WO2010043531A1 - Verfahren und vorrichtung zum bestimmen einer gesamten zylinderfüllung und/oder der aktuellen restgasrate bei einem verbrennungsmotor mit abgasrückführung - Google Patents

Verfahren und vorrichtung zum bestimmen einer gesamten zylinderfüllung und/oder der aktuellen restgasrate bei einem verbrennungsmotor mit abgasrückführung Download PDF

Info

Publication number
WO2010043531A1
WO2010043531A1 PCT/EP2009/063067 EP2009063067W WO2010043531A1 WO 2010043531 A1 WO2010043531 A1 WO 2010043531A1 EP 2009063067 W EP2009063067 W EP 2009063067W WO 2010043531 A1 WO2010043531 A1 WO 2010043531A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
intake manifold
rfrges
gas
charge
Prior art date
Application number
PCT/EP2009/063067
Other languages
English (en)
French (fr)
Inventor
Martin Schulte Moenting
Juergen Berkemer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN200980140626.XA priority Critical patent/CN102187074B/zh
Publication of WO2010043531A1 publication Critical patent/WO2010043531A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an internal combustion engine with exhaust gas recirculation, which is controlled by an engine control unit, wherein in the engine control unit, the current air charge is determined depending on the residual gas rate.
  • exhaust gas recirculations are provided in internal combustion engines in order to reduce fuel consumption and, if necessary, to optimize exhaust emissions.
  • exhaust gas is taken from the exhaust system and metered via an exhaust gas recirculation line with an exhaust gas recirculation valve of the fresh air of a suction pipe of an air supply system admixed.
  • the exhaust gas recirculation valve is controlled by the engine control unit, so that a certain residual gas rate (exhaust gas recirculation rate) can be set.
  • the admixed exhaust gas displaces the fresh air without participating in the combustion. This means that in order to keep the engine torque constant, the throttle valve must be opened further as the residual gas content increases at certain operating points.
  • the desired effect is to increase the intake manifold pressure without increasing engine torque. As a result, the pumping losses of the internal combustion engine can be reduced, the efficiency can be increased and fuel consumption thereby reduced.
  • the combustion temperature can be lowered, resulting in reduced formation of the harmful nitrogen oxides in the exhaust gas.
  • the engine control unit In order to keep the engine torque constant, it is therefore necessary for the engine control unit to know the current air charge of the cylinders in order to be able to determine the corresponding position of the throttle valve or the corresponding injection quantity and the ignition angle on the basis of the current air charge, so that the required engine torque is constant can be held.
  • the relationships between the engine speed, the throttle position, the intake manifold pressure, the total cylinder filling and the cylinder air filling is described correctly with the previously implemented functions under stationary conditions. Also dynamic processes can be considered.
  • a method for determining an overall cylinder charge in cylinders of an exhaust gas recirculation internal combustion engine, wherein exhaust gas is recirculated at a point of introduction into a suction pipe for feeding a gas mixture into the cylinders, the total cylinder charge being dependent on a sum of the Suction tube supplied gas mass flows and depending on a first dynamic correction factor, which describes the dynamic behavior of the suction pipe with respect to there adjusting Saugrohr horrs determined.
  • the above method enables a dynamically correct detection of the entire cylinder filling as the basis for the correct determination of the instantaneous air filling in the cylinders or the residual gas rate taking into account the point of introduction of recirculated exhaust gas into the intake manifold.
  • the total cylinder charge can be determined as a function of the instantaneous intake manifold pressure, wherein the instantaneous intake manifold pressure is determined by integrating the difference between an unfiltered gas mass flow supplied to the intake manifold and the total gas mass flow supplied to the cylinder with the first dynamic correction factor.
  • the total cylinder charge as a function of the instantaneous intake manifold pressure, depending on a current engine speed and depending on correction factors, in particular an altitude factor to adapt to an ambient pressure and a combustion chamber temperature factor for taking into account the gas temperature in the cylinder can be determined.
  • a method for determining a current residual gas rate in cylinders of an exhaust gas recirculation internal combustion engine is provided, wherein exhaust gas is recirculated at a point of introduction into a suction pipe for feeding a gas mixture into the cylinders, the residual gas rate being the instantaneous fraction of exhaust gas in the exhaust gas Cylinder located total gas indicates. The method comprises the following steps:
  • the dynamic behavior of the intake manifold taking into account the discharge with respect to adjusting Exhaust gas partial pressure describes, and is determined depending on a current exhaust gas cylinder filling.
  • the current exhaust cylinder filling can be determined depending on the residual gas rate and the total cylinder filling.
  • the exhaust gas partial pressure is established by integrating the difference between the EGR filling fraction, which indicates a filling of exhaust gas in the cylinder, which would occur due to the exhaust gas mass flow currently being fed to the intake manifold, and the (actual ) Exhaust cylinder filling is determined.
  • a method for determining an instantaneous air charge in cylinders of an exhaust gas recirculation internal combustion engine, wherein exhaust gas at an introduction point into a suction pipe for supplying a gas mixed in the cylinder is recycled.
  • the method comprises the following steps:
  • a method for controlling a combustion engine comprises the following steps:
  • the dynamically correct charge detection can improve the fuel path adjustment for fuel metering correction in a dynamic mode of operation (transient compensation). This results in better exhaust emissions and improved driveability. Due to the dynamically correct determination of the residual gas rate, the ignition angle can be calculated correctly.
  • an engine control unit for controlling an internal combustion engine configured to perform the above method.
  • a computer program including a program code which, when executed on a data processing unit, executes the above method.
  • FIG. 1 is a schematic representation of an engine system with an internal combustion engine with exhaust gas recirculation.
  • FIG. 2 is a functional block diagram illustrating the function for determining the air charge and the residual gas rate;
  • FIG. 3 is a more detailed illustration of the map block of the functional block diagram of FIG. 2.
  • FIG. 1 schematically shows an engine system 1 with an internal combustion engine 2 with, for example, four cylinders 3.
  • the internal combustion engine 2 is supplied with air via a suction pipe 4 of an air supply system.
  • fuel is injected into the intake manifold 4 via an injection valve 5 to form there an air-fuel mixture for intake into the cylinders 3 of the engine 2.
  • Fresh air is the intake manifold 4 controlled by a throttle valve 1 1 fed.
  • Combustion exhaust gases from the cylinders are discharged via an exhaust system 6.
  • an exhaust gas recirculation arrangement 7 is provided which has an exhaust gas recirculation cooler 8 and an exhaust gas recirculation valve 9 and can guide exhaust gas from the exhaust system 6 into the intake manifold 4.
  • the exhaust gas recirculation arrangement 7 opens at a discharge point 10 into the intake manifold 4.
  • an engine controller 12 that controls the position of the throttle valve 11, the position of the exhaust gas recirculation valve 9, the operation of the injector 5, and the ignition of the air-fuel mixture in the cylinders 3 by setting spark timing of spark plugs 13 for each of the cylinders 3 .
  • the engine control unit 12 In order to carry out the activation of this component, it is necessary for the engine control unit 12 to precisely determine the current air charge in the cylinders 3 as well as the residual gas rate even in the dynamic operation of the engine system 1. In particular, the engine control unit 12 must adjust the amount of fuel to be injected to the instantaneous air charge in the cylinders 3.
  • the ignition angle that is to say the ignition time
  • the position of the throttle valve 1 1 must be adjusted accordingly to maintain the engine torque. This is done with the aid of motor control and regulating methods known from the prior art, which will not be discussed in detail here.
  • a function is performed in the engine control unit 12, which is shown schematically in Fig. 2.
  • An input variable for this function is an unfiltered cylinder charge rlroh calculated from the air mass flow.
  • the air mass flow is measured with the aid of a hot-film air mass sensor, which is not shown in front of the throttle flap 11.
  • a further input variable is an unfiltered EGR filling fraction resulting from the recirculated exhaust gas recirculation mass flow (EGR mass flow) conducted into the intake manifold 4.
  • the EGR mass flow can be calculated from the pressure difference between the pressure in the exhaust system 6 and the pressure in the intake manifold 4 and be determined from the position of the exhaust gas recirculation valve 9 according to a model.
  • the unfiltered cylinder filling rlroh is fed to a first summing element 21. Furthermore, the unfiltered EGR filling fraction rfrexroh is fed to the first summing element 21.
  • the output of the first summing element 21 supplies the sum of the unfiltered cylinder charge rlroh and the unfiltered EGR charge fraction rfrexroh and corresponds to an unfiltered total charge rges.
  • the unfiltered total charge rges is applied to a non-inverting input of a differential element 22. An indication of an entire cylinder charge rfrges is applied to an inverting input of the differential element 22.
  • the difference between the unfiltered total charge rges and the normalized charge rfrges is applied to an integrator 24 via a first multiplication element 23.
  • the first multiplier 23 multiplies the filling difference applied at the output of the differential element 22 by a first dynamic correction factor fvisrm, which represents a first time constant for the dynamic behavior of the intake manifold.
  • the integration element 22 integrates the difference charge. That is, since the method is cyclically performed, the integrator 22 sums the difference fills. Thus, a demodulated suction pipe pressure ps is made available at the output of the integration element.
  • the modulated intake manifold pressure ps is supplied to a map block 25, in which, taking into account further parameters such as the engine speed nmot, an altitude factor fho and a combustion chamber temperature factor ftbr and a map, the total cylinder charge rfrges is determined.
  • the entire cylinder filling rfrges which is also provided at the inverting input of the differential element 22.
  • the map block 25 is shown again in more detail. It can be seen that the normalized intake manifold pressure ps is first divided by the altitude factor fho, which results from the ambient pressure divided by 1013 hPa, before the result is fed to the map together with the engine speed nmot.
  • the map models the relationship between pressure and filling as a function of the speed. This makes it possible to calculate the actual intake manifold pressure.
  • the addressing of the map is necessary because the non-linear relationship of pressure to filling does not depend on the absolute intake manifold pressure.
  • the intake manifold pressure normalized to ambient pressure is decisive. For this reason, the standardized intake manifold pressure is divided by the height factor fho.
  • the result from the characteristic map is again multiplied by the height factor fho in a multiplier element and subsequently multiplied in a further multiplier by a combustion chamber temperature factor ftbr in order to obtain the total cylinder charge rfrges.
  • the total cylinder charge is the total amount of gas flowing through the cylinders.
  • the entire cylinder charge rfrges is fed to a second multiplier 26, in which the total cylinder charge rfrges with the Restgasra- te rragrzw, which is determined separately, is multiplied to obtain a residual gas filling rfragr.
  • the result of the multiplication is fed to a second differential element 27.
  • the difference between the normalized charge rfrges and the total cylinder charge rfrges multiplied by the residual gas rate rragrzw is subtracted in order to obtain the current air charge rlfgsb as a result of the subtraction at the output of the second differential element 27.
  • the residual gas rate rragrzw is determined as follows:
  • the unfiltered EGR filling rfrexroh is fed to a non-inverting input of a third differential element 30.
  • the residual gas filling rfragr is supplied to the inverting input of the third differential element 30.
  • the EGR filling difference formed in the third differential element 30 as the difference between the unfiltered EGR filling rfrexroh and the residual gas filling rfragr is multiplied in a third multiplication element 31 by a second dynamic correction factor fvisragr and the multiplication result is fed to a second integration element 32.
  • a partial pressure relative to the EGR filling fraction results as EGR partial pressure, which results from integration of the EGR filling difference multiplied by the second dynamic correction factor f avragr.
  • the second dynamic correction factor fvisragr represents a second time constant which describes the effect of the intake manifold with respect to the recirculated exhaust gas.
  • the EGR partial pressure psrext is divided by the modeled intake manifold pressure ps in order to obtain the residual gas rate rragrzw as a pressure ratio.
  • FIG. 2 The functional representation of FIG. 2 is derived from the approach pursued in the prior art of adding the modeled partial pressures. Instead, rlroh and rfrexroh are added from the partial fillings provided on the input side, and a total cylinder fill rfrges is calculated in the first differentiating element formed by the first difference unit 22, the first multiplier 23, the first integration element 24 and the map block 25 (upper feedback loop). There- at is based on a first time constant, which is given by the first dynamic correction factor fvisrm.
  • the use of the first differential element 22 allows a simple construction of the first differentiation block, in which the sum of the partial charges rlroh and rfrexroh are subtracted from the total cylinder charge rfrges. In this way, an intake manifold pressure model can be implemented which, as before, adopts and models the low-pass filter effect due to the volume of the intake manifold with a given time constant.
  • the dynamic behavior of the suction pipe is rfrexroh modeled with respect to the EGR filling fraction, wherein a second differentiating element is formed by the elements, third differential element 30, third multiplication element 31, second integration member 32nd , Division element 33 and second multiplication element 26.
  • a second time constant is realized by multiplication with the second dynamic correction factor fvisragr. This makes it possible to model the faster dynamic behavior of the EGR volume in the intake manifold.
  • the determined partial pressure psrext is used to determine the residual gas rate rragrzw by dividing both values with the modeled intake manifold pressure ps.
  • the lower EGR mixing volume is now used instead of the intake manifold volume. This is determined during the application.
  • a dependence of the volume ratio of the operating point of the engine is conceivable and could be implemented by a suitable map.
  • the functional representation shows that in the present method, the two dynamic correction factors, ie, the two time constants for the differentiating, can be set separately, so that the calculation of the residual gas rate rragrzw can be modeled in a dynamic behavior independent of the Saugrohrzeitkonstanten.

Abstract

Die Erfindung betrifft ein Verfahren zum Bestimmen einer gesamten Zylinderfüllung (rfrges) in Zylindern eines Verbrennungsmotors (2) mit Abgasrückführung, wobei Abgas an einer Einleitstelle (10) in ein Saugrohr (4) zum Zuführen eines Gasgemisches in die Zylinder (3) rückgeführt wird, wobei die gesamte Zylinderfüllung (rfrges) eine momentane, gesamte Gasmenge in den Zylindern (3) angibt, wobei die gesamte Zylinderfüllung (rfrges) abhängig von einer Summe der dem Saugrohr (4) zugeführten Gasmassenströmen und abhängig von einem ersten Dynamikkorrekturfaktor (fvisrm), der das dynamische Verhalten des Saugrohrs (4) bezüglich des sich dort einstellenden Saugrohrdrucks beschreibt, ermittelt wird. Weiterhin kann eine momentane Restgasrate (rragrzw), die den momentanen Anteil von Abgas in dem in dem Saugrohr (4) befindlichen gesamten Gas angibt, abhängig von einem Abgas-Partialdruck (psrext) und abhängig von dem momentanen Saugrohrdruck (ps) bestimmt werden, wobei der Abgas-Partialdruck abhängig von einem dem Saugrohr zugeführten Abgasmassenstrom, abhängig von einem zweiten Dynamikkorrekturfaktor, der das dynamische Verhalten des Saugrohrs (4) unter Berücksichtigung der Einleitstelle (10) bezüglich des sich einstellenden Abgas-Partialdrucks (psrext) beschreibt, und abhängig von einer momentanen Abgas-Zylinderfüllung bestimmt wird. Weiterhin kann die momentanen Luftfüllung (rlfgsb) abhängig von der gesamten Zylinderfüllung (rfrges) und von der bereitgestellten Restgasrate (rragrzw) bestimmt werden.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Bestimmen einer gesamten Zylinderfüllung und/oder der aktuellen Restgasrate bei einem Verbrennungsmotor mit Abgasrückführung
Technisches Gebiet
Die Erfindung betrifft einen Verbrennungsmotor mit Abgasrückführung, der durch eine Motorsteuereinheit angesteuert wird, wobei in dem Motorsteuergerät die aktuelle Luftfüllung abhängig von der Restgasrate ermittelt wird.
Stand der Technik
In zunehmendem Maße werden bei Verbrennungsmotoren Abgasrückführungen vorgesehen, um den Kraftstoffverbrauch zu reduzieren und gegebenenfalls die Abgasemissionen zu optimieren. Hierbei wird Abgas vom Abgassystem entnommen und über eine Abgasrückführungsleitung mit einem Abgasrückführungsventil dosiert der Frischluft eines Saugrohrs eines Luftzuführungssystems beigemischt.
Das Abgasrückführungsventil wird vom Motorsteuergerät angesteuert, so dass eine bestimmte Restgasrate (Abgasrückführungsrate) eingestellt werden kann. Das beigemischte Abgas verdrängt die Frischluft, ohne an der Verbrennung teilzuhaben. D.h., um das Motormoment konstant zu halten, muss bei zunehmendem Restgasan- teil in bestimmten Betriebspunkten die Drosselklappe weiter geöffnet werden. Die erwünschte Wirkung ist eine Erhöhung des Saugrohrdrucks, ohne dass das Motormoment ansteigt. Dadurch lassen sich die Pumpverluste des Verbrennungsmotors reduzieren, der Wirkungsgrad steigern und dadurch der Kraftstoffverbrauch senken. Weiterhin kann durch Beimischung von Abgas zu der Frischluft im Saugrohr die Verbrennungstemperatur gesenkt werden, was zu verringerter Bildung der schädlichen Stickoxide im Abgas führt.
Um das Motormoment konstant zu halten, ist es daher erforderlich, dass die Motorsteuereinheit die aktuelle Luftfüllung der Zylinder kennt, um anhand der aktuellen Luftfüllung die entsprechende Stellung der Drosselklappe bzw. die entsprechende Einspritzmenge und den Zündwinkel festlegen zu können, so dass das geforderte Motormoment konstant gehalten werden kann. Die Zusammenhänge zwischen der Motordrehzahl, der Drosselklappenstellung, dem Saugrohrdruck, der Zylindergesamtfüllung und der Zylinderluftfüllung wird mit den bisher implementierten Funktionen unter stationären Bedingungen richtig beschrieben. Auch können dynamische Vorgänge berücksichtigt werden.
Neben dem Einfluss auf das Luftzuführungssystem werden wie oben bereits erwähnt, bei einer Abgasrückführung auch Korrekturen im Zündungssystem erforderlich. Durch die Verdünnung des Kraftstoff-Luft-Gemischs im Brennraum durch rückgeführtes Abgas wird die Verbrennungsgeschwindigkeit gesenkt, was durch eine frühere Zündung ausgeglichen werden muss. Hierfür ist die Kenntnis des Verhält- nisses von Restgasmasse zu gesamter Gasmasse im Brennraum, die so genannte Abgasrückführungsrate, maßgebend.
Bei der Berücksichtigung der dynamischen Vorgänge wird bislang allgemein davon ausgegangen, dass sich das eingeleitete Abgas im Saugrohr homogen verteilen würde, da bisher üblicherweise die Abgaseinleitstelle nahe hinter der Drosselklappe sitzt. Jedoch haben Messungen gezeigt, dass sich bei einem Verbrennungsmotor, bei dem sich die Abgaseinleitstelle der Abgasrückführung sehr nah vor den Einlassventilen befindet, das Abgas nicht homogen in dem Saugrohr verteilt, sondern auf ihrem kurzen Weg von der Einleitstelle zum Einlassventil des Zylinders nur ein sehr geringes Volumen einnimmt, das viel schneller auf- und abgebaut wird als der gesamte Saugrohrdruck. Somit ist die Dynamik des Luftsystems bezüglich des rückgeführten Abgases von der Dynamik des Luftsystems bezüglich der Frischluft verschieden. Da die Motorenhersteller die Einleitstelle für die Abgasrückführung in der Regel frei wählen, ist die sich daraus ergebende unterschiedliche Dynamik bezüglich des rückgeführten Abgases und bezüglich der zu geführten Frischluft nicht bekannt. Insbesondere wird dieser Unterschied umso gravierender, je mehr die Einleitstelle des rückgeführten Abgases an den Einlassventilen liegt. Das bisherige Modell, das sowohl für das rückgeführte Abgas als auch für die zugeführte Frischluft das gleiche dynamische Modell zugrunde legen, das beide von demselben zugrunde liegenden Saugrohrvolumen ausgehen, kann also die aktuelle Füllung und die aktuelle Restgasrate im dynamischen Betrieb nicht ausreichend genau bestimmen.
Gemäß den herkömmlichen Verfahren zur Ermittlung der aktuellen Luftfüllung können daher für das rückgeführte Abgas und für die zugeführte Frischluft zwei Partial- drücke modelliert werden, aus deren Addition sich der resultierende messbare Saugrohrdruck ergibt. Dabei wird die Saugrohrdynamik mit einem gemeinsamen Dynamikkorrekturfaktor berücksichtigt, der das zeitliche Verhalten der Restgasrate und des Saugrohrdrucks festlegt. Dies bildet jedoch aufgrund obigen beobachteten Verhaltens nur den Fall richtig ab, bei dem die Einleitstelle der Abgasrückführung bei oder nahe der Drosselklappe erfolgt.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, mit denen bei einem Verbrennungsmotor mit der Abgasrückführung die aktuelle Luftfüllung und/oder die Restgasrate in Zylindern des Verbrennungsmotors unabhängig von der Einleitstelle des Abgases in das Saugrohr genauer bestimmt werden können.
Offenbarung der Erfindung
Diese Aufgabe wird durch das Verfahren zum Bestimmen der gesamten Zylinderfüllung Luftfüllung in einem Verbrennungsmotor mit Abgasrückführung gemäß An- spruch 1 , das Verfahren zum Bestimmen einer aktuellen Restgasrate, das Verfahren zum Bestimmen einer momentanen Luftfüllung sowie durch das Motorsystem gemäß den nebengeordneten Ansprüchen gelöst. - A -
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Gemäß einem ersten Aspekt ist ein Verfahren zum Bestimmen einer gesamten Zy- linderfüllung in Zylindern eines Verbrennungsmotors mit Abgasrückführung vorgesehen, wobei Abgas an einer Einleitstelle in ein Saugrohr zum Zuführen eines Gasgemisches in die Zylinder rückgeführt wird, wobei die gesamte Zylinderfüllung abhängig von einer Summe der dem Saugrohr zugeführten Gasmassenströmen und abhängig von einem ersten Dynamikkorrekturfaktor, der das dynamische Verhalten des Saugrohrs bezüglich des sich dort einstellenden Saugrohrdrucks beschreibt, ermittelt wird.
Das obige Verfahren ermöglicht eine dynamisch korrekte Erfassung der gesamten Zylinderfüllung als Grundlage für die korrekte Bestimmung der momentanen Luftfül- lung in den Zylindern bzw. der Restgasrate unter Berücksichtigung der Einleitstelle von rückgeführtem Abgas in das Saugrohr.
Während im Stand der Technik Partialdrücke modelliert werden, die in Summe dem resultierenden messbaren Saugrohrdruck ergeben, wird bei dem obigen Verfahren vorgeschlagen, die Summe der Teilfüllungen bzw. der Teilmassenströme von in das Saugrohr strömenden Gas zu verwenden, um die gesamte Zylinderfüllung zu ermitteln.
Gemäß einer Ausführungsform kann die gesamte Zylinderfüllung abhängig von dem momentanen Saugrohrdruck ermittelt werden, wobei der momentane Saugrohrdruck durch Integrieren der mit dem ersten Dynamikkorrekturfaktor beaufschlagten Differenz zwischen einem ungefilterten, dem Saugrohr zugeführten Gasmassenstrom und dem gesamten dem Zylinder zugeführten Gasmassenstrom bestimmt wird.
Weiterhin kann die gesamte Zylinderfüllung als Funktion abhängig von dem momentanen Saugrohrdruck, abhängig von einer momentanen Motordrehzahl und abhängig von Korrekturfaktoren, insbesondere eines Höhenfaktors zur Anpassung an einen Umgebungsdruck und eines Brennraumtemperaturfaktors zum Berücksichtigen der Gastemperatur im Zylinder, ermittelt werden. Gemäß einem weiteren Aspekt ist ein Verfahren zum Bestimmen einer aktuellen Restgasrate in Zylindern eines Verbrennungsmotors mit Abgasrückführung vorgesehen, wobei Abgas an einer Einleitstelle in ein Saugrohr zum Zuführen eines Gasgemisches in die Zylinder rückgeführt wird, wobei die Restgasrate den momentanen Anteil von Abgas in dem in dem Zylinder befindlichen gesamten Gases angibt. Das Verfahren umfasst folgende Schritte:
- Durchführen des obigen Verfahrens, um den momentanen Saugrohrdruck zu bestimmen;
- Ermitteln der Restgasrate abhängig von einem Abgas-Partialdruck und abhängig von dem momentanen Saugrohrdruck, wobei der Abgas-Partialdruck abhängig von einem dem Saugrohr zugeführten Abgasmassenstrom, abhängig von einem zweiten Dynamikkorrekturfaktor, der das dynamische Verhalten des Saugrohrs unter Berücksichtigung der Einleitstelle bezüglich des sich einstellenden Abgas-Partialdrucks beschreibt, und abhängig von einer momentanen Abgas-Zylinderfüllung bestimmt wird.
Während im Stand der Technik Partialdrücke modelliert werden, die in Summe dem resultierenden messbaren Saugrohrdruck ergeben, wird bei dem obigen Verfahren vorgeschlagen, die dynamischen Verhalten der gesamten Zylinderfüllung und des Abgasanteils (angegeben durch die Restgasrate) mit unterschiedlichen Zeitkonstanten zu berücksichtigen.
Weiterhin kann die momentane Abgas-Zylinderfüllung abhängig von der Restgasrate und der gesamten Zylinderfüllung bestimmt werden.
Weiterhin kann vorgesehen sein, dass der Abgas-Partialdruck durch Integrieren der mit dem zweiten Dynamikkorrekturfaktor beaufschlagten Differenz zwischen dem AGR-Füllungsanteil, der eine Füllung von Abgas im Zylinder angibt, die sich aufgrund des dem Saugrohr momentan zugeführten Abgasmassenstroms einstellen würde, und der (tatsächlichen) Abgas-Zylinderfüllung bestimmt wird.
Gemäß einem weiteren Aspekt ist ein Verfahren zum Bestimmen einer momentanen Luftfüllung in Zylindern eines Verbrennungsmotors mit Abgasrückführung vorgesehen, wobei Abgas an einer Einleitstelle in ein Saugrohr zum Zuführen eines Gas- gemisches in die Zylinder rückgeführt wird. Das Verfahren umfasst folgende Schritte:
- Ermitteln der gesamten Zylinderfüllung gemäß dem obigen Verfahren;
- Bereitstellen einer Restgasrate oder Bestimmen der Restgasrate nach dem obigen Verfahren;
- Bestimmen der aktuellen Luftfüllung abhängig von der gesamten Zylinderfüllung und von der Restgasrate.
Gemäß einem weiteren Aspekt ist ein Verfahren zum Steuern eines Verbrennungs- motors vorgesehen. Das Verfahren umfasst folgende Schritte:
- Bestimmen der momentanen Luftfüllung gemäß dem obigen Verfahren;
- Ansteuern einer Stellung einer Drosselklappe des Verbrennungsmotors und/oder einer Einspritzmenge von Kraftstoff in ein Saugrohr des Verbrennungsmotors und/oder einen Zündwinkel zum Zünden eines Luft-/Kraftstoffgemisches abhängig von der momentanen Luftfüllung.
Durch die dynamisch korrekte Füllungserfassung kann die Anpassung des Kraftstoffpfades für eine Korrektur der Kraftstoffzumessung in einem dynamischen Betriebsfall (Übergangskompensation) verbessert werden. Dadurch erreicht man bes- sere Abgasemissionen und eine verbesserte Fahrbarkeit. Durch die dynamisch korrekte Restgasratenbestimmung kann weiterhin der Zündwinkel korrekt berechnet werden.
Gemäß einem weiteren Aspekt ist eine Motorsteuereinheit zum Steuern eines Ver- brennungsmotors vorgesehen, die ausgebildet ist, das obige Verfahren durchzuführen.
Gemäß einem weiteren Aspekt ist ein Computerprogramm vorgesehen, das einen Programmcode enthält, der, wenn er auf einer Datenverarbeitungseinheit ausgeführt wird, das obige Verfahren ausführt.
Kurzbeschreibung der Zeichnungen Bevorzugte Ausführungsformen werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung eines Motorsystems mit einem Verbrennungsmotor mit Abgasrückführung; Fig. 2 ein Funktionsblockdiagramm zur Veranschaulichung der Funktion zur Bestimmung der Luftfüllung und der Restgasrate; und
Fig. 3 eine detailliertere Darstellung des Kennfeldblocks des Funktionsblockdiagramms der Fig. 2.
Beschreibung von Ausführungsformen
Fig. 1 zeigt schematisch ein Motorsystem 1 mit einem Verbrennungsmotor 2 mit beispielhaft vier Zylindern 3. Dem Verbrennungsmotor 2 wird Luft über ein Saugrohr 4 eines Luftzuführungssystems zugeführt. In das Saugrohr 4 wird über ein Einspritz- ventil 5 Kraftstoff in das Saugrohr 4 eingespritzt, um dort ein Luft-Kraftstoff-Gemisch zum Einlassen in die Zylinder 3 des Verbrennungsmotors 2 zu bilden. Frischluft wird dem Saugrohr 4 gesteuert durch eine Drosselklappe 1 1 zugeführt.
Verbrennungsabgase aus den Zylindern werden über ein Abgassystem 6 abgeführt. Zwischen dem Abgassystem 6 und dem Saugrohr 4 ist eine Abgasrückführungsanordnung 7 vorgesehen, die einen Abgasrückführungskühler 8 und ein Abgasrückführungsventil 9 aufweist und Abgas von dem Abgassystem 6 in das Saugrohr 4 leiten kann. Die Abgasrückführungsanordnung 7 mündet an einer Einleitstelle 10 in das Saugrohr 4.
Es ist ein Motorsteuergerät 12 vorgesehen, das Stellung der Drosselklappe 11 , die Stellung des Abgasrückführungsventils 9, die Operation des Einspritzventils 5 und die Zündung des Luft-Kraftstoff-Gemisches in den Zylindern 3 durch Festlegen von Zündzeitpunkten von Zündkerzen 13 für jeden der Zylinder 3 steuert. Zur Durchfüh- rung der Ansteuerung dieser Komponente ist es notwendig, dass die Motorsteuereinheit 12 die aktuelle Luftfüllung in den Zylindern 3 sowie die Restgasrate auch im dynamischen Betrieb des Motorsystems 1 genau bestimmt. Insbesondere muss die Motorsteuereinheit 12 die einzuspritzende Kraftstoffmenge an die momentane Luftfüllung in den Zylindern 3 anpassen. Abhängig von der Restgasrate muss weiterhin der Zündwinkel, d.h. der Zündzeitpunkt in Abhängigkeit von der Stellung des Kurbelwellenwinkels entsprechend angepasst werden. Weiterhin kann es erforderlich sein, dass zur Beibehaltung des Motormoments auch die Stellung der Drosselklappe 1 1 entsprechend angepasst werden muss. Dies erfolgt mit- hilfe von aus dem Stand der Technik bekannten Motorsteuerungs- und Regelungsverfahren, auf die hierin nicht näher eingegangen werden soll.
Zur Bestimmung der Ist-Zylinderfüllung rlfgsb und der Ist-Restgasrate rragrzw wird eine Funktion in dem Motorsteuergerät 12 ausgeführt, die in Fig. 2 schematisch dargestellt ist. Eine Eingangsgröße für diese Funktion stellt eine aus dem Luftmassenstrom berechnete ungefilterte Zylinderfüllung rlroh dar. Der Luftmassenstrom wird mit Hilfe eines nicht gezeigten vor der Drosselklappe 11 angeordneten Heiß- film-Luftmassensensors gemessen. Eine weitere Eingangsgröße stellt ein sich aus dem rückgeführten, in das Saugrohr 4 geleiteter Abgasrückführungsmassenstrom (AGR-Massenstrom) ergebender ungefilterter AGR-Füllungsanteil rfrexroh dar. Der AGR-Massenstrom kann aus der Druckdifferenz zwischen dem Druck im Abgassystem 6 und dem Druck im Saugrohr 4 und aus der Stellung des Abgasrückführungs- ventils 9 gemäß einem Modell ermittelt werden.
Die ungefilterte Zylinderfüllung rlroh wird einem ersten Summierglied 21 zugeführt. Weiterhin wird der ungefilterte AGR-Füllungsanteil rfrexroh dem ersten Summierglied 21 zugeführt. Der Ausgang des ersten Summiergliedes 21 liefert die Summe aus der ungefilterten Zylinderfüllung rlroh und dem ungefilterten AGR-Füllungsanteil rfrexroh und entspricht einer ungefilterten Gesamtfüllung rges. Die ungefilterte Gesamtfüllung rges wird an einen nicht invertierenden Eingang eines Differenzgliedes 22 angelegt. An einen invertierenden Eingang des Differenzgliedes 22 ist eine Angabe über eine gesamte Zylinderfüllung rfrges angelegt.
Die Differenz zwischen der ungefilterten Gesamtfüllung rges und der normierten Füllung rfrges wird über ein erstes Multiplikationsglied 23 an ein Integrationsglied 24 angelegt. Das erste Multiplikationsglied 23 multipliziert die Füllungsdifferenz, die am Ausgang des Differenzglieds 22 anliegt, mit einem ersten Dynamikkorrekturfaktor fvisrm, der eine erste Zeitkonstante für das dynamische Verhalten des Saugrohrs darstellt. Das Integrationsglied 22 integriert die Differenzfüllung. D.h. da das Verfahren zyklisch durchgeführt wird, summiert das Integrationsglied 22 die Differenzfüllungen. Am Ausgang des Integrationsgliedes wird somit einen demodulierten Saug- rohrdruck ps zur Verfügung gestellt. Der modulierte Saugrohrdruck ps wird einem Kennfeldblock 25 zugeführt, in dem unter Berücksichtigung von weiteren Parametern, wie der Motordrehzahl nmot, einem Höhenfaktor fho und einem Brennraumtemperaturfaktor ftbr und einem Kennfeld die gesamte Zylinderfüllung rfrges bestimmt wird. Die gesamte Zylinderfüllung rfrges, die auch an dem invertierenden Eingang des Differenzgliedes 22 bereitgestellt wird.
In Fig. 3 ist der Kennfeldblock 25 nochmals ausführlicher dargestellt. Man erkennt, dass der normierte Saugrohrdruck ps zunächst durch den Höhenfaktor fho, der sich aus dem Umgebungsdruck dividiert durch 1013 hPa ergibt, dividiert wird, bevor das Ergebnis dem Kennfeld gemeinsam mit der Motordrehzahl nmot zugeführt wird. Das Kennfeld modelliert den Zusammenhang zwischen Druck und Füllung in Abhängigkeit von der Drehzahl. Damit ist es möglich, den tatsächlichen Saugrohrdruck zu berechnen. Die Adressierung des Kennfeldes ist notwendig, da die nicht-lineare Beziehung von Druck zu Füllung nicht vom absoluten Saugrohrdruck abhängt. Hier- für ist der auf Umgebungsdruck normierte Saugrohrdruck entscheidend. Aus diesem Grunde wird der normierte Saugrohrdruck durch den Höhenfaktor fho dividiert.
Das Ergebnis aus dem Kennfeld wird, um es an die tatsächlichen Umgebungsdruckverhältnisse anzupassen, nun wieder mit dem Höhenfaktor fho in einem MuI- tiplizierglied multipliziert und anschließend in einem weiteren Multiplizierglied mit einem Brennraumtemperaturfaktor ftbr multipliziert, um die gesamte Zylinderfüllung rfrges zu erhalten. Der Brennraumtemperaturfaktor ftbr ergibt sich aus einer modellierten Gastemperatur evtmod im Brennraum aus der Formel ftbr = 273 K /(273 K + evtmod).
Die gesamte Zylinderfüllung rfrges gibt an, welche gesamte Gasmenge durch die Zylinder strömt. Die gesamte Zylinderfüllung rfrges wird einem zweiten Multiplikationsglied 26 zugeführt, in dem die gesamte Zylinderfüllung rfrges mit der Restgasra- te rragrzw, die separat ermittelt wird, multipliziert wird, um eine Restgas-Füllung rfragr zu erhalten.
Anschließend wird das Ergebnis der Multiplikation einem zweiten Differenzglied 27 zugeführt. In dem zweiten Differenzglied 27 wird die Differenz aus der normierten Füllung rfrges und der mit der Restgasrate rragrzw multiplizierten gesamte Zylinderfüllung rfrges subtrahiert, um die aktuelle Luftfüllung rlfgsb als Ergebnis der Subtraktion am Ausgang des zweiten Differenzgliedes 27 zu erhalten.
Die Restgasrate rragrzw wird wie folgt ermittelt:
Die ungefilterte AGR-Füllung rfrexroh wird einem nicht invertierenden Eingang eines dritten Differenzgliedes 30 zugeführt. Die Restgas-Füllung rfragr wird dem invertierenden Eingang des dritten Differenzgliedes 30 zugeführt. Die in dem dritten Differenzglied 30 gebildete AGR-Füllungsdifferenz als Differenz der ungefilterten AGR- Füllung rfrexroh und der Restgas-Füllung rfragr wird in einem dritten Multiplikationsglied 31 mit einem zweiten Dynamikkorrekturfaktor fvisragr multipliziert und das Multiplikationsergebnis einem zweiten Integrationsglied 32 zugeführt.
Am Ausgang des zweiten Integrationsgliedes 32 ergibt sich ein Partialdruck bezüg- lieh des AGR-Füllungsanteils als AGR-Partialdruck, der sich durch Integration der mit einer durch den zweiten Dynamikkorrekturfaktor fvisragr multiplizierten AGR- Füllungsdifferenz ergibt. Der zweite Dynamikkorrekturfaktor fvisragr stellt eine zweite Zeitkonstante dar, die die Wirkung des Saugrohrs bezüglich des rückgeführten Abgases beschreibt. Der AGR-Partialdruck psrext wird durch den modellierten Saugrohrdruck ps dividiert, um als Druckverhältnis die Restgasrate rragrzw zu erhalten.
Die Funktionsdarstellung der Fig. 2 löst sich von dem im Stand der Technik verfolgten Ansatz, die modellierten Partialdrücke zu addieren. Stattdessen werden aus den eingangsseitig bereitgestellten Partialfüllungen rlroh und rfrexroh addiert und in dem ersten Differenzierglied, das durch die erste Differenzeinheit 22, das erste Multiplizierglied 23, das erste Integrationsglied 24 und den Kennfeldblock 25 gebildet ist (obere Rückkopplungsschleife), eine gesamte Zylinderfüllung rfrges berechnet. Da- bei wird eine erste Zeitkonstante zugrunde gelegt, die durch den ersten Dynamikkorrekturfaktor fvisrm angegeben wird.
Die Verwendung des ersten Differenzgliedes 22 ermöglicht einen einfachen Aufbau des ersten Differenzierblocks, bei dem die Summe der Partialfüllungen rlroh und rfrexroh mit der Zylindergesamtfüllung rfrges subtrahiert werden. Auf diese Weise lässt sich ein Saugrohrdruckmodell implementieren, das wie bisher die Tiefpassfilterwirkung aufgrund des Volumens des Saugrohrs mit einer bestimmten Zeitkonstante annimmt und modelliert.
Im unteren Teil (untere Rückkopplungsschleife) der Funktionsdarstellung der Fig. 2 wird das dynamische Verhalten des Saugrohrs bezüglich des AGR-Füllungsanteils rfrexroh modelliert, wobei ein zweites Differenzierglied gebildet wird durch die Elemente, drittes Differenzglied 30, drittes Multiplikationsglied 31 , zweites Integrations- glied 32, Divisionsglied 33 und zweites Multiplikationsglied 26. Durch das dritte Multiplikationsglied 31 wird eine zweite Zeitkonstante durch Multiplikation mit dem zweiten Dynamikkorrekturfaktor fvisragr realisiert. Dadurch ist es möglich, das schnellere dynamische Verhalten des AGR-Volumens im Saugrohr zu modellieren. Der ermittelte Partialdruck psrext wird verwendet, um mit dem modellierten Saugrohrdruck ps die Restgasrate rragrzw durch Division beider Werte zu ermitteln.
Der zweite Dynamikkorrekturfaktor fvisragr kann durch folgende Formel berechnet werden: fviasragr = (Vh / (Vagr + Vh)) ((tagrisr + 273 K)/273 K) 10,13 hPa/%, wobei Vh dem Hubvolumen eines Zylinders, Vagr näherungsweise dem Volumen der im Saugrohr 4 vorhandenen Abgaswolke und tagrisr einer modellierten AGR- Gastemperatur entsprechen.
Bei der Bildung des Volumenverhältnisses wird anstelle des Saugrohrvolumens nun das geringere AGR-Durchmischungsvolumen verwendet. Dieses wird bei der Applikation ermittelt. Eine Abhängigkeit des Volumenverhältnisses vom Betriebspunkt des Motors (Saugrohrdruck, AGR-Massenstrom, Motordrehzahl) ist denkbar und könnte durch ein geeignetes Kennfeld implementiert werden. Die Funktionsdarstellung zeigt, dass bei dem vorliegenden Verfahren die beiden Dynamikkorrekturfaktoren, d.h. die beiden Zeitkonstanten für die Differenzierglieder, separat voneinander eingestellt werden können, so dass die Berechnung der Restgasrate rragrzw in einem von der Saugrohrzeitkonstanten unabhängigen dynami- sehen Verhalten modellierbar ist.
In dieser Struktur ist es möglich, eine dynamisch richtige Luftfüllung und Restgasrate zu berechnen, um so unterschiedliche Einleitstellen der Abgasrückführungsleitung in das Saugrohr zu berücksichtigen. Die mit obigem Verfahren ermittelten kor- rekten Luftfüllungen und Restgasraten erlauben es, die in das Saugrohr 4 einzuspritzende Kraftstoff menge richtig einzustellen und den richtigen Zündwinkel anzugeben.

Claims

Ansprüche
1. Verfahren zum Bestimmen einer gesamten Zylinderfüllung (rfrges) in Zylindern eines Verbrennungsmotors (2) mit Abgasrückführung, wobei Abgas an einer Einleit- stelle (10) in ein Saugrohr (4) zum Zuführen eines Gasgemisches in die Zylinder (3) rückgeführt wird, wobei die gesamte Zylinderfüllung (rfrges) eine momentane, gesamte Gasmenge in den Zylindern (3) angibt, wobei die gesamte Zylinderfüllung (rfrges) abhängig von einer Summe der dem Saugrohr (4) zugeführten Gasmassenströmen und abhängig von einem ersten Dy- namikkorrekturfaktor (fvisrm), der das dynamische Verhalten des Saugrohrs (4) bezüglich des sich dort einstellenden Saugrohrdrucks beschreibt, ermittelt wird.
2. Verfahren nach Anspruch 1 , wobei die gesamte Zylinderfüllung (rfrges) abhängig von einem momentanen Saugrohrdruck (ps) ermittelt wird, wobei der momenta- ne Saugrohrdruck (ps) durch Integrieren der mit dem ersten Dynamikkorrekturfaktor (fvisrm) beaufschlagten Differenz zwischen einer ungefilterten Zylinderfüllung, die die Füllung angibt, die sich durch die dem Saugrohr (4) zugeführten Gasmassenströme einstellen würde, und der gesamten Zylinderfüllung (rfrges) bestimmt wird.
3. Verfahren nach Anspruch 2, wobei die gesamte Zylinderfüllung (rfrges) als Funktion abhängig von dem momentanen Saugrohrdruck (ps), abhängig von einer momentanen Motordrehzahl (nmot) und abhängig von Korrekturfaktoren, insbesondere eines Höhenfaktors (fho) zur Anpassung an einen Umgebungsdruck und eines Brennraumtemperaturfaktors (ftbr) zum Berücksichtigen der Gastemperatur in den Zylindern (3), ermittelt wird.
4. Verfahren zum Bestimmen einer aktuellen Restgasrate (rragrzw) in Zylindern (3) eines Verbrennungsmotors (2) mit Abgasrückführung, wobei Abgas an einer Einleitstelle (10) in ein Saugrohr (4) zum Zuführen eines Gasgemisches in die ZyMn- der (3) rückgeführt wird, wobei die Restgasrate (rragrzw) den momentanen Anteil von Abgas in dem in dem Zylinder (3) befindlichen gesamten Gas angibt, mit folgenden Schritten:
- Durchführen des Verfahrens nach Anspruch 2 oder 3, um den momentanen Saugrohrdruck (ps) zu bestimmen; - Ermitteln der Restgasrate (rragrzw) abhängig von einem Abgas-Partialdruck (psrext) und abhängig von dem momentanen Saugrohrdruck (ps), wobei der Abgas- Partialdruck abhängig von einem dem Saugrohr zugeführten Abgasmassenstrom, abhängig von einem zweiten Dynamikkorrekturfaktor, der das dynamische Verhalten des Saugrohrs (4) unter Berücksichtigung der Einleitstelle (10) bezüglich des sich einstellenden Abgas-Partialdrucks (psrext) beschreibt, und abhängig von einer momentanen Abgas-Zylinderfüllung bestimmt wird.
5. Verfahren nach Anspruch 4, wobei die momentane Abgas-Zylinderfüllung ab- hängig von der Restgasrate (rragrzw) und der gesamten Zylinderfüllung (rfrges) bestimmt wird.
6. Verfahren nach Anspruch 4 oder 5, wobei der Abgas-Partialdruck (psrext) durch Integrieren der mit dem zweiten Dynamikkorrekturfaktor beaufschlagten Diffe- renz zwischen dem AGR-Füllungsanteil, der eine Füllung von Abgas im Zylinder (3) angibt, die sich aufgrund des dem Saugrohr (3) momentan zugeführten Abgasmassenstroms einstellen würde, und der Abgas-Zylinderfüllung bestimmt wird.
7. Verfahren zum Bestimmen einer momentanen Luftfüllung (rlfgsb) in Zylindern (3) eines Verbrennungsmotors (2) mit Abgasrückführung, wobei Abgas an einer
Einleitstelle (10) in ein Saugrohr (4) zum Zuführen eines Gasgemisches in die Zylinder (3) rückgeführt wird, mit folgenden Schritten:
- Ermitteln der gesamten Zylinderfüllung (rfrges) gemäß dem Verfahren nach einem der Ansprüche 1 bis 3; - Bereitstellen einer Restgasrate (rragrzw) oder Bestimmen der Restgasrate (rragrzw) nach einem Verfahren gemäß einem der Ansprüche 4 bis 6;
- Bestimmen der momentanen Luftfüllung (rlfgsb) abhängig von der gesamten Zylinderfüllung (rfrges) und von der Restgasrate (rragrzw).
8. Verfahren zum Steuern eines Verbrennungsmotors (2), mit folgenden Schritten:
- Bestimmen der momentanen Luftfüllung gemäß dem Verfahren nach Anspruch 7;
- Ansteuern einer Stellung einer Drosselklappe (11 ) des Verbrennungsmotors (2) und/oder einer Einspritzmenge von Kraftstoff in ein Saugrohr (4) des Verbren- nungsmotors (2) und/oder einen Zündwinkel zum Zünden eines Luft- /Kraftstoffgemisches abhängig von der momentanen Luftfüllung (rlfgsb).
9. Motorsteuereinheit zum Steuern eines Verbrennungsmotors (2), die ausgebildet ist, ein Verfahren gemäß einem der Ansprüche 1 bis 8 durchzuführen.
10. Computerprogramm, das einen Programmcode enthält, der, wenn er auf einer Datenverarbeitungseinheit ausgeführt wird, ein Verfahren gemäß einem der Ansprüche 1 bis 8 ausführt.
PCT/EP2009/063067 2008-10-14 2009-10-08 Verfahren und vorrichtung zum bestimmen einer gesamten zylinderfüllung und/oder der aktuellen restgasrate bei einem verbrennungsmotor mit abgasrückführung WO2010043531A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980140626.XA CN102187074B (zh) 2008-10-14 2009-10-08 在具有废气再循环的内燃机中确定总的气缸充气和/或当前的残余气体率的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008042819.1A DE102008042819B4 (de) 2008-10-14 2008-10-14 Verfahren und Vorrichtung zum Bestimmen einer gesamten Zylinderfüllung und/oder der aktuellen Restgasrate bei einem Verbrennungsmotor mit Abgasrückführung
DE102008042819.1 2008-10-14

Publications (1)

Publication Number Publication Date
WO2010043531A1 true WO2010043531A1 (de) 2010-04-22

Family

ID=41460146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063067 WO2010043531A1 (de) 2008-10-14 2009-10-08 Verfahren und vorrichtung zum bestimmen einer gesamten zylinderfüllung und/oder der aktuellen restgasrate bei einem verbrennungsmotor mit abgasrückführung

Country Status (3)

Country Link
CN (1) CN102187074B (de)
DE (1) DE102008042819B4 (de)
WO (1) WO2010043531A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013209037A1 (de) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Abgasrückführung einer selbstzündenden Brennkraftmaschine insbesondere eines Kraftfahrzeugs
US9664135B2 (en) * 2014-06-13 2017-05-30 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine operating in HCCI combustion mode
DE102015210761A1 (de) * 2015-06-12 2016-12-15 Volkswagen Aktiengesellschaft Luftfüllungsbestimmung, Motorsteuergerät und Verbrennungskraftmaschine
CN107084055B (zh) * 2017-03-30 2020-03-31 宁波吉利罗佑发动机零部件有限公司 一种用于车辆发动机的节流阀装置
DE102019114472A1 (de) 2019-05-29 2020-12-03 Volkswagen Aktiengesellschaft Verfahren zur dynamischen Gaspartialdruckkorrektur einer Brennkraftmaschine mit äußerer Gemischbildung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211851A1 (de) * 1991-04-10 1992-10-15 Hitachi Ltd Verfahren zum bestimmen der zylinderfuellung bei einem verbrennungsmotor mit agr, sowie zum steuern der kraftstoffeinspritzung
DE19756919A1 (de) * 1997-04-01 1998-10-08 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung einer Gasfüllung eines Verbrennungsmotors
DE19830300A1 (de) * 1998-07-07 2000-01-13 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205620A (en) * 1989-12-05 1993-04-27 Crown Equipment Corporation Two force levels of mechanical braking for materials handling vehicles
JP4267349B2 (ja) * 2003-03-13 2009-05-27 本田技研工業株式会社 内燃機関の排気還流装置
CN1490513A (zh) * 2003-09-24 2004-04-21 蒋建东 柴油机废气再循环净化系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211851A1 (de) * 1991-04-10 1992-10-15 Hitachi Ltd Verfahren zum bestimmen der zylinderfuellung bei einem verbrennungsmotor mit agr, sowie zum steuern der kraftstoffeinspritzung
DE19756919A1 (de) * 1997-04-01 1998-10-08 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung einer Gasfüllung eines Verbrennungsmotors
DE19830300A1 (de) * 1998-07-07 2000-01-13 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Also Published As

Publication number Publication date
CN102187074B (zh) 2014-10-29
DE102008042819A1 (de) 2010-04-15
CN102187074A (zh) 2011-09-14
DE102008042819B4 (de) 2021-08-05

Similar Documents

Publication Publication Date Title
DE19741180B4 (de) Motorsteuerungssystem und -Verfahren
DE19922044C2 (de) Verfahren und Vorrichtung zur Berechnung der Abgasrückführung bei einem Verbrennunsmotor sowie Verwendung einer solchen Vorrichtung zur Regelung des Kraftstoff-Luftverhältnisses in dem Verbrennungsmotor
DE10349490A1 (de) System und Verfahren für die Schätzung und Regelung der Zylinderluftladung bei einem Innenverbrennungsmotor mit Direkteinspritzung
EP3308007B1 (de) Luftfüllungsbestimmung, motorsteuergerät und verbrennungskraftmaschine
DE102004062018B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE2849554A1 (de) Einrichtung zum festlegen der zusammensetzung des gas-inhalts von zylindern bei brennkraftmaschinen
EP1272753B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102008042819B4 (de) Verfahren und Vorrichtung zum Bestimmen einer gesamten Zylinderfüllung und/oder der aktuellen Restgasrate bei einem Verbrennungsmotor mit Abgasrückführung
DE19502368B4 (de) Verfahren zur Bildung eines Signals bezüglich der bei einer Brennkraftmaschine rückgeführten Abgasmenge
DE4401828A1 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
DE10241884B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102007042577B3 (de) Verfahren zum Regeln eines Verbrennungsvorganges und Steuergerät
DE19844637C1 (de) Einrichtung zum Steuern einer Brennkraftmaschine
DE102004026006A1 (de) Steuergerät und Steuerverfahren für eine Brennkraftmaschine
DE102011081212B4 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE102011075875B4 (de) Verfahren und Steuergerät zur Berechnung der NOx-Rohemissionen einer Brennkraftmaschine
DE10335399B4 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit mit einem Verbrennungsmotor
DE102014224534A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102007012340B3 (de) Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät
EP3575581B1 (de) Verfahren zur ansteuerung eines regelventils
DE10321192A1 (de) Steuerungsverfahren und Steuerung für einen Verbrennungsmotor
DE10225306B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines mit einem gasförmigen Kraftstoff betriebenen Fahrzeugs
DE10332698B4 (de) Verfahren zur Regelung einer Abgasrückführung bei einer Brennkraftmaschine
DE10312493B4 (de) Regelungsverfahren und Steuerung für einen Verbrennungsmotor
DE102021201323A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem vorgegebenen Luft-Kraftstoff-Gemisch

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140626.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2992/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09744105

Country of ref document: EP

Kind code of ref document: A1