WO2010044158A1 - 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体 - Google Patents

測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体 Download PDF

Info

Publication number
WO2010044158A1
WO2010044158A1 PCT/JP2008/068737 JP2008068737W WO2010044158A1 WO 2010044158 A1 WO2010044158 A1 WO 2010044158A1 JP 2008068737 W JP2008068737 W JP 2008068737W WO 2010044158 A1 WO2010044158 A1 WO 2010044158A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
measurement signal
mixing
signals
signal generation
Prior art date
Application number
PCT/JP2008/068737
Other languages
English (en)
French (fr)
Inventor
博幸 石原
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US13/124,049 priority Critical patent/US20110200201A1/en
Priority to PCT/JP2008/068737 priority patent/WO2010044158A1/ja
Priority to JP2010533757A priority patent/JP5296090B2/ja
Publication of WO2010044158A1 publication Critical patent/WO2010044158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements

Definitions

  • the present invention relates to a technical field for generating a measurement signal used for surround correction of an AV system.
  • AV systems composed of a plurality of speakers such as 5.1 channels have been used.
  • a special signal such as noise is generally used as a measurement signal for surround correction (such as sound field correction).
  • surround correction such as sound field correction
  • in-phase / same level measurement signals are used in all of a plurality of channels.
  • Such measurement signals do not take into account the relationship (specifically, correlation) between channels in actual content. For this reason, a gap tends to occur between the evaluation using the measurement signal and the actual content evaluation. That is, with the conventional method, it is difficult to evaluate the characteristics when combining a plurality of channels.
  • Patent Documents 1 and 2 Note that techniques related to the present invention are proposed in Patent Documents 1 and 2, for example.
  • the present invention relates to a measurement signal generation device, a measurement signal generation method, a measurement signal generation program, and a measurement signal generation program capable of generating measurement signals for a plurality of channels in consideration of correlation between channels.
  • An object is to provide a recording medium.
  • a measurement signal generation device that generates measurement signals for a plurality of channels is based on an average value and a standard deviation of correlation values between two channels in the plurality of channels. An amount of mixing two signals between two channels is determined, and a measurement signal is generated by mixing the two signals based on the amount of mixing, whereby the measurement signals for the plurality of channels are generated. Measurement signal generating means for generating is provided.
  • a measurement signal generation method for generating measurement signals for a plurality of channels based on an average value and a standard deviation of correlation values between two channels in the plurality of channels. An amount of mixing two signals between two channels is determined, and a measurement signal is generated by mixing the two signals based on the amount of mixing, whereby the measurement signals for the plurality of channels are generated.
  • a measurement signal generation step for generating is provided.
  • the invention according to claim 10 is executed by a computer, and a measurement signal generation program for generating a measurement signal for a plurality of channels is used to calculate the correlation value between two channels in the plurality of channels.
  • the amount of mixing of two signals between the two channels is determined based on the average value and the standard deviation, and the measurement signal is generated by mixing the two signals based on the amount of mixing.
  • a measurement signal generation means for generating measurement signals for the plurality of channels.
  • the measurement signals for the plurality of channels have different correlation values between the two channels in the plurality of channels.
  • FIG. 1 is a schematic configuration diagram of an AV system to which a measurement signal generation device according to an embodiment is applied. It is a figure which shows the process part of a sound field measurement process part. It is a figure which shows the structural example and arrangement example of a speaker. It is a figure which shows the example of the sound pressure distribution in the listening point vicinity. It is a figure for demonstrating the correlation between the channels in actual content. It is a figure for demonstrating the method of simulating the correlation between channels. It is a figure which shows the specific example of the process part of the signal generation part for a measurement. It is a figure for demonstrating the determination method of the amount of mixing. It is a figure for demonstrating the specific example of a mixing processing method.
  • a measurement signal generation device that generates measurement signals for a plurality of channels is based on an average value and a standard deviation of correlation values between two channels in the plurality of channels. Determines the amount of mixing of two signals between channels, and generates measurement signals by mixing the two signals based on the amount of mixing, thereby generating measurement signals for the plurality of channels Measurement signal generation means for performing the measurement.
  • the above-described measurement signal generation device is preferably applied to an AV system configured to be able to generate a measurement signal used for sound field correction, and generates measurement signals for a plurality of channels.
  • the measurement signal generating means determines the amount of mixing of the two signals between the two channels based on the average value and standard deviation of the correlation values between the two channels in the plurality of channels. Then, the measurement signal generation means generates measurement signals by mixing the two signals based on the determined mixing amount, thereby generating measurement signals for all of the plurality of channels.
  • a measurement signal having a correlation between channels that is close to the actual content can be generated. Therefore, by performing sound field correction using such a measurement signal, it is possible to eliminate the gap with the evaluation during actual content reproduction. That is, according to the measurement signal generation device, it is possible to appropriately perform the characteristic evaluation when combining a plurality of channels.
  • the measurement signal generation unit is configured to correlate the two channels in the content based on an average value and a standard deviation of the correlation values between the two channels in the plurality of channels. Can be used to generate measurement signals for the plurality of channels.
  • the measurement signal generation unit selects adjacent channels as the two channels in the plurality of channels.
  • the measurement signal is generated in consideration of such correlation. This makes it possible to generate a measurement signal having a correlation between channels that is closer to the actual content.
  • the measurement signal generation means is arranged in a time direction according to an average value and a standard deviation of the correlation values between the two channels based on a normal distribution random number generation algorithm.
  • Random number generation means for generating random data of correlation values having variations is provided.
  • the measurement signal generating means includes a mixing amount determining means for determining an amount for mixing the two signals between the two channels based on the random number data generated by the random number generating means.
  • the mixing amount determining means determines the mixing amount corresponding to the random number data generated by the random number generating means, based on the relationship between the correlation value obtained in advance and the mixing amount (mixing amount).
  • the measurement signal generating means is a non-correlated signal between any two channels among the non-correlated signals generated for the plurality of channels according to the mixing amount determined by the mixing amount determining means, or Mixing processing means is provided for performing a process of mixing the uncorrelated signals generated for the plurality of channels and the measurement signal.
  • the average value and the standard deviation of the correlation values are set based on at least one of a music genre and a music tone. According to this, since the correlation between channels also tends to change depending on the genre and tone of music, it is possible to generate a measurement signal corresponding to such tendency.
  • the measurement signal generation device further includes storage means for storing the measurement signal generated by the measurement signal generation means.
  • a measurement signal generation method for generating measurement signals for a plurality of channels is based on an average value and a standard deviation of correlation values between two channels in the plurality of channels. Determines the amount of mixing of two signals between channels, and generates measurement signals by mixing the two signals based on the amount of mixing, thereby generating measurement signals for the plurality of channels And a measurement signal generation step.
  • a measurement signal generation program for generating measurement signals for a plurality of channels which is executed by a computer, provides the computer with a correlation value between two channels in the plurality of channels. Determining the amount of mixing of the two signals between the two channels based on the average value and the standard deviation, and generating the measurement signal by mixing the two signals based on the amount of mixing Thus, it functions as a measurement signal generation means for generating measurement signals for the plurality of channels.
  • the measurement signals for the plurality of channels have different correlation values between the two channels in the plurality of channels.
  • the measurement signals for the plurality of channels have an amount of mixing two signals between the two channels based on an average value and a standard deviation of correlation values between the two channels in the plurality of channels. It is determined and generated by a measurement signal generated by mixing the two signals based on the amount to be mixed.
  • the measurement signal generation method, the measurement signal generation program, and the recording medium described above can also generate a measurement signal having a correlation between channels close to actual content, and using such a measurement signal By performing the sound field correction, it is possible to eliminate the gap with the evaluation during actual content reproduction.
  • FIG. 1 is a schematic configuration diagram of an AV system 100 to which a measurement signal generation apparatus according to the present embodiment is applied.
  • the AV system 100 mainly includes a media playback unit 11, a user I / F (interface) 12, a microphone 13, a sound field correction processing unit 14, a sound field measurement processing unit 15, a control unit 16, power, and the like.
  • An amplifier unit 17, a speaker 18, a video output unit 19, and a video display unit 20 are provided.
  • the media playback unit 11 reproduces a CD (Compact Disc), DVD (Digital Versatile Disc), BD (Blu-ray Disc), and the like, thereby supplying an audio signal to the sound field correction processing unit 14 and a video signal. This is supplied to the video output unit 19.
  • the user I / F 12 is configured to be able to perform various operations by the user, and supplies a signal corresponding to the user operation to the control unit 16.
  • the microphone 13 collects sound and supplies the sound signal to the sound field measurement processing unit 15. For example, the microphone 13 collects sound output from the speaker 18.
  • the sound field correction processing unit 14 is controlled by the control unit 16 and corrects the sound signal supplied from the media playback unit 11 according to the sound field measurement result.
  • the sound field correction processing unit 14 performs frequency correction, level correction, time correction, and the like from the speaker 18 to the listening point.
  • the power amplifier unit 17 performs processing for amplifying the audio signal supplied from the sound field correction processing unit 14 and supplies the processed audio signal to the speaker 18.
  • the sound field measurement processing unit 15 performs a process of measuring the sound field from the speaker 18 to the listening point based on the sound signal acquired from the microphone 13. Specifically, the sound field measurement processing unit 15 generates a measurement signal (test signal) used for sound field correction and outputs it from the speaker 18, and generates a sound field based on the measurement signal collected by the microphone 13. Process to measure.
  • the speaker 18 includes a plurality of (for example, five) speakers, and receives either one of the audio signal processed by the power amplifier unit 17 and the measurement signal generated by the sound field measurement processing unit 15. Output. Note that the control unit 16 switches the audio signal output from the speaker 18.
  • the control unit 16 performs input / output of signals among the user I / F 12, the sound field correction processing unit 14, the sound field measurement processing unit 15, the power amplifier unit 17, and the speaker 18. Execute control.
  • the control unit 16 mainly performs control related to generation of a measurement signal and control related to sound field correction by inputting and outputting signals between the sound field measurement processing unit 15 and the sound field correction processing unit 14. To do.
  • the video output unit 19 performs a predetermined process on the video signal reproduced by the media reproduction unit 11 and outputs it to the video display unit 20.
  • the video display unit 20 performs processing for displaying the video signal output from the video output unit 19.
  • FIG. 2 is a diagram showing a processing unit of the sound field measurement processing unit 15.
  • the sound field measurement processing unit 15 includes a measurement signal generation unit 51 that generates a measurement signal for measuring a sound field, and a sound field measurement unit 52 that measures a sound field based on the measurement signal.
  • the measurement signal generator 51 generates measurement signals for a plurality of channels, and outputs the generated measurement signals from the speaker 18.
  • the sound field measurement unit 52 performs sound field measurement based on the measurement signal output from the speaker 18 in this way. Specifically, the sound field is measured based on the measurement signal collected by the microphone 13.
  • the measurement signal generator 51 corresponds to the measurement signal generator in the present invention, and functions as a measurement signal generator.
  • FIG. 3 is a diagram illustrating a configuration example and an arrangement example of the speaker 18.
  • the speaker 18 includes a speaker 18C disposed at the center, a speaker 18R disposed on the front right, a speaker 18L disposed on the front left, and a speaker disposed on the rear right.
  • 18SR and speaker 18SL arrange
  • FIG. 3A shows a diagram when the speaker 18 is arranged in a car (when arranged in a passenger compartment).
  • the listening point is, for example, a position indicated by reference numeral A11.
  • a hatching area A12 shows an example of sound pressure distribution in the vicinity of the listening point A11.
  • FIG. 3B shows a diagram in which the speakers 18 are arranged concentrically.
  • the listening point is, for example, a position indicated by reference A21.
  • a hatching area A22 shows an example of sound pressure distribution in the vicinity of the listening point A21.
  • the measurement signal generation unit 51 performs processing for generating measurement signals for a plurality of channels (for example, for five channels) in consideration of the correlation between channels. Specifically, the measurement signal generator 51 determines the amount of mixing of two signals between the two channels based on the average value and standard deviation of the correlation values between the two channels in a plurality of channels, By generating two measurement signals by mixing two signals based on the amount to be mixed, measurement signals for a plurality of channels are generated. That is, the measurement signal generation unit 51 simulates the correlation between the two channels in the actual content based on the average value and the standard deviation of the correlation values between the two channels in the plurality of channels. The measurement signal is generated.
  • FIG. 4 shows an example of sound pressure distribution (corresponding to hatching areas A12 and A22) in the vicinity of the listening points A11 and A21 when the speaker 18 is arranged as shown in FIG.
  • FIG. 4 shows a sound pressure distribution when an audio signal is output only from the speakers 18R and 18L arranged at the front.
  • the circle indicated by the solid line corresponds to the immediate vicinity of the listening point, and the sound pressure level increases as the color expressed in gray scale becomes lighter (lighter).
  • FIG. 4A to 4C show examples of sound pressure distributions when in-phase signals are output from the speakers 18R and 18L.
  • FIG. 4A shows the sound pressure distribution at the listening point A11 when the speaker 18 is placed in a car. This sound pressure distribution indicates that the sound field correction (time correction or the like) is not performed. This shows that the center of the sound pressure is greatly deviated.
  • FIG. 4B shows the sound pressure distribution when the signal obtained at the listening point A11 when the speaker 18 is placed in a car is time-corrected (time alignment correction). From this, it can be seen that the deviation of the center of the sound pressure is reduced as compared with the sound pressure distribution shown in FIG.
  • FIG. 4C shows the sound pressure distribution at the listening point A21 when the speakers 18 are arranged concentrically. This shows that the distribution is uniform and ideal.
  • FIGS. 4D to 4F show examples of sound pressure distributions when audio signals of actual contents are output from the speakers 18R and 18L.
  • FIG. 4D shows a sound pressure distribution at the listening point A11 when the speaker 18 is placed in a car. This sound pressure distribution indicates that the sound field is not corrected. This shows that the center of the sound pressure is greatly deviated.
  • FIG. 4E shows the sound pressure distribution when the signal obtained at the listening point A11 when the speaker 18 is placed in a car is time-corrected. From this, it can be seen that the center of the sound pressure is shifted as compared with the sound pressure distribution shown in FIG. That is, it can be seen that there is a gap between the evaluation using the measurement signal (in-phase signal) and the actual content evaluation. Therefore, it can be said that time correction alone is not sufficient for actual content.
  • FIG. 4F shows the sound pressure distribution at the listening point A21 when the speakers 18 are arranged concentrically. This shows that the distribution is uniform and ideal.
  • the sound field correction is performed so that the sound pressure distribution as shown in FIGS. 4C and 4F can be obtained when the actual content is reproduced regardless of the speaker arrangement and the listening point. It can be said that it is desirable to do it. Specifically, in addition to the time correction as described above, it may be desirable to perform correction according to the level difference between the speakers 18R and 18L. Therefore, in this embodiment, a measurement signal that fills the gap with the evaluation at the actual content reproduction is generated. In other words, in order to eliminate the gap with the evaluation during actual content playback, measurement signals for multiple channels are generated with appropriate consideration of correlation between channels, and sound field correction is performed based on the measurement signals. To be done.
  • FIG. 5 is a diagram for explaining the correlation between channels in actual content.
  • a correlation value between adjacent channels when five speakers 18C, 18R, 18L, 18SR, and 18SL are arranged will be described as an example.
  • the correlation value between the channels in the speaker 18SR and the speaker 18SL as indicated by the broken line B1 the correlation value between the channels in the speaker 18L and the speaker 18SL as indicated by the broken line B2, and the speaker as indicated by the broken line B3.
  • FIG. 5B shows time (sec) on the horizontal axis and correlation value on the vertical axis. Specifically, FIG. 5B shows an example of temporal change of the correlation value between the channels in the actual content. From this, it can be seen that the average value of the correlation value differs between channels. It can also be seen that the correlation value fluctuates with time (fluctuates in the time axis direction), and the mode of the time variation varies between channels. In the present embodiment, taking into account the average value of the correlation value between channels in the actual content and the time variation, a measurement signal simulating the average value and the time variation is generated.
  • FIG. 6 is a diagram for explaining a method of simulating the correlation between channels.
  • the measurement signals for a plurality of channels are generated by simulating the correlation between channels using a normal distribution as shown by the curve C1.
  • the average value of the correlation values is simulated by the average value C2 in the normal distribution C1
  • the time variation of the correlation values is simulated by the standard deviation C3 in the normal distribution C1.
  • FIG. 7 is a diagram illustrating a processing unit of the measurement signal generation unit 51.
  • the measurement signal generation unit 51 mainly includes an uncorrelated signal generation unit 51a, a correlation signal generation unit 51f, and a memory unit 51k.
  • the measurement signal generator 51 performs processing for generating uncorrelated signals for five channels (CH1 to CH5).
  • the measurement signal generation unit 51 includes a noise generator 51b that generates an uncorrelated signal such as pink noise and white noise, and a switch unit that can switch a supply destination of the uncorrelated signal generated by the noise generator 51b. 51c and a memory unit 51d that stores uncorrelated signals for five channels.
  • the switch unit 51e selects the uncorrelated signal for 2 channels from the uncorrelated signals for 5 channels stored in the memory unit 51d, The correlation signal is supplied to the correlation signal generator 51f.
  • the correlation signal generation unit 51f performs a process of generating a measurement signal (correlation signal) corresponding to the correlation between the two channels selected by the switch unit 51e.
  • the correlation signal generation unit 51f includes a random number generation processing unit 51g, a mixing amount determination processing unit 51h, and a mixing processing unit 51i.
  • the random number generation processing unit 51g acquires the average value and standard deviation of the correlation value between the two channels selected by the switch unit 51e from the control unit 16, and based on the normal distribution random number generation algorithm, the average value of the correlation value And random number data of correlation values (hereinafter also referred to as “correlation value information”) having variations in the time direction according to the standard deviation. That is, the random number generation processing unit 51g controls the variation in the correlation value of the signal between the two selected channels.
  • the random number generation processing unit 51g outputs the time length of the measurement signal to be generated and the measurement signal of the time length to be generated together with the average value and standard deviation of the correlation values between the two channels described above for a predetermined time.
  • the number divided by the unit (hereinafter, the unit of the divided signal is referred to as “divided frame”) is acquired from the control unit 16.
  • the random number generation processing unit 51g generates random number data ( ⁇ 1) corresponding to the average value and standard deviation of the acquired correlation values for the divided frames based on the normal distribution random number generation algorithm. Thereafter, the random number generation processing unit 51g supplies the generated random number data to the mixing amount determination processing unit 51h as correlation value information.
  • the random number generation processing unit 51g generates correlation value information for each channel (for example, between channels of CH1 and CH2, between channels of CH2 and CH3, between channels of CH3 and CH4, etc.).
  • the random number generation processing unit 51g functions as a random number generation unit in the present invention.
  • the average value and the standard deviation of the correlation values acquired by the random number generation processing unit 51g are, for example, the genre of music (classic, rock, jazz, etc.), the tone of the music, and the image of the sound field to be created (bright feeling and healing). This is set for each channel according to the feeling).
  • the control unit 16 determines the average value and the standard deviation of the correlation values according to this selection, and the random number It supplies to the production
  • the average value and the standard deviation of the correlation values are stored in association with the genre of music, the tone of music, and the image of the sound field for each channel.
  • the mixing amount determination processing unit 51h performs a process of converting the correlation value information acquired from the random number generation processing unit 51g into a mixing amount.
  • This mixing amount corresponds to an amount (in other words, a mixing ratio) for mixing two signals between the two channels selected by the switch unit 51e.
  • the mixing amount is the amount obtained for each divided frame and the amount obtained for each channel because the random number data in the correlation value information exists for the divided frames. More specifically, the mixing amount corresponds to an amount of mixing an uncorrelated signal in one channel or a measurement signal (an already generated signal) and an uncorrelated signal in the other channel.
  • the mixing amount determination processing unit 51h determines a mixing amount corresponding to the acquired correlation value information based on a relationship (a map or the like) between the correlation value and the mixing amount obtained in advance through experiments or the like. Then, the mixing amount determination processing unit 51h supplies the determined mixing amount to the mixing processing unit 51i.
  • the mixing amount determination processing unit 51h functions as a mixing amount determination unit in the present invention.
  • the mixing processing unit 51i performs a process of mixing two signals between the two channels selected by the switch unit 51e according to the mixing amount determined by the mixing amount determination processing unit 51h. Specifically, the mixing processing unit 51i performs a process of mixing an uncorrelated signal in one channel or a measurement signal (an already generated signal) and an uncorrelated signal in the other channel in accordance with the mixing amount. Do. Then, the mixing processing unit 51i supplies a signal (corresponding to the measurement signal of the corresponding channel) obtained by the mixing to the switch unit 51j. Thus, the mixing processing unit 51i functions as a mixing processing unit in the present invention.
  • the switch unit 51j acquires the measurement signal from the mixing processing unit 51i, and switches the channel of the memory unit 51k that stores the measurement signal in accordance with a command from the control unit 16.
  • the memory unit 51k stores measurement signals for five channels, and supplies the stored measurement signals to the corresponding speakers 18C, 18R, 18L, 18SR, and 18SL.
  • FIG. 7 illustrates the case where the channel CH1 is used as a reference. That is, an example of a processing unit that sequentially generates measurement signals for the remaining channels CH2 to CH5 using the channel CH1 as a reference is shown. Therefore, as shown in FIG. 7, a non-correlated signal is supplied from the memory unit 51d of the non-correlated signal generation unit 51a to the memory unit 51k corresponding to the channel CH1, and the non-correlated signal is stored as it is. That is, for channel CH1, the uncorrelated signal is used as it is as a measurement signal.
  • FIG. 8 is a diagram for explaining a specific example of a method for determining a mixing amount. Specifically, FIG. 8 shows an example of the relationship between the mixing amount and the correlation value. This relationship is obtained, for example, by conducting an experiment in advance.
  • the mixing amount determination processing unit 51h determines a mixing amount corresponding to the correlation value (correlation value information) acquired from the random number generation processing unit 51g by referring to such a relationship. For example, when “0.6” is acquired as the correlation value, the mixing amount determination processing unit 51h determines “0.45” as the mixing amount (see the arrow in FIG. 8).
  • FIG. 9 is a diagram for explaining a specific example of the mixing processing method.
  • FIG. 9A a case where a measurement signal used for a channel of each speaker is generated when five speakers 18C, 18L, 18SL, 18SR, and 18R are used will be described as an example.
  • the mixing processing unit 51i uses the front speaker 18C as a reference, and the measurement signal in consideration of the correlation between two adjacent channels for the other speakers 18L, 18SL, 18SR, and 18R. Are generated sequentially.
  • the channel in the speaker 18C corresponds to the channel CH1 shown in FIG.
  • the mixing processing unit 51i uses the channel of the speaker 18C as a reference, the channel of the speaker 18L ⁇ the channel of the speaker 18SL ⁇ the channel of the speaker 18SR ⁇ the channel of the speaker 18R. Measurement signals are sequentially generated in the order of channels.
  • the uncorrelated signals used in the channels of the speakers 18C, 18L, 18SL, 18SR, and 18R are “X1”, “X2”, “X3”, and “X4”, respectively. , Written as “X5”.
  • these uncorrelated signals are signals stored in the memory unit 51d, selected by the switch unit 51e, and supplied to the mixing processing unit 51i.
  • measurement signals used in the channels of the speakers 18C, 18L, 18SL, 18SR, and 18R are denoted as “Cch”, “Lch”, “SLch”, “SRch”, and “Rch”, respectively. Since the channel of the speaker 18C is used as a reference, the uncorrelated signal X1 is used as the measurement signal Cch in the channel of the speaker 18C.
  • FIG. 9B is a diagram for explaining a method for obtaining the measurement signal Lch in the channel of the speaker 18L.
  • the mixing processing unit 51i obtains the measurement signal Lch in the speaker 18L in consideration of the correlation between the channel in the speaker 18C and the channel in the speaker 18L, as indicated by an arrow D1 in FIG. Specifically, the mixing processing unit 51i is based on the uncorrelated signal X1 in the speaker 18C and the uncorrelated signal X2 in the speaker 18L, and the mixing amount “ j_Lch ” determined between the channels of the speaker 18C and the speaker 18L.
  • the measurement signal Lch is obtained. More specifically, as illustrated in FIG.
  • the mixing processing unit 51i applies a value obtained by multiplying the uncorrelated signal X1 in the speaker 18C by “ j_Lch ” and the uncorrelated signal X2 in the speaker 18L.
  • a value obtained by adding a value obtained by multiplying “1- j_Lch ” is output as a measurement signal Lch. That is, the mixing processing unit 51i obtains the measurement signal Lch by calculating the following equation (1).
  • the mixing processing unit 51i considers the correlation between the channel in the speaker 18L and the channel in the speaker 18SL, and outputs the measurement signal SLch in the channel of the speaker 18SL. Ask. Specifically, the mixing processing unit 51i performs the mixing determined between the measurement signal Lch in the speaker 18L and the uncorrelated signal X3 in the speaker 18SL, and the channel between the speaker 18L and the speaker 18SL obtained from Expression (1). Based on the quantity “ j_SLch ”, the measurement signal SLch is obtained. Specifically, the measurement signal SLch is obtained by calculating the following equation (2).
  • the mixing processing unit 51i considers the correlation between the channel in the speaker 18SL and the channel in the speaker 18SR, and outputs the measurement signal SRch in the channel of the speaker 18SR. Ask. Specifically, the mixing processing unit 51i performs the mixing determined between the measurement signal SLch in the speaker 18SL and the uncorrelated signal X4 in the speaker 18SR and the channels of the speaker 18SL and the speaker 18SR obtained from the equation (2). Based on the quantity “ j_SRch ”, the measurement signal SRch is obtained. Specifically, the measurement signal SRch is obtained by calculating the following equation (3).
  • the mixing processing unit 51i considers the correlation between the channel in the speaker 18SR and the channel in the speaker 18R in consideration of the correlation between the channel in the speaker 18SR and the measurement signal Rch in the channel of the speaker 18R, as indicated by an arrow D4 in FIG. Ask. Specifically, the mixing processing unit 51i performs mixing determined between the measurement signal SRch in the speaker 18SR and the uncorrelated signal X5 in the speaker 18R, and the channels of the speaker 18SR and the speaker 18R, obtained from Expression (3). Based on the quantity “ j_Rch ”, the measurement signal Rch is obtained. Specifically, the measurement signal Rch is obtained by calculating the following equation (4).
  • FIG. 10 is a diagram illustrating an example of a correlation value and the like in the measurement signal generated as described above.
  • FIG. 10A shows a temporal change in the correlation value in the generated measurement signal, specifically, the correlation value between channels in the speakers 18C and 18L.
  • FIG. 10B shows a histogram of data used in generating the measurement signal. In FIG. 10, “0.7914” is used as an average value of correlation values between channels, and “0.0637” is used as a standard deviation.
  • FIG. 11 shows an example of a temporal change in the correlation value in the actual content, specifically, the correlation value between the channels in the speakers 18C and 18L. Comparing FIG. 10A and FIG. 11, it can be seen that the measurement signal generated by the method according to the present embodiment can appropriately simulate the temporal change of the correlation value between channels in the actual content. .
  • the measurement signal is generated in the order of the channel of the speaker 18L ⁇ the channel of the speaker 18SL ⁇ the channel of the speaker 18SR ⁇ the channel of the speaker 18R with reference to the channel of the speaker 18C (FIG. 9).
  • the order in which the measurement signals are generated is not limited to this, as indicated by the white arrows D1, D2, D3, and D4.
  • This is an example of a method for generating a measurement signal based on the correlation between adjacent channels, and is not limited to the speaker 18C serving as a reference speaker, but is counterclockwise (white arrows D1, D2). , D3, and D4) are not limited to the generation of measurement signals.
  • the channel of the speaker other than the speaker 18C may be used as a reference, and clockwise (white arrows D1, D2, D3, D4 and The measurement signal may be generated in the reverse order.
  • FIG. 12 is a flowchart illustrating measurement signal generation processing according to the present embodiment. This process is repeatedly executed by the measurement signal generator 51.
  • step S101 the measurement signal generation unit 51 acquires the time length and the number of divided frames of the measurement signal to be generated. Specifically, the measurement signal generation unit 51 acquires these from the control unit 16 and performs settings. For example, the time length of the measurement signal is set to “60 (sec)”, and the number of divided frames is set to “60 frames”. In one example, the control unit 16 sets the time length and the number of divided frames in accordance with an instruction from a user or the like, and supplies them to the measurement signal generation unit 51.
  • step S102 the process proceeds to step S102.
  • step S102 the measurement signal generation unit 51 acquires an average value and a standard deviation of correlation values between the channels. Specifically, the measurement signal generation unit 51 acquires these from the control unit 16. For example, when the user selects at least one of a song genre, tone, and sound field image, the control unit 16 determines an average value and a standard deviation of the correlation values according to the selection, and performs measurement. The signal is supplied to the signal generator 51. In this case, the control unit 16 reads the average value and the standard deviation data of the correlation values stored in association with the genre of music, the music tone, the sound field image, etc. for each channel, and generates a measurement signal. To the unit 51. When the process of step S102 ends, the process proceeds to step S103.
  • step S103 the measurement signal generator 51 generates correlation value information for the divided frames.
  • the correlation signal generation unit 51f in the measurement signal generation unit 51 uses the normal distribution random number generation algorithm to generate random number data (corresponding to the average value and standard deviation of the correlation values acquired in step S102). ⁇ 1) are generated for the divided frames. Then, the process proceeds to step S104.
  • step S104 the measurement signal generation unit 51 converts the correlation value information into a mixing amount. Specifically, the mixing amount determination processing unit 51h in the measurement signal generation unit 51 is generated in step S103 based on the relationship (such as a map) between the correlation value and the mixing amount obtained in advance through experiments or the like. The mixing amount corresponding to the correlation value information is determined. Then, the process proceeds to step S105.
  • step S105 the measurement signal generator 51 generates a measurement signal for one frame based on a predetermined arithmetic expression.
  • the mixing processing unit 51i in the measurement signal generating unit 51 uses the arithmetic expressions such as the expressions (1) to (4) described above to output two signals according to the mixing amount determined in step S104.
  • a measurement signal for one frame is generated.
  • the mixing processing unit 51i performs a process of mixing a measurement signal (an already generated signal) in one channel and an uncorrelated signal in the other channel according to the mixing amount. Then, the process proceeds to step S106.
  • step S106 the measurement signal generator 51 determines whether or not measurement signals have been generated in all frames (for example, 60 frames). If measurement signals for all frames have been generated (step S106; Yes), the process proceeds to step S107. On the other hand, when the measurement signals for all the frames are not generated (step S106; No), the process returns to step S105. In this case, the measurement signal generator 51 performs a process of generating a measurement signal for the next frame.
  • step S107 the measurement signal generator 51 determines whether measurement signals have been generated for all channels (for example, five channels). If measurement signals for all channels have been generated (step S107; Yes), the process ends. On the other hand, when measurement signals have not been generated for all channels (step S107; No), the process returns to step S102. In this case, the measurement signal generator 51 generates the measurement signal by performing the above-described steps S102 to S106 for the next channel.
  • the measurement signal generation processing described above it is possible to generate a measurement signal having a correlation between channels that is close to actual content. Therefore, by performing sound field correction using such a measurement signal, it is possible to eliminate the gap with the evaluation during actual content reproduction. That is, according to the processing, it is possible to appropriately perform the characteristic evaluation when combining a plurality of channels.
  • the measurement signal is generated based on the correlation between adjacent channels (see FIG. 9 and the like), but the method of generating the measurement signal is not limited to this. That is, even if it is not between adjacent channels, it is possible to generate a measurement signal based on a correlation between arbitrary channels, for example, based on a correlation between channels having a relatively strong correlation.
  • the process for generating the measurement signal every time the sound field measurement is performed is not limited.
  • the measurement signal generated in advance by the above method is stored in the apparatus. It is good also as memorizing
  • the measurement signal generated in advance by the above method is recorded on a recording medium (medium) such as a CD or DVD, and the sound field is measured by reproducing the recording medium. Also good.
  • the present invention can be used for an AV system configured to be able to generate a measurement signal used for surround correction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Stereophonic System (AREA)

Abstract

 測定用信号生成装置は、音場補正に用いる測定用信号を生成可能に構成されたAVシステムなどに好適に適用される。具体的には、測定用信号生成手段は、複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定する。そして、決定されたミキシングする量に基づいて2つの信号をミキシングすることにより測定用信号を生成することで、複数のチャンネル分の測定用信号を生成する。これにより、実際のコンテンツに近いチャンネル間の相関を有する測定用信号を生成することができ、当該測定用信号を用いて音場補正を行うことにより、実際のコンテンツ再生時の評価とのギャップを解消することが可能となる。

Description

測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体
 本発明は、AVシステムのサラウンド補正に用いる測定用信号を生成する技術分野に関する。
 近年、5.1チャンネルなどの複数のスピーカから構成されるAVシステムが用いられている。このようなAVシステムにおいては、一般的に、サラウンド補正(音場補正など)のための測定用信号にはノイズ等の特殊な信号が用いられていた。例えば、複数のチャンネル全てで同相・同レベルの測定用信号が用いられていた。このような測定用信号は、実際のコンテンツにおけるチャンネル間の関係(具体的には相関)を考慮したものではなかった。そのため、測定用信号を用いた評価と実際のコンテンツの評価との間に、ギャップが生じる傾向にあった。つまり、従来の手法では、複数チャンネルの合成時の特性評価が困難であった。
 なお、本発明に関連のある技術が、例えば特許文献1及び2に提案されている。
特開平7-319483号公報 特表2005-523624号公報
 本発明が解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、チャンネル間の相関を適切に考慮して、複数のチャンネル分の測定用信号を生成することが可能な測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体を提供することを目的とする。
 請求項1に記載の発明は、複数のチャンネル分の測定用信号を生成する測定用信号生成装置は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段を備える。
 請求項9に記載の発明は、複数のチャンネル分の測定用信号を生成する測定用信号生成方法は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成工程を備える。
 請求項10に記載の発明は、コンピュータによって実行され、複数のチャンネル分の測定用信号を生成するための測定用信号生成プログラムは、前記コンピュータを、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段として機能させる。
 請求項11に記載の発明は、複数のチャンネル分の測定用信号が記憶された記録媒体において、前記複数のチャンネル分の測定用信号は、前記複数のチャンネルにおける2チャンネル間の相関値が異なる。
本実施例に係る測定用信号生成装置が適用されたAVシステムの概略構成図である。 音場測定処理部の処理部を示す図である。 スピーカの構成例及び配置例を示す図である。 受聴点近傍での音圧分布の例を示す図である。 実際のコンテンツにおけるチャンネル間の相関を説明するための図である。 チャンネル間の相関を模擬する方法について説明するための図である。 測定用信号生成部の処理部の具体例を示す図である。 ミキシング量の決定方法を説明するための図である。 ミキシング処理方法の具体例を説明するための図である。 生成された測定用信号におけるチャンネル間の相関値の一例を示す図である。 実際のコンテンツにおけるチャンネル間の相関値の一例を示す図である。 本実施例に係る測定用信号生成処理を示すフローチャートである。
符号の説明
 12 ユーザI/F
 13 マイクロホン
 14 音場補正処理部
 15 音場測定処理部
 16 制御部
 18 スピーカ
 51 測定用信号生成部
 51a 無相関信号生成部
 51f 相関信号生成部
 51g 乱数生成処理部
 51h ミキシング量決定処理部
 51i ミキシング処理部
 51k メモリ部
 100 AVシステム
 本発明の1つの観点では、複数のチャンネル分の測定用信号を生成する測定用信号生成装置は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段を備える。
 上記の測定用信号生成装置は、音場補正に用いる測定用信号を生成可能に構成されたAVシステムなどに好適に適用され、複数のチャンネル分の測定用信号を生成する。具体的には、測定用信号生成手段は、複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定する。そして、測定用信号生成手段は、決定されたミキシングする量に基づいて2つの信号をミキシングすることにより測定用信号を生成することで、複数のチャンネル全ての測定用信号を生成する。これにより、実際のコンテンツに近い、チャンネル間の相関を有する測定用信号を生成することができる。したがって、このような測定用信号を用いて音場補正を行うことにより、実際のコンテンツ再生時の評価とのギャップを解消することが可能となる。つまり、上記の測定用信号生成装置によれば、複数チャンネルの合成時の特性評価を適切に行うことができる。
 上記の測定用信号生成装置の一態様では、前記測定用信号生成手段は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、コンテンツにおける前記2チャンネル間の相関を模擬することで、前記複数のチャンネル分の測定用信号を生成することができる。
 上記の測定用信号生成装置の他の一態様では、前記測定用信号生成手段は、前記複数のチャンネルにおける前記2チャンネルとして、隣接するチャンネルを選択する。
 この態様では、隣接するチャンネル間では比較的高い相関を持つ場合が見られるため、このような相関を考慮して測定用信号を生成する。これにより、実際のコンテンツにより近い、チャンネル間の相関を有する測定用信号を生成することが可能となる。
 上記の測定用信号生成装置において好適には、前記測定用信号生成手段は、正規分布乱数発生アルゴリズムに基づいて、前記2チャンネル間の相関値の平均値と標準偏差とに応じた、時間方向にばらつきを有する相関値の乱数データを生成する乱数生成手段を備える。
 また好適には、前記測定用信号生成手段は、前記乱数生成手段が生成した前記乱数データに基づいて、前記2チャンネル間で前記2つの信号をミキシングする量を決定するミキシング量決定手段を備える。例えば、ミキシング量決定手段は、予め求められた相関値とミキシングする量(ミキシング量)との関係に基づいて、乱数生成手段が生成した乱数データに対応するミキシング量を決定する。
 また好適には、前記測定用信号生成手段は、前記ミキシング量決定手段が決定したミキシング量によって、前記複数のチャンネル分について生成された無相関信号のうち任意の2チャンネル間の無相関信号、若しくは前記複数のチャンネル分について生成された無相関信号と、前記測定用信号とをミキシングする処理を行うミキシング処理手段を備える。
 好適な実施例では、前記相関値の平均値と標準偏差とは、曲のジャンル及び曲調の少なくともいずれかに基づいて設定されている。これによれば、曲のジャンルや曲調などによってチャンネル間の相関も変化する傾向にあるため、このような傾向に応じた測定用信号を生成することが可能となる。
 また、好適な実施例では、上記の測定用信号生成装置は、前記測定用信号生成手段で生成された測定用信号を記憶する記憶手段を更に有する。
 本発明の他の観点では、複数のチャンネル分の測定用信号を生成する測定用信号生成方法は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成工程を備える。
 また、本発明の他の観点では、コンピュータによって実行され、複数のチャンネル分の測定用信号を生成するための測定用信号生成プログラムは、前記コンピュータを、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段として機能させる。
 更に、本発明の他の観点では、複数のチャンネル分の測定用信号が記憶された記録媒体において、前記複数のチャンネル分の測定用信号は、前記複数のチャンネルにおける2チャンネル間の相関値が異なる。
 好適には、前記複数のチャンネル分の測定用信号は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量が決定されて、前記ミキシングする量に基づいて前記2つの信号をミキシングすることで生成された測定用信号によって生成されている。
 上記した測定用信号生成方法、測定用信号生成プログラム、及び記録媒体によっても、実際のコンテンツに近いチャンネル間の相関を有する測定用信号を生成することができ、このような測定用信号を用いて音場補正を行うことにより、実際のコンテンツ再生時の評価とのギャップを解消することが可能となる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [システム構成]
 図1は、本実施例に係る測定用信号生成装置が適用されたAVシステム100の概略構成図を示す。
 AVシステム100は、主に、メディア再生部11と、ユーザI/F(インターフェース)12と、マイクロホン13と、音場補正処理部14と、音場測定処理部15と、制御部16と、パワーアンプ部17と、スピーカ18と、映像出力部19と、映像表示部20と、を備える。
 メディア再生部11は、CD(Compact Disc)やDVD(Digital Versatile Disc)やBD(Blu-ray Disc)などを再生することで、音声信号を音場補正処理部14に供給すると共に、映像信号を映像出力部19に供給する。ユーザI/F12は、ユーザによって種々の操作を行うことが可能に構成されており、ユーザの操作に対応する信号を制御部16に供給する。マイクロホン13は、音声を集音し、音声信号を音場測定処理部15に供給する。例えば、マイクロホン13は、スピーカ18より出力された音声を集音する。
 音場補正処理部14は、制御部16によって制御され、メディア再生部11から供給された音声信号に対して、音場測定結果に応じた補正を行う。例えば、音場補正処理部14は、スピーカ18から受聴点までの、周波数補正やレベル補正や時間補正などを行う。パワーアンプ部17は、音場補正処理部14から供給された音声信号を増幅する処理を行い、当該処理後の音声信号をスピーカ18に供給する。
 音場測定処理部15は、マイクロホン13から取得された音声信号に基づいて、スピーカ18から受聴点までの音場を測定する処理を行う。詳しくは、音場測定処理部15は、音場補正に用いる測定用信号(テスト信号)を生成してスピーカ18から出力させる共に、マイクロホン13で集音された測定用信号に基づいて音場を測定する処理を行う。スピーカ18は、複数(例えば5個)のスピーカを備えて構成され、パワーアンプ部17で処理された音声信号及び音場測定処理部15で生成された測定用信号のいずれか一方の音声信号を出力する。なお、制御部16によって、スピーカ18から出力される音声信号の切り替えが行われる。
 制御部16は、ユーザI/F12と、音場補正処理部14と、音場測定処理部15と、パワーアンプ部17と、スピーカ18との間で信号の入出力を行うことで、種々の制御を実行する。制御部16は、主に、音場測定処理部15及び音場補正処理部14との間で信号の入出力を行うことで、測定用信号の生成に関する制御、及び音場補正に関する制御を実行する。
 映像出力部19は、メディア再生部11で再生された映像信号に対して所定の処理を行い映像表示部20に出力する。映像表示部20は、映像出力部19から出力された映像信号を表示する処理を行う。
 図2は、音場測定処理部15の処理部を示す図である。音場測定処理部15は、音場測定のための測定用信号を生成する測定用信号生成部51と、測定用信号に基づいて音場を測定する音場測定部52と、備える。具体的には、測定用信号生成部51は、複数のチャンネル分の測定用信号を生成し、生成した測定用信号をスピーカ18から出力させる。音場測定部52は、このようにスピーカ18から出力された測定用信号に基づいて、音場測定を行う。詳しくは、マイクロホン13で集音された測定用信号に基づいて音場測定を行う。なお、測定用信号生成部51は、本発明における測定用信号生成装置に相当し、測定用信号生成手段として機能する。
 図3は、スピーカ18の構成例及び配置例を示す図である。ここでは、スピーカ18が5つのスピーカを有する場合を例に挙げる。具体的には、図示のように、スピーカ18は、センターに配置されるスピーカ18Cと、フロント右に配置されるスピーカ18Rと、フロント左に配置されるスピーカ18Lと、リア右に配置されるスピーカ18SRと、リア左に配置されるスピーカ18SLとを有する。
 図3(a)は、スピーカ18をカー配置した場合(車室に配置した場合)の図を示している。この場合には、受聴点は、例えば符号A11で示す位置となる。また、ハッチング領域A12は、受聴点A11近傍の音圧分布例を示している。一方、図3(b)は、スピーカ18を同心円配置した場合の図を示している。この場合には、受聴点は、例えば符号A21で示す位置となる。また、ハッチング領域A22は、受聴点A21近傍の音圧分布例を示している。
 [測定用信号生成方法]
 次に、本実施例における測定用信号生成方法について具体的に説明する。本実施例では、測定用信号生成部51は、チャンネル間の相関を適切に考慮して、複数のチャンネル分(例えば5チャンネル分)の測定用信号を生成する処理を行う。具体的には、測定用信号生成部51は、複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、このミキシングする量に基づいて2つの信号をミキシングすることにより測定用信号を生成することで、複数のチャンネル分の測定用信号を生成する。即ち、測定用信号生成部51は、複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、実際のコンテンツにおける2チャンネル間の相関を模擬することで、複数のチャンネル分の測定用信号を生成する。
 ここで、図4乃至図6を参照して、上記のような測定用信号生成方法を行う理由について説明する。
 図4は、図3に示したようにスピーカ18を配置した場合の受聴点A11、A21近傍での音圧分布(ハッチング領域A12、A22に対応する)の例を示している。なお、図4では、フロントに配置されたスピーカ18R、18Lのみから音声信号を出力させた場合の音圧分布を示している。また、図4においては、実線で示す丸は受聴点の直近傍に相当し、グレースケールで表した色が薄く(明るく)なるほど、音圧のレベルが高くなるものとする。
 図4(a)~(c)は、スピーカ18R、18Lから同相信号を出力させた場合の音圧分布の例を示している。具体的には、図4(a)は、スピーカ18をカー配置した際の受聴点A11での音圧分布を示している。この音圧分布は、音場補正(時間補正など)を行っていないものを示している。これより、音圧の中心が大きくずれていることがわかる。図4(b)は、スピーカ18をカー配置した際の受聴点A11で得られる信号を時間補正(タイムアライメント補正)した場合の音圧分布を示している。これより、図4(a)に示す音圧分布と比較して、音圧の中心のずれが低減していることがわかる。一方、図4(c)は、スピーカ18を同心円配置した際の受聴点A21での音圧分布を示している。これより、均一な分布となっており、理想的な分布であることがわかる。
 次に、図4(d)~(f)は、スピーカ18R、18Lから実際のコンテンツの音声信号を出力させた場合の音圧分布の例を示している。具体的には、図4(d)は、スピーカ18をカー配置した際の受聴点A11での音圧分布を示している。この音圧分布は、音場補正を行っていないものを示している。これより、音圧の中心が大きくずれていることがわかる。図4(e)は、スピーカ18をカー配置した際の受聴点A11で得られる信号を時間補正した場合の音圧分布を示している。これより、上記の図4(b)に示す音圧分布と比較して、音圧の中心がずれていることがわかる。つまり、測定用信号(同相信号)を用いた評価と実際のコンテンツの評価との間にギャップが生じていることがわかる。よって、実際のコンテンツに対しては、時間補正だけでは不十分であると言える。一方、図4(f)は、スピーカ18を同心円配置した際の受聴点A21での音圧分布を示している。これより、均一な分布となっており、理想的な分布であることがわかる。
 以上のことから、実際のコンテンツを再生した際に、スピーカ配置及び受聴点によらずに、図4(c)、(f)で示すような音圧分布が得られるように、音場補正を行うことが望ましいと言える。具体的には、上記したような時間補正などに加えて、スピーカ18R、18L間のレベル差に応じた補正を行うことが望ましいと考えられる。したがって、本実施例では、実際のコンテンツ再生時の評価とのギャップを埋めるような測定用信号を生成する。つまり、実際のコンテンツ再生時の評価とのギャップが解消するように、チャンネル間の相関を適切に考慮して複数のチャンネル分の測定用信号を生成し、当該測定用信号に基づいて音場補正が行われるようにする。
 図5は、実際のコンテンツにおけるチャンネル間の相関を説明するための図である。ここでは、図5(a)に示すように5つのスピーカ18C、18R、18L、18SR、18SLを配置した場合における、隣接するチャンネル間の相関値を例に挙げる。具体的には、破線B1で示すようなスピーカ18SR及びスピーカ18SLにおけるチャンネル間の相関値と、破線B2で示すようなスピーカ18L及びスピーカ18SLにおけるチャンネル間の相関値と、破線B3で示すようなスピーカ18R及びスピーカ18SRにおけるチャンネル間の相関値と、破線B4で示すようなスピーカ18C及びスピーカ18Lにおけるチャンネル間の相関値と、破線B5で示すようなスピーカ18C及びスピーカ18Rにおけるチャンネル間の相関値と、について説明する。
 図5(b)は、横軸に時間(sec)を示し、縦軸に相関値を示している。具体的には、図5(b)は、実際のコンテンツにおける、上記したチャンネル間の相関値の時間変化例を示している。これより、チャンネル間によって相関値の平均値が異なることがわかる。また、相関値が時間変動(時間軸方向に変動)していると共に、チャンネル間によって当該時間変動の態様が異なることがわかる。本実施例では、このような実際のコンテンツにおけるチャンネル間の相関値の平均値及び時間変動を考慮に入れて、当該平均値及び時間変動を模擬した測定用信号を生成する。
 図6は、チャンネル間の相関を模擬する方法について説明するための図である。本実施例では、曲線C1で示すような正規分布を用いてチャンネル間の相関を模擬して、複数のチャンネル分の測定用信号を生成する。具体的には、上記した相関値の平均値を正規分布C1における平均値C2によって模擬すると共に、相関値の時間変動を正規分布C1における標準偏差C3によって模擬する。
 このような測定用信号生成方法を行うことにより、実際のコンテンツに近い、チャンネル間の相関を有する測定用信号を生成することができる。したがって、このような測定用信号を用いて音場補正を行うことにより、実際のコンテンツ再生時の評価とのギャップを解消することが可能となる。つまり、本実施例に係る測定用信号生成方法によれば、複数のチャンネルの合成時の特性評価を適切に行うことができる。
 [測定用信号生成部の構成例]
 次に、図7を参照して、上記したような測定用信号生成方法を実現可能な測定用信号生成部51の構成例について説明する。
 図7は、測定用信号生成部51の処理部を示す図である。図示のように、測定用信号生成部51は、主に、無相関信号生成部51aと、相関信号生成部51fと、メモリ部51kと、を備える。
 測定用信号生成部51は、5チャンネル(CH1~CH5)分の無相関信号を生成する処理を行う。具体的には、測定用信号生成部51は、ピンクノイズやホワイトノイズなどの無相関信号を生成するノイズジェネレータ51bと、ノイズジェネレータ51bで生成された無相関信号の供給先を切り替え可能なスイッチ部51cと、5チャンネル分の無相関信号を記憶するメモリ部51dと、を備える。スイッチ部51eは、制御部16からの指令に応じて、メモリ部51dに記憶された5チャンネル分の無相関信号のうちの2チャンネル分の無相関信号を選択して、当該2チャンネル分の無相関信号を相関信号生成部51fへ供給する。
 相関信号生成部51fは、スイッチ部51eで選択された2チャンネル間の相関に応じた測定用信号(相関信号)を生成する処理を行う。具体的には、相関信号生成部51fは、乱数生成処理部51gと、ミキシング量決定処理部51hと、ミキシング処理部51iと、を備える。乱数生成処理部51gは、スイッチ部51eで選択された2チャンネル間の相関値の平均値と標準偏差とを制御部16から取得し、正規分布乱数発生アルゴリズムに基づいて、当該相関値の平均値と標準偏差とに応じた時間方向にばらつきを有する相関値の乱数データ(以下、「相関値情報」とも呼ぶ。)を生成する。つまり、乱数生成処理部51gは、選択された2チャンネル間における信号の相関値のばらつきを制御する。
 より具体的には、乱数生成処理部51gは、上記した2チャンネル間の相関値の平均値と標準偏差と共に、生成すべき測定用信号の時間長、及び当該時間長の測定用信号を所定時間単位にて分割する数(以下、分割された信号の単位を「分割フレーム」と呼ぶ。)を、制御部16から取得する。そして、乱数生成処理部51gは、正規分布乱数発生アルゴリズムに基づいて、取得された相関値の平均値と標準偏差とに応じた乱数データ(±1)を分割フレーム分生成する。この後、乱数生成処理部51gは、生成された乱数データを相関値情報としてミキシング量決定処理部51hに供給する。なお、乱数生成処理部51gは、各チャンネル間ごとに(例えば、CH1とCH2とのチャンネル間、CH2とCH3とのチャンネル間、CH3とCH4とのチャンネル間など)、相関値情報を生成する。このように、乱数生成処理部51gは、本発明における乱数生成手段として機能する。
 なお、乱数生成処理部51gが取得する相関値の平均値及び標準偏差は、例えば、曲のジャンル(クラシックやロックやジャズなど)や、曲調や、作成すべき音場のイメージ(明るい感じや癒される感じなど)に応じて、各チャンネル間ごとに設定されている。この場合、ユーザが曲のジャンルや曲調や音場のイメージなどの少なくともいずれかを選択することで、制御部16が、この選択に応じた相関値の平均値と標準偏差とを決定して乱数生成処理部51gへ供給する。例えば、相関値の平均値及び標準偏差は、各チャンネル間ごとに、曲のジャンルや曲調や音場のイメージなどに対応付けられて記憶されている。
 次に、ミキシング量決定処理部51hは、乱数生成処理部51gから取得された相関値情報をミキシング量に変換する処理を行う。このミキシング量は、スイッチ部51eで選択された2チャンネル間において、2つの信号をミキシングする量(言い換えると混合割合)に相当する。ミキシング量は、相関値情報における乱数データが分割フレーム分存在するため、分割フレーム分求められる量であると共に、各チャンネル間ごとに求められる量である。より詳しくは、ミキシング量は、一方のチャンネルにおける無相関信号、もしくは測定用信号(既に生成された信号)と、他方のチャンネルにおける無相関信号とをミキシングする量に相当する。例えば、ミキシング量決定処理部51hは、予め実験などによって求められた、相関値とミキシング量との関係(マップなど)に基づいて、取得された相関値情報に対応するミキシング量を決定する。そして、ミキシング量決定処理部51hは、決定されたミキシング量をミキシング処理部51iに供給する。このように、ミキシング量決定処理部51hは、本発明におけるミキシング量決定手段として機能する。
 ミキシング処理部51iは、ミキシング量決定処理部51hで決定されたミキシング量によって、スイッチ部51eで選択された2チャンネル間について、2つの信号をミキシングする処理を行う。具体的には、ミキシング処理部51iは、一方のチャンネルにおける無相関信号、もしくは測定用信号(既に生成された信号)と他方のチャンネルにおける無相関信号とを、ミキシング量に応じてミキシングする処理を行う。そして、ミキシング処理部51iは、ミキシングによって得られた信号(該当するチャンネルの測定用信号に対応する)をスイッチ部51jに供給する。このように、ミキシング処理部51iは、本発明におけるミキシング処理手段として機能する。
 スイッチ部51jは、ミキシング処理部51iから測定用信号を取得して、制御部16からの指令に応じて、当該測定用信号を記憶させるメモリ部51kのチャンネルを切り替える。メモリ部51kは、5チャンネル分の測定用信号を記憶し、記憶された測定用信号を対応するスピーカ18C、18R、18L、18SR、18SLへ供給する。
 なお、図7では、チャンネルCH1を基準として扱う場合を例示している。つまり、チャンネルCH1を基準として、残りのチャンネルCH2~CH5の測定用信号を順次生成する処理部の例を示している。そのため、図7に示すように、チャンネルCH1に対応するメモリ部51kには、無相関信号生成部51aのメモリ部51dから無相関信号が供給され、当該無相関信号がそのまま記憶される。つまり、チャンネルCH1については、無相関信号がそのまま測定用信号として用いられることとなる。
 次に、図8及び図9を参照して、ミキシング量決定処理部51h及びミキシング処理部51iが行う処理例について説明する。
 図8は、ミキシング量の決定方法の具体例を説明するための図である。具体的には、図8は、ミキシング量と相関値との関係の一例を示している。当該関係は、例えば予め実験などを行うことにより得られる。ミキシング量決定処理部51hは、このような関係を参照することで、乱数生成処理部51gから取得された相関値(相関値情報)に対応するミキシング量を決定する。例えば、相関値として「0.6」を取得した場合には、ミキシング量決定処理部51hは、ミキシング量として「0.45」を決定する(図8中の矢印参照)。
 図9は、ミキシング処理方法の具体例を説明するための図である。ここでは、図9(a)に示すように、5つのスピーカ18C、18L、18SL、18SR、18Rを用いた場合において、各スピーカのチャンネルに用いる測定用信号を生成する場合を例に挙げる。具体的には、当該例では、ミキシング処理部51iは、フロントのスピーカ18Cを基準にして、その他のスピーカ18L、18SL、18SR、18Rについて、隣接する2チャンネル間の相関を考慮して測定用信号を順次生成していく。この場合、スピーカ18Cにおけるチャンネルは、図7に示したチャンネルCH1に対応する。詳しくは、ミキシング処理部51iは、白抜き矢印D1、D2、D3、D4で示すように、スピーカ18Cのチャンネルを基準として、スピーカ18Lのチャンネル→スピーカ18SLのチャンネル→スピーカ18SRのチャンネル→スピーカ18Rのチャンネルの順に、測定用信号を順次生成していく。
 また、図9(a)に示すように、スピーカ18C、18L、18SL、18SR、18Rの各チャンネルで用いられる無相関信号を、それぞれ、「X1」、「X2」、「X3」、「X4」、「X5」と表記する。これらの無相関信号は、前述したように、メモリ部51dに記憶され、スイッチ部51eによって選択が行われてミキシング処理部51iに供給される信号である。更に、スピーカ18C、18L、18SL、18SR、18Rの各チャンネルで用いられる測定用信号を、それぞれ、「Cch」、「Lch」、「SLch」、「SRch」、「Rch」と表記する。なお、スピーカ18Cのチャンネルを基準とするため、スピーカ18Cのチャンネルにおける測定用信号Cchには、無相関信号X1が用いられる。
 図9(b)は、スピーカ18Lのチャンネルにおける測定用信号Lchを求める方法を説明するための図である。この場合、ミキシング処理部51iは、図9(a)中の矢印D1で示すように、スピーカ18Cにおけるチャンネルとスピーカ18Lにおけるチャンネルとの相関を考慮して、スピーカ18Lにおける測定用信号Lchを求める。具体的には、ミキシング処理部51iは、スピーカ18Cにおける無相関信号X1及びスピーカ18Lにおける無相関信号X2と、スピーカ18Cとスピーカ18Lとのチャンネル間で決定されたミキシング量「j_Lch」とに基づいて、測定用信号Lchを求める。より具体的には、図9(b)に示すように、ミキシング処理部51iは、スピーカ18Cにおける無相関信号X1に対して「j_Lch」を乗算した値と、スピーカ18Lにおける無相関信号X2に対して「1-j_Lch」を乗算した値とを加算した値を、測定用信号Lchとして出力する。即ち、ミキシング処理部51iは、以下の式(1)を演算することで測定用信号Lchを得る。
  Lch=j_Lch・X1+(1-j_Lch)・X2  式(1)
 次に、ミキシング処理部51iは、図9(a)中の矢印D2で示すように、スピーカ18Lにおけるチャンネルとスピーカ18SLにおけるチャンネルとの相関を考慮して、スピーカ18SLのチャンネルにおける測定用信号SLchを求める。具体的には、ミキシング処理部51iは、式(1)より得られたスピーカ18Lにおける測定用信号Lch及びスピーカ18SLにおける無相関信号X3と、スピーカ18Lとスピーカ18SLとのチャンネル間で決定されたミキシング量「j_SLch」とに基づいて、測定用信号SLchを求める。詳しくは、以下の式(2)を演算することで測定用信号SLchを得る。
  SLch=j_SLch・Lch+(1-j_SLch)・X3  式(2)
 次に、ミキシング処理部51iは、図9(a)中の矢印D3で示すように、スピーカ18SLにおけるチャンネルとスピーカ18SRにおけるチャンネルとの相関を考慮して、スピーカ18SRのチャンネルにおける測定用信号SRchを求める。具体的には、ミキシング処理部51iは、式(2)より得られたスピーカ18SLにおける測定用信号SLch及びスピーカ18SRにおける無相関信号X4と、スピーカ18SLとスピーカ18SRとのチャンネル間で決定されたミキシング量「j_SRch」とに基づいて、測定用信号SRchを求める。詳しくは、以下の式(3)を演算することで測定用信号SRchを得る。
  SRch=j_SRch・SLch+(1-j_SRch)・X4  式(3)
 次に、ミキシング処理部51iは、図9(a)中の矢印D4で示すように、スピーカ18SRにおけるチャンネルとスピーカ18Rにおけるチャンネルとの相関を考慮して、スピーカ18Rのチャンネルにおける測定用信号Rchを求める。具体的には、ミキシング処理部51iは、式(3)より得られたスピーカ18SRにおける測定用信号SRch及びスピーカ18Rにおける無相関信号X5と、スピーカ18SRとスピーカ18Rとのチャンネル間で決定されたミキシング量「j_Rch」とに基づいて、測定用信号Rchを求める。詳しくは、以下の式(4)を演算することで測定用信号Rchを得る。
  Rch=j_Rch・SRch+(1-j_Rch)・X5  式(4)
 図10は、上記のようにして生成された測定用信号における相関値などの一例を示す図である。図10(a)は、生成された測定用信号における相関値、具体的にはスピーカ18C、18Lにおけるチャンネル間の相関値の時間変化を示している。また、図10(b)は、測定用信号を生成する上で用いられたデータのヒストグラムを示している。なお、図10では、チャンネル間の相関値の平均値として「0.7914」を用い、標準偏差として「0.0637」を用いた場合を例に挙げている。
 一方、図11は、実際のコンテンツにおける相関値、具体的にはスピーカ18C、18Lにおけるチャンネル間の相関値の時間変化例を示している。図10(a)と図11とを比較すると、本実施例に係る方法で生成された測定用信号が、実際のコンテンツにおけるチャンネル間の相関値の時間変化を適切に模擬できていることがわかる。
 なお、上記では、スピーカ18Cのチャンネルを基準として、スピーカ18Lのチャンネル→スピーカ18SLのチャンネル→スピーカ18SRのチャンネル→スピーカ18Rのチャンネルの順に測定用信号を生成していく例を示したが(図9中の白抜き矢印D1、D2、D3、D4参照)、測定用信号を生成する順序はこれに限定はされない。これは、隣接するチャンネル間の相関に基づいて測定用信号を生成する方法の一例であり、基準とするスピーカをスピーカ18Cとすることに限定はされないし、反時計回り(白抜き矢印D1、D2、D3、D4の順)に測定用信号を生成していくことにも限定はされない。言い換えると、隣接するチャンネル間の相関に基づいて測定用信号を生成するのであれば、スピーカ18C以外のスピーカのチャンネルを基準としても良いし、時計回り(白抜き矢印D1、D2、D3、D4とは逆の順)に測定用信号を生成していっても良い。
 [測定用信号生成処理]
 次に、図12を参照して、図7に示した測定用信号生成部51が行う処理(測定用信号生成処理)について説明する。図12は、本実施例に係る測定用信号生成処理を示すフローチャートである。この処理は、測定用信号生成部51によって繰り返し実行される。
 まず、ステップS101では、測定用信号生成部51は、生成すべき測定用信号の時間長及び分割フレーム数を取得する。具体的には、測定用信号生成部51は、制御部16から、これらを取得して設定を行う。例えば、測定用信号の時間長を「60(sec)」に設定し、分割フレーム数を「60フレーム」に設定する。1つの例では、制御部16は、ユーザなどからの指示に応じて時間長及び分割フレーム数を設定して、これを測定用信号生成部51に供給する。ステップS101の処理が終了すると、処理はステップS102に進む。
 ステップS102では、測定用信号生成部51は、各チャンネル間の相関値の平均値及び標準偏差を取得する。具体的には、測定用信号生成部51は、制御部16から、これらを取得する。例えば、ユーザが曲のジャンルや曲調や音場のイメージなどの少なくともいずれかを選択することで、制御部16が、この選択に応じた相関値の平均値と標準偏差とを決定して測定用信号生成部51へ供給する。この場合、制御部16は、各チャンネル間ごと、曲のジャンルや曲調や音場のイメージなどに対応付けられて記憶された相関値の平均値及び標準偏差のデータを読み出して、測定用信号生成部51へ供給する。ステップS102の処理が終了すると、処理はステップS103に進む。
 ステップS103では、測定用信号生成部51は、分割フレーム分の相関値情報を生成する。具体的には、測定用信号生成部51内の相関信号生成部51fが、正規分布乱数発生アルゴリズムに基づいて、ステップS102で取得された相関値の平均値と標準偏差とに応じた乱数データ(±1)を分割フレーム分生成する。そして、処理はステップS104に進む。
 ステップS104では、測定用信号生成部51は、相関値情報からミキシング量への変換を行う。具体的には、測定用信号生成部51内のミキシング量決定処理部51hが、予め実験などによって求められた、相関値とミキシング量との関係(マップなど)に基づいて、ステップS103で生成された相関値情報に対応するミキシング量を決定する。そして、処理はステップS105に進む。
 ステップS105では、測定用信号生成部51は、所定の演算式に基づいて、1フレーム分の測定用信号を生成する。具体的には、測定用信号生成部51内のミキシング処理部51iが、前述した式(1)~(4)などの演算式を用いて、ステップS104で決定されたミキシング量によって2つの信号をミキシングすることで、1フレーム分の測定用信号を生成する。詳しくは、ミキシング処理部51iは、一方のチャンネルにおける測定用信号(既に生成された信号)と他方のチャンネルにおける無相関信号とを、ミキシング量に応じてミキシングする処理を行う。そして、処理はステップS106に進む。
 ステップS106では、測定用信号生成部51は、全てのフレーム(例えば60フレーム)における測定用信号が生成されたか否かを判定する。全てのフレームの測定用信号が生成された場合(ステップS106;Yes)、処理はステップS107に進む。これに対して、全てのフレームの測定用信号が生成されていない場合(ステップS106;No)、処理はステップS105に戻る。この場合には、測定用信号生成部51は、次のフレームについて測定用信号を生成する処理を行う。
 ステップS107では、測定用信号生成部51は、全てのチャンネル(例えば5チャンネル)について測定用信号が生成されたか否かを判定する。全てのチャンネルの測定用信号が生成された場合(ステップS107;Yes)、処理は終了する。これに対して、全てのチャンネルについて測定用信号が生成されていない場合(ステップS107;No)、処理はステップS102に戻る。この場合には、測定用信号生成部51は、次のチャンネルについて、上記したステップS102~S106の処理を行うことで、測定用信号を生成する。
 以上説明した測定用信号生成処理によれば、実際のコンテンツに近い、チャンネル間の相関を有する測定用信号を生成することができる。したがって、このような測定用信号を用いて音場補正を行うことにより、実際のコンテンツ再生時の評価とのギャップを解消することが可能となる。つまり、当該処理によれば、複数チャンネルの合成時の特性評価を適切に行うことが可能となる。
 [変形例]
 上記では、隣接するチャンネル間の相関に基づいて測定用信号を生成する例を示したが(図9など参照)、測定用信号を生成する方法はこれに限定はされない。即ち、隣接するチャンネル間でなくても、任意のチャンネル間の相関に基づいて、例えば比較的強い相関があるようなチャンネル間の相関に基づいて測定用信号を生成することも可能である。
 また、音場測定を行うたびに測定用信号を生成する処理を行うことに限定はされず、例えば記憶容量に余裕がある場合などには、予め上記方法にて生成した測定用信号を装置内のメモリなどに記憶しておいて、メモリなどから測定用信号を読み出して音場測定を行うこととしても良い。更に、他の例では、予め上記方法にて生成された測定用信号をCDやDVDなどの記録媒体(メディア)に記録しておき、当該記録媒体を再生することによって音場測定を行うこととしても良い。
 本発明は、サラウンド補正に用いる測定用信号を生成可能に構成されたAVシステムなどに利用することができる。

Claims (12)

  1.  複数のチャンネル分の測定用信号を生成する測定用信号生成装置であって、
     前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段を備えることを特徴とする測定用信号生成装置。
  2.  前記測定用信号生成手段は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、コンテンツにおける前記2チャンネル間の相関を模擬することで、前記複数のチャンネル分の測定用信号を生成することを特徴とする請求項1に記載の測定用信号生成装置。
  3.  前記測定用信号生成手段は、前記複数のチャンネルにおける前記2チャンネルとして、隣接するチャンネルを選択することを特徴とする請求項1又は2に記載の測定用信号生成装置。
  4.  前記測定用信号生成手段は、正規分布乱数発生アルゴリズムに基づいて、前記2チャンネル間の相関値の平均値と標準偏差とに応じた、時間方向にばらつきを有する相関値の乱数データを生成する乱数生成手段を備えることを特徴とする請求項1乃至3のいずれか一項に記載の測定用信号生成装置。
  5.  前記測定用信号生成手段は、前記乱数生成手段が生成した前記乱数データに基づいて、前記2チャンネル間で前記2つの信号をミキシングする量を決定するミキシング量決定手段を備えることを特徴とする請求項4に記載の測定用信号生成装置。
  6.  前記測定用信号生成手段は、前記ミキシング量決定手段が決定したミキシング量によって、前記複数のチャンネル分について生成された無相関信号のうち任意の2チャンネル間の無相関信号、若しくは前記複数のチャンネル分について生成された無相関信号と、前記測定用信号とをミキシングする処理を行うミキシング処理手段を備えることを特徴とする請求項5に記載の測定用信号生成装置。
  7.  前記相関値の平均値と標準偏差とは、曲のジャンル及び曲調の少なくともいずれかに基づいて設定されていることを特徴とする請求項1乃至6のいずれか一項に記載の測定用信号生成装置。
  8.  前記測定用信号生成手段で生成された測定用信号を記憶する記憶手段を更に有する請求項1乃至7のいずれか一項に記載の測定用信号生成装置。
  9.  複数のチャンネル分の測定用信号を生成する測定用信号生成方法であって、
     前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成工程を備えることを特徴とする測定用信号生成方法。
  10.  コンピュータによって実行され、複数のチャンネル分の測定用信号を生成するための測定用信号生成プログラムであって、
     前記コンピュータを、
     前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量を決定し、前記ミキシングする量に基づいて前記2つの信号をミキシングすることにより測定用信号を生成することで、前記複数のチャンネル分の測定用信号を生成する測定用信号生成手段として機能させることを特徴とする測定用信号生成プログラム。
  11.  複数のチャンネル分の測定用信号が記憶された記録媒体であって、
     前記複数のチャンネル分の測定用信号は、前記複数のチャンネルにおける2チャンネル間の相関値が異なることを特徴とする記録媒体。
  12.  前記複数のチャンネル分の測定用信号は、前記複数のチャンネルにおける2チャンネル間の相関値の平均値と標準偏差とに基づいて、当該2チャンネル間で2つの信号をミキシングする量が決定されて、前記ミキシングする量に基づいて前記2つの信号をミキシングすることで生成された測定用信号によって生成されていることを特徴とする請求項11に記載の記録媒体。
PCT/JP2008/068737 2008-10-16 2008-10-16 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体 WO2010044158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/124,049 US20110200201A1 (en) 2008-10-16 2008-10-16 Measurement signal generating device, measurement signal generating method, measurement signal generating program and storage medium
PCT/JP2008/068737 WO2010044158A1 (ja) 2008-10-16 2008-10-16 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体
JP2010533757A JP5296090B2 (ja) 2008-10-16 2008-10-16 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068737 WO2010044158A1 (ja) 2008-10-16 2008-10-16 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体

Publications (1)

Publication Number Publication Date
WO2010044158A1 true WO2010044158A1 (ja) 2010-04-22

Family

ID=42106336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068737 WO2010044158A1 (ja) 2008-10-16 2008-10-16 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体

Country Status (3)

Country Link
US (1) US20110200201A1 (ja)
JP (1) JP5296090B2 (ja)
WO (1) WO2010044158A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262015A (ja) * 2005-03-16 2006-09-28 Clarion Co Ltd 音場特性測定方法、音場特性測定システム、増幅装置、及び音場特性測定装置
JP2008072641A (ja) * 2006-09-15 2008-03-27 Sony Corp 音響処理装置および音響処理方法、ならびに音響処理システム
JP2008177795A (ja) * 2007-01-17 2008-07-31 Alpine Electronics Inc ノイズ出力装置、ノイズ出力方法及びノイズ出力プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483540B2 (en) * 2002-03-25 2009-01-27 Bose Corporation Automatic audio system equalizing
DE60311794C5 (de) * 2002-04-22 2022-11-10 Koninklijke Philips N.V. Signalsynthese

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262015A (ja) * 2005-03-16 2006-09-28 Clarion Co Ltd 音場特性測定方法、音場特性測定システム、増幅装置、及び音場特性測定装置
JP2008072641A (ja) * 2006-09-15 2008-03-27 Sony Corp 音響処理装置および音響処理方法、ならびに音響処理システム
JP2008177795A (ja) * 2007-01-17 2008-07-31 Alpine Electronics Inc ノイズ出力装置、ノイズ出力方法及びノイズ出力プログラム

Also Published As

Publication number Publication date
US20110200201A1 (en) 2011-08-18
JPWO2010044158A1 (ja) 2012-03-08
JP5296090B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4466453B2 (ja) 音響装置、時間遅延算出方法および時間遅延算出プログラム
US7689304B2 (en) Audio playback apparatus, audio playback method, and program
CN1798452B (zh) 实时补偿音频频率响应特性的方法和用该方法的声音系统
WO2009107227A1 (ja) 音響信号処理装置及び音響信号処理方法
US20120039495A1 (en) Audio processing apparatus, audio processing method, and program
US8351622B2 (en) Audio mixing device
JP5296090B2 (ja) 測定用信号生成装置、測定用信号生成方法、及び測定用信号生成プログラム、並びに記録媒体
JP4706666B2 (ja) 音量制御装置及びコンピュータプログラム
JP4757034B2 (ja) 音場補正装置及びその制御方法
JP2009087449A (ja) 音声再生装置及び音声再生方法
JP6737395B2 (ja) 信号処理装置
JP4845811B2 (ja) 音響装置、遅延時間測定方法、遅延時間測定プログラム及びその記録媒体
JP4591512B2 (ja) 選択用音声データ取得方法、選択用音声データ取得装置
KR100959585B1 (ko) 멀티 트랙 미디어 파일이 기록된 기록매체, 멀티 트랙 미디어 파일 재생 방법, 및 미디어 장치
KR100631651B1 (ko) 음악재생이 가능한 휴대용 단말기 및 그의 이퀄라이저표시방법
JP2008072641A (ja) 音響処理装置および音響処理方法、ならびに音響処理システム
US20050254369A1 (en) Disc reproducing apparatus
JP2010122404A (ja) 音場補正用データ調整装置および音場補正用データ調整方法
JP2022054933A (ja) 音響装置および音響制御方法
JP2009116938A (ja) 再生装置及び再生制御方法
JP6445373B2 (ja) 楽曲再生装置
JP6044365B2 (ja) 信号補正装置、信号補正装置の制御方法及びプログラム
JP6003680B2 (ja) 信号補正装置、信号補正装置の制御方法及びプログラム
JP4889121B2 (ja) 音響装置、遅延測定方法、遅延測定プログラム及びその記録媒体
JP5288219B2 (ja) 重ね録音装置、重ね録音方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13124049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877416

Country of ref document: EP

Kind code of ref document: A1