WO2010044144A1 - Production device of self-supported truss - Google Patents

Production device of self-supported truss Download PDF

Info

Publication number
WO2010044144A1
WO2010044144A1 PCT/JP2008/068610 JP2008068610W WO2010044144A1 WO 2010044144 A1 WO2010044144 A1 WO 2010044144A1 JP 2008068610 W JP2008068610 W JP 2008068610W WO 2010044144 A1 WO2010044144 A1 WO 2010044144A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
lattice
movable
pitch
welding mechanism
Prior art date
Application number
PCT/JP2008/068610
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 河西
Original Assignee
株式会社アイ・テック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・テック filed Critical 株式会社アイ・テック
Priority to PCT/JP2008/068610 priority Critical patent/WO2010044144A1/en
Publication of WO2010044144A1 publication Critical patent/WO2010044144A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • E04B5/40Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element with metal form-slabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F27/00Making wire network, i.e. wire nets
    • B21F27/12Making special types or portions of network by methods or means specially adapted therefor
    • B21F27/20Making special types or portions of network by methods or means specially adapted therefor of plaster-carrying network
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/065Light-weight girders, e.g. with precast parts

Definitions

  • This invention relates to an apparatus for manufacturing a self-supporting truss used for a structural material comprising a steel plate on which grooves used to construct a concrete slab and a self-supporting truss.
  • a wire rod is bent into a wave shape at a constant pitch (for example, 200 mm) to form a lattice stripe 91, and the upper side of these two lattice stripes 91.
  • a self-supporting truss 9 is formed by welding the bent portion 92 so as to sandwich one upper chord muscle 93 and welding the lower chord muscle 94 to the lower part of each of the two lattice muscles 91.
  • the self-supporting truss 9 is cut to a certain length, and then placed on the iron plate 8 formed with parallel grooves such as a deck plate, a keystone plate, a rib plate, and the lower bent portion 95 of the lattice muscle 91.
  • a construction method has been practiced in which a structural material is made by welding the steel plate 8, the structural material is bridged between receiving beams, and concrete is cast using the iron plate 8 as a discarded formwork.
  • the L-shaped channel 97 is used to weld the horizontal surface of the L-shaped channel 97 to the iron plate 8. 1 is welded to the side surface of the lower bent portion 95 of the lattice bar 91.
  • the lower bent portion 95 of the lattice bar 91 may be directly welded to the iron plate 8.
  • the temporary load of the concrete placed by the self-supporting truss 9 can be supported, so that a support member for supporting the formwork from the lower side is unnecessary, and therefore, after the concrete is placed. No need to dismantle the formwork. Further, after the concrete is hardened, the self-supporting truss 9 serves as the main reinforcing bar of the reinforced concrete.
  • one upper chord 93 and two lower chords 94 are supplied and arranged in a triangular shape while the wire is bent into a wave at a constant pitch.
  • the self-supporting truss 9 is manufactured by welding the upper bent portion 92 of the bent lattice muscle 91 to the upper chord muscle 93 and welding the lower portion of the lattice muscle 91 to the lower chord muscle 94.
  • Patent Document 1 proposes a lattice bending apparatus that is configured to change an integer multiple of the pitch of the lattice stripe 91 to match a desired dimension.
  • Multi-story buildings have a variety of room layouts and corridor shapes, so when constructing a concrete floor slab using steel plates and self-supporting trusses, the length will match the span of the receiving beam. Different kinds of structural materials must be prepared.
  • the self-supporting truss manufacturing apparatus of the present invention was conceived to solve the problems of such a conventional apparatus, automatically changing the pitch of the lattice and the total length of the truss, and The configuration is such that a useless truss is not generated.
  • the self-supporting truss manufacturing apparatus includes a step conveyor for feeding the wire material of the upper chord, the lower chord and the lattice, a moving clamp and a stationary clamp for holding the wire of the lattice at an interval, It moves in the same direction at half speed, and has a bending head that forms the upper bending part by pushing the wire rod in the crossing direction at almost the center of the stationary clamp and can change the length of one pitch of the lattice muscle Movable bending device, a first movable clamp and a second movable clamp that are movable in the conveyance direction and fix the lower bent portion of the bent lattice muscle, and move in the conveyance direction in conjunction with the two movable clamps.
  • a first welding mechanism that is arranged at substantially the center of the two movable clamps and welds the upper bent portion of the lattice muscle to the upper chord, and is movable in the conveying direction;
  • the second welding mechanism that forms the truss by welding the lower part of the lattice to the lower chord to weld the curved part to the upper chord, the cutting mechanism that can move in the transport direction and cut the truss, and the position of the stationary clamp
  • the control device includes a memory that stores the position data of the lower bent portion of the lattice muscle bent as a reference while shifting the position data for each tact.
  • the control device has a memory for storing the position data of the lower bent portion of the bent lattice muscle while shifting it by one tact with reference to the position of the stationary clamp.
  • the first movable clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the change of the intervals of the cutting mechanism with respect to the stationary clamp and the operation thereof are controlled.
  • the self-supporting truss manufacturing apparatus of the present invention has a memory for storing the position data of the lower bent portion of the bent lattice muscle while shifting it every tact with respect to the position of the stationary clamp. Based on this position data, the controller can automatically change the intervals of the first movable clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the cutting mechanism with respect to the stationary clamp, The operations of the first welding mechanism, the second welding mechanism, and the cutting mechanism can also be controlled.
  • the self-supporting truss manufacturing apparatus of the present invention even if the length of one pitch of the lattice muscle is changed during manufacturing by changing the length of the truss, the first movable clamp, 2
  • the movable clamp, the first welding mechanism, the second welding mechanism, and the control for changing the position of the cutting mechanism are performed, so that a truss having a different pitch and / or a different full length can be continued without any waste. Can be manufactured.
  • the self-supporting truss manufacturing apparatus of the present invention it is also possible to manufacture a truss in which straight wires that are not bent at any length are projected at both ends of the truss.
  • the self-supporting truss manufacturing apparatus of the present invention includes a moving clamp 11 that intermittently feeds a wire rod at a constant length in the conveying direction.
  • the step conveyor 1 includes a hydraulic motor 12 and a moving clamp 11 that is driven by the hydraulic motor 12 to grip the wire 90 and move in the transport direction along the base A.
  • the step conveyor 1 includes a conveyor that sends out the upper chords 93 and the lower chords 94 in addition to the conveyor that sends out the wire 90 of the lattice line 91, but in order to make the figure easier to see, the wire 90 of the lattice line 91 is used. Only the conveyor provided with the moving clamp 11 is shown.
  • the bending apparatus 2 includes a step conveyor 1 that moves along a rail 16 on the base A, a screw conveyor 13a and a screw 13b. 1, a hydraulic motor 12 that drives 1, a moving clamp 11 that is provided on the step conveyor 1 and is driven by a hydraulic device and a rod 15, and a base A that holds and holds the lower bent portion 95 of the bent wire 90. It moves in the same direction at half the speed of the moving clamp 11 in conjunction with the moving clamp 11 and always forms the upper bent portion 92 located almost in the center of the moving clamp 11 and the stationary clamp 31. And the bending head 21 to be configured.
  • the moving clamp 11 grabs and moves the wire rod 90 when the step conveyor 1 moves forward, and releases the wire rod 90 when the step conveyor 1 moves backward.
  • an encoder 14 is provided on the step conveyor 1.
  • the bending device 2 includes a rod 23 that moves up and down in the vertical direction, a bending head 21 that is mounted so as to protrude from the rod 23 in the horizontal direction and pushes up the central portion of the wire 90 to form an upper bent portion 92;
  • the servo motor 24 drives the rod 23 in the vertical direction.
  • the base A is provided with a first movable clamp 32 and a second movable clamp 33 behind the stationary clamp 31 (on the right side in the drawing).
  • a first welding mechanism 41 that is always located in the center is provided.
  • the two movable clamps 32 and 33 are separately movable in the front-rear direction in accordance with the pitch of the bent lattice muscle 91, fix the position of the lower bent portion 95 of the lattice muscle 91, and The positioning operation in the welding operation of the welding mechanism 41 is performed.
  • the first movable clamp 32, the second movable clamp 33, and the first welding mechanism 41 are each provided with a drive mechanism (not shown) for moving in the front-rear direction (left-right direction in the figure), and further an encoder (not shown). Are provided so as to detect a distance based on the position of the stationary clamp 31.
  • the first welding mechanism 41 fixes the two lattice muscles 91 to one upper chord muscle 93 by welding the upper chord muscle 93 from both sides at the upper bent portion 92 of the two lattice muscles 91.
  • the second welding mechanism 42 for forming the self-supporting truss 9 by welding the two lower chords 94 to the lower part of the two lattices 91 behind the two movable clamps 32 and 33 is provided.
  • the second welding mechanism 42 also includes a drive mechanism (not shown) that moves to a position that hits the lower bent portion 95 of the lattice muscle 91 and an encoder (not shown) that detects a distance based on the position of the stationary clamp 31. ) Is provided.
  • a cutting device 5 for cutting the formed self-supporting truss 9 to a desired length at the lower bent portion 95 of the lattice muscle 91.
  • the cutting device 5 also has a drive mechanism (not shown) that moves to a position that hits the lower bent portion 95 of the lattice muscle 91 and an encoder (not shown) that detects a distance based on the position of the stationary clamp 31. Is provided.
  • the length L to be manufactured is divided by the standard pitch p to obtain an integer n and a positive / negative fraction h, and the positive fraction h is smaller than half (100 mm) of the standard pitch p (the negative fraction is the standard pitch p).
  • Processing conditions such as the material of the wire 90, the wire diameter, the finished pitch P of the lattice stripe 91, the finished height of the lattice stripe 91, and the curvature of the bent portion are input to the computer of the control device.
  • This processing condition is set so as to correct the amount of spring back that is restored by elastic deformation when the constraint during bending is released.
  • the first welding mechanism 41 is also moved to the center of the first movable clamp 32 and the second movable clamp 33 in conjunction with each other.
  • the second welding mechanism 42 and the cutting mechanism 5 are moved from the stationary clamp 31 to a position that is an integral multiple of 1 pitch P.
  • the moving clamp 11 is released. Then, the step conveyor 1 is moved, stopped at a position away from the stationary clamp 31 by a distance T, and the wire 90 is gripped by the moving clamp 11.
  • This distance T is the length T of the wire 90 corresponding to one pitch of the finished dimension obtained by bending the wire 90.
  • the rod 23 is driven in the vertical direction by the servo motor 24, the center portion of the wire 90 is pushed up to the set height by the bending head 21, and provided on the step conveyor 1 by the hydraulic motor 12.
  • the moved moving clamp 11 is advanced from the stationary clamp 31 to the position of the distance P.
  • the bending head 21 is lowered while the lower bending portion 95 already bent by the stationary clamp 31 is pressed and fixed, and the moving clamp 11 is released.
  • the first moving clamp 11 is retracted together with the conveyor 1, and the stationary clamp is made so that the finished dimension is the sum of the length T of the wire 90 corresponding to one pitch and the length P of one pitch (T + P). Stop at a position away from 31 by a distance (T + P). At this time, the bending head 21 also moves backward at half speed in conjunction with it.
  • the wire 90 is gripped by the moving clamp 11, and the stationary clamp 31 is released. Then, as shown in (4) of FIG. 2, the step conveyor 1 is advanced by a distance corresponding to one pitch P. At this time, the wire material of the upper chord line 93 and the lower chord line 94 is also simultaneously sent out by a length corresponding to one pitch P. When the advance for one pitch P is completed, the stationary clamp 31 is operated to fix the already bent lower bent portion 95.
  • the first welding mechanism 41 is operated to weld the upper chord 93 with the upper bent portions 92 of the two lattices 91 from both sides.
  • the cutting mechanism 5 Since the formed self-supporting truss 9 passes through the cutting mechanism 5 by one pitch every tact, the cutting mechanism 5 is operated when the passed length reaches a predetermined length L (predetermined number of pitches). Then, the self-supporting truss 9 is cut to a predetermined length L at the lower bent portion 95 of the lattice muscle 91.
  • the control device stores the arrangement state of the lower bent portion 95 of the lattice muscle 91 with the stationary clamp 31 as a reference in the computer memory while shifting it by one tact.
  • the controller makes a long operation with the pitch P 2 to be manufactured next.
  • the moving clamp 11 is stopped at a position separated from the stationary clamp 31 by a distance T 2 as shown in FIG.
  • This distance T 2 is the length of the wire 90 in which the finished dimension obtained by bending the wire 90 corresponds to the pitch P 2 .
  • the control unit removes the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, and The second welding mechanism 42 is simultaneously translated by the difference (P 1 -P 2 ) between the pitch P 1 and the pitch P 2, and the lower bent portion 951 at the boundary changed from the pitch P 1 to the pitch P 2 is formed.
  • 2 Fix with movable clamp 33. At this time, the distance between the stationary clamp 31 and the spacing and the first movable clamp 32 of the first movable clamp 32 and the second movable clamp 33 is respectively changed to the pitch P 2.
  • the cutting mechanism 5 is moved from the stationary clamp 31 to the pitch P 2 . It moved to the position of an integral multiple (nP 2 ) and waited, and as shown in (7) of FIG. 3, the lower bent portion 951 at the boundary changed from pitch P 1 to pitch P 2 reached the cutting mechanism 5.
  • the cutting mechanism 5 cutting the final book end freestanding truss length L 1 at a pitch P 1 by operating the cutting mechanism 5 (the first tip of the free-standing truss pitch P 2 in the length L 2).
  • the control device shifts the arrangement state of the lower bending portion 951 corresponding to the boundary where the pitch of the lower bending portion 95 and the pitch of the lattice muscle 91 with respect to the stationary clamp 31 is changed every tact. Stored in memory.
  • each device of the mechanism 5 can be recognized in advance by the control device, each device can be arranged at a predetermined position in accordance with the passage time of the lower bent portion 951 of the boundary.
  • the self-supporting type having the length L 2 in the production mode of the pitch P 2 without changing the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5.
  • the truss 9 is manufactured. Thus, even if the pitch and length of the self-supporting truss 9 to be manufactured are changed, it can be continuously manufactured without any waste.
  • the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5 have been described in the first embodiment without changing the positions.
  • a truss having a length L is manufactured at a pitch P through the same process.
  • the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33 are opened, and the moving clamp 11 is advanced by one pitch so that the wire 90 of the lattice muscle that is not bent is obtained. Is advanced by one pitch, and the upper and lower chords 93 and 94 are also advanced by one pitch.
  • the lattice rod 96 which is not bent by the first movable clamp 32 is fixed, the lower bending portion 95 of the lattice muscle is fixed by the second movable clamp 33, and then the upper bending of the lattice 91 is performed by the first welding mechanism 41.
  • the portion 95 is welded to the upper chord 93 and the lower portion of the lattice is welded to the lower chord 94 by the second welding mechanism 42.
  • the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33 are opened again, and the moving clamp 11 is advanced by one pitch, whereby the wire rod of the lattice muscle 91 is obtained.
  • the upper and lower chords 93 and 94 are also advanced by one pitch.
  • lattice pitch wire 96 that is not bent between adjacent trusses 9 can be present for two pitches.
  • the second welding mechanism 42 welds the lower part of the lattice 91 to the lower chord 94. To do.
  • the moving clamp 11 is released and the step conveyor 1 is moved to leave the stationary clamp 31 by the length T of the wire 90 corresponding to one pitch of the finished finish. Then, the wire 90 is held by the moving clamp 11 and the manufacture of the next truss 9 is started.
  • the center of the wire 96 for two pitches of the unlatched lattice muscle (one pitch from the end of the previous lattice and one pitch from the tip of the subsequent lattice) is cut.
  • the cutting mechanism 5 is operated to cut the lattice.
  • the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5 are controlled with respect to the stationary clamp 31.
  • Each of the devices can be changed separately, and during the manufacture of the truss, the arrangement state of the lower bending portion 95 of the lattice muscle 91 with respect to the stationary clamp 31 is determined in the control device.
  • the wire rod 96 of the lattice stripe 91 having an arbitrary length N which is not an integral multiple of one pitch is formed in a straight line at both ends of the self-supporting truss having a predetermined length. be able to.
  • FIG. 5 shows the first half steps (1 to 8) of all the steps
  • FIG. 6 shows the second half steps (8 to 14) of all the steps.
  • Step (8) is shown in both figures. It is shown redundantly.
  • the fraction s is obtained by comparing the length N of the linear wire 96 protruding from both ends of the self-supporting truss with an integer multiple nP of 1 pitch P.
  • the first implementation is performed without changing the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5.
  • a truss having a length L is manufactured at a pitch P through the same steps as described in the embodiment.
  • the first movable clamp 32 and the second movable clamp 33 are opened, and the movable clamp 11 is advanced by one pitch, so that the wire 90 of the lattice muscle 1 is not bent. While moving forward by the pitch, the upper and lower chords 93 and 94 are also moved forward by one pitch.
  • the lattice rod 96 which is not bent by the first movable clamp 32 is fixed, the lower bending portion 95 of the lattice muscle is fixed by the second movable clamp 33, and then the upper bending of the lattice 91 is performed by the first welding mechanism 41.
  • the portion 92 is welded to the upper chord 93 and the lower portion of the lattice 91 is welded to the lower chord 94 by the second welding mechanism 42.
  • the first movable clamp 32 and the second movable clamp 33 are opened, and the movable clamp 11 is advanced by one pitch, so that the wire 90 of the lattice muscle 1 is not bent. While moving forward by the pitch, the upper and lower chords 93 and 94 are also moved forward by one pitch.
  • the moving clamp 11 When the length N of the linear wire 96 projecting from both ends of the self-supporting truss is equal to or more than one pitch, the moving clamp 11 is released multiple times and the step conveyor 1 is moved to start from the stationary clamp 31. Stop the wire 90 by a distance of one pitch distance, grab the wire 90 with the moving clamp 11, open the first movable clamp 32 and the second movable clamp 33, and advance the moving clamp 11 by one pitch. As a result, the lattice wire 90 is advanced by one pitch without bending, and the upper and lower chords 93 and 94 are also advanced by one pitch.
  • the upper bent portion 95 of the lattice bar 91 is welded to the upper chord line 93 by the first welding mechanism 41, and the lower part of the lattice bar 91 is welded to the lower chord line 94 by the second welding mechanism 42.
  • the moving clamp 11 Since the fraction s of the linear wire 96 length N to be projected and the integer multiple nP of 1 pitch P is calculated first, the moving clamp 11 is released as shown in (5) of FIG.
  • the step conveyor 1 is moved and stopped at a position separated from the stationary clamp 31 by a distance (P + 2s) that is 2 s times the fraction s and 1 pitch, and the wire rod 90 is gripped by the moving clamp 11.
  • the first movable clamp 32 and the second movable clamp 33 are opened, and the moving clamp 11 is advanced by 2s 2 times the fraction s to bend the wire 90 of the lattice muscle. Without moving, the forward chord muscle 93 and the lower chord muscle 94 are also advanced by 2 s 2 times the fraction s. By this operation, it is possible to make the lattice rod 96 that is not bent between the adjacent trusses 9 twice as long as the length N (nP + s) (see (14) in FIG. 6).
  • the control device causes the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, and the second welding mechanism 42 to be 2s times 2s times the fraction s.
  • the distance is translated at the same time.
  • the moving clamp 11 is released and the step conveyor 1 is moved, and the folded dimension is separated from the stationary clamp 31 by the length T of the wire 90 corresponding to one pitch.
  • the wire rod 90 is stopped at the position, and the wire 90 is gripped by the moving clamp 11, and the production of the next truss 9 is started as shown in FIG. 5 and FIG. 6 (8).
  • the position of the first movable clamp 32 is one pitch from the stationary clamp 31 as shown in FIG.
  • the first lower bent portion 95 is fixed by the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33, and the lower portion of the lattice muscle 91 is lowered by the second welding mechanism 42 to the lower chord muscle. Weld to 94.
  • the position of the second movable clamp 32 is set to the stationary clamp 31.
  • the first and second lower bent portions 95 are fixed by the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33, and the first welding mechanism 41 is used to return the upper chord line.
  • the upper bent portion 92 of the lattice muscle 91 is welded to 93, and the lower portion of the lattice muscle 91 is welded to the lower chord muscle 94 by the second welding mechanism 42.
  • the process proceeds to the step (12) in FIG. 6, and the first lower bent portion 95 of the lattice muscle 91 reaches the second welding mechanism 42.
  • the position of the second welding mechanism 42 is returned to the integral multiple of one pitch from the stationary clamp 31, and the lower part of the lattice 91 is welded to the lower chord 94.
  • the side view which shows the lattice muscle bending process part in the manufacturing apparatus of the self-supporting truss of this invention, Process drawing explaining operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Wire Processing (AREA)

Abstract

A production device of a self-supported truss which can automatically cope with alterations in pitch of lattice bar and/or overall length of truss, comprising a bending device (2) which can alter the pitch of a lattice bar (91), a first movable clamp (32) and a second movable clamp (33) that are movable in the conveyance direction and secure the lower bend (95) of a bent lattice bar (91), a first welding mechanism (41) interlocked with the two movable clamps (32, 33) to be movable in the conveyance direction and arranged substantially midway between the two movable clamps (32, 33) in order to weld the upper bend (92) of the lattice bar (91) to the upper chord bar (93), a second welding mechanism (5) that is movable in the conveyance direction and welds the lower portion of the lattice bar (91), having the upper bend (92) thereof welded to the upper chord bar (93), to the lower chord bar (94) thus forming a truss (9), and a controller that has memory for storing the positional data of the lower bend (95) of a bent lattice bar (91) while shifting the data at every tact, and controls the first movable clamp (32), the second movable clamp (33) and the welding mechanisms (41, 5).

Description

自立型トラスの製造装置Self-supporting truss manufacturing equipment
 この発明は、コンクリート床版の構築に使用する溝条を形成した鉄板と自立型トラスとよりなる構造材に用いる自立型トラスの製造装置に関する。 This invention relates to an apparatus for manufacturing a self-supporting truss used for a structural material comprising a steel plate on which grooves used to construct a concrete slab and a self-supporting truss.
 従来のコンクリート床版の構築においては、図7の斜視図に示すように、線材を一定ピッチ(例えば、200mm)で波状に屈曲させてラチス筋91を作り、この2本のラチス筋91の上側屈曲部92において1本の上弦筋93を挟むように溶接し、2本の各ラチス筋91の下部に下弦筋94を溶接して自立型トラス9を形成している。 In the construction of a conventional concrete floor slab, as shown in the perspective view of FIG. 7, a wire rod is bent into a wave shape at a constant pitch (for example, 200 mm) to form a lattice stripe 91, and the upper side of these two lattice stripes 91. A self-supporting truss 9 is formed by welding the bent portion 92 so as to sandwich one upper chord muscle 93 and welding the lower chord muscle 94 to the lower part of each of the two lattice muscles 91.
 そして、この自立型トラス9を一定の長さに切断したのち、デッキプレート、キーストンプレート、リブプレートなどの平行な溝条を形成した鉄板8に載置し、ラチス筋91の下側屈曲部95を鉄板8に溶接して構造材を作り、この構造材を受梁の間に架け渡して、鉄板8を捨て型枠としてコンクリートを打設する施工法が従来より実施されている。 The self-supporting truss 9 is cut to a certain length, and then placed on the iron plate 8 formed with parallel grooves such as a deck plate, a keystone plate, a rib plate, and the lower bent portion 95 of the lattice muscle 91. Conventionally, a construction method has been practiced in which a structural material is made by welding the steel plate 8, the structural material is bridged between receiving beams, and concrete is cast using the iron plate 8 as a discarded formwork.
 なお、図7には、ラチス筋91の下側屈曲部95を鉄板8に溶接する際に、L字形のチャンネル97を用いて、L字形のチャンネル97の水平面を鉄板8に溶接し、垂直面をラチス筋91の下側屈曲部95の側面に溶接したものが図示されているが、ラチス筋91の下側屈曲部95を鉄板8に直接溶接してもよいのである。 7, when the lower bent portion 95 of the lattice bar 91 is welded to the iron plate 8, the L-shaped channel 97 is used to weld the horizontal surface of the L-shaped channel 97 to the iron plate 8. 1 is welded to the side surface of the lower bent portion 95 of the lattice bar 91. However, the lower bent portion 95 of the lattice bar 91 may be directly welded to the iron plate 8.
 この施工法によると、自立型トラス9によって打設されたコンクリートの仮設的な荷重を支持することができるので、型枠を下側から支持する支持部材が不要であり、したがって、コンクリート打設後の型枠解体作業が不要になる。さらに、コンクリートの硬化後には、自立型トラス9が鉄筋コンクリートの主筋の役目を果たすものである。 According to this construction method, the temporary load of the concrete placed by the self-supporting truss 9 can be supported, so that a support member for supporting the formwork from the lower side is unnecessary, and therefore, after the concrete is placed. No need to dismantle the formwork. Further, after the concrete is hardened, the self-supporting truss 9 serves as the main reinforcing bar of the reinforced concrete.
 自立型トラスを製造する従来のトラス製造装置においては、線材を一定ピッチで波状に屈曲させながら、1本の上弦筋93および2本の下弦筋94を供給して三角状に配置し、波状に屈曲させたラチス筋91の上側屈曲部92を上弦筋93に溶接し、ラチス筋91の下部を下弦筋94に溶接して自立型トラス9を製造していた。 In a conventional truss manufacturing apparatus that manufactures a self-supporting truss, one upper chord 93 and two lower chords 94 are supplied and arranged in a triangular shape while the wire is bent into a wave at a constant pitch. The self-supporting truss 9 is manufactured by welding the upper bent portion 92 of the bent lattice muscle 91 to the upper chord muscle 93 and welding the lower portion of the lattice muscle 91 to the lower chord muscle 94.
 製造された自立型トラス9を切断するとき、切断する部分が、ラチス筋91の下側屈曲部95において切断しなければ、許容される負荷荷重が減少するので、製造するラチス筋91のピッチを変化させて、ラチス筋91のピッチの整数倍を、所望の寸法に一致させるように構成したラチス筋曲げ加工装置が下記特許文献1により提案されている。
特許第3801492号公報
When the manufactured self-supporting truss 9 is cut, if the portion to be cut does not cut at the lower bent portion 95 of the lattice muscle 91, the allowable load is reduced, so the pitch of the lattice muscle 91 to be manufactured is reduced. Patent Document 1 below proposes a lattice bending apparatus that is configured to change an integer multiple of the pitch of the lattice stripe 91 to match a desired dimension.
Japanese Patent No. 3801492
 多層階のビルは、部屋の間取りや廊下の形状が多様であるから、鉄板と自立型トラスとの構造材を用いてコンクリート床版を構築する際に、受梁のスパンに合わせて長さが異なる多種類の構造材を用意しなければならない。 Multi-story buildings have a variety of room layouts and corridor shapes, so when constructing a concrete floor slab using steel plates and self-supporting trusses, the length will match the span of the receiving beam. Different kinds of structural materials must be prepared.
 このような従来のラチス筋曲げ加工装置によると、受梁のスパンに合わせたピッチでラチス筋の曲げ加工は可能であるが、ラチス筋のピッチおよびトラスの全長を切り換える際に、線材を送り出す装置の1タクトの送り出し長さの設定、曲げた線材の下側屈曲部を押さえるクランプの位置の変更、ラチス筋を上弦筋93および下弦筋94に溶接する溶接装置の位置の変更、切断装置の位置の変更を行わなければならない。 According to such a conventional lattice bending device, it is possible to bend the lattice with a pitch that matches the span of the receiving beam, but when the lattice pitch and the total length of the truss are switched, the wire is fed out. 1 tact feed length setting, changing the position of the clamp that holds the lower bent part of the bent wire, changing the position of the welding device that welds the lattice to the upper and lower chords 93, 94, and the position of the cutting device Changes must be made.
 この切換え作業は、熟練および労力を要する作業であり、しかも、切換後の運転を再開時に使い物にならない無駄なトラスが発生する。 This switching work requires skill and labor, and a wasteful truss that does not become useful when restarting operation after switching occurs.
 そこで、この発明の自立型トラスの製造装置は、このような従来の装置が有する課題を解決するために考えられたもので、ラチス筋のピッチおよびトラスの全長の変更を自動的に行い、かつ、無駄なトラスを発生させないように構成したものである。 Therefore, the self-supporting truss manufacturing apparatus of the present invention was conceived to solve the problems of such a conventional apparatus, automatically changing the pitch of the lattice and the total length of the truss, and The configuration is such that a useless truss is not generated.
 この発明の自立型トラスの製造装置は、上弦筋、下弦筋およびラチス筋の線材を送り出すステップコンベアと、ラチス筋の線材を間隔をあけて保持する移動クランプおよび静止クランプと、この移動クランプのほぼ半分の速度で同方向に移動し、上記移動クランプと上記静止クランプのほぼ中央において上記線材を交差方向に押して上側屈曲部を形成する曲げヘッドとを備え、ラチス筋1ピッチの長さを変更可能な折曲装置と、搬送方向に移動可能で、屈曲させたラチス筋の下側屈曲部を固定する第1可動クランプおよび第2可動クランプと、上記2つの可動クランプと連動して搬送方向に移動可能で、2つの可動クランプのほぼ中央に配置されて、ラチス筋の上側屈曲部を上弦筋に溶接する第1溶接機構と、搬送方向に移動可能で、上側屈曲部を上弦筋に溶接したラチス筋の下部を下弦筋に溶接してトラスを形成する第2溶接機構と、搬送方向に移動可能で、上記トラスを切断する切断機構と、静止クランプの位置を基準として屈曲させたラチス筋の下側屈曲部の位置データを1タクトごとにシフトさせながら格納するメモリを有する制御装置とにより構成される。 The self-supporting truss manufacturing apparatus according to the present invention includes a step conveyor for feeding the wire material of the upper chord, the lower chord and the lattice, a moving clamp and a stationary clamp for holding the wire of the lattice at an interval, It moves in the same direction at half speed, and has a bending head that forms the upper bending part by pushing the wire rod in the crossing direction at almost the center of the stationary clamp and can change the length of one pitch of the lattice muscle Movable bending device, a first movable clamp and a second movable clamp that are movable in the conveyance direction and fix the lower bent portion of the bent lattice muscle, and move in the conveyance direction in conjunction with the two movable clamps. A first welding mechanism that is arranged at substantially the center of the two movable clamps and welds the upper bent portion of the lattice muscle to the upper chord, and is movable in the conveying direction; The second welding mechanism that forms the truss by welding the lower part of the lattice to the lower chord to weld the curved part to the upper chord, the cutting mechanism that can move in the transport direction and cut the truss, and the position of the stationary clamp The control device includes a memory that stores the position data of the lower bent portion of the lattice muscle bent as a reference while shifting the position data for each tact.
 制御装置に、静止クランプの位置を基準として、屈曲させたラチス筋の下側屈曲部の位置データを1タクトごとにシフトさせながら格納するメモリを有しており、この位置データに基づいて、上記静止クランプに対する第1可動クランプ、第2可動クランプ、第1溶接機構、第2溶接機構、切断機構の各間隔の変更およびそれらの動作を制御する。 The control device has a memory for storing the position data of the lower bent portion of the bent lattice muscle while shifting it by one tact with reference to the position of the stationary clamp. The first movable clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the change of the intervals of the cutting mechanism with respect to the stationary clamp and the operation thereof are controlled.
 この発明の自立型トラスの製造装置によると、静止クランプの位置を基準として、屈曲させたラチス筋の下側屈曲部の位置データを1タクトごとにシフトさせながら格納するメモリを備えているので、この位置データに基づいて、制御装置により静止クランプに対する第1可動クランプ、第2可動クランプ、第1溶接機構、第2溶接機構、切断機構の各間隔の変更を自動的に行うことができ、さらに、第1溶接機構、第2溶接機構、切断機構の動作もそれぞれ制御することができる。 According to the self-supporting truss manufacturing apparatus of the present invention, it has a memory for storing the position data of the lower bent portion of the bent lattice muscle while shifting it every tact with respect to the position of the stationary clamp. Based on this position data, the controller can automatically change the intervals of the first movable clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the cutting mechanism with respect to the stationary clamp, The operations of the first welding mechanism, the second welding mechanism, and the cutting mechanism can also be controlled.
 この発明の自立型トラスの製造装置によると、トラスの長さの変更により、ラチス筋の1ピッチの長さを製造中に変更しても、この変更に対応して、第1可動クランプ、第2可動クランプ、第1溶接機構、第2溶接機構、切断機構の位置を変更する制御を行うので、全く無駄を生じることなく、異なる1ピッチの長さおよび/または異なる全長のトラスを継続して製造することができる。 According to the self-supporting truss manufacturing apparatus of the present invention, even if the length of one pitch of the lattice muscle is changed during manufacturing by changing the length of the truss, the first movable clamp, 2 The movable clamp, the first welding mechanism, the second welding mechanism, and the control for changing the position of the cutting mechanism are performed, so that a truss having a different pitch and / or a different full length can be continued without any waste. Can be manufactured.
 この発明の自立型トラスの製造装置によると、トラスの両端に任意長さの屈曲させない直線状の線材を突出させたトラスの製造も可能である。 According to the self-supporting truss manufacturing apparatus of the present invention, it is also possible to manufacture a truss in which straight wires that are not bent at any length are projected at both ends of the truss.
 (第1の実施形態)
 この発明の自立型トラスの製造装置は、図1の側面図および図2の原理図に示すように、搬送方向に向かって、線材を一定長さづつ間欠的に送り出す移動クランプ11を備えたステップコンベア1と、線材90をラチス筋91に折り曲げる折曲機構2と、折り曲げたラチス筋91を上弦筋93および下弦筋94に溶接してトラス9を形成する第1溶接機構41、第2溶接機42と、形成されたトラス9を所定長さことに切断する切断機構5とを備えている。
(First embodiment)
As shown in the side view of FIG. 1 and the principle diagram of FIG. 2, the self-supporting truss manufacturing apparatus of the present invention includes a moving clamp 11 that intermittently feeds a wire rod at a constant length in the conveying direction. The conveyor 1, the bending mechanism 2 for bending the wire 90 into the lattice line 91, the first welding mechanism 41 for forming the truss 9 by welding the bent lattice line 91 to the upper chord line 93 and the lower chord line 94, and the second welding machine 42 and a cutting mechanism 5 for cutting the formed truss 9 to a predetermined length.
 ステップコンベア1は、油圧モータ12と、この油圧モータ12により駆動されて、線材90を掴んで、基台Aに沿って搬送方向へ移動する移動クランプ11とにより構成される。ステップコンベア1は、ラチス筋91の線材90を送り出すコンベアの他に、上弦筋93および下弦筋94をそれぞれ送り出すコンベアとを備えているが、図を見易くするために、ラチス筋91の線材90を送り出す移動クランプ11を備えたコンベアのみを図示している。 The step conveyor 1 includes a hydraulic motor 12 and a moving clamp 11 that is driven by the hydraulic motor 12 to grip the wire 90 and move in the transport direction along the base A. The step conveyor 1 includes a conveyor that sends out the upper chords 93 and the lower chords 94 in addition to the conveyor that sends out the wire 90 of the lattice line 91, but in order to make the figure easier to see, the wire 90 of the lattice line 91 is used. Only the conveyor provided with the moving clamp 11 is shown.
 折曲装置2は、図1の側面図および図2の原理図に示すように、基台A上のレール16に沿って移動するステップコンベア1と、螺子棒13aおよびスクリュー13bを介してステップコンベア1を駆動する油圧モータ12と、このステップコンベア1に設けられて油圧装置およびロッド15によって駆動される移動クランプ11と、折り曲げられた線材90の下側屈曲部95を押さえて保持する基台Aに設けられた静止クランプ31と、移動クランプ11と連動して移動クランプ11の半分の速度で同方向に移動し、常に移動クランプ11と静止クランプ31のほぼ中央に位置する上側屈曲部92を形成する曲げヘッド21とにより構成されている。 As shown in the side view of FIG. 1 and the principle diagram of FIG. 2, the bending apparatus 2 includes a step conveyor 1 that moves along a rail 16 on the base A, a screw conveyor 13a and a screw 13b. 1, a hydraulic motor 12 that drives 1, a moving clamp 11 that is provided on the step conveyor 1 and is driven by a hydraulic device and a rod 15, and a base A that holds and holds the lower bent portion 95 of the bent wire 90. It moves in the same direction at half the speed of the moving clamp 11 in conjunction with the moving clamp 11 and always forms the upper bent portion 92 located almost in the center of the moving clamp 11 and the stationary clamp 31. And the bending head 21 to be configured.
 移動クランプ11は、ステップコンベア1の前進時に線材90を掴んで前進し、ステップコンベア1の後退時に線材90を解放して後退するものである。そして、移動クランプ11の移動距離を検出するために、ステップコンベア1にエンコーダ14が設けられている。 The moving clamp 11 grabs and moves the wire rod 90 when the step conveyor 1 moves forward, and releases the wire rod 90 when the step conveyor 1 moves backward. In order to detect the moving distance of the moving clamp 11, an encoder 14 is provided on the step conveyor 1.
 折曲装置2は、垂直方向に昇降するロッド23と、このロッド23から水平方向に突出するように取り付けられて、線材90の中央部を押し上げて上側屈曲部92を形成する曲げヘッド21と、ロッド23を垂直方向に駆動するサーボモータ24とにより構成されている。 The bending device 2 includes a rod 23 that moves up and down in the vertical direction, a bending head 21 that is mounted so as to protrude from the rod 23 in the horizontal direction and pushes up the central portion of the wire 90 to form an upper bent portion 92; The servo motor 24 drives the rod 23 in the vertical direction.
 図2に示すように、基台Aには、静止クランプ31の後方(図示右側)に第1可動クランプ32、第2可動クランプ33が設けられており、さらに、2つの可動クランプ32、33の中央に常に位置する第1溶接機構41を備えている。2つの可動クランプ32、33は、曲げられたラチス筋91のピッチに合わせて別々に前後方向に移動可能であって、ラチス筋91の下側屈曲部95の位置を固定するとともに、第1の溶接機構41の溶接動作における位置決め動作を行うものである。 As shown in FIG. 2, the base A is provided with a first movable clamp 32 and a second movable clamp 33 behind the stationary clamp 31 (on the right side in the drawing). A first welding mechanism 41 that is always located in the center is provided. The two movable clamps 32 and 33 are separately movable in the front-rear direction in accordance with the pitch of the bent lattice muscle 91, fix the position of the lower bent portion 95 of the lattice muscle 91, and The positioning operation in the welding operation of the welding mechanism 41 is performed.
 第1可動クランプ32、第2可動クランプ33および第1溶接機構41には、前後方向(図示左右方向)に移動させる駆動機構(図示せず)がそれぞれ設けられ、さらに、エンコーダ(図示せず)がそれぞれ設けられて、静止クランプ31の位置を基準とする距離を検出するように構成されている。 The first movable clamp 32, the second movable clamp 33, and the first welding mechanism 41 are each provided with a drive mechanism (not shown) for moving in the front-rear direction (left-right direction in the figure), and further an encoder (not shown). Are provided so as to detect a distance based on the position of the stationary clamp 31.
 第1溶接機構41は、2つのラチス筋91の上側屈曲部92において上弦筋93を両側から挟んで溶接して、1本の上弦筋93に対して2つのラチス筋91を固定する。 The first welding mechanism 41 fixes the two lattice muscles 91 to one upper chord muscle 93 by welding the upper chord muscle 93 from both sides at the upper bent portion 92 of the two lattice muscles 91.
 2つの可動クランプ32、33の後方に、2つのラチス筋91の下部に2本の下弦筋94を溶接して自立型トラス9を形成する第2溶接機構42を備えている。この第2溶接機構42にも、ラチス筋91の下側屈曲部95に当たる位置に移動させる駆動機構(図示せず)と、静止クランプ31の位置を基準とする距離を検出するエンコーダ(図示せず)が設けられている。 The second welding mechanism 42 for forming the self-supporting truss 9 by welding the two lower chords 94 to the lower part of the two lattices 91 behind the two movable clamps 32 and 33 is provided. The second welding mechanism 42 also includes a drive mechanism (not shown) that moves to a position that hits the lower bent portion 95 of the lattice muscle 91 and an encoder (not shown) that detects a distance based on the position of the stationary clamp 31. ) Is provided.
 この第2溶接機構41の後方には、形成された自立型トラス9をラチス筋91の下側屈曲部95において所望の長さに切断する切断装置5が設けられている。この切断装置5にも、ラチス筋91の下側屈曲部95に当たる位置に移動させる駆動機構(図示せず)と、静止クランプ31の位置を基準とする距離を検出するエンコーダ(図示せず)が設けられている。 At the rear of the second welding mechanism 41, there is provided a cutting device 5 for cutting the formed self-supporting truss 9 to a desired length at the lower bent portion 95 of the lattice muscle 91. The cutting device 5 also has a drive mechanism (not shown) that moves to a position that hits the lower bent portion 95 of the lattice muscle 91 and an encoder (not shown) that detects a distance based on the position of the stationary clamp 31. Is provided.
 次に、このように構成された自立型トラスの製造装置により自立型トラスを製造する工程を図2に基づいて説明する。 Next, a process of manufacturing a self-supporting truss using the self-supporting truss manufacturing apparatus configured as described above will be described with reference to FIG.
 標準ピッチp(例えば200mm)のラチス筋を用いて長さLのトラスを製造するとき、製造する長さLを標準ピッチpで除算して整数nと正負の端数hを求め、負の端数hが標準ピッチpの半分(100mm)より小さい(正の端数が標準ピッチpの半分より大きい)場合には、端数hを整数nで除算して標準ピッチの200mmにそれぞれ加算して1ピッチをP=p+h/nとする。 When a truss having a length L is manufactured using a lattice muscle having a standard pitch p (for example, 200 mm), the length L to be manufactured is divided by the standard pitch p to obtain an integer n and a positive / negative fraction h, and a negative fraction h Is smaller than half of the standard pitch p (100 mm) (the positive fraction is larger than half of the standard pitch p), the fraction h is divided by an integer n and added to the standard pitch of 200 mm, respectively. = P + h / n.
 同様に、製造する長さLを標準ピッチpで除算して整数nと正負の端数hを求め、正の端数hが標準ピッチpの半分(100mm)より小さい(負の端数が標準ピッチpの半分より大きい)場合には、端数hを整数nで除算して標準ピッチの200mmにそれぞれ減算して1ピッチをP=p-h/nとする。 Similarly, the length L to be manufactured is divided by the standard pitch p to obtain an integer n and a positive / negative fraction h, and the positive fraction h is smaller than half (100 mm) of the standard pitch p (the negative fraction is the standard pitch p). In the case of larger than half), the fraction h is divided by the integer n and subtracted to the standard pitch of 200 mm to make one pitch P = ph / n.
 制御装置のコンピュータに、線材90の材質、線径、ラチス筋91の仕上がりピッチP、ラチス筋91の仕上がり高さ、屈曲部の曲率など加工条件を入力する。この加工条件には、曲げ加工時の拘束を解いたときに弾性変形により復元するスプリング・バックの量を補正するように設定されている。 Processing conditions such as the material of the wire 90, the wire diameter, the finished pitch P of the lattice stripe 91, the finished height of the lattice stripe 91, and the curvature of the bent portion are input to the computer of the control device. This processing condition is set so as to correct the amount of spring back that is restored by elastic deformation when the constraint during bending is released.
 制御装置によって、静止クランプ31と第1可動クランプ32との間隔、第1可動クランプ32と第2可動クランプ33との間隔を1ピッチ分(P=p±h/n)にそれぞれ設定する。このとき、第1溶接機構41も連動して第1可動クランプ32と第2可動クランプ33との中央に移動させる。同時に、第2溶接機構42および切断機構5を静止クランプ31から1ピッチPの整数倍の位置に移動させる。 The distance between the stationary clamp 31 and the first movable clamp 32 and the distance between the first movable clamp 32 and the second movable clamp 33 are set to one pitch (P = p ± h / n) by the control device. At this time, the first welding mechanism 41 is also moved to the center of the first movable clamp 32 and the second movable clamp 33 in conjunction with each other. At the same time, the second welding mechanism 42 and the cutting mechanism 5 are moved from the stationary clamp 31 to a position that is an integral multiple of 1 pitch P.
 図2の(1)に示すように、解放状態にした第1移動クランプ11に線材90を挿通して、静止クランプ31により線材90の先端部を押さえて固定したのち、移動クランプ11を解放をさせてステップコンベア1を動かし、静止クランプ31から距離Tだけ離れた位置に停止させて、線材90を移動クランプ11で掴ませる。この距離Tは、線材90を折り曲げた仕上がり寸法が1ピッチ分に相当する線材90の長さTである。 As shown in (1) of FIG. 2, after the wire rod 90 is inserted into the released first moving clamp 11 and the distal end portion of the wire rod 90 is pressed and fixed by the stationary clamp 31, the moving clamp 11 is released. Then, the step conveyor 1 is moved, stopped at a position away from the stationary clamp 31 by a distance T, and the wire 90 is gripped by the moving clamp 11. This distance T is the length T of the wire 90 corresponding to one pitch of the finished dimension obtained by bending the wire 90.
 図2の(2)に示すように、サーボモータ24によりロッド23を垂直方向に駆動して、曲げヘッド21により線材90の中央部を設定高さまで押し上げるとともに、油圧モータ12によりステップコンベア1に設けられた移動クランプ11を静止クランプ31から距離Pの位置まで前進させる。 As shown in FIG. 2 (2), the rod 23 is driven in the vertical direction by the servo motor 24, the center portion of the wire 90 is pushed up to the set height by the bending head 21, and provided on the step conveyor 1 by the hydraulic motor 12. The moved moving clamp 11 is advanced from the stationary clamp 31 to the position of the distance P.
 このとき、曲げヘッド21も移動クランプ11の半分の速度で前進するので、曲げヘッド21によって押し上げられる線材90の部位は、常に移動クランプ11と静止クランプ31のほぼ中央部に当たっている。 At this time, since the bending head 21 also moves forward at half the speed of the moving clamp 11, the portion of the wire 90 pushed up by the bending head 21 is always in contact with the approximate center of the moving clamp 11 and the stationary clamp 31.
 図2の(3)に示すように、静止クランプ31により既に曲げられた下側屈曲部95を押さえて固定した状態で、曲げヘッド21を降下させて、移動クランプ11を解放させたのち、ステップコンベア1とともに第1移動クランプ11を後退させ、折り曲げた仕上がり寸法が1ピッチ分に相当する線材90の長さTと、1ピッチの長さPとの和(T+P)となるように、静止クランプ31から距離(T+P)だけ離れた位置において停止させる。このとき、曲げヘッド21も連動して半分の速度で後退する。 As shown in (3) of FIG. 2, the bending head 21 is lowered while the lower bending portion 95 already bent by the stationary clamp 31 is pressed and fixed, and the moving clamp 11 is released. The first moving clamp 11 is retracted together with the conveyor 1, and the stationary clamp is made so that the finished dimension is the sum of the length T of the wire 90 corresponding to one pitch and the length P of one pitch (T + P). Stop at a position away from 31 by a distance (T + P). At this time, the bending head 21 also moves backward at half speed in conjunction with it.
 この静止クランプ31の停止位置において、移動クランプ11により線材90を掴み、静止クランプ31を解放させる。そして、図2の(4)に示すように、ステップコンベア1を1ピッチP分の距離だけ前進させる。このとき、上弦筋93および下弦筋94の線材も1ピッチP分の長さだけ同時に送り出す。1ピッチP分の前進が完了したときに、静止クランプ31を作動させて、既に曲げられた下側屈曲部95を固定する。 At the stop position of the stationary clamp 31, the wire 90 is gripped by the moving clamp 11, and the stationary clamp 31 is released. Then, as shown in (4) of FIG. 2, the step conveyor 1 is advanced by a distance corresponding to one pitch P. At this time, the wire material of the upper chord line 93 and the lower chord line 94 is also simultaneously sent out by a length corresponding to one pitch P. When the advance for one pitch P is completed, the stationary clamp 31 is operated to fix the already bent lower bent portion 95.
 そして、図2の(1)~(3)に示す一連の動作を繰り返し行って、線材90を所望ピッチおよび所望高さのラチス筋91に曲げ加工する。 Then, a series of operations shown in (1) to (3) of FIG. 2 is repeatedly performed to bend the wire 90 into a lattice 91 having a desired pitch and a desired height.
 曲げ加工されたラチス筋91が、1ピッチPづつ前進するごとに、静止クランプ31、第1可動クランプ32および第2可動クランプ33によって、曲げられた3カ所の下側屈曲部95を固定する。この固定中に、第1溶接機構41を動作させて、2つのラチス筋91の上側屈曲部92で上弦筋93を両側から挟んで溶接する。 Each time the bent lattice 91 advances by 1 pitch P, the lower bent portion 95 that is bent by the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33 is fixed. During the fixing, the first welding mechanism 41 is operated to weld the upper chord 93 with the upper bent portions 92 of the two lattices 91 from both sides.
 このように1本の上弦筋93に固定された2つのラチス筋91は、次に、第2溶接機構42によって各ラチス筋91の下部に2本の下弦筋94がそれぞれ溶接されて自立型トラス9を形成する。 In this way, the two lattice muscles 91 fixed to the one upper chord muscle 93 are then welded to the lower part of each lattice muscle 91 by the second welding mechanism 42, and the two lower chord muscles 94 are respectively welded. 9 is formed.
 形成された自立型トラス9は、1タクトごとに1ピッチづつ切断機構5を通過するので、その通過した長さが所定長さL(所定ピッチ数)に達したとき、切断機構5を動作させてラチス筋91の下側屈曲部95において自立型トラス9を所定長さLに切断する。 Since the formed self-supporting truss 9 passes through the cutting mechanism 5 by one pitch every tact, the cutting mechanism 5 is operated when the passed length reaches a predetermined length L (predetermined number of pitches). Then, the self-supporting truss 9 is cut to a predetermined length L at the lower bent portion 95 of the lattice muscle 91.
 (第2の実施形態)
 次に、ピッチP1で長さL1の自立型トラスを所定本数だけ製造したのち、ピッチP2で長さL2の自立型トラスの製造に変更する工程を図3に基づいて説明する。
(Second Embodiment)
Next, after producing a self-supporting truss length L 1 at a pitch P 1 by a predetermined number, a description will be given of a step of changing the production of self-supporting truss length L 2 at a pitch P 2 in FIG.
 自立型トラスの製造中に、制御装置において、静止クランプ31を基準とするラチス筋91の下側屈曲部95の配列状態を1タクトごとにシフトさせながらコンピュータのメモリに格納する。 During the manufacture of the self-supporting truss, the control device stores the arrangement state of the lower bent portion 95 of the lattice muscle 91 with the stationary clamp 31 as a reference in the computer memory while shifting it by one tact.
 ピッチP1で長さL1の自立型トラスの最終本のラチス筋91の末尾の下側屈曲部95が、静止クランプ31に到達したとき、制御装置によって、次に製造するピッチP2で長さL2の自立型トラスに対応して、図3の(1)に示すように、移動クランプ11を静止クランプ31から距離T2だけ離れた離れた位置に停止させる。この距離T2は、線材90を折り曲げた仕上がり寸法がピッチP2分に相当する線材90の長さである。 When the lower bent portion 95 at the end of the last lattice 91 of the self-supporting truss with the pitch P 1 and the length L 1 reaches the stationary clamp 31, the controller makes a long operation with the pitch P 2 to be manufactured next. Corresponding to the self-supporting truss having the length L 2 , the moving clamp 11 is stopped at a position separated from the stationary clamp 31 by a distance T 2 as shown in FIG. This distance T 2 is the length of the wire 90 in which the finished dimension obtained by bending the wire 90 corresponds to the pitch P 2 .
 図3の(2)に示すように、ピッチP2で第1タクトの曲げ加工が終了すると、制御装置によって、図3の(3)に示すように、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5を、ピッチP1とピッチP2との差(P1-P2)だけ同時に平行移動させて、ピッチP1からピッチP2に変更した境界の下側屈曲部951を第1可動クランプ32で固定させる。 As shown in (2) of FIG. 3, when the bending of the first tact is finished at the pitch P 2 , the first movable clamp 32 and the second movable clamp as shown in (3) of FIG. 33, the first welding mechanism 41, the second welding mechanism 42 and the cutting mechanism 5 are simultaneously translated by the difference (P 1 -P 2 ) between the pitch P 1 and the pitch P 2 , so that the pitch P 1 to the pitch P 2 The lower bent portion 951 of the boundary changed to is fixed by the first movable clamp 32.
 ピッチP2で第2タクトの曲げ加工が終了すると、図3の(4)に示すように、制御装置によって、第1可動クランプ32を除いて、第2可動クランプ33、第1溶接機構41および第2溶接機構42を、ピッチP1とピッチP2との差(P1-P2)だけ同時に平行移動させて、ピッチP1からピッチP2に変更した境界の下側屈曲部951を第2可動クランプ33で固定させる。このとき、静止クランプ31と第1可動クランプ32との間隔および第1可動クランプ32と第2可動クランプ33との間隔は、それぞれピッチP2に変わっている。 When the second tact bending process is completed at the pitch P 2 , as shown in FIG. 3 (4), the control unit removes the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, and The second welding mechanism 42 is simultaneously translated by the difference (P 1 -P 2 ) between the pitch P 1 and the pitch P 2, and the lower bent portion 951 at the boundary changed from the pitch P 1 to the pitch P 2 is formed. 2 Fix with movable clamp 33. At this time, the distance between the stationary clamp 31 and the spacing and the first movable clamp 32 of the first movable clamp 32 and the second movable clamp 33 is respectively changed to the pitch P 2.
 ピッチP2で一連の動作を繰り返し行って、図3の(5)に示すように、ピッチP1からピッチP2に変更した境界の下側屈曲部951が第2溶接機構42に到達すると、第2溶接機構42を静止クランプ31からピッチP2の整数倍(nP2)の位置へ移動させて、2本の下弦筋94に対する溶接動作を行う。 By repeating a series of operations at a pitch P 2, as shown in (5) in FIG. 3, the boundary of the lower bent portion 951 has been changed from the pitch P 1 to the pitch P 2 reaches the second welding mechanism 42, The second welding mechanism 42 is moved from the stationary clamp 31 to a position that is an integral multiple of the pitch P 2 (nP 2 ), and the welding operation for the two lower chords 94 is performed.
 図3の(6)に示すように、ピッチP1からピッチP2に変更した境界の下側屈曲部951が切断機構5に到達する前に、切断機構5を静止クランプ31からピッチP2の整数倍(nP2)の位置へ移動させて待機し、図3の(7)に示すように、ピッチP1からピッチP2に変更した境界の下側屈曲部951が切断機構5に到達したとき、切断機構5を動作させてピッチP1で長さL1の自立型トラスの最終本の末尾(ピッチP2で長さL2の最初の自立型トラスの先端)を切断する。 As shown in FIG. 3 (6), before the lower bent portion 951 of the boundary changed from the pitch P 1 to the pitch P 2 reaches the cutting mechanism 5, the cutting mechanism 5 is moved from the stationary clamp 31 to the pitch P 2 . It moved to the position of an integral multiple (nP 2 ) and waited, and as shown in (7) of FIG. 3, the lower bent portion 951 at the boundary changed from pitch P 1 to pitch P 2 reached the cutting mechanism 5. when, cutting the final book end freestanding truss length L 1 at a pitch P 1 by operating the cutting mechanism 5 (the first tip of the free-standing truss pitch P 2 in the length L 2).
 自立型トラス9の製造中に、制御装置において、静止クランプ31を基準とするラチス筋91の下側屈曲部95よびピッチを変更した境界に当たる下側屈曲部951の配列状態を1タクトごとにシフトさせながらメモリに格納している。 During the manufacture of the self-supporting truss 9, the control device shifts the arrangement state of the lower bending portion 951 corresponding to the boundary where the pitch of the lower bending portion 95 and the pitch of the lattice muscle 91 with respect to the stationary clamp 31 is changed every tact. Stored in memory.
 したがって、製造する自立型トラス9のピッチおよび長さ変更は、この格納されたデータに基づいて、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5の各装置の動作時期を制御装置において予め認識することができるので、境界の下側屈曲部951の通過時期に合わせて各装置を所定の位置へ配置することができる。 Accordingly, the pitch and length of the self-supporting truss 9 to be manufactured are changed based on the stored data based on the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting. Since the operation time of each device of the mechanism 5 can be recognized in advance by the control device, each device can be arranged at a predetermined position in accordance with the passage time of the lower bent portion 951 of the boundary.
 以後、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5の位置を変えることなく、ピッチP2の製造モードで長さL2の自立型トラス9の製造を行う。このように、製造する自立型トラス9のピッチおよび長さを変更しても、全く無駄を生じることはなく継続して製造することができる。 Thereafter, the self-supporting type having the length L 2 in the production mode of the pitch P 2 without changing the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5. The truss 9 is manufactured. Thus, even if the pitch and length of the self-supporting truss 9 to be manufactured are changed, it can be continuously manufactured without any waste.
 (第3の実施形態)
 次に、横梁の鉄筋組立体と自立型トラスとの結合に便利ならしめるために、一定長さの自立型トラスの両端に、ラチス筋の線材を屈曲させない直線状の部分を1ピッチ分づつ突出させた自立型トラスを製造する工程を図4に基づいて説明する。
(Third embodiment)
Next, in order to make it easier to connect the rebar assembly of the cross beam and the self-supporting truss, a straight portion that does not bend the lattice wire of the lattice bars protrudes by one pitch at both ends of the self-supporting truss of a certain length. The process of manufacturing the self-supporting truss made will be described with reference to FIG.
 自立型トラスの両端に直線状の部分を1ピッチ分づつ突出させるためには、2つの自立型トラスの間に予め2ピッチ分の直線状の部分を形成しておき、その中央を切断しなければならない。 In order to project the linear part by one pitch at both ends of the self-supporting truss, a straight part of two pitches must be formed in advance between two self-supporting trusses, and the center must be cut. I must.
 図4に示すように、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5の位置を変更することなく、第1の実施形態で説明した工程と同じ工程を経て、ピッチPで長さLのトラスを製造する。 As illustrated in FIG. 4, the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5 have been described in the first embodiment without changing the positions. A truss having a length L is manufactured at a pitch P through the same process.
 図4の(1)に示すように、1本目のトラス91の末尾の下側屈曲部95が静止クランプ31に到達して固定されたとき、移動クランプ11を解放をさせてステップコンベア1を動かして、静止クランプ31から2ピッチ分の距離だけ離れた位置に停止させ、線材90を移動クランプ11で掴ませる。 As shown in FIG. 4A, when the lower bent portion 95 at the end of the first truss 91 reaches the stationary clamp 31 and is fixed, the moving clamp 11 is released and the step conveyor 1 is moved. Thus, the wire 90 is stopped from the stationary clamp 31 by a distance corresponding to two pitches, and the wire 90 is gripped by the moving clamp 11.
 図4の(2)に示すように、静止クランプ31、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を1ピッチ分前進させることにより、屈曲させないラチス筋の線材90を1ピッチ分前進させるとともに、上弦筋93および下弦筋94も1ピッチ分前進さる。 As shown in FIG. 4 (2), the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33 are opened, and the moving clamp 11 is advanced by one pitch so that the wire 90 of the lattice muscle that is not bent is obtained. Is advanced by one pitch, and the upper and lower chords 93 and 94 are also advanced by one pitch.
 そして、第1可動クランプ32により屈曲させないラチス筋の線材96を固定し、第2可動クランプ33によりラチス筋の下側屈曲部95を固定したのち、第1溶接機構41によりラチス筋91の上側屈曲部95を上弦筋93に溶接し、第2溶接機構42によりラチス筋の下部を下弦筋94に溶接する。 Then, the lattice rod 96 which is not bent by the first movable clamp 32 is fixed, the lower bending portion 95 of the lattice muscle is fixed by the second movable clamp 33, and then the upper bending of the lattice 91 is performed by the first welding mechanism 41. The portion 95 is welded to the upper chord 93 and the lower portion of the lattice is welded to the lower chord 94 by the second welding mechanism 42.
 図4の(3)に示すように、再度、静止クランプ31、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を1ピッチ分前進させることにより、ラチス筋91の線材90を屈曲させることなく1ピッチ分前進させるとともに、上弦筋93および下弦筋94も1ピッチ分前進させる。この動作により、隣接するトラス9の間に屈曲させないラチス筋の線材96が2ピッチ分存在させることができる。 As shown in (3) of FIG. 4, the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33 are opened again, and the moving clamp 11 is advanced by one pitch, whereby the wire rod of the lattice muscle 91 is obtained. While 90 is advanced by one pitch without bending, the upper and lower chords 93 and 94 are also advanced by one pitch. By this operation, lattice pitch wire 96 that is not bent between adjacent trusses 9 can be present for two pitches.
 そして、静止クランプ31、第1可動クランプ32および第2可動クランプ33により屈曲させないラチス筋の線材96を2ピッチ分固定したのち、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 Then, after fixing two pitches of the lattice wire 96 which is not bent by the stationary clamp 31, the first movable clamp 32 and the second movable clamp 33, the second welding mechanism 42 welds the lower part of the lattice 91 to the lower chord 94. To do.
 図4の(3)に示すように、移動クランプ11を解放させてステップコンベア1を動かして、折り曲げた仕上がり寸法が1ピッチ分に相当する線材90の長さT長さだけ静止クランプ31から離れた位置に停止させ、線材90を移動クランプ11で掴ませせて、次のトラス9の製造を開始する。 As shown in (3) of FIG. 4, the moving clamp 11 is released and the step conveyor 1 is moved to leave the stationary clamp 31 by the length T of the wire 90 corresponding to one pitch of the finished finish. Then, the wire 90 is held by the moving clamp 11 and the manufacture of the next truss 9 is started.
 図4の(5)~(8)に示すように、次のトラス9の製造中に、屈曲させていないラチス筋の線材96が、第1溶接機構41および第2溶接機構42を通過するときには、溶接動作を停止させる。 As shown in (5) to (8) of FIG. 4, during the next manufacturing of the truss 9, when an unbent lattice wire 96 passes through the first welding mechanism 41 and the second welding mechanism 42. , Stop the welding operation.
 図4の(9)に示すように、屈曲させていないラチス筋の2ピッチ分の線材96の中央(前のラチスの末尾から1ピッチ、後のラチスの先端から1ピッチの部位)が、切断機構5に到達したときに切断機構5を動作させてラチスを切断する。 As shown in FIG. 4 (9), the center of the wire 96 for two pitches of the unlatched lattice muscle (one pitch from the end of the previous lattice and one pitch from the tip of the subsequent lattice) is cut. When the mechanism 5 is reached, the cutting mechanism 5 is operated to cut the lattice.
 このようにして、所定長さの自立型トラス9の両端に、ラチス筋の線材を屈曲させない直線状の部分96を1ピッチ分づつ突出させた自立型トラスを製造することができる。 In this way, it is possible to manufacture a self-supporting truss in which linear portions 96 that do not bend the lattice material of the lattice are protruded by one pitch at both ends of the self-supporting truss 9 having a predetermined length.
 (第4の実施形態)
 この発明の自立型トラスの製造装置においては、静止クランプ31に対して、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5の位置を制御装置によって、それぞれ別々に変更することができるように構成されており、かつ、トラスの製造中に、制御装置において、静止クランプ31を基準とするラチス筋91の下側屈曲部95の配列状態を1タクトごとにシフトさせながらメモリに格納しているので、所定長さの自立型トラスの両端に、1ピッチの整数倍ではない任意長さNのラチス筋91の線材96を直線状に形成することができる。
(Fourth embodiment)
In the self-supporting truss manufacturing apparatus of the present invention, the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5 are controlled with respect to the stationary clamp 31. Each of the devices can be changed separately, and during the manufacture of the truss, the arrangement state of the lower bending portion 95 of the lattice muscle 91 with respect to the stationary clamp 31 is determined in the control device. Since the data is stored in the memory while being shifted every tact, the wire rod 96 of the lattice stripe 91 having an arbitrary length N which is not an integral multiple of one pitch is formed in a straight line at both ends of the self-supporting truss having a predetermined length. be able to.
 この発明の第4の実施形態を図5および図6に基づいて説明する。なお、図5は、全工程のうち前半の工程(1~8)を示し、図6は、全工程のうち後半の工程(8~14)を示しており、工程(8)は両図に重複して示している。 A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 5 shows the first half steps (1 to 8) of all the steps, and FIG. 6 shows the second half steps (8 to 14) of all the steps. Step (8) is shown in both figures. It is shown redundantly.
 自立型トラスの両端に突出させる直線状の線材96の長さNを1ピッチPの整数倍nPと比較して端数sを求める。以下、n=1の場合、即ち、N=P+sの場合を例示して説明する。 The fraction s is obtained by comparing the length N of the linear wire 96 protruding from both ends of the self-supporting truss with an integer multiple nP of 1 pitch P. Hereinafter, a case where n = 1, that is, a case where N = P + s will be described as an example.
 図5の(1)に示すように、第1可動クランプ32、第2可動クランプ33、第1溶接機構41、第2溶接機構42および切断機構5の位置を変更することなく、第1の実施形態で説明した工程と同じ工程を経て、ピッチPで長さLのトラスを製造する。 As shown in (1) of FIG. 5, the first implementation is performed without changing the positions of the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, the second welding mechanism 42, and the cutting mechanism 5. A truss having a length L is manufactured at a pitch P through the same steps as described in the embodiment.
 図5の(2)に示すように、ピッチPで長さLのトラスを製造して、1本分のトラスの末尾の下側屈曲部95が静止クランプ31に到達して固定したとき、移動クランプ11を解放をさせてステップコンベア1を動かし、静止クランプ31から2ピッチP分の距離だけ離れた位置に停止させて線材90を移動クランプ11で掴ませる。 As shown in FIG. 5 (2), when a truss having a length L is manufactured at a pitch P and the lower bent portion 95 at the end of one truss reaches the stationary clamp 31 and is fixed, it moves. The clamp 11 is released and the step conveyor 1 is moved to stop the clamp 11 at a position 2 pitch P away from the stationary clamp 31 and the wire clamp 90 is gripped by the moving clamp 11.
 図5の(3)に示すように、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を1ピッチ分前進させることにより、ラチス筋の線材90を屈曲させることなく1ピッチ分前進させるとともに、上弦筋93および下弦筋94も1ピッチ分前進させる。 As shown in (3) of FIG. 5, the first movable clamp 32 and the second movable clamp 33 are opened, and the movable clamp 11 is advanced by one pitch, so that the wire 90 of the lattice muscle 1 is not bent. While moving forward by the pitch, the upper and lower chords 93 and 94 are also moved forward by one pitch.
 そして、第1可動クランプ32により屈曲させないラチス筋の線材96を固定し、第2可動クランプ33によりラチス筋の下側屈曲部95を固定したのち、第1溶接機構41によりラチス筋91の上側屈曲部92を上弦筋93に溶接し、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 Then, the lattice rod 96 which is not bent by the first movable clamp 32 is fixed, the lower bending portion 95 of the lattice muscle is fixed by the second movable clamp 33, and then the upper bending of the lattice 91 is performed by the first welding mechanism 41. The portion 92 is welded to the upper chord 93 and the lower portion of the lattice 91 is welded to the lower chord 94 by the second welding mechanism 42.
 図5の(4)に示すように、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を1ピッチ分前進させることにより、ラチス筋の線材90を屈曲させることなく1ピッチ分前進させるとともに、上弦筋93および下弦筋94も1ピッチ分前進させる。 As shown in (4) of FIG. 5, the first movable clamp 32 and the second movable clamp 33 are opened, and the movable clamp 11 is advanced by one pitch, so that the wire 90 of the lattice muscle 1 is not bent. While moving forward by the pitch, the upper and lower chords 93 and 94 are also moved forward by one pitch.
 そして、第1可動クランプ32により屈曲させないラチス筋の線材96を固定し、第2可動クランプ33によりラチス筋の下側屈曲部95を固定したのち、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 Then, the lattice rod 96 that is not bent by the first movable clamp 32 is fixed, the lower bent portion 95 of the lattice muscle is fixed by the second movable clamp 33, and the lower portion of the lattice 91 is lowered by the second welding mechanism 42. Weld to the lower chord 94.
 自立型トラスの両端に突出させる直線状の線材96の長さNが1ピッチ分以上の場合には、複数回にわたって、移動クランプ11を解放をさせてステップコンベア1を動かして、静止クランプ31から1ピッチ分の距離だけ離れた位置に停止させて線材90を移動クランプ11で掴ませせ、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を1ピッチ分前進させることにより、ラチス筋の線材90を屈曲させることなく1ピッチ分前進させるとともに、上弦筋93および下弦筋94も1ピッチ分前進させる。そして、第1溶接機構41によりラチス筋91の上側屈曲部95を上弦筋93に溶接し、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 When the length N of the linear wire 96 projecting from both ends of the self-supporting truss is equal to or more than one pitch, the moving clamp 11 is released multiple times and the step conveyor 1 is moved to start from the stationary clamp 31. Stop the wire 90 by a distance of one pitch distance, grab the wire 90 with the moving clamp 11, open the first movable clamp 32 and the second movable clamp 33, and advance the moving clamp 11 by one pitch. As a result, the lattice wire 90 is advanced by one pitch without bending, and the upper and lower chords 93 and 94 are also advanced by one pitch. Then, the upper bent portion 95 of the lattice bar 91 is welded to the upper chord line 93 by the first welding mechanism 41, and the lower part of the lattice bar 91 is welded to the lower chord line 94 by the second welding mechanism 42.
 突出させる直線状の線材96長さNのうち、1ピッチPの整数倍nPとの端数sを先に算出したので、図5の(5)に示すように、移動クランプ11を解放をさせてステップコンベア1を動かし、静止クランプ31から端数sの2倍2sと1ピッチ分の距離(P+2s)だけ離れた位置に停止させて線材90を移動クランプ11で掴ませる。 Since the fraction s of the linear wire 96 length N to be projected and the integer multiple nP of 1 pitch P is calculated first, the moving clamp 11 is released as shown in (5) of FIG. The step conveyor 1 is moved and stopped at a position separated from the stationary clamp 31 by a distance (P + 2s) that is 2 s times the fraction s and 1 pitch, and the wire rod 90 is gripped by the moving clamp 11.
 図5の(6)に示すように、第1可動クランプ32および第2可動クランプ33を開放させて、移動クランプ11を端数sの2倍2s分前進させることにより、ラチス筋の線材90を屈曲させることなく端数sの2倍2s分前進させるとともに、上弦筋93および下弦筋94も端数sの2倍2s分前進させる。この動作により、隣接するトラス9の間に、屈曲させないラチス筋の線材96を長さN(nP+s)の2倍だけ存在させることができる(図6の(14)参照)。 As shown in FIG. 5 (6), the first movable clamp 32 and the second movable clamp 33 are opened, and the moving clamp 11 is advanced by 2s 2 times the fraction s to bend the wire 90 of the lattice muscle. Without moving, the forward chord muscle 93 and the lower chord muscle 94 are also advanced by 2 s 2 times the fraction s. By this operation, it is possible to make the lattice rod 96 that is not bent between the adjacent trusses 9 twice as long as the length N (nP + s) (see (14) in FIG. 6).
 このとき、制御装置によって、図5の(6)に示すように、第1可動クランプ32、第2可動クランプ33、第1溶接機構41および第2溶接機構42を、端数sの2倍2s分の距離だけ同時に平行移動させる。 At this time, as shown in (6) of FIG. 5, the control device causes the first movable clamp 32, the second movable clamp 33, the first welding mechanism 41, and the second welding mechanism 42 to be 2s times 2s times the fraction s. The distance is translated at the same time.
 図5の(7)に示すように、移動クランプ11を解放をさせてステップコンベア1を動かして、折り曲げた仕上がり寸法が1ピッチ分に相当する線材90の長さTだけ静止クランプ31から離れた位置に停止させ、線材90を移動クランプ11で掴ませて、図5および図6の(8)に示すように、次のトラス9の製造を開始する。 As shown in (7) of FIG. 5, the moving clamp 11 is released and the step conveyor 1 is moved, and the folded dimension is separated from the stationary clamp 31 by the length T of the wire 90 corresponding to one pitch. The wire rod 90 is stopped at the position, and the wire 90 is gripped by the moving clamp 11, and the production of the next truss 9 is started as shown in FIG. 5 and FIG. 6 (8).
 次のラチス筋91の1番目の下側屈曲部95を静止クランプ31で固定する前に、図6の(9)に示すように、第1可動クランプ32の位置を静止クランプ31から1ピッチ分の距離に戻してから、1番目の下側屈曲部95を静止クランプ31、第1可動クランプ32および第2可動クランプ33で固定して、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 Before the first lower bent portion 95 of the next lattice muscle 91 is fixed by the stationary clamp 31, the position of the first movable clamp 32 is one pitch from the stationary clamp 31 as shown in FIG. The first lower bent portion 95 is fixed by the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33, and the lower portion of the lattice muscle 91 is lowered by the second welding mechanism 42 to the lower chord muscle. Weld to 94.
 図6の(10)に示すように、次のタクトで形成したラチス筋91の2番目の下側屈曲部95を静止クランプ31で固定する前に、第2可動クランプ32の位置を静止クランプ31から2ピッチ分の距離に戻してから、1番目および2番目の下側屈曲部95を静止クランプ31、第1可動クランプ32および第2可動クランプ33で固定し、第1溶接機構41により上弦筋93に対してラチス筋91の上側屈曲部92を溶接し、第2溶接機構42によりラチス筋91の下部を下弦筋94に溶接する。 As shown in FIG. 6 (10), before the second lower bent portion 95 of the lattice muscle 91 formed in the next tact is fixed by the stationary clamp 31, the position of the second movable clamp 32 is set to the stationary clamp 31. The first and second lower bent portions 95 are fixed by the stationary clamp 31, the first movable clamp 32, and the second movable clamp 33, and the first welding mechanism 41 is used to return the upper chord line. The upper bent portion 92 of the lattice muscle 91 is welded to 93, and the lower portion of the lattice muscle 91 is welded to the lower chord muscle 94 by the second welding mechanism 42.
 図6の(10)および(11)の工程を経て、図6の(12)に示す工程に移行して、ラチス筋91の1番目の下側屈曲部95が第2溶接機構42に到達するとき、第2溶接機構42の位置を静止クランプ31から1ピッチ分の整数倍の距離に戻し、下弦筋94に対してラチス筋91の下部を溶接する。 After the steps (10) and (11) in FIG. 6, the process proceeds to the step (12) in FIG. 6, and the first lower bent portion 95 of the lattice muscle 91 reaches the second welding mechanism 42. At this time, the position of the second welding mechanism 42 is returned to the integral multiple of one pitch from the stationary clamp 31, and the lower part of the lattice 91 is welded to the lower chord 94.
 図6の(8)~(12)に示すように、次のトラス9の製造中に、屈曲させていないラチス筋の線材96が、第1溶接機構41および第2溶接機構42を通過するときには、溶接動作を停止させる。 As shown in (8) to (12) of FIG. 6, during the next manufacturing of the truss 9, when the non-bent lattice wire 96 passes through the first welding mechanism 41 and the second welding mechanism 42. , Stop the welding operation.
 図6の(13)の工程を経て、図6の(14)に示すように、屈曲させないラチス筋の線材96が、切断機構5に到達するときに、ラチス筋の線材96の中央に当たる位置に切断機構5を距離sだけ移動させて切断動作を行う。 After the step (13) in FIG. 6, as shown in (14) in FIG. 6, when the lattice wire 96 that is not bent reaches the cutting mechanism 5, the lattice 96 is in a position that hits the center of the lattice wire 96. A cutting operation is performed by moving the cutting mechanism 5 by a distance s.
 図6の(14)に示す切断機構5の位置は、製造する自立型トラスの仕様が変わらない限り変更する必要はないのである。 The position of the cutting mechanism 5 shown in (14) of FIG. 6 does not need to be changed unless the specifications of the self-supporting truss to be manufactured are changed.
 このようにして、所定長さの自立型トラス9の両端に、ラチス筋の線材を屈曲させない直線状の部分96を任意長さN(nP+s)づつ突出させた自立型トラスを製造することができる。 In this way, it is possible to manufacture a self-supporting truss in which a straight portion 96 that does not bend the lattice material of the lattice is protruded by an arbitrary length N (nP + s) at both ends of the self-supporting truss 9 having a predetermined length. .
この発明の自立型トラスの製造装置におけるラチス筋曲げ加工部を示す側面図、The side view which shows the lattice muscle bending process part in the manufacturing apparatus of the self-supporting truss of this invention, この発明の自立型トラスの製造装置の第1の実施形態の動作を説明する工程図、Process drawing explaining operation | movement of 1st Embodiment of the manufacturing apparatus of the self-supporting truss of this invention, この発明の自立型トラスの製造装置の第2の実施形態の動作を説明する工程図、Process drawing explaining operation | movement of 2nd Embodiment of the manufacturing apparatus of the self-supporting truss of this invention, この発明の自立型トラスの製造装置の第3の実施形態の動作を説明する工程図、Process drawing explaining operation | movement of 3rd Embodiment of the manufacturing apparatus of the self-supporting truss of this invention, この発明の自立型トラスの製造装置の第4の実施形態の動作を説明する前半の工程図、The process drawing of the first half explaining operation | movement of 4th Embodiment of the manufacturing apparatus of the self-supporting truss of this invention, この発明の自立型トラスの製造装置の第4の実施形態の動作を説明する後半の工程図、Process drawing of the latter half explaining operation | movement of 4th Embodiment of the manufacturing apparatus of the self-supporting truss of this invention, 従来の自立型トラスを鉄板に溶接した一例を示す斜視図である。It is a perspective view which shows an example which welded the conventional self-supporting truss to the iron plate.
符号の説明Explanation of symbols
   A 基台
   1 ステップコンベア
   11 移動クランプ
   12 油圧モータ
   14 エンコーダ
   15 ロッド
   2 折曲装置
   21 曲げヘッド
   23 ロッド
   24 サーボモータ
   31 静止クランプ
 32、33 可動クランプ
   5 切断機構
   9 自立型トラス
   90 ラチス筋用線材
   91 ラチス筋
   92 上側屈曲部
   93 上弦筋
   94 下弦筋
   95 下側屈曲部
   96 屈曲させない線材
A Base 1 Step conveyor 11 Moving clamp 12 Hydraulic motor 14 Encoder 15 Rod 2 Bending device 21 Bending head 23 Rod 24 Servo motor 31 Stationary clamp 32, 33 Movable clamp 5 Cutting mechanism 9 Free standing truss 90 Lattice wire 91 Lattice Muscle 92 Upper flexion 93 Upper chord 94 Lower chord 95 Lower flexion 96 Non-bending wire

Claims (4)

  1. 1本の上弦筋と2本の下弦筋を三角状に配置し、波状に屈曲させたラチス筋の上側屈曲部に上記上弦筋を溶接し、上記ラチス筋の下部に上記下弦筋を溶接して自立型トラスを構成する自立型トラスの製造装置であって、
     上弦筋、下弦筋およびラチス筋の線材を送り出すステップコンベアと、
     ラチス筋の線材を間隔をあけて保持する移動クランプおよび静止クランプと、該移動クランプのほぼ半分の速度で同方向に移動し、上記移動クランプと上記静止クランプのほぼ中央において上記線材を交差方向に押して上側屈曲部を形成する曲げヘッドとを備え、ラチス筋1ピッチの長さを変更可能な折曲装置と、
     搬送方向に移動可能で、屈曲させたラチス筋の下側屈曲部を固定する第1可動クランプおよび第2可動クランプと、
     上記2つの可動クランプと連動して搬送方向に移動可能で、2つの可動クランプのほぼ中央に配置されて、ラチス筋の上側屈曲部を上弦筋に溶接する第1溶接機構と、
     搬送方向に移動可能で、上側屈曲部を上弦筋に溶接したラチス筋の下部を下弦筋に溶接してトラスを形成する第2溶接機構と、
     搬送方向に移動可能で、上記トラスを切断する切断機構と、
     静止クランプの位置を基準として、屈曲させたラチス筋の下側屈曲部の位置データを1タクトごとにシフトさせながら格納するメモリを有する制御装置と、
     を具備することを特徴とする自立型トラスの製造装置。
    One upper chord and two lower chords are arranged in a triangular shape, the upper chord is welded to the upper bent portion of the latticed bend, and the lower chord is welded to the lower portion of the lattice. A self-supporting truss manufacturing apparatus that constitutes a self-supporting truss,
    A step conveyor for feeding the wire of the upper chord, lower chord and lattice;
    A moving clamp and a stationary clamp that hold the wire of the lattice muscle at an interval, and move in the same direction at almost half the speed of the moving clamp, and the wire in the crossing direction at the approximate center of the moving clamp and the stationary clamp. A bending device that includes a bending head that pushes to form an upper bent portion, and is capable of changing the length of one pitch of the lattice muscle;
    A first movable clamp and a second movable clamp that are movable in the conveying direction and fix a lower bent portion of the bent lattice muscle;
    A first welding mechanism that is movable in the conveying direction in conjunction with the two movable clamps and is arranged at substantially the center of the two movable clamps and welds the upper bent portion of the lattice muscle to the upper chord;
    A second welding mechanism that is movable in the transport direction and welds the lower bent portion of the upper bent portion to the upper chord to weld the lower chord to the lower chord;
    A cutting mechanism that is movable in the conveying direction and cuts the truss;
    A control device having a memory for storing the position data of the lower bent portion of the bent lattice muscle while shifting it every tact with respect to the position of the stationary clamp;
    A self-supporting truss manufacturing apparatus comprising:
  2. 折曲装置においてラチス筋の1ピッチの長さを変更したとき、1タクトごとにシフトさせながらメモリに格納された下側屈曲部の位置データに基づいて、制御装置により、静止クランプに対する第1可動クランプ、第2可動クランプ、第1溶接機構、第2溶接機構、切断機構の各間隔を順次変更することを特徴とする請求項1に記載の自立型トラスの製造装置。 When the length of one pitch of the lattice muscle is changed in the bending device, the control device controls the first movable relative to the stationary clamp based on the position data of the lower bent portion stored in the memory while shifting every tact. The apparatus for producing a self-supporting truss according to claim 1, wherein intervals between the clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the cutting mechanism are sequentially changed.
  3. 折曲装置においてラチス筋を屈曲させない直線状の部分を1ピッチの整数倍の長さを形成したとき、1タクトごとにシフトさせながらメモリに格納された下側屈曲部および直線状の部分の位置データに基づいて、直線状の部分が第1溶接機構および第2溶接機構を通過するとき、制御装置により溶接動作を停止することを特徴とする請求項1に記載の自立型トラスの製造装置。 Positions of the lower bent portion and the linear portion stored in the memory while being shifted every tact when a linear portion that does not bend the lattice in the bending apparatus is formed to have a length that is an integral multiple of one pitch. 2. The self-supporting truss manufacturing apparatus according to claim 1, wherein when the linear portion passes through the first welding mechanism and the second welding mechanism, the welding operation is stopped by the control device based on the data.
  4. 折曲装置においてラチス筋を屈曲させない直線状の部分を1ピッチの整数倍と端数の長さを形成したとき、1タクトごとにシフトさせながらメモリに格納された下側屈曲部および直線状の部分の位置データに基づいて、制御装置により静止クランプに対する第1可動クランプ、第2可動クランプ、第1溶接機構、第2溶接機構、切断機構の各間隔を順次変更し、直線状の部分が第1溶接機構および第2溶接機構を通過するとき、溶接動作を停止することを特徴とする請求項1に記載の自立型トラスの製造装置。 In a bending apparatus, when a linear portion that does not bend the lattice is formed with an integral multiple of one pitch and a fraction length, the lower bent portion and the linear portion that are stored in the memory while being shifted every tact On the basis of the position data, the control device sequentially changes the intervals of the first movable clamp, the second movable clamp, the first welding mechanism, the second welding mechanism, and the cutting mechanism with respect to the stationary clamp, and the linear portion is the first portion. The self-supporting truss manufacturing apparatus according to claim 1, wherein the welding operation is stopped when passing through the welding mechanism and the second welding mechanism.
PCT/JP2008/068610 2008-10-15 2008-10-15 Production device of self-supported truss WO2010044144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068610 WO2010044144A1 (en) 2008-10-15 2008-10-15 Production device of self-supported truss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068610 WO2010044144A1 (en) 2008-10-15 2008-10-15 Production device of self-supported truss

Publications (1)

Publication Number Publication Date
WO2010044144A1 true WO2010044144A1 (en) 2010-04-22

Family

ID=42106322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068610 WO2010044144A1 (en) 2008-10-15 2008-10-15 Production device of self-supported truss

Country Status (1)

Country Link
WO (1) WO2010044144A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418711A (en) * 2013-08-12 2013-12-04 无锡威华电焊机制造有限公司 Device for adjusting and fixing feed-in step of steel bar trusses
JP2014018842A (en) * 2012-07-20 2014-02-03 Taihei Seisakusho:Kk Method and device for bending wire
CN105855900A (en) * 2016-06-17 2016-08-17 唐山胜利机械制造有限公司 Welding equipment for plane steel bar truss
CN110449994A (en) * 2019-07-23 2019-11-15 济南宜众科技有限公司 A kind of production line and production method of web member beam
BE1027414B1 (en) * 2019-12-24 2021-02-01 Verhelst Bouwmaterialen Nv Lattice girder and method for its manufacture
CN113787351A (en) * 2021-10-19 2021-12-14 常州机电职业技术学院 Welding machine for zigzag truss

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170416A (en) * 1997-08-28 1999-03-16 Aska Kk Manufacture and device for truss member
WO2001036125A1 (en) * 1999-11-17 2001-05-25 Jonathan Leslie Evans Structural components and their manufacture
JP2003170237A (en) * 2001-12-03 2003-06-17 Taro Kasai Lattice muscle bending apparatus
JP2004223549A (en) * 2003-01-21 2004-08-12 Taro Kasai Manufacturing device of floor structural material
JP2008272798A (en) * 2007-04-27 2008-11-13 Taro Kasai Apparatus for manufacturing independent-type truss

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170416A (en) * 1997-08-28 1999-03-16 Aska Kk Manufacture and device for truss member
WO2001036125A1 (en) * 1999-11-17 2001-05-25 Jonathan Leslie Evans Structural components and their manufacture
JP2003170237A (en) * 2001-12-03 2003-06-17 Taro Kasai Lattice muscle bending apparatus
JP2004223549A (en) * 2003-01-21 2004-08-12 Taro Kasai Manufacturing device of floor structural material
JP2008272798A (en) * 2007-04-27 2008-11-13 Taro Kasai Apparatus for manufacturing independent-type truss

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018842A (en) * 2012-07-20 2014-02-03 Taihei Seisakusho:Kk Method and device for bending wire
CN103418711A (en) * 2013-08-12 2013-12-04 无锡威华电焊机制造有限公司 Device for adjusting and fixing feed-in step of steel bar trusses
CN105855900A (en) * 2016-06-17 2016-08-17 唐山胜利机械制造有限公司 Welding equipment for plane steel bar truss
CN105855900B (en) * 2016-06-17 2017-12-08 唐山胜利机械制造有限公司 Plane steel bar truss welding equipment
CN110449994A (en) * 2019-07-23 2019-11-15 济南宜众科技有限公司 A kind of production line and production method of web member beam
BE1027414B1 (en) * 2019-12-24 2021-02-01 Verhelst Bouwmaterialen Nv Lattice girder and method for its manufacture
CN113787351A (en) * 2021-10-19 2021-12-14 常州机电职业技术学院 Welding machine for zigzag truss

Similar Documents

Publication Publication Date Title
JP4988426B2 (en) Self-supporting truss manufacturing equipment
WO2010044144A1 (en) Production device of self-supported truss
JP3801492B2 (en) Lattice muscle bending machine
KR101958213B1 (en) Apparatus and method for manufacturing preformed bar arranged structure for construction
JP2013035052A (en) Method and apparatus for producing reinforcing steel mesh
JP2018069329A (en) Welding device of concrete-reinforcing reinforcement
JP2008279478A (en) Apparatus and method for forming square helical hoop
JP4785897B2 (en) Unit rebar manufacturing equipment
RU2620316C2 (en) Automatic machine to bend electro-welded meshes
EP1982779A1 (en) Apparatus and method for manufacturing beam-reinforcement latticework-like wire structure on a just-in-time basis
JPH1122090A (en) Manufacture of deck for slab of building construction and manufacturing device
JP2912116B2 (en) Apparatus and method for manufacturing three-dimensional welded reinforcing bar with formwork
FI84328B (en) FOERFARANDE OCH MASKIN FOER HOPSAETTNING AV TREDIMENSIONELLA METALLKONSTRUKTIONER.
KR100428657B1 (en) The welding equipment of panel for reinforced concrete slab
KR200335609Y1 (en) Bending Machine for Steel Reinforced
CN114632896A (en) Automatic production equipment and production method for reinforcement cage
JP2010174597A (en) Load transmission reinforcement holder for concrete pavement
JP2507909B2 (en) Reinforcing bar binding device and binding method thereof
EP2087952A1 (en) Method for welding the framework of a reinforced concrete structural element and corresponding welding device and machine
JP6893017B2 (en) Jigs and methods for manufacturing rebar cages using the jigs
JP2001287126A (en) Method of manufacturing structural material for building and frame-like jig used for it
JP2007332639A (en) Jig for producing steel continuous wall member, method of producing steel continuous wall member, steel continuous wall member, and method of vertically connecting steel continuous members together
JP3288098B2 (en) Rebar bending equipment
JP2007503311A (en) Method and apparatus for making grate
JPH07217072A (en) Reinforcing bar and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP