WO2010041672A1 - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
WO2010041672A1
WO2010041672A1 PCT/JP2009/067437 JP2009067437W WO2010041672A1 WO 2010041672 A1 WO2010041672 A1 WO 2010041672A1 JP 2009067437 W JP2009067437 W JP 2009067437W WO 2010041672 A1 WO2010041672 A1 WO 2010041672A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular
vibration
hollow
bodies
vibration damping
Prior art date
Application number
PCT/JP2009/067437
Other languages
French (fr)
Japanese (ja)
Inventor
明男 杉本
一樹 次橋
京子 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2009801339797A priority Critical patent/CN102138025A/en
Publication of WO2010041672A1 publication Critical patent/WO2010041672A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/30Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium

Definitions

  • the present invention relates to a damping structure for a cylindrical structure that is affected by electromagnetic force, such as a stator used in a motor.
  • a stator is used for a motor, but a stator that is a stator of a motor or the like and a rotor that is a rotor are always provided in pairs.
  • the stator itself is a structure that does not move, since the rotor provided in a pair rotates, vibration and noise are generated from the motor due to unbalance of electromagnetic force accompanying the rotation of the rotor.
  • Patent Document 1 As an example of a vibration suppression technique that suppresses vibration and noise from a structure, various vibration suppression techniques using granular materials have been proposed.
  • the technology described in Patent Document 1 is a technology that effectively suppresses radiated sound from the main body surface, piping, coupling cover, and the like of a turbo fluid machine.
  • 6 and 7 of Patent Document 1 disclose a technique in which a granular damping material is sealed in a hollow portion in a cylindrical pipe as an embodiment of the propagation damping means.
  • Patent Document 2 is a technique for suppressing vibration caused by drive system imbalance and reducing in-vehicle noise caused by vibration in a railway vehicle bogie.
  • a technique is disclosed in which a container containing a granular material made of an iron-based or lead-based material is installed on the outer periphery of a link that connects a connecting member of a vehicle body and a bogie frame.
  • Patent Document 3 is a technique related to a sheet-like damping material and damping panel having high damping performance.
  • the sheet-like damping material enclosed in the internal space of the hollow sheet material in a state in which the granular material layer that absorbs vibration energy can behave and the sheet-like damping material is a metal plate, wood board, etc.
  • a technology related to a vibration control panel formed by being affixed to the panel surface is disclosed.
  • the present invention has been made in view of these conventional situations, and provides a damping structure capable of suppressing the occurrence of vibration and noise from a structure such as a motor affected by electromagnetic force. Let it be an issue.
  • the present invention relates to a damping structure for a cylindrical structure that is affected by electromagnetic force, and a hollow portion is formed in a cylindrical main body constituting the structure, and the damping material is provided in the hollow portion.
  • a vibration control structure characterized by having a built-in.
  • the hollow portions are a plurality of hollow portions having substantially the same shape formed at substantially equal intervals in the circumferential direction of the cylindrical main body.
  • the hollow portion is formed in a portion where the magnetic flux density is low, which is located on the outer peripheral side from the center in the thickness direction of the cylindrical main body.
  • the damping material is preferably a plurality of granular materials.
  • the damping material is a plurality of granular bodies and viscoelastic bodies, and the granular bodies are dispersed substantially uniformly in the viscoelastic bodies and are embedded in the hollow portion.
  • the mass and volume of the granular body and the viscoelastic body incorporated in the hollow portion, and the density of the granular body in the viscoelastic body are preferably substantially the same in all the hollow portions.
  • the granular material is preferably formed from a non-magnetic material.
  • the viscoelastic body is any one of silicone oil, silicone rubber, and silicone gel.
  • the vibration damping structure of the present invention it is possible to suppress the occurrence of vibration and noise from the structure even when electromagnetic force imbalance occurs due to the damping action of the damping material incorporated in the hollow portion. Can do.
  • the substantially identical hollow portions containing a plurality of granular materials are arranged at substantially equal intervals over the entire circumference of the cylindrical main body, so that the vibration damping action is exerted in a balanced and reliable manner. Therefore, the generation of vibration and noise can be suppressed more reliably. Further, the distortion of the magnetic field due to the vibration damping material provided in the hollow portion can be minimized.
  • the vibration damping structure of the present invention since the hollow portion in which a plurality of granular materials are incorporated can be disposed at a portion where the magnetic flux density is relatively low, the performance of the motor is impaired when the structure is a stator. The generation of vibration and noise can be reliably suppressed.
  • a plurality of granular bodies built in the hollow part collide with each other or rub against the inner wall of the hollow part to produce a vibration damping action. Generation of vibration and noise can be suppressed even when vibration occurs due to the occurrence of the above.
  • the vibration damping structure of the present invention when an electromagnetic force is unbalanced in the structure and vibration is generated, the stress generated in the viscoelastic body due to the vibration of the granular body propagates in the viscoelastic body, and another granular body. Damping performance is exhibited by mutual interference with the vibration of the. Thereby, generation
  • the mass and volume of the granular body and the viscoelastic body incorporated in the hollow portion, and the density of the granular body in the viscoelastic body are substantially the same in all the hollow portions. Therefore, it is possible to more reliably suppress the occurrence of vibration and noise.
  • the vibration damping structure of the present invention since the granular material is formed of a non-magnetic material, the performance of the motor is not impaired when the structure is a stator, and the generation of vibration and noise is more reliably generated. Can be suppressed.
  • the vibration damping structure of the present invention uses a silicone oil, a silicone rubber, or a silicone gel that hardly changes in viscoelasticity due to a temperature change as a viscoelastic body, so that the vibration damping structure can be reliably suppressed without being affected by a temperature change. The effect can be exerted.
  • stator which notched the end surface which shows one Embodiment at the time of employ
  • FIG. 1 shows an embodiment in which the vibration damping structure of the present invention is adopted for a stator
  • FIG. 2 shows an outline of a motor incorporating the stator of FIG.
  • the stator 1 includes an annular yoke portion 2 that is a cylindrical main body 2a, and teeth portions 3 that are arranged at substantially equal intervals so as to protrude from the inner surface of the yoke portion 2 toward the central cavity portion of the stator 1. Composed. A winding 8 is wound around the tooth portion 3. A rotor 9 is disposed in the central cavity of the substantially annular stator 1. The rotor 9 constitutes a motor together with the stator 1. Note that the stator 1 and the rotor 9 are formed of a powder magnetic material obtained by compacting soft magnetic powder such as iron powder or iron-base alloy powder, for example.
  • a hollow portion 4 is formed in the yoke portion 2 of the stator 1.
  • the hollow portions 4 are arranged at substantially equal intervals in the circumferential direction of the yoke portion 2.
  • the cross-sectional shapes of the plurality of hollow portions 4 are substantially the same shape.
  • the hollow portion 4 is preferably formed on the outer peripheral side from the center in the thickness direction of the yoke portion 2. By forming the hollow portion 4 on the outer peripheral side from the center in the thickness direction of the yoke portion 2, the hollow portion 4 can be disposed at a position where the magnetic flux density is relatively low in the stator 1.
  • the hollow portion 4 is illustrated so as to be exposed at the end face of the stator 1, but this is because FIG. 1 is a drawing in which the end face of the stator 1 is cut away. Is not exposed at the end face of the stator 1.
  • the hollow member 4 has a vibration damping material 5 incorporated therein.
  • the damping material 5 may be a single granular material 6 or a mixture of the granular material 6 and the viscoelastic body 7. 1 and 2 show the latter case where the damping material 5 is a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7.
  • the vibration damping material 5 does not need to have these two types of structures, and may be a viscoelastic body 7 alone or may be formed of other vibration damping materials.
  • the granular material 5 When the granular material 5 is incorporated in the hollow portion 4 alone, it is necessary to provide the granular material 5 with a certain gap so that the hollow portion 4 is not completely filled with the granular material 5. By providing a certain gap, the granular material 5 can vibrate in the hollow portion 4, and a damping effect can be exhibited. In addition, it is desirable from the surface of damping efficiency that the mass and volume of the granular material 5 incorporated in each hollow portion 4 are the same in all the hollow portions 4.
  • the damping material 5 incorporated in the hollow part 4 is a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7, it is necessary to fill the hollow part 4 with the damping material 5 without a gap.
  • the granular material 6 is dispersed substantially uniformly in the viscoelastic body 7, and the unevenness of the granular material 6 is eliminated in the hollow portion 4.
  • the vibration damping material 5 is embedded in the hollow portion 4 and the vibration is transmitted to the stator 1, the stress generated in the viscoelastic body 7 due to the vibration of the granular body 6 propagates through the viscoelastic body 7, and another granular body.
  • the vibration damping property is exhibited by mutual interference with the vibration 6. Thereby, generation
  • the damping material 5 made of a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7 is embedded in the hollow portion 4, the mass and volume of the granular bodies 6 and viscoelastic bodies 7 incorporated in the hollow portion 4, viscoelasticity. It is desirable from the aspect of damping efficiency that the density of the granular bodies 6 in the body 7 and the shape of each granular body 6 are the same in all the hollow portions 4.
  • the granular material 6 is formed of a nonmagnetic material. desirable. This is because when the granular material 6 is formed of a magnetic material such as iron powder, the performance of the rotating machine or the generator may be affected.
  • the nonmagnetic material forming the granular body 6 include a material mainly composed of ceramic.
  • the shape of the granular body 6 is preferably a sphere.
  • the viscoelastic body 7 has a high viscosity (100,000 to 1,000,000 cSt (centistokes) or higher. ) Oil, liquid rubber, and elastomer that is cross-linked to suppress flow.
  • silicone oil, silicone rubber, or silicone gel whose viscoelastic properties (complex modulus) hardly change with temperature is preferably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Vibration Prevention Devices (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Disclosed is a vibration control structure that can control the generation of vibration and noise from structures, such as motors, which are affected by electromagnetic force. The vibration control structure is a cylindrical structure that receives the effects of electromagnetic force, wherein a hollow area (4) is formed in a cylindrical body (2a) that configures this structure, and a vibration damping material (5) is built into the hollow area (4). The hollow area (4) is also a plurality of hollow areas (4) of roughly the same shape, which are formed at a roughly uniform spacing in the circumferential direction of the cylindrical body (2), and the vibration damping material (5) is configured from a plurality of granular bodies (6), or a plurality of granular bodies (6) and viscoelastic bodies (7).

Description

制振構造Vibration control structure
 本発明は、モータに用いられるステータなど、電磁力の影響を受ける筒状の構造物の制振構造に関する。 The present invention relates to a damping structure for a cylindrical structure that is affected by electromagnetic force, such as a stator used in a motor.
 モータにはステータが用いられるが、モータ等の固定子であるステータと、回転子であるロータとが、必ず対になって設けられる。このステータ自体は動かない構造物であるが、対になって設けられたロータは回転するため、ロータの回転に伴う電磁力の不釣合いによってモータからは振動や騒音が発生することになる。 A stator is used for a motor, but a stator that is a stator of a motor or the like and a rotor that is a rotor are always provided in pairs. Although the stator itself is a structure that does not move, since the rotor provided in a pair rotates, vibration and noise are generated from the motor due to unbalance of electromagnetic force accompanying the rotation of the rotor.
 モータから発生する振動や騒音の主要因である回転するロータに対する制振技術は種々開発されている。しかしながら、ステータに対する適正な制振技術は開発されていないのが現状である。 A variety of vibration control technologies for rotating rotors, which are the main factors of vibration and noise generated from motors, have been developed. However, at present, an appropriate vibration damping technique for the stator has not been developed.
 構造物からの振動や騒音の発生を抑制する制振技術の一例として、粒状体を用いた制振技術が種々提案されている。特許文献1に記載の技術は、ターボ流体機械の本体表面、配管、カップリングカバー等からの放射音を効果的に抑制しようとする技術である。特許文献1の図6および図7には、その伝播減衰手段の一実施形態として、円筒状パイプ内の空洞部に粒状の減衰材が封入された技術が開示されている。 As an example of a vibration suppression technique that suppresses vibration and noise from a structure, various vibration suppression techniques using granular materials have been proposed. The technology described in Patent Document 1 is a technology that effectively suppresses radiated sound from the main body surface, piping, coupling cover, and the like of a turbo fluid machine. 6 and 7 of Patent Document 1 disclose a technique in which a granular damping material is sealed in a hollow portion in a cylindrical pipe as an embodiment of the propagation damping means.
 また、特許文献2に記載の技術は、鉄道車両用台車において、駆動系のアンバランスに起因する振動を抑制し、振動に伴う車内騒音を低減しようとする技術である。ここでは、車体の連結部材と台車枠とを連結するリンクの外周に、鉄系または鉛系の材料からなる粒状体を入れた容器が設置される技術が開示されている。 Further, the technique described in Patent Document 2 is a technique for suppressing vibration caused by drive system imbalance and reducing in-vehicle noise caused by vibration in a railway vehicle bogie. Here, a technique is disclosed in which a container containing a granular material made of an iron-based or lead-based material is installed on the outer periphery of a link that connects a connecting member of a vehicle body and a bogie frame.
 また、特許文献3に記載の技術は、高い制振性能を有するシート状制振材及び制振パネルに関する技術である。ここでは、振動エネルギーを吸収する粉粒体層が挙動可能な状態で中空状のシート材の内部空間に封入されているシート状制振材と、そのシート状制振材が金属板、木板等のパネル面に貼付されて形成される制振パネルに関する技術が開示されている。 Further, the technique described in Patent Document 3 is a technique related to a sheet-like damping material and damping panel having high damping performance. Here, the sheet-like damping material enclosed in the internal space of the hollow sheet material in a state in which the granular material layer that absorbs vibration energy can behave, and the sheet-like damping material is a metal plate, wood board, etc. A technology related to a vibration control panel formed by being affixed to the panel surface is disclosed.
日本国公開特許公報:8-93693Japanese published patent gazette: 8-93693 日本国公開特許公報:2005-289370Japan Published Patent Publication: 2005-289370 日本国公開特許公報:2001-12543Japanese Published Patent Publication: 2001-12543
 本発明は、これら従来の実情を鑑みてなされたものであり、電磁力の影響があるモータ等の構造物から振動や騒音が発生することを抑制することができる制振構造を提供することを課題とする。 The present invention has been made in view of these conventional situations, and provides a damping structure capable of suppressing the occurrence of vibration and noise from a structure such as a motor affected by electromagnetic force. Let it be an issue.
 本発明は、電磁力の影響を受ける筒状の構造物の制振構造であって、前記構造物を構成する筒状本体には中空部が形成されており、前記中空部には制振材が内蔵されていることを特徴とする制振構造である。 The present invention relates to a damping structure for a cylindrical structure that is affected by electromagnetic force, and a hollow portion is formed in a cylindrical main body constituting the structure, and the damping material is provided in the hollow portion. Is a vibration control structure characterized by having a built-in.
 前記中空部は、前記筒状本体の円周方向に略等間隔で形成された略同一形状の複数の中空部であることが好ましい。 It is preferable that the hollow portions are a plurality of hollow portions having substantially the same shape formed at substantially equal intervals in the circumferential direction of the cylindrical main body.
 前記中空部は、前記筒状本体の厚み方向中央より外周側に位置する、磁束密度が低い部位に形成されていることが好ましい。 It is preferable that the hollow portion is formed in a portion where the magnetic flux density is low, which is located on the outer peripheral side from the center in the thickness direction of the cylindrical main body.
 前記制振材は、複数の粒状体であることが好ましい。 The damping material is preferably a plurality of granular materials.
 前記制振材は複数の粒状体および粘弾性体であり、前記粒状体は前記粘弾性体中に略均等に分散されて前記中空部に内蔵充填されていることが好ましい。 It is preferable that the damping material is a plurality of granular bodies and viscoelastic bodies, and the granular bodies are dispersed substantially uniformly in the viscoelastic bodies and are embedded in the hollow portion.
 前記中空部に内蔵された前記粒状体および前記粘弾性体の質量と体積、並びに前記粘弾性体中の粒状体の密度は、全ての中空部において略同一であることが好ましい。 The mass and volume of the granular body and the viscoelastic body incorporated in the hollow portion, and the density of the granular body in the viscoelastic body are preferably substantially the same in all the hollow portions.
 前記粒状体は、非磁性材から形成されていることが好ましい。 The granular material is preferably formed from a non-magnetic material.
 前記粘弾性体は、シリコーンオイル、シリコーンゴム、シリコーンゲルのいずれかであることが好ましい。 It is preferable that the viscoelastic body is any one of silicone oil, silicone rubber, and silicone gel.
 本発明の制振構造によると、中空部に内蔵された制振材の制振作用により、電磁力の不釣合いが発生した場合にも、構造物から振動や騒音が発生することを抑制することができる。 According to the vibration damping structure of the present invention, it is possible to suppress the occurrence of vibration and noise from the structure even when electromagnetic force imbalance occurs due to the damping action of the damping material incorporated in the hollow portion. Can do.
 本発明の制振構造によると、複数の粒状体が内蔵された略同一形状の中空部が筒状本体の全周にわたり略等間隔に配置されるので、バランス良く確実に制振作用を発揮することができ、振動や騒音の発生をより確実に抑制することができる。また、中空部内に制振材を設けたことによる磁界のひずみを最小限に抑えることができる。 According to the vibration damping structure of the present invention, the substantially identical hollow portions containing a plurality of granular materials are arranged at substantially equal intervals over the entire circumference of the cylindrical main body, so that the vibration damping action is exerted in a balanced and reliable manner. Therefore, the generation of vibration and noise can be suppressed more reliably. Further, the distortion of the magnetic field due to the vibration damping material provided in the hollow portion can be minimized.
 本発明の制振構造によると、複数の粒状体が内蔵された中空部を磁束密度が比較的低い部位に配置することができるので、構造物がステータである場合に、モータの性能を損なうことなく確実に振動や騒音の発生を抑制することができる。 According to the vibration damping structure of the present invention, since the hollow portion in which a plurality of granular materials are incorporated can be disposed at a portion where the magnetic flux density is relatively low, the performance of the motor is impaired when the structure is a stator. The generation of vibration and noise can be reliably suppressed.
 本発明の制振構造によると、中空部に内蔵された複数の粒状体同士が衝突したり、中空部の内壁と摩擦したりして制振作用を生じるので、構造物に電磁力の不釣合いが発生して振動が生じた場合にも振動や騒音が発生することを抑制することができる。 According to the vibration damping structure of the present invention, a plurality of granular bodies built in the hollow part collide with each other or rub against the inner wall of the hollow part to produce a vibration damping action. Generation of vibration and noise can be suppressed even when vibration occurs due to the occurrence of the above.
 本発明の制振構造によると、構造物に電磁力の不釣合いが発生して振動が生じると、粒状体の振動により粘弾性体に生じる応力が粘弾性体中を伝播し、別の粒状体の振動と相互干渉することにより制振性が発揮される。これにより、振動や騒音が発生することを確実に抑制することができる。 According to the vibration damping structure of the present invention, when an electromagnetic force is unbalanced in the structure and vibration is generated, the stress generated in the viscoelastic body due to the vibration of the granular body propagates in the viscoelastic body, and another granular body. Damping performance is exhibited by mutual interference with the vibration of the. Thereby, generation | occurrence | production of a vibration and noise can be suppressed reliably.
 本発明の制振構造によると、中空部に内蔵された粒状体および粘弾性体の質量と体積、並びに粘弾性体中の粒状体の密度が全ての中空部において略同一であるので、更に確実に制振作用を発揮し、振動や騒音の発生をより確実に抑制することができる。 According to the vibration damping structure of the present invention, the mass and volume of the granular body and the viscoelastic body incorporated in the hollow portion, and the density of the granular body in the viscoelastic body are substantially the same in all the hollow portions. Therefore, it is possible to more reliably suppress the occurrence of vibration and noise.
 本発明の制振構造によると、粒状体が非磁性材から形成されているため、構造物がステータである場合にモータの性能を損なうことがなく、また、振動や騒音の発生をより確実に抑制することができる。 According to the vibration damping structure of the present invention, since the granular material is formed of a non-magnetic material, the performance of the motor is not impaired when the structure is a stator, and the generation of vibration and noise is more reliably generated. Can be suppressed.
 本発明の制振構造は、温度変化によって粘弾性特性が殆ど変化することのないシリコーンオイル、シリコーンゴム、シリコーンゲルのいずれかを粘弾性体として用いることで、温度変化の影響なく確実に制振作用を発揮することができる。 The vibration damping structure of the present invention uses a silicone oil, a silicone rubber, or a silicone gel that hardly changes in viscoelasticity due to a temperature change as a viscoelastic body, so that the vibration damping structure can be reliably suppressed without being affected by a temperature change. The effect can be exerted.
本発明の制振構造をステータに採用した場合の一実施形態を示す、端面を切り欠いたステータの斜視図である。It is a perspective view of the stator which notched the end surface which shows one Embodiment at the time of employ | adopting the damping structure of this invention for a stator. 図1のステータを組み込んだモータを示す正面図である。It is a front view which shows the motor incorporating the stator of FIG.
 以下、添付図面に示す実施形態に基づいて本発明を更に詳細に説明する。尚、本発明が対象とする、電磁力の影響がある構造物として、モータを構成するステータ1を例に本発明を説明する。 Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings. Note that the present invention will be described by taking the stator 1 constituting the motor as an example of a structure that is subject to the present invention and is affected by electromagnetic force.
 図1は、本発明の制振構造をステータに採用した場合の一実施形態を示し、図2は図1のステータを組み込んだモータの概要を示す。 FIG. 1 shows an embodiment in which the vibration damping structure of the present invention is adopted for a stator, and FIG. 2 shows an outline of a motor incorporating the stator of FIG.
 ステータ1は、筒状本体2aである円環状のヨーク部2と、ヨーク部2の内面からステータ1の中央の空洞部に向かい突出するように略等間隔に配置されたティース部3と、により構成される。ティース部3には巻線8が巻き付けられている。また、略円環状のステータ1の中央の空洞部には、ロータ9が配置される。ロータ9は、ステータ1と共にモータを構成している。尚、ステータ1とロータ9は、例えば、鉄粉や鉄基合金粉末等の軟磁性粉末を圧粉成形した圧粉磁性体より形成されている。 The stator 1 includes an annular yoke portion 2 that is a cylindrical main body 2a, and teeth portions 3 that are arranged at substantially equal intervals so as to protrude from the inner surface of the yoke portion 2 toward the central cavity portion of the stator 1. Composed. A winding 8 is wound around the tooth portion 3. A rotor 9 is disposed in the central cavity of the substantially annular stator 1. The rotor 9 constitutes a motor together with the stator 1. Note that the stator 1 and the rotor 9 are formed of a powder magnetic material obtained by compacting soft magnetic powder such as iron powder or iron-base alloy powder, for example.
 図1に示すように、ステータ1のヨーク部2には、中空部4が形成されている。中空部4は、ヨーク部2の円周方向に略等間隔に並べて配置されている。これら複数の中空部4の断面形状は略同一形状である。また、中空部4は、ヨーク部2の厚み方向の中央より外周側に形成されていることが望ましい。ヨーク部2の厚み方向の中央より外周側に中空部4を形成することで、ステータ1の中で磁束密度が比較的低い位置に中空部4を配置することができる。尚、図1において中空部4はステータ1の端面に露出するように図示されているが、これは図1がステータ1の端面を切り欠いた図面であるためであり、実際には中空部4はステータ1の端面には露出しない。 As shown in FIG. 1, a hollow portion 4 is formed in the yoke portion 2 of the stator 1. The hollow portions 4 are arranged at substantially equal intervals in the circumferential direction of the yoke portion 2. The cross-sectional shapes of the plurality of hollow portions 4 are substantially the same shape. The hollow portion 4 is preferably formed on the outer peripheral side from the center in the thickness direction of the yoke portion 2. By forming the hollow portion 4 on the outer peripheral side from the center in the thickness direction of the yoke portion 2, the hollow portion 4 can be disposed at a position where the magnetic flux density is relatively low in the stator 1. In FIG. 1, the hollow portion 4 is illustrated so as to be exposed at the end face of the stator 1, but this is because FIG. 1 is a drawing in which the end face of the stator 1 is cut away. Is not exposed at the end face of the stator 1.
 この中空部4には、制振材5が内蔵されている。制振材5は、複数の粒状体6の単独であっても良く、または複数の粒状体6と粘弾性体7の混合物であっても良い。図1および図2は、制振材5が複数の粒状体6と粘弾性体7の混合物である、後者の事例を示す。尚、制振材5は、これら二種の構成である必要はなく、粘弾性体7の単独でも良く、または他の制振材料で形成されていても良い。 The hollow member 4 has a vibration damping material 5 incorporated therein. The damping material 5 may be a single granular material 6 or a mixture of the granular material 6 and the viscoelastic body 7. 1 and 2 show the latter case where the damping material 5 is a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7. The vibration damping material 5 does not need to have these two types of structures, and may be a viscoelastic body 7 alone or may be formed of other vibration damping materials.
 粒状体5が単独で中空部4に内蔵される場合は、中空部4内を粒状体5で完全に満たすことがないように、一定の隙間を設けて粒状体5を内蔵する必要がある。一定の隙間を設けることによって、中空部4内で粒状体5が振動することができ、制振作用を発揮することができる。尚、各中空部4に内蔵される粒状体5の質量と体積は、全ての中空部4において同一であることが、制振効率の面から望ましい。 When the granular material 5 is incorporated in the hollow portion 4 alone, it is necessary to provide the granular material 5 with a certain gap so that the hollow portion 4 is not completely filled with the granular material 5. By providing a certain gap, the granular material 5 can vibrate in the hollow portion 4, and a damping effect can be exhibited. In addition, it is desirable from the surface of damping efficiency that the mass and volume of the granular material 5 incorporated in each hollow portion 4 are the same in all the hollow portions 4.
 一方、中空部4に内蔵される制振材5が複数の粒状体6と粘弾性体7の混合物である場合は、中空部4内に隙間なく制振材5を充填する必要がある。この場合、粒状体6は粘弾性体7中に略均等に分散されることになり、中空部4内において粒状体6の偏りがなくなる。この制振材5を中空部4に内蔵充填した場合、ステータ1に振動が伝わると、粒状体6の振動により粘弾性体7に生じる応力が粘弾性体7中を伝播し、別の粒状体6の振動と相互干渉することにより制振性が発揮される。これにより、ステータ1から振動や騒音が発生することを確実に抑制することができる。 On the other hand, when the damping material 5 incorporated in the hollow part 4 is a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7, it is necessary to fill the hollow part 4 with the damping material 5 without a gap. In this case, the granular material 6 is dispersed substantially uniformly in the viscoelastic body 7, and the unevenness of the granular material 6 is eliminated in the hollow portion 4. When the vibration damping material 5 is embedded in the hollow portion 4 and the vibration is transmitted to the stator 1, the stress generated in the viscoelastic body 7 due to the vibration of the granular body 6 propagates through the viscoelastic body 7, and another granular body. The vibration damping property is exhibited by mutual interference with the vibration 6. Thereby, generation | occurrence | production of a vibration and noise from the stator 1 can be suppressed reliably.
 複数の粒状体6と粘弾性体7の混合物からなる制振材5を中空部4に内蔵充填した場合、中空部4に内蔵された粒状体6および粘弾性体7の質量と体積、粘弾性体7中の粒状体6の密度、並びに各粒状体6の形状は、全ての中空部4において同一であることが、制振効率の面から望ましい。 When the damping material 5 made of a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7 is embedded in the hollow portion 4, the mass and volume of the granular bodies 6 and viscoelastic bodies 7 incorporated in the hollow portion 4, viscoelasticity. It is desirable from the aspect of damping efficiency that the density of the granular bodies 6 in the body 7 and the shape of each granular body 6 are the same in all the hollow portions 4.
 また、制振材5が複数の粒状体6の単独である場合も、複数の粒状体6と粘弾性体7の混合物とした場合も、粒状体6は非磁性材で形成されていることが望ましい。これは、粒状体6は、鉄粉等の磁性材で形成された場合には、回転機や発電機の性能に影響を及ぼす可能性があるからである。粒状体6を形成する非磁性材としては、セラミックを主成分とする材料を例示することができる。また、粒状体6の形状は球体であることが望ましい。 Moreover, even when the damping material 5 is a single granular material 6 or a mixture of the granular material 6 and the viscoelastic body 7, the granular material 6 is formed of a nonmagnetic material. desirable. This is because when the granular material 6 is formed of a magnetic material such as iron powder, the performance of the rotating machine or the generator may be affected. Examples of the nonmagnetic material forming the granular body 6 include a material mainly composed of ceramic. The shape of the granular body 6 is preferably a sphere.
 一方、制振材5が複数の粒状体6と粘弾性体7の混合物である場合、粘弾性体7としては、高粘度(100,000~1,000,000cSt(centistokes)あるいはそれ以上の粘度)のオイルや、液状ゴム、架橋させて流動を抑えたエラストマ等を採用することができる。それらの中でも、温度により粘弾性特性(複素弾性率)が殆ど変化しないシリコーンオイル、シリコーンゴム、またはシリコーンゲルが好適に用いられる。更には、-50℃でも硬化しない耐寒性ゲルを用いることが最適である。また、弾性係数を調整するために、粘弾性体中に多数の気泡を設けても良い。 On the other hand, when the damping material 5 is a mixture of a plurality of granular bodies 6 and viscoelastic bodies 7, the viscoelastic body 7 has a high viscosity (100,000 to 1,000,000 cSt (centistokes) or higher. ) Oil, liquid rubber, and elastomer that is cross-linked to suppress flow. Among these, silicone oil, silicone rubber, or silicone gel whose viscoelastic properties (complex modulus) hardly change with temperature is preferably used. Furthermore, it is optimal to use a cold-resistant gel that does not harden even at −50 ° C. In order to adjust the elastic coefficient, a large number of bubbles may be provided in the viscoelastic body.
 以上のとおり、本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2008年10月7日出願の日本特許出願(特願2008-260726)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there. This application is based on a Japanese patent application (Japanese Patent Application No. 2008-260726) filed on Oct. 7, 2008, the contents of which are incorporated herein by reference.
 1…ステータ
 2a…筒状本体
 2…ヨーク部
 3…ティース部
 4…中空部
 5…制振材
 6…粒状体
 7…粘弾性体
 8…巻線
 9…ロータ
DESCRIPTION OF SYMBOLS 1 ... Stator 2a ... Cylindrical main body 2 ... Yoke part 3 ... Teeth part 4 ... Hollow part 5 ... Damping material 6 ... Granular body 7 ... Viscoelastic body 8 ... Winding 9 ... Rotor

Claims (8)

  1.  電磁力の影響を受ける筒状の構造物の制振構造であって、
     前記構造物を構成する筒状本体には中空部が形成されており、前記中空部には制振材が内蔵されていることを特徴とする制振構造。
    A damping structure of a cylindrical structure that is affected by electromagnetic force,
    A hollow structure is formed in a cylindrical main body constituting the structure, and a vibration damping material is built in the hollow part.
  2.  前記中空部は、前記筒状本体の円周方向に略等間隔で形成された略同一形状の複数の中空部であることを特徴とする請求項1記載の制振構造。 2. The vibration damping structure according to claim 1, wherein the hollow portions are a plurality of hollow portions having substantially the same shape formed at substantially equal intervals in a circumferential direction of the cylindrical main body.
  3.  前記中空部は、前記筒状本体の厚み方向中央より外周側に位置する、磁束密度が低い部位に形成されていることを特徴とする請求項1または2記載の制振構造。 3. The vibration damping structure according to claim 1, wherein the hollow portion is formed in a portion having a low magnetic flux density, located on the outer peripheral side from the center in the thickness direction of the cylindrical main body.
  4.  前記制振材は、複数の粒状体であることを特徴とする請求項1記載の制振構造。 The damping structure according to claim 1, wherein the damping material is a plurality of granular bodies.
  5.  前記制振材は複数の粒状体および粘弾性体であり、前記粒状体は前記粘弾性体中に略均等に分散されて前記中空部内に内蔵充填されていることを特徴とする請求項1記載の制振構造。 2. The vibration damping material includes a plurality of granular bodies and viscoelastic bodies, and the granular bodies are substantially uniformly dispersed in the viscoelastic bodies and are embedded in the hollow portion. Vibration control structure.
  6.  前記中空部に内蔵された粒状体および粘弾性体の質量と体積、並びに前記粘弾性体中の粒状体の密度は、全ての中空部において略同一であることを特徴とする請求項5記載の制振構造。 The mass and volume of the granular body and viscoelastic body incorporated in the hollow portion, and the density of the granular body in the viscoelastic body are substantially the same in all the hollow portions. Damping structure.
  7.  前記粒状体は、非磁性材から形成されていることを特徴とする請求項4~6のいずれかに記載の制振構造。 The vibration damping structure according to any one of claims 4 to 6, wherein the granular material is formed of a nonmagnetic material.
  8.  前記粘弾性体は、シリコーンオイル、シリコーンゴム、シリコーンゲルのいずれかであることを特徴とする請求項5または6記載の制振構造。 The vibration damping structure according to claim 5 or 6, wherein the viscoelastic body is one of silicone oil, silicone rubber, and silicone gel.
PCT/JP2009/067437 2008-10-07 2009-10-06 Vibration control structure WO2010041672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801339797A CN102138025A (en) 2008-10-07 2009-10-06 Vibration control structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-260726 2008-10-07
JP2008260726A JP2010090967A (en) 2008-10-07 2008-10-07 Vibration control structure

Publications (1)

Publication Number Publication Date
WO2010041672A1 true WO2010041672A1 (en) 2010-04-15

Family

ID=42100622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067437 WO2010041672A1 (en) 2008-10-07 2009-10-06 Vibration control structure

Country Status (3)

Country Link
JP (1) JP2010090967A (en)
CN (1) CN102138025A (en)
WO (1) WO2010041672A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005852B (en) * 2010-12-08 2012-10-03 沈阳工业大学 Device for suppressing noise and vibration of radial flux motor
JP6988041B1 (en) * 2020-11-27 2022-01-05 デザインパーツ株式会社 Vibration absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122417U (en) * 1990-03-24 1991-12-13
JPH1153827A (en) * 1997-08-04 1999-02-26 Nippon Densan Corp Rotary balancer and its related technology
JPH11223246A (en) * 1998-02-05 1999-08-17 Unisia Jecs Corp Rotary damper
JP2001206221A (en) * 2000-01-27 2001-07-31 Hitachi Ltd Rolling stock

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863333B2 (en) * 1999-05-20 2006-12-27 株式会社日立製作所 Railway vehicle, railcar bogie and connecting member
CN100344895C (en) * 2004-09-09 2007-10-24 重庆大学 Magnetic current changeing dumper of integrated related speed sensing function and method of adaptive damping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122417U (en) * 1990-03-24 1991-12-13
JPH1153827A (en) * 1997-08-04 1999-02-26 Nippon Densan Corp Rotary balancer and its related technology
JPH11223246A (en) * 1998-02-05 1999-08-17 Unisia Jecs Corp Rotary damper
JP2001206221A (en) * 2000-01-27 2001-07-31 Hitachi Ltd Rolling stock

Also Published As

Publication number Publication date
JP2010090967A (en) 2010-04-22
CN102138025A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN103104539B (en) Vacuum pump
JP5231790B2 (en) Motor rotor and motor
JP6059275B2 (en) Outer rotor type motor
WO2006090484A1 (en) Driving device with rotating electric machine
WO2010041671A1 (en) Damping structure
JP2009090921A (en) In-wheel motor
JP2000046103A (en) Damping member for motor
WO2010041672A1 (en) Vibration control structure
JP2007182986A (en) Vibration reducing damper
JP2014035079A (en) Damper for input shaft of transmission
JP2007306767A (en) Motor and electric power steering device therewith
CN111052562A (en) Rotor and motor
JP4242221B2 (en) Motor drive device
JPS63190570A (en) Ultrasonic motor
JP5693386B2 (en) Vibration isolator
JP7199366B2 (en) Stator for high-speed electric machines
JP3972180B2 (en) Dynamic damper
JP2010196876A (en) Pulley structure
JPS6344600Y2 (en)
JP2010196740A (en) Pulley structure
JP6410562B2 (en) Electric motor
JP7032675B1 (en) Cores, rotating electromechanical machines, and resting machines
JP2006158083A (en) Mounting structure of rotating electric machine
JP2009177946A (en) Rotary electric machine
JP6875967B2 (en) Rotating machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133979.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819206

Country of ref document: EP

Kind code of ref document: A1