WO2010044134A1 - Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element - Google Patents

Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element Download PDF

Info

Publication number
WO2010044134A1
WO2010044134A1 PCT/JP2008/068556 JP2008068556W WO2010044134A1 WO 2010044134 A1 WO2010044134 A1 WO 2010044134A1 JP 2008068556 W JP2008068556 W JP 2008068556W WO 2010044134 A1 WO2010044134 A1 WO 2010044134A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
ferromagnetic layer
barrier layer
chamber
Prior art date
Application number
PCT/JP2008/068556
Other languages
French (fr)
Japanese (ja)
Inventor
ヨンスック チョイ
裕一 大谷
フランク エルヌ
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to PCT/JP2008/068556 priority Critical patent/WO2010044134A1/en
Publication of WO2010044134A1 publication Critical patent/WO2010044134A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetoresistive effect element manufacturing method and a magnetoresistive effect element manufacturing program excellent in MR ratio.
  • Non-Patent Document 1 and Patent Document 1 As a magnetoresistive effect element used for a magnetic reproducing head of a magnetic disk drive device, a storage element of a magnetic random access memory, and a magnetic sensor, for example, as shown in Non-Patent Document 1 and Patent Document 1, on both sides of the tunnel barrier layer There is known a TMR (Tunneling Magneto Resistance) effect element that includes first and second ferromagnetic layers that are installed as basic components.
  • TMR Transmission Magneto Resistance
  • this basic component portion is CoFeB / MgO / CoFeB, and the CoFeB layer is formed in an amorphous state, thereby achieving an MR ratio of 220%.
  • Patent Document 1 solves problems such as the possibility of film contamination due to generation of particles when the magnesium oxide layer is formed by sputtering a magnesium oxide target by high frequency sputtering and the oxidation state tends to be non-uniform. Therefore, a method of spontaneous oxidation after forming a magnesium film is disclosed.
  • An object of this invention is to provide the manufacturing method of the magnetoresistive effect which has high MR ratio, and its manufacturing program.
  • One embodiment of the present invention is a first ferromagnetic layer forming step for forming a first ferromagnetic layer, and a barrier layer for forming a tunnel barrier layer made of a metal oxide on the first ferromagnetic layer. And a second ferromagnetic layer forming step for forming a second ferromagnetic layer on the tunnel barrier layer, wherein the barrier layer forming step includes forming a metal film. And natural oxidation of the metal film under heating conditions.
  • natural oxidation is a process in which a processing target is exposed to oxygen gas or a gas containing oxygen gas (for example, a mixture of an inert gas and an oxygen gas), and the oxygen gas is oxidized without being converted to plasma or the like. is there.
  • a high MR ratio can be obtained. Moreover, the oxidation treatment time can be shortened.
  • FIG. 1 A configuration example of the magnetoresistive element is shown in FIG. FIG. 1 is an example of the TMR element 100.
  • An MTJ Magnetic Tunnel Junction
  • the MTJ is configured by laminating an antiferromagnetic layer 103, a magnetization fixed layer, a tunnel barrier layer 107, and a magnetization free layer.
  • a cap layer 109 in contact with the upper electrode 110 is formed on the magnetization free layer 108.
  • the magnetization fixed layer includes a pinned layer 104, a spacer (non-magnetic film for exchange coupling) 105, and a reference layer 106.
  • the reference layer 106 and the magnetization free layer 108 are ferromagnetic layers and correspond to the first ferromagnetic layer and the second ferromagnetic layer of the present invention.
  • the reference layer 106 and the magnetization free layer 108 can be configured by using a ferromagnetic element such as Fe, Co, Ni, or an alloy thereof as a main component, and appropriately adding components such as B, C, Cr.
  • the tunnel barrier layer 107 is an insulator layer made of a metal oxide, and the present invention is characterized by a method for forming the tunnel barrier layer 107.
  • the tunnel barrier layer 107 can be made of, for example, magnesium oxide, alumina, or a metal oxide in which a metal element is appropriately added to these, and among these, magnesium oxide is preferable because of its excellent MR ratio.
  • FIG. 2 is a schematic plan view showing a manufacturing apparatus used for forming a TMR element
  • FIG. 3 is a view showing an oxidation chamber for performing an oxidation treatment.
  • the manufacturing apparatus 700 in FIG. 2 is a cluster-type apparatus, and includes a degas chamber 704 for performing degas processing, an etching chamber 705 for performing etching processing, an oxidation chamber 706, and film formation chambers 707 to 709. Yes. Further, in the manufacturing apparatus 700, a transfer chamber 701 including a robot transfer apparatus (not shown) is installed at the central position, and substrates introduced from the two load / unload chambers 702 and 703 can be transferred into and out of the respective chambers 704 to 709. It has become.
  • Each of the chambers 701 to 709 is independently provided with a vacuum pump for bringing the inside of the chamber into a predetermined low pressure state, and the transfer chamber 701 and each of the chambers 702 to 709 are connected to each other via a gate valve. Substrate transport under conditions is possible.
  • the manufacturing apparatus 700 includes an apparatus controller 710 for outputting a command to each of the chambers 701 to 709 according to a program that defines a predetermined process flow (hereinafter also referred to as a recipe) to execute a predetermined process.
  • the device controller 710 includes, for example, a computer and various drivers.
  • At least one of the deposition chambers 707 to 709 includes a seed layer 102, an antiferromagnetic layer 103, a pinned layer 104, a spacer 105, a reference layer 106, a tunnel barrier layer 107, a magnetization free layer 108, and a cap layer 109.
  • a target capable of film formation is provided, and each of these layers 102 to 109 can be formed by a sputtering method. In the present invention, what is used for the target material and in which chamber it is arranged are not particularly limited.
  • a layer made of an alloy or a composite material such as CoFeB may use a target made of CoFeB, or may be formed by co-sputtering three targets of a Co target, an Fe target, and a B target. Also good.
  • the sputtering method is not particularly limited, and for example, any of DC-sputtering discharged by DC power, RF-sputtering discharging by high-frequency power, and sputtering by superimposing DC power and high-frequency power may be used.
  • the oxidation chamber 706 is a chamber for subjecting the substrate to natural oxidation treatment.
  • the oxidation chamber 706 of FIG. 3 includes a gas introduction system 602 capable of introducing oxygen gas into the vacuum vessel 601 and an exhaust system 602 capable of exhausting the inside of the vacuum vessel 601. Gas can be supplied.
  • the gas introduction system 602 includes a mass flow controller and the like, and can introduce oxygen gas at a predetermined flow rate.
  • the exhaust system 602 includes a valve, a pump, and the like, and can exhaust the chamber to a predetermined pressure by adjusting conductance.
  • a diffusion plate 604 for diffusing oxygen gas, in which a plurality of through holes are formed, is disposed between the gas introduction system 602 and the exhaust system 602 in the drawing.
  • the oxidation chamber 706 includes a substrate stage 610 that can be held while heating the substrate during natural oxidation treatment.
  • the substrate stage 610 includes an electrostatic adsorption mechanism for holding the substrate by an electrostatic adsorption action.
  • the electrostatic adsorption mechanism includes a dielectric 611, an electrode 615 for generating an electrostatic adsorption force between the substrate and the dielectric 611, and an adsorption power source 616.
  • the substrate stage 610 includes a heater 613 for heating the substrate stage 610 and a heat transfer gas introduction system 614 for supplying a heat transfer gas between the substrate stage 610 and the substrate.
  • the substrate stage 610 includes a temperature sensor (not shown), and based on this value, adjustment of supply gas pressure via the heat transfer gas introduction system 614 or adjustment of power supply from the heater power source 617 to the heater 613 is adjusted.
  • the substrate can be adjusted to a predetermined temperature.
  • the oxidation chamber controller 605 is based on various inputs such as a pressure sensor for detecting the pressure in the chamber, and the oxygen gas introduction system 602, the exhaust system 603, the heat transfer gas introduction system 614, the adsorption power supply 616, and the heater power supply. 617 is controlled and a process instructed by the device controller 710 is executed.
  • the oxidation chamber 706 is not limited to the above-described configuration, and for example, the substrate may be mechanically held or may be in a state in which the substrate is placed without depending on electrostatic adsorption. Further, the heating is not limited to the contact with the substrate stage 610 but may be performed by radiant heat such as a lamp heater.
  • FIG. 4 is a diagram showing a specific example of a method for forming the tunnel barrier layer 107
  • FIG. 10 is a manufacturing flow executed by the apparatus controller 710.
  • a substrate on which a lower electrode 101 having a predetermined pattern is formed is introduced into a manufacturing apparatus 700, and a seed layer 102 and an antiferromagnetic layer 103 (in FIG. 4) are formed in film forming chambers 707 to 709.
  • PtMn layer 803, pinned layer 104 (CoFe layer 806 in FIG. 4), spacer 105 (Ru layer 805 in FIG. 4), reference layer 106 (CoFeB layer 806 in FIG. 4), and Mg layer 107 are stacked in this order ( This corresponds to steps S101 to S104 in FIG.
  • the substrate is vacuum-transferred from the deposition chamber to the oxidation chamber 706.
  • oxygen gas is introduced to a predetermined pressure, and the Mg layer 107 formed on the outermost surface is oxidized while the substrate is heated to a predetermined temperature by the heater 613 (step S105 in FIG. 10).
  • Oxidation conditions such as oxygen gas pressure and oxidation treatment time at this time are not particularly limited as long as the formed Mg layer 107 can be converted into a magnesium oxide layer.
  • the pressure is in the range of 1.0 ⁇ 10 ⁇ 4 to 2.0 ⁇ 10 2 Pa
  • the oxidation treatment time is in the range of 20 seconds to 1000 seconds.
  • the temperature of the substrate is heated (that is, exceeds room temperature), an effect of improving the MR ratio can be obtained, but if it is heated too much, the lower layer and the substrate are deteriorated. Therefore, it is preferably 50 ° C. or more and 200 ° C. or less, and more preferably 70 ° C. or more and 120 ° C.
  • it is preferable to heat during a natural oxidation process you may make it heat only for the one part period during a natural oxidation process. Therefore, it is preferable to heat the substrate stage 610 in advance so that the temperature of the substrate can be raised immediately when the substrate is loaded.
  • the substrate stage 610 may be heated after the substrate is loaded or during the natural oxidation treatment. The heating may be stopped during the natural oxidation treatment.
  • the substrate is transferred again to the film forming chambers 707 to 709, and as shown in FIG. 4B, the Mg layer 308, the magnetization free layer 108 (CoFeB in FIG. 4), the cap layer 109, and the upper electrode 110 are removed. These are formed in order (steps S106 and S107 in FIG. 10).
  • the Mg layer 308 is a metal cap layer for appropriately maintaining oxygen diffusion, and constitutes the tunnel barrier layer 107.
  • the substrate is unloaded from the manufacturing apparatus 700, and a magnetic annealing process is performed in a heat treatment furnace.
  • the annealing conditions are, for example, about 360 ° C. and 2 hours in a magnetic field of 10 kOe. Thereby, the required magnetization is given to the antiferromagnetic layer 103.
  • the lower electrode, the PtMn layer 303 is 15 nm, the CoFe layer 304 is 2.5 nm, the Ru layer 305 is 0.9 nm, the CoFeB layer 306 is 3 nm, and the Mg layer 307 is 1.1 nm in order.
  • natural oxidation treatment was performed, and an Mg layer 308 of 0.3 nm, a CoFeB layer 309 of 3 nm, a cap layer 109 (Ta layer) of 8.0 nm, and an upper electrode 311 were formed thereon.
  • the CoFe layer 304 is Co (70 atomic%) Fe (30 atomic%)
  • the CoFeB layers 306 and 309 are Co (60 atomic%) Fe (20 atomic%) B (atomic%). is there.
  • the natural oxidation treatment was performed under a heating condition with a substrate temperature of 100 ° C., with an oxygen gas flow rate of 700 sccm and an oxygen gas pressure of 6.5 ⁇ 10 ⁇ 1 Pa.
  • the substrate was not heated, and natural oxidation was performed under the same conditions.
  • the magnetoresistive effect element to which the present invention can be applied is not limited to the one having the above-described configuration, and can be applied to the elements shown in FIGS.
  • FIGS. 6 to 9 in order to make the explanation easy to understand, “natural oxidation” is written on the layer to be subjected to the natural oxidation treatment, so that the layer is oxidized under the heating condition. Indicates that processing is to be performed. Although not shown, after the oxidation treatment, the oxidized layer becomes an oxide layer (a magnesium oxide layer in the examples of FIGS. 6 to 9).
  • the reference layer 106 is formed of two layers, a CoFeB layer 806 located on the spacer 105 side and a CoFe layer 807 thereon.
  • the CoFeB layer 806 is a layer that contains 12 atomic% or more of B and becomes an amorphous state during sputtering film formation.
  • the tunnel barrier layer 107 in an amorphous state forms microcrystal grains having a (001) plane preferentially oriented at the interface using the CoFe layer 807 as a template during the magnetic annealing, High MR ratio is shown.
  • each layer of this MTJ is PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFe1.5 / Mg1.1 / Mg0.3 / CoFeB3.
  • the thickness of the CoFeB layer is preferably 1 nm to 4 nm.
  • the thickness of the CoFe layer 807 is preferably 0.5 nm to 2 nm, and the CoFe layer 807 is preferably formed with a thickness equal to or less than that of the CoFeB layer 806.
  • FIG. 7 is substantially the same as FIG. 6, but the CoFe layer 410 and the CoFeB layer 411 are formed on the opposite side of the tunnel barrier layer 107 from the reference layer 106 to configure the magnetization free layer 108. . By doing so, a TMR element having an excellent MR ratio can be obtained.
  • each layer of this MTJ is PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFe1.5 / Mg1.1 / Mg0.3 / CoFe1.5 / CoFeB1.5.
  • the preferable thickness range of the CoFe layer and the CoFeB layer is the same as in FIG.
  • the CoFe layers 407 and 410 in contact with the tunnel barrier layer 107 are CoFeB layers 1407 and 1411, respectively, which are substantially the same as those in FIG.
  • the CoFeB layers 1407 and 1411 have a B content of less than 12 atomic%, and are formed as crystals of the bcc structure in which the (001) plane is oriented parallel to the interface in the same manner as the CoFe layer at the time of sputtering film formation. Therefore, it functions in the same manner as the CoFe layers 407 and 410 in FIG. 7 and promotes the preferential orientation of the (001) plane of the tunnel barrier layer 107.
  • MTJ layers are PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFeB1.5 / Mg1.1 / Mg0.3 / CoFeB1.5 / CoFeB1.5.
  • the layers in contact with the tunnel barrier layer 107 are formed by forming Fe layers 1707 and 1711 as ferromagnetic materials capable of promoting the preferential orientation of the (001) plane of the tunnel barrier layer 107. Yes.
  • each layer of this MTJ is PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / Fe1-4 / Mg1.1 / Mg0.3 / Fe1-4 / CoFeB1.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)

Abstract

This invention provides a process for producing a magnetoresistance effect element having a high MR ratio. The production process comprises forming a first ferromagnetic layer constituting a first ferromagnetic body layer, forming a barrier layer constituting a tunnel barrier layer formed of a metal oxide on the first ferromagnetic body layer, and forming a second ferromagnetic layer constituting a second ferromagnetic body layer on the tunnel barrier layer. The formation of the barrier layer is characterized in that a metal film is formed and the metal film is then naturally oxidized under heating conditions. The natural oxidation is a treatment in which a treatment object is exposed to an oxygen gas or an oxygen gas-containing gas (for example, a mixture composed of an inert gas and an oxygen gas). In this natural oxidation, oxidation is carried out without subjecting the oxygen gas to plasmatization or the like.

Description

磁気抵抗効果素子の製造方法及び磁気抵抗効果素子製造プログラムMagnetoresistive element manufacturing method and magnetoresistive element manufacturing program
 本発明は、MR比に優れた磁気抵抗効果素子の製造方法及び磁気抵抗効果素子製造プログラムに関する。 The present invention relates to a magnetoresistive effect element manufacturing method and a magnetoresistive effect element manufacturing program excellent in MR ratio.
 磁気ディスク駆動装置の磁気再生ヘッド、磁気ランダムアクセスメモリの記憶素子及び磁気センサーに用いられる磁気抵抗効果素子として、例えば、非特許文献1や特許文献1に示されるようにトンネルバリア層とその両側に設置した第1及び第2の強磁性体層を基本構成部分として含むTMR(トンネル磁気抵抗;Tunneling Magneto Resistance)効果素子が知られている。 As a magnetoresistive effect element used for a magnetic reproducing head of a magnetic disk drive device, a storage element of a magnetic random access memory, and a magnetic sensor, for example, as shown in Non-Patent Document 1 and Patent Document 1, on both sides of the tunnel barrier layer There is known a TMR (Tunneling Magneto Resistance) effect element that includes first and second ferromagnetic layers that are installed as basic components.
 非特許文献1では、この基本構成部分をCoFeB/MgO/CoFeBとし、CoFeB層をアモルファス状に形成することで、220%のMR比を達成している。 In Non-Patent Document 1, this basic component portion is CoFeB / MgO / CoFeB, and the CoFeB layer is formed in an amorphous state, thereby achieving an MR ratio of 220%.
 また、特許文献1では、酸化マグネシウムターゲットを高周波スパッタリングによりスパッタすることで酸化マグネシウム層を形成した場合における、酸化状態が不均一になりやすい、パーティクルの発生による膜汚染の可能性等の問題を解決すべく、マグネシウム膜を形成後に自然酸化する方法を開示している。 Further, Patent Document 1 solves problems such as the possibility of film contamination due to generation of particles when the magnesium oxide layer is formed by sputtering a magnesium oxide target by high frequency sputtering and the oxidation state tends to be non-uniform. Therefore, a method of spontaneous oxidation after forming a magnesium film is disclosed.
特開2007-142424号公報JP 2007-142424 A
 しかしながら、特許文献1に示す方法では十分なMR比を得ることができない。
 本発明は、高いMR比を有する磁気抵抗効果の製造方法及びその製造プログラムを提供することを目的とする。
However, the method shown in Patent Document 1 cannot obtain a sufficient MR ratio.
An object of this invention is to provide the manufacturing method of the magnetoresistive effect which has high MR ratio, and its manufacturing program.
 本発明の一形態は、第1の強磁性体層を形成する第1強磁性層形成ステップと、前記第1の強磁性体層上に、金属酸化物からなるトンネルバリア層を形成するバリア層形成ステップと、前記トンネルバリア層上に第2の強磁性体層を形成する第2強磁性層形成ステップと、を有し、前記バリア層形成ステップは、金属膜を成膜する金属成膜ステップと、加熱条件下で、前記金属膜を自然酸化するステップと、を有することを特徴とする。
 ここで、自然酸化は、酸素ガス又は酸素ガスを含むガス(例えば、不活性ガスと酸素ガスの混合)に処理対象を晒す処理であり、酸素ガスをプラズマ化等をすることなく酸化する処理である。
One embodiment of the present invention is a first ferromagnetic layer forming step for forming a first ferromagnetic layer, and a barrier layer for forming a tunnel barrier layer made of a metal oxide on the first ferromagnetic layer. And a second ferromagnetic layer forming step for forming a second ferromagnetic layer on the tunnel barrier layer, wherein the barrier layer forming step includes forming a metal film. And natural oxidation of the metal film under heating conditions.
Here, natural oxidation is a process in which a processing target is exposed to oxygen gas or a gas containing oxygen gas (for example, a mixture of an inert gas and an oxygen gas), and the oxygen gas is oxidized without being converted to plasma or the like. is there.
 本発明によれば、高いMR比が得られる。また、酸化処理時間を短縮できる。 According to the present invention, a high MR ratio can be obtained. Moreover, the oxidation treatment time can be shortened.
TMR素子の層構成を示す図である。It is a figure which shows the layer structure of a TMR element. 製造装置の概略平面図である。It is a schematic plan view of a manufacturing apparatus. 酸化チャンバの概略構成図である。It is a schematic block diagram of an oxidation chamber. トンネルバリア層の製造方法の工程Iを示す図である。It is a figure which shows the process I of the manufacturing method of a tunnel barrier layer. トンネルバリア層の製造方法の工程IIを示す図である。It is a figure which shows process II of the manufacturing method of a tunnel barrier layer. 比較例と実施例のRAに対するMR比を示す図である。It is a figure which shows MR ratio with respect to RA of a comparative example and an Example. 比較例と実施例の自然酸化時間に対するMR比を示す図である。It is a figure which shows MR ratio with respect to the natural oxidation time of a comparative example and an Example. 他のTMR素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of another TMR element. 他のTMR素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of another TMR element. 他のTMR素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of another TMR element. 他のTMR素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of another TMR element. 製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating a manufacturing method.
符号の説明Explanation of symbols
701     搬送チャンバ
702,703 ロード/アンロードチャンバ
704     脱ガスチャンバ
705     エッチングチャンバ
706     酸化チャンバ
707~709 成膜チャンバ
601     真空容器
604     拡散板
610     基板ステージ
611     誘電体
612     基台
613     ヒータ
615     電極(吸着用)
616     吸着用電源
617     ヒータ用電源
701 Transfer chamber 702, 703 Load / unload chamber 704 Degas chamber 705 Etching chamber 706 Oxidation chamber 707-709 Deposition chamber 601 Vacuum vessel 604 Diffusion plate 610 Substrate stage 611 Dielectric 612 Base 613 Heater 615 Electrode (for adsorption)
616 Power supply for adsorption 617 Power supply for heater
[第1実施形態]
 磁気抵抗効果素子の構成例を図1に示す。
 図1は、TMR素子100の一例である。下部電極101やシード層102などの下地層が形成されたSi基板(図示せず)の上に、MTJ(Magnetic tunnel junction)が形成される。MTJは、反強磁性層103、磁化固定層、トンネルバリア層107、及び、磁化自由層108が積層されて構成されている。磁化自由層108上には上部電極110に接するキャップ層109が形成される。また、磁化固定層は、図1の例では、ピンド層104、スペーサ(交換結合用非磁性膜)105、及び、リフェレンス層106を含んで構成される。
[First Embodiment]
A configuration example of the magnetoresistive element is shown in FIG.
FIG. 1 is an example of the TMR element 100. An MTJ (Magnetic Tunnel Junction) is formed on a Si substrate (not shown) on which a base layer such as the lower electrode 101 and the seed layer 102 is formed. The MTJ is configured by laminating an antiferromagnetic layer 103, a magnetization fixed layer, a tunnel barrier layer 107, and a magnetization free layer. A cap layer 109 in contact with the upper electrode 110 is formed on the magnetization free layer 108. In the example of FIG. 1, the magnetization fixed layer includes a pinned layer 104, a spacer (non-magnetic film for exchange coupling) 105, and a reference layer 106.
 リフェレンス層106及び磁化自由層108は、強磁性層であり、本発明の第1の強磁性層、第2の強磁性層に相当する。リフェレンス層106及び磁化自由層108は、Fe、Co、Niなどの強磁性元素又はこれらの合金を主成分とし、これに適宜B、C、Crなどの成分を添加して構成することができる。 The reference layer 106 and the magnetization free layer 108 are ferromagnetic layers and correspond to the first ferromagnetic layer and the second ferromagnetic layer of the present invention. The reference layer 106 and the magnetization free layer 108 can be configured by using a ferromagnetic element such as Fe, Co, Ni, or an alloy thereof as a main component, and appropriately adding components such as B, C, Cr.
 また、トンネルバリア層107は、金属酸化物からなる絶縁体層であり、本発明はこのトンネルバリア層107の形成方法に特徴がある。トンネルバリア層107は、例えば、酸化マグネシウム、アルミナ、又は、これらに適宜金属元素を添加した金属酸化物などから構成することができ、このうち酸化マグネシウムはMR比に優れるので好ましい。 Further, the tunnel barrier layer 107 is an insulator layer made of a metal oxide, and the present invention is characterized by a method for forming the tunnel barrier layer 107. The tunnel barrier layer 107 can be made of, for example, magnesium oxide, alumina, or a metal oxide in which a metal element is appropriately added to these, and among these, magnesium oxide is preferable because of its excellent MR ratio.
 次に、上述のTMR素子の製造装置について説明する。図2はTMR素子の形成に用いる製造装置を示す概略平面図、及び、図3は酸化処理を行うための酸化チャンバを示す図である。 Next, an apparatus for manufacturing the above-described TMR element will be described. FIG. 2 is a schematic plan view showing a manufacturing apparatus used for forming a TMR element, and FIG. 3 is a view showing an oxidation chamber for performing an oxidation treatment.
 図2の製造装置700はクラスタ型装置であり、脱ガス処理を行うための脱ガスチャンバ704、エッチング処理を行うためのエッチングチャンバ705、酸化チャンバ706、及び、成膜チャンバ707~709を備えている。また、製造装置700では、図示しないロボット搬送装置を備える搬送チャンバ701が中央位置に設置され、2つのロード/アンロードチャンバ702,703から導入される基板を、各チャンバ704~709に搬出入可能になっている。各チャンバ701~709は夫々独自にチャンバ内を所定の低圧状態にするための真空ポンプを備えると共に、搬送チャンバ701と各チャンバ702~709とはゲートバルブを介して接続されており、所定の低圧条件下での基板搬送が可能である。また、製造装置700は、所定のプロセスフロー(以下、レシピとも言う)を規定したプログラムに従って、各チャンバ701~709に指令を出力し、所定のプロセスを実施させるための装置コントローラ710を備える。装置コントローラ710は、例えば、コンピュータと、各種のドライバを備えて構成される。 The manufacturing apparatus 700 in FIG. 2 is a cluster-type apparatus, and includes a degas chamber 704 for performing degas processing, an etching chamber 705 for performing etching processing, an oxidation chamber 706, and film formation chambers 707 to 709. Yes. Further, in the manufacturing apparatus 700, a transfer chamber 701 including a robot transfer apparatus (not shown) is installed at the central position, and substrates introduced from the two load / unload chambers 702 and 703 can be transferred into and out of the respective chambers 704 to 709. It has become. Each of the chambers 701 to 709 is independently provided with a vacuum pump for bringing the inside of the chamber into a predetermined low pressure state, and the transfer chamber 701 and each of the chambers 702 to 709 are connected to each other via a gate valve. Substrate transport under conditions is possible. In addition, the manufacturing apparatus 700 includes an apparatus controller 710 for outputting a command to each of the chambers 701 to 709 according to a program that defines a predetermined process flow (hereinafter also referred to as a recipe) to execute a predetermined process. The device controller 710 includes, for example, a computer and various drivers.
 成膜チャンバ707~709は、少なくともいずれかが、シード層102、反強磁性層103、ピンド層104、スペーサ105、リフェレンス層106、トンネルバリア層107、磁化自由層108、及び、キャップ層109を成膜可能なターゲットを備えており、これらの各層102~109をスパッタリング法により成膜可能である。ターゲット材料に何を用いるか、どのチャンバに配置するかは、本発明では特に限定されない。例えば、CoFeBなどのように合金又は複合材料から構成される層は、CoFeBからなるターゲットを用いてもよいし、Coターゲット、Feターゲット、Bターゲットの3つのターゲットを同時スパッタリングさせることで形成してもよい。また、スパッタリング方法は、特に限定されず、例えば、直流電力により放電させるDC-スパッタ、高周波電力により放電させるRF-スパッタ、直流電力と高周波電力の重畳によるスパッタのいずれでもよい。 At least one of the deposition chambers 707 to 709 includes a seed layer 102, an antiferromagnetic layer 103, a pinned layer 104, a spacer 105, a reference layer 106, a tunnel barrier layer 107, a magnetization free layer 108, and a cap layer 109. A target capable of film formation is provided, and each of these layers 102 to 109 can be formed by a sputtering method. In the present invention, what is used for the target material and in which chamber it is arranged are not particularly limited. For example, a layer made of an alloy or a composite material such as CoFeB may use a target made of CoFeB, or may be formed by co-sputtering three targets of a Co target, an Fe target, and a B target. Also good. Further, the sputtering method is not particularly limited, and for example, any of DC-sputtering discharged by DC power, RF-sputtering discharging by high-frequency power, and sputtering by superimposing DC power and high-frequency power may be used.
 酸化チャンバ706は、基板に自然酸化処理を施すチャンバである。図3の酸化チャンバ706は、真空容器601内に酸素ガスを導入可能なガス導入系602と、真空容器601内を排気可能な排気系602と、を備えており、チャンバ内に所定圧力の酸素ガスを供給可能である。具体的には、本実施形態ではガス導入系602はマスフローコントローラなどを備えて構成され、所定流量で酸素ガスを導入可能である。また、排気系602はバルブとポンプなどを備え、コンダクタンスの調整によりチャンバ内を所定圧に排気可能である。なお、図中のガス導入系602と排気系602の間には、複数の貫通孔を形成した、酸素ガスを拡散させるための拡散板604が配されている。 The oxidation chamber 706 is a chamber for subjecting the substrate to natural oxidation treatment. The oxidation chamber 706 of FIG. 3 includes a gas introduction system 602 capable of introducing oxygen gas into the vacuum vessel 601 and an exhaust system 602 capable of exhausting the inside of the vacuum vessel 601. Gas can be supplied. Specifically, in this embodiment, the gas introduction system 602 includes a mass flow controller and the like, and can introduce oxygen gas at a predetermined flow rate. The exhaust system 602 includes a valve, a pump, and the like, and can exhaust the chamber to a predetermined pressure by adjusting conductance. Note that a diffusion plate 604 for diffusing oxygen gas, in which a plurality of through holes are formed, is disposed between the gas introduction system 602 and the exhaust system 602 in the drawing.
 また、酸化チャンバ706は、自然酸化処理時に、基板を加熱しながら保持可能な基板ステージ610を備える。具体的に図3の形態では、基板ステージ610は、静電吸着作用により基板を保持するための静電吸着機構を備える。静電吸着機構は、誘電体611、基板及び誘電体611間に静電吸着力を発生させるための電極615、及び、吸着用電源616を含んで構成されている。また、基板ステージ610は、基板ステージ610を加熱するためのヒータ613、及び、基板ステージ610と基板の間に伝熱用のガスを供給する伝熱ガス導入系614を備える。また、基板ステージ610は、図示しない温度センサを備え、この値に基づいて、伝熱ガス導入系614を介した供給ガス圧の調整、又は、ヒータ用電源617からヒータ613への電力供給を調整することで、基板を所定の温度に調整可能になっている。 Also, the oxidation chamber 706 includes a substrate stage 610 that can be held while heating the substrate during natural oxidation treatment. Specifically, in the form of FIG. 3, the substrate stage 610 includes an electrostatic adsorption mechanism for holding the substrate by an electrostatic adsorption action. The electrostatic adsorption mechanism includes a dielectric 611, an electrode 615 for generating an electrostatic adsorption force between the substrate and the dielectric 611, and an adsorption power source 616. In addition, the substrate stage 610 includes a heater 613 for heating the substrate stage 610 and a heat transfer gas introduction system 614 for supplying a heat transfer gas between the substrate stage 610 and the substrate. Further, the substrate stage 610 includes a temperature sensor (not shown), and based on this value, adjustment of supply gas pressure via the heat transfer gas introduction system 614 or adjustment of power supply from the heater power source 617 to the heater 613 is adjusted. Thus, the substrate can be adjusted to a predetermined temperature.
 酸化チャンバコントローラ605は、チャンバ内の圧力を検知する圧力センサなど各種の入力に基づき、上記酸素ガス導入系602、排気系603、伝熱ガス導入系614、吸着用電源616、及び、ヒータ用電源617をコントロールし、装置コントローラ710から指示されるプロセスを実行する。 The oxidation chamber controller 605 is based on various inputs such as a pressure sensor for detecting the pressure in the chamber, and the oxygen gas introduction system 602, the exhaust system 603, the heat transfer gas introduction system 614, the adsorption power supply 616, and the heater power supply. 617 is controlled and a process instructed by the device controller 710 is executed.
 なお、酸化チャンバ706は上記構成に限定されず、例えば、静電吸着によらず、基板を機械的に保持したり、基板を載置したままの状態としてもよい。また、基板ステージ610との接触による加熱に限られず、ランプヒータなどの輻射熱により加熱してもよい。 Note that the oxidation chamber 706 is not limited to the above-described configuration, and for example, the substrate may be mechanically held or may be in a state in which the substrate is placed without depending on electrostatic adsorption. Further, the heating is not limited to the contact with the substrate stage 610 but may be performed by radiant heat such as a lamp heater.
 次に、上記製造装置700を用いたMTJの製造方法について説明する。 Next, an MTJ manufacturing method using the manufacturing apparatus 700 will be described.
 図4はトンネルバリア層107の形成方法の具体例を示す図であり、図10は装置コントローラ710により実行される製造フローである。 FIG. 4 is a diagram showing a specific example of a method for forming the tunnel barrier layer 107, and FIG. 10 is a manufacturing flow executed by the apparatus controller 710.
 まず、図4Aに示すように、予め所定パターンの下部電極101を形成した基板を製造装置700に導入し、成膜チャンバ707~709内で、シード層102、反強磁性層103(図4ではPtMn層803)、ピンド層104(図4ではCoFe層806)、スペーサ105(図4ではRu層805)、リフェレンス層106(図4ではCoFeB層806)、及び、Mg層107を順に積層する(図10のステップS101~104に相当)。
 その状態で、基板を成膜チャンバから酸化チャンバ706に真空搬送する。基板搬入後、所定圧力まで酸素ガスを導入し、ヒータ613により基板を所定温度に加熱しながら最表面に形成されたMg層107を酸化する(図10のステップS105)。
First, as shown in FIG. 4A, a substrate on which a lower electrode 101 having a predetermined pattern is formed is introduced into a manufacturing apparatus 700, and a seed layer 102 and an antiferromagnetic layer 103 (in FIG. 4) are formed in film forming chambers 707 to 709. (PtMn layer 803), pinned layer 104 (CoFe layer 806 in FIG. 4), spacer 105 (Ru layer 805 in FIG. 4), reference layer 106 (CoFeB layer 806 in FIG. 4), and Mg layer 107 are stacked in this order ( This corresponds to steps S101 to S104 in FIG.
In this state, the substrate is vacuum-transferred from the deposition chamber to the oxidation chamber 706. After carrying in the substrate, oxygen gas is introduced to a predetermined pressure, and the Mg layer 107 formed on the outermost surface is oxidized while the substrate is heated to a predetermined temperature by the heater 613 (step S105 in FIG. 10).
 このときの酸素ガスの圧力、酸化処理時間等の酸化条件は、形成したMg層107を酸化マグネシウム層に変換できる条件であれば特に限定されない。通常、圧力は1.0×10-4~2.0×102Paの範囲であり、酸化処理時間は20秒~1000秒の範囲である。これら酸素ガス圧や酸化処理時間は、酸化処理する膜の厚さ、RA値等に応じ任意に設定する。 Oxidation conditions such as oxygen gas pressure and oxidation treatment time at this time are not particularly limited as long as the formed Mg layer 107 can be converted into a magnesium oxide layer. Usually, the pressure is in the range of 1.0 × 10 −4 to 2.0 × 10 2 Pa, and the oxidation treatment time is in the range of 20 seconds to 1000 seconds. These oxygen gas pressure and oxidation treatment time are arbitrarily set according to the thickness of the film to be oxidized, the RA value, and the like.
 また、基板の温度は、加熱されていれば(つまり室温を超えれば)MR比向上の効果が得られるが、あまりに加熱すると下層や基板が劣化する。したがって、50℃以上200℃以下とすることが好ましく、70℃以上120℃とすることがさらに好ましい。また、自然酸化処理の間中加熱することが好ましいが、自然酸化処理中の一部の期間だけ加熱するようにしてもよい。従って、基板搬入時にすぐに基板を昇温できるように予め基板ステージ610を加熱しておくことが好ましいが、基板を搬入してから又は自然酸化処理の途中で基板ステージ610を加熱してもよく、自然酸化処理の途中で加熱を停止してもよい。また、加熱中に設定温度を変更させてもよい。 Also, if the temperature of the substrate is heated (that is, exceeds room temperature), an effect of improving the MR ratio can be obtained, but if it is heated too much, the lower layer and the substrate are deteriorated. Therefore, it is preferably 50 ° C. or more and 200 ° C. or less, and more preferably 70 ° C. or more and 120 ° C. Moreover, although it is preferable to heat during a natural oxidation process, you may make it heat only for the one part period during a natural oxidation process. Therefore, it is preferable to heat the substrate stage 610 in advance so that the temperature of the substrate can be raised immediately when the substrate is loaded. However, the substrate stage 610 may be heated after the substrate is loaded or during the natural oxidation treatment. The heating may be stopped during the natural oxidation treatment. Moreover, you may change preset temperature during a heating.
 上述の自然酸化処理後、再び成膜チャンバ707~709に基板を搬送し、図4Bに示すように、Mg層308、磁化自由層108(図4ではCoFeB)及びキャップ層109、上部電極110を順に形成する(図10のステップS106、S107)。Mg層308は、酸素拡散を適正に保つための金属キャップ層であり、トンネルバリア層107を構成するものである。その後、製造装置700から基板を搬出し、熱処理炉において、磁気アニーリング処理を行う。アニーリング条件は、例えば、10kOeの磁場中で、約360℃、2時間とする。これにより、反強磁性層103に所要の磁化を与える。 After the natural oxidation treatment described above, the substrate is transferred again to the film forming chambers 707 to 709, and as shown in FIG. 4B, the Mg layer 308, the magnetization free layer 108 (CoFeB in FIG. 4), the cap layer 109, and the upper electrode 110 are removed. These are formed in order (steps S106 and S107 in FIG. 10). The Mg layer 308 is a metal cap layer for appropriately maintaining oxygen diffusion, and constitutes the tunnel barrier layer 107. Thereafter, the substrate is unloaded from the manufacturing apparatus 700, and a magnetic annealing process is performed in a heat treatment furnace. The annealing conditions are, for example, about 360 ° C. and 2 hours in a magnetic field of 10 kOe. Thereby, the required magnetization is given to the antiferromagnetic layer 103.
 次に、上記実施形態についての実施例を作製し、その効果について確認したので説明する。 Next, an example of the above embodiment will be made and the effect thereof will be confirmed.
 まず、図4に示すように、下部電極、PtMn層303を15nm、CoFe層304を2.5nm、Ru層305を0.9nm、CoFeB層306を3nm、Mg層307を1.1nmを順にマグネトロン-DC-スパッタにより積層した後、自然酸化処理を行い、その上にMg層308を0.3nm、CoFeB層309を3nm、キャップ層109(Ta層)を8.0nm、上部電極311を形成した。なお、図4に示す工程では、CoFe層304はCo(70原子%)Fe(30原子%)、CoFeB層306、309はCo(60原子%)Fe(20原子%)B(原子%)である。 First, as shown in FIG. 4, the lower electrode, the PtMn layer 303 is 15 nm, the CoFe layer 304 is 2.5 nm, the Ru layer 305 is 0.9 nm, the CoFeB layer 306 is 3 nm, and the Mg layer 307 is 1.1 nm in order. After stacking by -DC-sputtering, natural oxidation treatment was performed, and an Mg layer 308 of 0.3 nm, a CoFeB layer 309 of 3 nm, a cap layer 109 (Ta layer) of 8.0 nm, and an upper electrode 311 were formed thereon. . In the step shown in FIG. 4, the CoFe layer 304 is Co (70 atomic%) Fe (30 atomic%), and the CoFeB layers 306 and 309 are Co (60 atomic%) Fe (20 atomic%) B (atomic%). is there.
 自然酸化処理は、実施例では、基板温度100℃の加熱条件下で、酸素ガスの流量を700sccm、酸素ガス圧力が6.5×10-1Paで行った。一方、比較例は、基板を加熱せず、それ以外の条件は同一として自然酸化を行った。 In the examples, the natural oxidation treatment was performed under a heating condition with a substrate temperature of 100 ° C., with an oxygen gas flow rate of 700 sccm and an oxygen gas pressure of 6.5 × 10 −1 Pa. On the other hand, in the comparative example, the substrate was not heated, and natural oxidation was performed under the same conditions.
 図5に、結果を示す。 Figure 5 shows the results.
 自然酸化時間を調整して所望のRA(Ω・μm;素子面積1μm当たりの素子抵抗)値を有するTMR素子を作製した場合、図5Aに示すように、実用的なRAの範囲(通常5~20Ω・μm2)内で、実施例が比較例よりも高いMR比を有することが確認された。 When a TMR element having a desired RA (Ω · μm 2 ; element resistance per element area 1 μm 2 ) value is prepared by adjusting the natural oxidation time, a practical RA range (usually as shown in FIG. 5A) Within 5-20 Ω · μm 2 ), it was confirmed that the example had a higher MR ratio than the comparative example.
 また、図5Bに示すように、自然酸化時間とMR比の関係を調べたところ、実施例は短い酸化時間で比較例よりもMR比に優れることが確認された。従って、本発明によれば、高いMR比を得ることが可能であると共に、磁気抵抗効果素子製造時において酸化処理に要する時間を大幅に短縮でき、タクトタイムの短縮に寄与する。 Further, as shown in FIG. 5B, when the relationship between the natural oxidation time and the MR ratio was examined, it was confirmed that the example was superior in MR ratio to the comparative example in a short oxidation time. Therefore, according to the present invention, it is possible to obtain a high MR ratio, and it is possible to greatly shorten the time required for the oxidation process when manufacturing the magnetoresistive effect element, thereby contributing to the reduction of the tact time.
[TMR素子の他の構成例]
 次に、本発明の他の実施形態について説明する。
[Other configuration examples of TMR elements]
Next, another embodiment of the present invention will be described.
 本発明を適用可能な磁気抵抗効果素子は、上記構成のものに限定されず、図6~図9に示すようなものにも適用可能である。なお、図6~図9においては、説明を分かりやすくするために、自然酸化処理の対象となる層の上に「自然酸化」と記述することで、その層に対して加熱条件下での酸化処理を行うことを示す。図示しないが、当該酸化処理後は、当該酸化処理された層は酸化物層(図6~図9の例では、酸化マグネシウム層)となる。 The magnetoresistive effect element to which the present invention can be applied is not limited to the one having the above-described configuration, and can be applied to the elements shown in FIGS. In FIGS. 6 to 9, in order to make the explanation easy to understand, “natural oxidation” is written on the layer to be subjected to the natural oxidation treatment, so that the layer is oxidized under the heating condition. Indicates that processing is to be performed. Although not shown, after the oxidation treatment, the oxidized layer becomes an oxide layer (a magnesium oxide layer in the examples of FIGS. 6 to 9).
 図6の例では、リフェレンス層106が、図4の例と異なり、スペーサ105側に位置するCoFeB層806とその上のCoFe層807の2層から形成されている。このCoFeB層806は、Bを12原子%以上含み、スパッタ成膜時にアモルファス状態となる層である。図6のような構成であると、アモルファス状態であるトンネルバリア層107が、上記磁気アニールの際にCoFe層807を鋳型として、界面に(001)面が優先配向したマイクロ結晶粒を形成し、高いMR比を示す。 In the example of FIG. 6, unlike the example of FIG. 4, the reference layer 106 is formed of two layers, a CoFeB layer 806 located on the spacer 105 side and a CoFe layer 807 thereon. The CoFeB layer 806 is a layer that contains 12 atomic% or more of B and becomes an amorphous state during sputtering film formation. With the configuration as shown in FIG. 6, the tunnel barrier layer 107 in an amorphous state forms microcrystal grains having a (001) plane preferentially oriented at the interface using the CoFe layer 807 as a template during the magnetic annealing, High MR ratio is shown.
 このMTJの各層の具体例としては、PtMn15/CoFe2.5/Ru0.9/CoFeB1.5/CoFe1.5/Mg1.1/Mg0.3/CoFeB3である。(基板側から順に、構成材料と積層厚さ(nm)を/で区切って示す。以下、同じ。)なお、この構成に限定されないが、CoFeB層の厚さは1nm~4nmであることが好ましく、CoFe層807の厚さは0.5nm~2nmであることが好ましく、CoFe層807はCoFeB層806と同等以下の厚さで形成されることが好ましい。 A specific example of each layer of this MTJ is PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFe1.5 / Mg1.1 / Mg0.3 / CoFeB3. (In order from the substrate side, the constituent material and the stacking thickness (nm) are shown separated by /. The same applies hereinafter.) Although not limited to this configuration, the thickness of the CoFeB layer is preferably 1 nm to 4 nm. The thickness of the CoFe layer 807 is preferably 0.5 nm to 2 nm, and the CoFe layer 807 is preferably formed with a thickness equal to or less than that of the CoFeB layer 806.
 図7の例では、図6と略同様であるが、トンネルバリア層107のリフェレンス層106とは反対側にも、CoFe層410及びCoFeB層411を形成し、磁化自由層108を構成している。このようにすることで、さらに、MR比の優れたTMR素子とすることができる。 The example of FIG. 7 is substantially the same as FIG. 6, but the CoFe layer 410 and the CoFeB layer 411 are formed on the opposite side of the tunnel barrier layer 107 from the reference layer 106 to configure the magnetization free layer 108. . By doing so, a TMR element having an excellent MR ratio can be obtained.
 このMTJの各層の具体例としては、PtMn15/CoFe2.5/Ru0.9/CoFeB1.5/CoFe1.5/Mg1.1/Mg0.3/CoFe1.5/CoFeB1.5である。CoFe層やCoFeB層の好ましい厚さの範囲については図6と同様である。 A specific example of each layer of this MTJ is PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFe1.5 / Mg1.1 / Mg0.3 / CoFe1.5 / CoFeB1.5. The preferable thickness range of the CoFe layer and the CoFeB layer is the same as in FIG.
 図8の例では、図7と略同様であるが、トンネルバリア層107に接するCoFe層407、410がCoFeB層1407、1411になっている。このCoFeB層1407、1411は、B含有量が12原子%未満であり、スパッタ成膜時にはCoFe層と同様に、(001)面が界面に平行に配向したbcc構造の結晶として形成される。従って、図7のCoFe層407、410と同様に機能し、トンネルバリア層107の(001)面の優先配向を促進する。 8, the CoFe layers 407 and 410 in contact with the tunnel barrier layer 107 are CoFeB layers 1407 and 1411, respectively, which are substantially the same as those in FIG. The CoFeB layers 1407 and 1411 have a B content of less than 12 atomic%, and are formed as crystals of the bcc structure in which the (001) plane is oriented parallel to the interface in the same manner as the CoFe layer at the time of sputtering film formation. Therefore, it functions in the same manner as the CoFe layers 407 and 410 in FIG. 7 and promotes the preferential orientation of the (001) plane of the tunnel barrier layer 107.
 このMTJの各層の具体例としては、PtMn15/CoFe2.5/Ru0.9/CoFeB1.5/CoFeB1.5/Mg1.1/Mg0.3/CoFeB1.5/CoFeB1.5である。 Specific examples of the MTJ layers are PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / CoFeB1.5 / Mg1.1 / Mg0.3 / CoFeB1.5 / CoFeB1.5.
 図9の例では、図8と同様に、トンネルバリア層107に接する層はトンネルバリア層107の(001)面の優先配向を促進可能な強磁性材料として、Fe層1707、1711を形成している。 In the example of FIG. 9, as in FIG. 8, the layers in contact with the tunnel barrier layer 107 are formed by forming Fe layers 1707 and 1711 as ferromagnetic materials capable of promoting the preferential orientation of the (001) plane of the tunnel barrier layer 107. Yes.
 このMTJの各層の具体例としては、PtMn15/CoFe2.5/Ru0.9/CoFeB1.5/Fe1~4/Mg1.1/Mg0.3/Fe1~4/CoFeB1.5である。 Specific examples of each layer of this MTJ are PtMn15 / CoFe2.5 / Ru0.9 / CoFeB1.5 / Fe1-4 / Mg1.1 / Mg0.3 / Fe1-4 / CoFeB1.5.

Claims (4)

  1.  第1の強磁性体層を形成する第1強磁性層形成ステップと、
     前記第1の強磁性体層上に、金属酸化物からなるトンネルバリア層を形成するバリア層形成ステップと、
     前記トンネルバリア層上に第2の強磁性体層を形成する第2強磁性層形成ステップと、を有し、
     前記バリア層形成ステップは、
     金属膜を成膜する金属成膜ステップと、
     加熱条件下で、前記金属膜を自然酸化するステップと、
     を有することを特徴とする磁気抵抗効果素子の製造方法。
    A first ferromagnetic layer forming step of forming a first ferromagnetic layer;
    A barrier layer forming step of forming a tunnel barrier layer made of a metal oxide on the first ferromagnetic layer;
    A second ferromagnetic layer forming step of forming a second ferromagnetic layer on the tunnel barrier layer,
    The barrier layer forming step includes
    A metal film forming step for forming a metal film;
    Spontaneously oxidizing the metal film under heating conditions;
    A method for manufacturing a magnetoresistive effect element, comprising:
  2.  前記第1強磁性体層形成ステップは、
     アモルファス強磁性層を形成するステップと、
     前記アモルファス強磁性層上に結晶性強磁性層を形成するステップと、を有し、
     前記バリア層形成ステップの前記金属成膜ステップは、前記結晶性強磁性層上に前記金属膜を形成することを特徴とする請求項1に記載の磁気抵抗効果素子の製造方法。
    The first ferromagnetic layer forming step includes
    Forming an amorphous ferromagnetic layer;
    Forming a crystalline ferromagnetic layer on the amorphous ferromagnetic layer,
    2. The method of manufacturing a magnetoresistive effect element according to claim 1, wherein the metal film forming step of the barrier layer forming step forms the metal film on the crystalline ferromagnetic layer.
  3.  前記第1強磁性体層形成ステップは、アモルファス強磁性層を形成するステップを有し、
     前記バリア層形成ステップの前記金属成膜ステップは、前記アモルファス強磁性層上に前記金属膜を形成することを特徴とする請求項1に記載の磁気抵抗効果素子の製造方法。
    The first ferromagnetic layer forming step includes a step of forming an amorphous ferromagnetic layer,
    2. The method of manufacturing a magnetoresistive effect element according to claim 1, wherein the metal film forming step of the barrier layer forming step forms the metal film on the amorphous ferromagnetic layer.
  4.  スパッタリング法による成膜を実行させる成膜装置を備えた成膜チャンバと、基板を加熱する加熱装置、ガス導入系及びチャンバ内を排気するための排気系を備えた酸化チャンバと、前記成膜チャンバと前記酸化チャンバとの間で基板を搬送する搬送装置と、プログラムの実行により、前記成膜装置、加熱装置、ガス導入系、排気系及び搬送装置を制御するための制御装置と、を備えた磁気抵抗効果素子の製造装置に用いられるプログラムであって、
     前記成膜チャンバ内で成膜装置により、第1の強磁性体層を形成させる第1強磁性層形成ステップと、
     前記成膜チャンバ内で成膜装置により、前記第1の強磁性体層上に、金属酸化物からなるトンネルバリア層を形成させるバリア層形成ステップと、
     前記トンネルバリア層上に第2の強磁性体層を形成させる第2強磁性層形成ステップと、を有し、
     前記バリア層形成ステップは、
     前記成膜チャンバ内で成膜装置により、金属膜を成膜する金属成膜ステップと、
     前記成膜チャンバから前記酸化チャンバに基板を搬送するステップと、
     前記酸化チャンバ内で、加熱条件下で、前記金属膜を自然酸化するステップと、
     を有することを特徴とする磁気抵抗効果素子製造プログラム。
    A film forming chamber having a film forming apparatus for performing film formation by sputtering, a heating apparatus for heating a substrate, a gas introduction system, an oxidation chamber having an exhaust system for exhausting the inside of the chamber, and the film forming chamber And a control device for controlling the film forming device, the heating device, the gas introduction system, the exhaust system, and the transport device by executing a program. A program used in a magnetoresistive element manufacturing apparatus,
    A first ferromagnetic layer forming step of forming a first ferromagnetic layer by a film forming apparatus in the film forming chamber;
    A barrier layer forming step of forming a tunnel barrier layer made of a metal oxide on the first ferromagnetic layer by a film forming apparatus in the film forming chamber;
    A second ferromagnetic layer forming step of forming a second ferromagnetic layer on the tunnel barrier layer,
    The barrier layer forming step includes
    A metal film forming step of forming a metal film with a film forming apparatus in the film forming chamber;
    Transporting the substrate from the deposition chamber to the oxidation chamber;
    Natural oxidation of the metal film under heating conditions in the oxidation chamber;
    A magnetoresistive element manufacturing program characterized by comprising:
PCT/JP2008/068556 2008-10-14 2008-10-14 Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element WO2010044134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068556 WO2010044134A1 (en) 2008-10-14 2008-10-14 Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068556 WO2010044134A1 (en) 2008-10-14 2008-10-14 Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element

Publications (1)

Publication Number Publication Date
WO2010044134A1 true WO2010044134A1 (en) 2010-04-22

Family

ID=42106312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068556 WO2010044134A1 (en) 2008-10-14 2008-10-14 Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element

Country Status (1)

Country Link
WO (1) WO2010044134A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097510A1 (en) * 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistance effect element
WO2015175027A1 (en) * 2014-05-15 2015-11-19 Headway Technologies, Inc. Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic device applications
JPWO2014024358A1 (en) * 2012-08-10 2016-07-25 キヤノンアネルバ株式会社 Tunnel magnetoresistive element manufacturing equipment
US10648069B2 (en) 2018-10-16 2020-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Monolayer-by-monolayer growth of MgO layers using Mg sublimation and oxidation
US20220131069A1 (en) * 2020-10-26 2022-04-28 Uif (University Industry Foundation), Yonsei University Magnetic tunnel junction device, magnetic memory using the same and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304012A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Tunnel magnetoresistive element
WO2003092084A1 (en) * 2002-04-23 2003-11-06 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element, manufacturing method thereof, magnetic head, magnetic memory, and magnetic recording device using the same
JP2008103661A (en) * 2006-09-21 2008-05-01 Alps Electric Co Ltd Tunnel type magnetic detection element and manufacturing method therefor
JP2008103662A (en) * 2006-09-21 2008-05-01 Alps Electric Co Ltd Tunnel type magnetic detection element, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304012A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Tunnel magnetoresistive element
WO2003092084A1 (en) * 2002-04-23 2003-11-06 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element, manufacturing method thereof, magnetic head, magnetic memory, and magnetic recording device using the same
JP2008103661A (en) * 2006-09-21 2008-05-01 Alps Electric Co Ltd Tunnel type magnetic detection element and manufacturing method therefor
JP2008103662A (en) * 2006-09-21 2008-05-01 Alps Electric Co Ltd Tunnel type magnetic detection element, and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014024358A1 (en) * 2012-08-10 2016-07-25 キヤノンアネルバ株式会社 Tunnel magnetoresistive element manufacturing equipment
CN104885245B (en) * 2012-12-20 2017-06-13 佳能安内华股份有限公司 The manufacture method of magnetoresistive element
KR101743498B1 (en) * 2012-12-20 2017-06-05 캐논 아네르바 가부시키가이샤 Method for manufacturing magnetoresistance effect element
JP5882502B2 (en) * 2012-12-20 2016-03-09 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
CN104885245A (en) * 2012-12-20 2015-09-02 佳能安内华股份有限公司 Method for manufacturing magnetoresistance effect element
US9865805B2 (en) 2012-12-20 2018-01-09 Canon Anelva Corporation Method for manufacturing magnetoresistive element
DE112013006168B4 (en) 2012-12-20 2023-12-28 Canon Anelva Corporation Method for producing a magnetoresistive element
TWI552399B (en) * 2012-12-20 2016-10-01 Canon Anelva Corp Method for manufacturing magnetoresistance effect elements
WO2014097510A1 (en) * 2012-12-20 2014-06-26 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistance effect element
WO2015175027A1 (en) * 2014-05-15 2015-11-19 Headway Technologies, Inc. Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic device applications
EP3467891A1 (en) * 2014-05-15 2019-04-10 Headway Technologies, Inc. Reduction of barrier resistance x area (ra) product and protection of perpendicular magnetic anisotropy (pma) for magnetic device applications
CN106605311A (en) * 2014-05-15 2017-04-26 海德威科技公司 Reduction of barrier resistance area (RA) product and protection of perpendicular magnetic aeolotropism (PMA) applications
US10648069B2 (en) 2018-10-16 2020-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Monolayer-by-monolayer growth of MgO layers using Mg sublimation and oxidation
US11001919B2 (en) 2018-10-16 2021-05-11 Taiwan Semiconductor Manufacturing Company, Ltd. Monolayer-by-monolayer growth of MgO layers using Mg sublimation and oxidation
US11597993B2 (en) 2018-10-16 2023-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Monolayer-by-monolayer growth of MgO layers using mg sublimation and oxidation
US20220131069A1 (en) * 2020-10-26 2022-04-28 Uif (University Industry Foundation), Yonsei University Magnetic tunnel junction device, magnetic memory using the same and method for manufacturing the same
US12041854B2 (en) * 2020-10-26 2024-07-16 Uif (University Industry Foundation), Yonsei University Magnetic tunnel junction device, magnetic memory using the same and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4527806B2 (en) Magnetoresistive element manufacturing method and magnetoresistive element manufacturing apparatus
TWI440236B (en) Method for manufacturing magnetoresistive elements
KR101242628B1 (en) FERROMAGNETIC PREFERRED GRAIN GROWTH PROMOTION SEED LAYER FOR AMORPHOUS OR MICROCRYSTALLINE MgO TUNNEL BARRIER
JP5341082B2 (en) Tunnel magnetoresistive element manufacturing method and manufacturing apparatus
JP5999543B2 (en) Method for manufacturing tunnel magnetoresistive element
JP5351140B2 (en) Manufacturing method of magnetic tunnel junction device
TWI552399B (en) Method for manufacturing magnetoresistance effect elements
US20100080894A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20100078310A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20110227018A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
US20130134032A1 (en) Method of fabricating and apparatus of fabricating tunnel magnetic resistive element
WO2010044134A1 (en) Process for producing magnetoresistance effect element and program for producing magnetoresistance effect element
US20110084348A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
JP2012502447A (en) Preferred grain grown ferromagnetic seed layer for amorphous or microcrystalline MgO tunnel barriers
JP5689932B2 (en) Method for manufacturing tunnel magnetoresistive element
WO2010095525A1 (en) Magnetoresistive element and method for manufacturing magnetoresistive element
WO2010026725A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010026703A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP2011040496A (en) Method of manufacturing magnetic medium, and sputtering device
WO2010029701A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010064564A1 (en) Magnetoresistive element, method of producing same, and storage medium used in method of producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877394

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP