costs.
  • the object of the invention is to design and arrange a cogeneration unit in such a way that corrosion damage to the flue gas heat exchanger can be prevented in a simple manner.
  • the object is achieved by a cogeneration power plant according to claim 1, a cogeneration plant according to claim 5 and a method according to claim 8.
  • the exhaust gas cooling circuit with the exhaust gas heat exchanger and the heating heat exchanger as Z 64tempe- raturnik formed such that in operation an inlet temperature T in the exhaust gas heat exchanger of at least 100 0 C, HO 0 C, 12O 0 C, 13O 0 C or 14O 0 C.
  • the heating or low pressure heating circuit and the exhaust gas cooling circuit are separated from each other here. This ensures that by means of the exhaust gas cooling circuit, a further temperature level can be provided on the exhaust side of the exhaust gas heat exchanger on the exhaust side, in which a condensation of acidic condensate is prevented in the exhaust system.
  • the cooling circuit forms an intermediate circuit which has the desired temperature level on the heating circuit side and, above all, ensures a sufficiently high temperature level on the exhaust gas side, ie at the exhaust gas side of the exhaust gas heat exchanger.
  • a high inlet temperature T of the cooling medium is a condensation of acidic condensate in the exhaust gas heat exchanger or at the Flue gas-carrying inner wall prevents, since the dew point of acidic components is not reached. Even if the inlet temperature T decreases at a refrigerant pipe leading the tube wall of the exhaust gas heat exchanger below the dew point, this can be harmless as long as the flue gas-carrying inner wall of the exhaust gas heat exchanger has a temperature above the dew point.
  • a biogas plant can also be operated without an expensive desulphurization plant while maintaining the formaldehyde limit. Due to the increased coolant temperature, the pipe wall temperature in the exhaust gas heat exchanger is raised above the dew point temperature of the sulfur in the exhaust gas, so that no condensate is produced during operation.
  • the combined heat and power plant can be supplemented according to the invention with the use of an internal combustion engine to a cogeneration plant, which offers the same advantages of the invention.
  • the inlet temperature T of the coolant is selected to be at least so high that a flue gas-carrying inner wall of the exhaust gas heat exchanger does not fall below the dew point of one or more acidic components of the exhaust gas, the advantages of the invention are also achieved.
  • the exhaust gas heat exchanger is coupled according to the invention via the exhaust gas cooling circuit and a heating heat exchanger with the heating circuit, so that a condensation of these components is excluded on the inner wall.
  • the DE 10 2007 057 164 Al does not address the problem solved according to the invention concerning the protection of the exhaust gas heat exchanger from condensation products, in particular in a cogeneration plant for the purpose of supply of a low-pressure heating circuit, ie without an expansion machine for generating electrical energy.
  • a liquid cooling medium with water and / or oil is provided for the exhaust gas cooling circuit.
  • temperatures up to about 14O 0 C can be used with appropriate additives as a cooling medium using an elevated pressure level.
  • oil When using a higher temperature level, the use of oil as a cooling medium is necessary.
  • a corresponding design of the exhaust gas cooling circuit or the exhaust gas heat exchanger and the heating heat exchanger is necessary.
  • the exhaust gas cooling circuit with the exhaust gas heat exchanger and the heating heat exchanger as an intermediate temperature circuit and / or the heating circuit is designed such that overheating or evaporation of the cooling medium in the exhaust gas cooling circuit and / or in the heating circuit is prevented.
  • All the exhaust gas cooling circuit and the heating circuit forming components, in particular the exhaust gas heat exchanger and / or the heating heat exchanger, can thus be designed for normal pressure or at least slight overpressure up to 1.5 bar.
  • the oxidation catalytic converter provided in the exhaust gas line is designed to be resistant to sulfur.
  • the use of a desulfurization is inventively not necessary.
  • the oxidation catalyst in this case must be resistant to sulfur in order to ensure the longevity of the plant.
  • the exhaust gas heat exchanger may be advantageously possible to form the exhaust gas heat exchanger from a material that does not is sulfur resistant.
  • the exhaust gas heat exchanger is formed resistant to sulfur at least on its exhaust side and thus significantly cheaper.
  • the muffler may be arranged with respect to the flow direction of the exhaust gas in principle after the exhaust gas heat exchanger.
  • the inlet temperature of the exhaust gas cooling circuit or the cooling medium in the exhaust gas heat exchanger at least 100 0 C, HO 0 C, 12O 0 C, 13O 0 C or 14O 0 C.
  • the temperature of the flue gas-carrying inner wall of the exhaust gas heat exchanger thus does not reach the dew point temperature, so that a defective condensation of acidic condensate in the exhaust gas heat exchanger is prevented. Since the dew point temperature depends on the sulfur content of the exhaust gas, at low sulfur content, an inlet temperature T of the coolant of 100 ° C. may already be sufficient.
  • the inlet temperature of the exhaust gas cooling circuit is variable in the exhaust gas heat exchanger in dependence of the sulfur content of the exhaust gas.
  • the dew point temperature of the various acids especially sulfuric acid, sulfurous acid and nitric acid, varies.
  • the inlet temperature can be very low without causing harmful condensation.
  • a higher inlet temperature is necessary to prevent harmful condensation.
  • the inlet temperature also varies the required operating pressure of the exhaust gas cooling circuit and thus the required derliche pressure stage of the exhaust gas and the heating heat exchanger. A corresponding adjustment or selection is necessary.
  • the inlet temperature T is selected to be at least as high as the dew point temperature of one or more components of the exhaust gas.
  • the coolant is heated with the entry into the heat exchanger, so that a condensation of acidic condensate is excluded.
  • an inlet temperature T of at least 100 0 C, HO 0 C, 12O 0 C, 13O 0 C or 14O 0 C is selected, a condensation of acid condensate in the exhaust gas heat exchanger can also be excluded, since the dew point temperature is usually a value of 100 0 C does not fall below.
  • the dew point temperature depends on the sulfur content of the exhaust gas. At low sulfur content, an inlet temperature T of 100 ° C. may already be sufficient.
  • biogas can be used as fuel for the internal combustion engine without the exhaust gas of the internal combustion engine being desulphurized before it enters the exhaust gas heat exchanger. The cost of a desulfurization be saved.
  • Figure Ia, Ib each a schematic diagram of the structure of a
  • Figure 2 is a schematic diagram of a structure of a combined heat and power plant with separate exhaust gas cooling circuit.
  • the combined heat and power plant 10 comprises a cogeneration unit 1, which is supplemented by the addition of the combustion system V to the combined heat and power plant 10.
  • the combined heat and power plant 10 has a heating circuit 4, via which the dissipated engine and exhaust heat is fed into a consumer circuit not shown in detail or a low-pressure heating circuit or hot water circuit.
  • both the cooling heat exchanger 3.4 and the exhaust gas heat exchanger 2.5 are coupled to the heating circuit 4.
  • the cooling heat exchanger 3.4 is arranged in relation to the flow direction of the heating circuit 4 in front of the exhaust gas heat exchanger 2.5.
  • the heating circuit Laufmedium occurs with about 7O 0 C in the cooling heat exchanger 3.4 and with about 9O 0 C from the exhaust gas heat exchanger 2.5 from.
  • a circulation pump 3.2, 4.2 is provided in each case.
  • the exhaust gas heat exchanger 2.5 can also be coupled to the cooling circuit 3, so that both the heat obtained from the cooling of the internal combustion engine V, as well as the heat recovered from the exhaust line 2 is discharged together via the cooling heat exchanger 3.4 to the heating circuit 4.
  • the cooling medium enters the combustion engine V with about 8O 0 C, with about 92 0 C in the exhaust gas heat exchanger 2.5 and at about 104 0 C in the cooling heat exchanger 3.4 a.
  • the inlet temperature T of the heating circuit medium in the exhaust gas heat exchanger 2.5 is approximately 85 ° C.
  • the inlet temperature T of the cooling water in the exhaust gas heat exchanger 2.5 is about 92 0 C.
  • the internal combustion engine V is coupled via the cooling circuit 3 and the cooling heat exchanger 3.4 with the heating circuit 4 according to embodiment of FIG Ia.
  • the exhaust gas heat dissipated is fed into a not shown consumer circuit or a low-pressure heating circuit or process water circuit.
  • an exhaust gas cooling circuit 5 with a heating heat exchanger 5.4 is additionally provided between the exhaust gas heat exchanger 2.5 and the heating circuit 4.
  • the exhaust gas heat exchanger 2.5 is coupled via the exhaust gas cooling circuit 5 and the heating heat exchanger 5.4 with the heating circuit 4.
  • the exhaust gas cooling circuit 5 also comprises a pump 5.2 and a mixing valve 5.1 with a bypass 2 ".
  • the inlet temperature T on the exhaust gas heat exchanger 2.5 is, depending on sulfur content of the exhaust gas at least between 100 0 C and 14O 0 C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne une installation (partielle) de cogénération de chaleur et d'électricité (1) comportant une ligne d'échappement (2) pour une machine à combustion interne (V), un circuit de refroidissement (3) pour une machine à combustion interne (V) et un circuit de chauffage (4) pour la valorisation de la chaleur, un échangeur thermique des gaz d'échappement (2.5) étant monté sur la ligne d'échappement (2), un échangeur thermique de refroidissement (3.4) étant monté dans le circuit de chauffage (4) et reliant le circuit de chauffage (4) et le circuit de refroidissement (3) de la machine à combustion interne (V). Cette installation comporte un circuit de refroidissement des gaz d'échappement (5) et un échangeur thermique de chauffage (5.4), le circuit de refroidissement des gaz d'échappement (5) étant couplé à la ligne d'échappement (2) par l'intermédiaire de l'échangeur thermique des gaz d'échappement (2.5) et au circuit de chauffage (4) par l'intermédiaire de l'échangeur thermique de chauffage (5.4). L'invention porte également sur un procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité (10), selon lequel la chaleur résiduelle des gaz d'échappement de la machine à combustion interne (V) est évacuée par l'intermédiaire de l'échangeur thermique des gaz d'échappement (2.5) vers un agent de refroidissement d'un circuit de refroidissement des gaz d'échappement (5) séparé et vers le circuit de chauffage (4) par l'intermédiaire du circuit de refroidissement des gaz d'échappement (5).
PCT/EP2009/063923 2008-10-22 2009-10-22 Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité WO2010046450A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09756689A EP2342442A1 (fr) 2008-10-22 2009-10-22 Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008052640.1 2008-10-22
DE102008052640A DE102008052640A1 (de) 2008-10-22 2008-10-22 Kraftwärmekopplungsteilanlage, Kraftwärmekopplungsanlage und Verfahren zum Betrieb einer Kraftwärmekopplungsanlage

Publications (1)

Publication Number Publication Date
WO2010046450A1 true WO2010046450A1 (fr) 2010-04-29

Family

ID=41557640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063923 WO2010046450A1 (fr) 2008-10-22 2009-10-22 Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité

Country Status (3)

Country Link
EP (1) EP2342442A1 (fr)
DE (1) DE102008052640A1 (fr)
WO (1) WO2010046450A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673031A (zh) * 2013-12-04 2014-03-26 大连葆光节能空调设备厂 大幅降低热电联产集中供热温度的系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0015208A1 (fr) * 1979-02-22 1980-09-03 Societe D'etudes De Machines Thermiques S.E.M.T. Dispositif de récupération d'énergie thermique dans un moteur à combustion interne suralimenté
EP0453007A2 (fr) * 1990-03-23 1991-10-23 Adviesbureau Amerconsult B.V. Système d'échauffement pour gaz
FR2868809A1 (fr) * 2004-04-09 2005-10-14 Armines Ass Pour La Rech Et Le Systeme permettant de recuperer l'energie thermique d'un vehicule a moteur thermique en mettant en oeuvre un cycle de rankine produisant de l'energie mecanique et/ou electrique au moyen d'une turbine
DE102006043139A1 (de) 2006-09-14 2008-03-27 Man Nutzfahrzeuge Ag Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
DE102007057164A1 (de) 2006-11-24 2008-06-12 Behr Gmbh & Co. Kg System mit einem Organic-Rankine-Kreislauf zum Antrieb zumindest einer Expansionsmaschine, Wärmetauscher zum Antrieb einer Expansionsmaschine, Verfahren zum Betreiben zumindest einer Expansionsmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0015208A1 (fr) * 1979-02-22 1980-09-03 Societe D'etudes De Machines Thermiques S.E.M.T. Dispositif de récupération d'énergie thermique dans un moteur à combustion interne suralimenté
EP0453007A2 (fr) * 1990-03-23 1991-10-23 Adviesbureau Amerconsult B.V. Système d'échauffement pour gaz
FR2868809A1 (fr) * 2004-04-09 2005-10-14 Armines Ass Pour La Rech Et Le Systeme permettant de recuperer l'energie thermique d'un vehicule a moteur thermique en mettant en oeuvre un cycle de rankine produisant de l'energie mecanique et/ou electrique au moyen d'une turbine
DE102006043139A1 (de) 2006-09-14 2008-03-27 Man Nutzfahrzeuge Ag Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
DE102007057164A1 (de) 2006-11-24 2008-06-12 Behr Gmbh & Co. Kg System mit einem Organic-Rankine-Kreislauf zum Antrieb zumindest einer Expansionsmaschine, Wärmetauscher zum Antrieb einer Expansionsmaschine, Verfahren zum Betreiben zumindest einer Expansionsmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103673031A (zh) * 2013-12-04 2014-03-26 大连葆光节能空调设备厂 大幅降低热电联产集中供热温度的系统
CN103673031B (zh) * 2013-12-04 2016-06-29 大连葆光节能空调设备厂 大幅降低热电联产集中供热温度的系统

Also Published As

Publication number Publication date
DE102008052640A1 (de) 2010-04-29
EP2342442A1 (fr) 2011-07-13

Similar Documents

Publication Publication Date Title
DE102018222512B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE112011104756T5 (de) Anlage zur berührungslosen Schlammtrocknung mittels Rauchgasabwärme
DE102010036487A1 (de) System und Verfahren zum Liefern von Brennstoff an eine Gasturbine
EP2126291A2 (fr) Procédé permettant de faire fonctionner une installation de turbine à gaz et à vapeur et installation de turbine à gaz et à vapeur conçue à cette fin
CH702163A2 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume.
WO1994027089A2 (fr) Centrale thermique a vapeur permettant de produire de l'energie electrique
EP3420202B1 (fr) Recirculation de condensat
DE102007054467B4 (de) Verfahren zur Brennstoffvorwärmung
EP2611995B1 (fr) Système de turbine à vapeur à alimentation en vapeur variable
EP2480763B1 (fr) Centrale à vapeur
EP2342442A1 (fr) Installation partielle de cogénération de chaleur et d'électricité, installation de cogénération de chaleur et d'électricité et procédé pour faire fonctionner une installation de cogénération de chaleur et d'électricité
EP2938848B1 (fr) Dispositif de régulation de température de vapeur conçu pour un ensemble turbine à gaz et à vapeur
DE102019106105A1 (de) Verfahren zur Betriebsartschaltung eines Verbrennungsmotors
EP3810907B1 (fr) Recirculation des gaz d'échappement dans des installations de turbines à gaz et à vapeur
EP2959120B1 (fr) Préchauffeur de condensat pour générateur de vapeur à récupération de chaleur
DE102016013704A1 (de) Verbrennungskraftmaschine für einen Kraftwagen und Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102016213279B4 (de) Abgasnachbehandlungssystem einer Brennkraftmaschine, Brennkraftmaschine und Verfahren zur Abgasnachbehandlung
DE102019203847B4 (de) Antriebseinrichtung für ein Kraftfahrzeug mit einer Abgasleitung, einem Vorratsbehälter für ein Betriebsmittel und einem Wärmerohr sowie Verfahren zum Betreiben einer Antriebseinrichtung
EP3717752B1 (fr) Installation pour produire de l'énergie lors de l'incinération d'ordures conventionnelle et procédé
DE102019125395A1 (de) Kaltstart-System und ein zugehöriges Verfahren für ein mit verdichtetem Gas betriebenes Fahrzeug mit einer monovalenten Kraftstoffversorgung
DE102013205053B4 (de) Verfahren zum Betrieb eines einen Wasser-Dampf-Kreislauf aufweisenden Kraftwerks
DE10253640A1 (de) Verfahren und Anordnung zur Reduzierung der Speisewassertemperatur in einem Speisewasserbehälter eines Dampferzeugers
DE102022110339A1 (de) Wärmepumpenanlage und Verfahren zum Betrieb einer Wärmepumpenanlage
AT243283B (de) Wärmeschaltung eines Dampfkraftwerkes
DE2205141A1 (de) Anordnung zur Regelung der Temperatur und der Menge überhitzten Dampfes in Gasturbinenanlagen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09756689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009756689

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE