JP5693386B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP5693386B2
JP5693386B2 JP2011127526A JP2011127526A JP5693386B2 JP 5693386 B2 JP5693386 B2 JP 5693386B2 JP 2011127526 A JP2011127526 A JP 2011127526A JP 2011127526 A JP2011127526 A JP 2011127526A JP 5693386 B2 JP5693386 B2 JP 5693386B2
Authority
JP
Japan
Prior art keywords
rubber
hardness
outer cylinder
elastic bodies
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011127526A
Other languages
Japanese (ja)
Other versions
JP2012255461A (en
Inventor
康寿之 長島
康寿之 長島
大 齋藤
大 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011127526A priority Critical patent/JP5693386B2/en
Publication of JP2012255461A publication Critical patent/JP2012255461A/en
Application granted granted Critical
Publication of JP5693386B2 publication Critical patent/JP5693386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、外筒と、外筒の内側に配置した内筒との間に、それらの外内筒の相互を周方向の二箇所で連結するそれぞれのゴム脚部分を有するゴム部材を設けてなる、いわゆる「ハ」の字型の防振装置、なかでも、エンジンマウントまたはモーターマウント等として用いて好適な防振装置に関するものであり、特に、装置の使用に際し、外筒と内筒との間に配設したゴム部材に発生するおそれのある、いわゆるサージング現象を有効に抑制して、装置に、常に所期したとおりの防振機能を発揮させる技術を提案するものである。   The present invention provides a rubber member having respective rubber leg portions for connecting the outer and inner cylinders at two locations in the circumferential direction between the outer cylinder and the inner cylinder arranged inside the outer cylinder. This is related to a so-called “C” -shaped vibration isolator, and particularly to a vibration isolator suitable for use as an engine mount or a motor mount, and in particular, when using the apparatus, the outer cylinder and the inner cylinder The present invention proposes a technique that effectively suppresses a so-called surging phenomenon that may occur in a rubber member disposed between them, and allows the apparatus to always exhibit the anti-vibration function as expected.

たとえば、エンジン側の部材と車体側の部材とのそれぞれに、外筒および内筒のそれぞれを取り付けて使用に供されることがあるこの種の防振装置では、エンジン側部材からの入力振動を、ゴム部材の、主として二個のゴム脚部分の弾性変形で吸収するに当り、いずれも剛性材料からなる外筒および内筒の相互を連結する各ゴム脚部分をばねおよび質量とするばね―質量系にあって、固有振動周波数、たとえば1000Hz前後の周波数の振動が入力された場合は、ゴム脚部分のそれぞれが自励振動して振幅が急激に増大し、硬いばね特性がもたらされる、いわゆるサージング現象が発生し、装置が、所期したとおりの防振機能を発揮し得なくなることがある。   For example, in this type of vibration isolator that may be used by attaching an outer cylinder and an inner cylinder to each of an engine side member and a vehicle body side member, input vibration from the engine side member is not received. A spring-mass in which each rubber leg part connecting the outer cylinder and the inner cylinder made of a rigid material is used as a spring and a mass for absorbing the elastic member mainly by elastic deformation of two rubber leg parts. In the system, when a vibration having a natural vibration frequency, for example, a frequency around 1000 Hz is input, each rubber leg portion self-excites and the amplitude increases rapidly, resulting in so-called surging. A phenomenon may occur, and the device may not be able to perform the anti-vibration function as expected.

このようなサージング現象に対処するべく、特許文献1では、「防振連結される一方の部材に取り付けられる第一の取付部材と、防振連結される他方の部材に取り付けられる第二の取付部材が離隔配置されており、それら第一の取付部材と第二の取付部材が本体ゴム弾性体によって弾性連結されていると共に、該第一の取付部材と該第二の取付部材の何れからも離隔した位置で該本体ゴム弾性体に中空の筒形ハウジング部材が固着されて該本体ゴム弾性体の弾性変形に伴って該筒形ハウジング部材が変位せしめられるようにされており、該筒形ハウジング部材には独立マス部材が収容配置されて、振動入力時における該本体ゴム弾性体の変形に伴う該筒形ハウジング部材の変位により該独立マス部材が該筒形ハウジング部材に対して飛び跳ねて繰り返し打ち当たるようにされた防振装置において、前記独立マス部材が打ち当たる周壁部を一体的に形成して少なくとも一方の軸方向端部に開口部を有するハウジング本体に対して、その開口部に蓋体を組み付けて覆蓋することにより、前記筒形ハウジング部材が構成されており、該ハウジング本体の外周面が前記本体ゴム弾性体に加硫接着されていると共に、該ハウジング部材と該蓋体の外周面上における突き合わせ部は、その全周に亘って該本体ゴム弾性体が密着状態で被さってシールされていることを特徴とする防振装置」が提案されている。
そして、この防振装置によれば、「本体ゴム弾性体の弾性変形に伴って筒形ハウジング部材が変位せしめられて、筒形ハウジング部材内で飛び跳ねた独立マス部材が筒形ハウジング部材に対して打ち当たる。この独立マス部材の筒形ハウジング部材への打ち当たりに基づいて、本体ゴム弾性体に有効な制振作用が及ぼされることとなり、その結果、本体ゴム弾性体において問題となるサージングに対して有効な抑制効果が発揮される」とされている。
In order to cope with such a surging phenomenon, in Patent Document 1, “a first mounting member attached to one member to be vibration-isolated and a second attachment member attached to the other member to be anti-vibrated and connected” is disclosed. Are spaced apart from each other, and the first attachment member and the second attachment member are elastically connected by the main rubber elastic body, and are separated from both the first attachment member and the second attachment member. A hollow cylindrical housing member is fixed to the main rubber elastic body at the position, and the cylindrical housing member is displaced along with elastic deformation of the main rubber elastic body. An independent mass member is accommodated and disposed, and the independent mass member jumps with respect to the cylindrical housing member due to the displacement of the cylindrical housing member accompanying the deformation of the main rubber elastic body at the time of vibration input. In the vibration isolator configured to repeatedly strike, a peripheral wall portion against which the independent mass member abuts is formed integrally with a housing main body having an opening at at least one axial end portion. The cylindrical housing member is configured by assembling and covering the lid, and the outer peripheral surface of the housing main body is vulcanized and bonded to the rubber elastic body of the main body, and the housing member and the lid An anti-vibration device is proposed in which the butted portion on the outer peripheral surface is covered and sealed with the main rubber elastic body in close contact over the entire circumference.
According to this vibration isolator, “the cylindrical housing member is displaced along with the elastic deformation of the main rubber elastic body, and the independent mass member that jumps in the cylindrical housing member is separated from the cylindrical housing member. Based on the contact of the independent mass member against the cylindrical housing member, an effective vibration damping action is exerted on the main rubber elastic body, and as a result, against the surging that is a problem in the main rubber elastic body. Effective suppression effect is demonstrated. "

特開2007−270925号公報JP 2007-270925 A

ところで、特許文献1に記載された防振装置では、金属材料等からなる、比重の大きい「独立マス部材」を「本体ゴム弾性体」に設けることから、装置全体としての重量が増加し、特に、エンジンマウントやモーターマウントとして用いる場合には、車両の燃費の低下を招くという問題があった。
また、この防振装置では、「ハウジング部材」に「独立マス部材」が打ち当たる際に生じる打音が、車両等の静粛性能を悪化させるおそれがある他、「独立マス部材」や「筒状ハウジング部材」の配設に伴う部材点数の増加によって製造コストが嵩むという問題もある。
By the way, in the vibration isolator described in Patent Document 1, since the “independent mass member” made of a metal material or the like and having a large specific gravity is provided in the “main rubber elastic body”, the weight of the entire device increases. When used as an engine mount or a motor mount, there is a problem in that the fuel consumption of the vehicle is reduced.
Further, in this vibration isolator, the hitting sound generated when the “independent mass member” hits the “housing member” may deteriorate the silent performance of the vehicle, etc. There is also a problem that the manufacturing cost increases due to an increase in the number of members accompanying the arrangement of the “housing member”.

この発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、それの目的とするところは、製造コストを比較的小さく抑えつつも、装置の重量の増大、静粛性能の悪化を招くことなしに、サージング現象の発生を有効に防止して、常に所期したとおりの防振性能を発揮することができる防振装置を提供するにある。   The object of the present invention is to solve such problems of the prior art, and the object of the present invention is to increase the weight of the apparatus and reduce the quiet performance while keeping the manufacturing cost relatively low. Accordingly, it is an object of the present invention to provide a vibration isolator capable of effectively preventing the occurrence of a surging phenomenon and constantly exhibiting the anti-vibration performance as expected without incurring deterioration of the above.

発明者は、有限要素法による数値解析を実施して、図1に正面図で示すような、正面視で「ハ」の字状の弾性体の、振動入力時の挙動について鋭意研究を重ねた結果、前記弾性体を、少なくとも一部で互いに一体的に固着させた、ゴム硬度が異なる二種類の弾性要素にて構成することで、弾性体の動的ばね定数の、共振周波数でのピーク値を、一種類の弾性要素からなる弾性体に比して大幅に低減させることができ、また、その動的ばね定数のピークの発生周波数を、共振周波数より高周波数側もしくは低周波数側にシフトできることを見出した。
そして、このことを防振装置に適用することにより、サージングの発生を有効に防止することができると考えた。
The inventor conducted a numerical analysis by the finite element method, and conducted earnest research on the behavior of the “C” -shaped elastic body in front view as shown in the front view in FIG. 1 at the time of vibration input. As a result, the elastic body is composed of two types of elastic elements having different rubber hardness, which are fixed integrally with each other at least partially, so that the dynamic spring constant of the elastic body has a peak value at the resonance frequency. Can be greatly reduced compared to an elastic body made of one type of elastic element, and the peak frequency of the dynamic spring constant can be shifted to a higher frequency side or a lower frequency side than the resonance frequency. I found.
And it was thought that the occurrence of surging can be effectively prevented by applying this to the vibration isolator.

このような知見に基づき、この発明の防振装置は、外筒と、外筒の内側に配置した内筒と、内筒の周囲を取り囲む被覆ゴム部分及び、該被覆ゴム部分に連続して外筒側にそれぞれ延びて、外筒及び内筒の相互を、外筒の周方向の二箇所で連結するそれぞれのゴム脚部分からなるゴム部材とを具えてなる防振装置であって、前記ゴム部材を、ゴム硬度が異なる二種類のゴム弾性体の相互を少なくとも一部で一体的に固着させて構成し、前記ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体は、それぞれ、前記外筒及び前記内筒の相互を連結しているものである。 Based on such knowledge, the vibration isolator of the present invention includes an outer cylinder, an inner cylinder disposed inside the outer cylinder, a covering rubber part surrounding the inner cylinder, and an outer cylinder continuously with the covering rubber part. An anti-vibration device comprising a rubber member made of a rubber leg portion extending to the cylinder side and connecting the outer cylinder and the inner cylinder at two locations in the circumferential direction of the outer cylinder. The member is constituted by integrally fixing at least part of two types of rubber elastic bodies having different rubber hardness, and the two types of rubber elastic bodies having different rubber hardness of the rubber member are respectively The outer cylinder and the inner cylinder are connected to each other .

ここで好ましくは、ゴム部材のそれぞれのゴム脚部分を、外筒の中心軸線を含む平面を隔てて位置させ、ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、前記平面により区分けされる一方側と他方側とのそれぞれに配置するとともに、該ゴム弾性体の相互を、前記被覆ゴム部分で、外筒の軸線方向にわたって固着させる。   Preferably, each rubber leg portion of the rubber member is positioned with a plane including the central axis of the outer cylinder interposed therebetween, and each of the two types of rubber elastic bodies having different rubber hardnesses of the rubber member is disposed on the plane. The rubber elastic bodies are fixed to each other over the axial direction of the outer cylinder at the covering rubber portion.

また好ましくは、ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、外筒の軸線方向の一方側と他方側とのそれぞれに配置するとともに、該ゴム弾性体の相互を、外筒の中心軸線に直交する断面で、ゴム部材の全域に方向にわたって固着させる。   Preferably, each of the two types of rubber elastic bodies having different rubber hardness of the rubber member is disposed on each of the one side and the other side in the axial direction of the outer cylinder, and the rubber elastic bodies are mutually connected. In a cross section perpendicular to the central axis of the outer cylinder, the rubber member is fixed to the entire region in the direction.

なお好ましくは、二種類のゴム弾性体の、それぞれのゴム硬度をともに、JIS A硬度で40〜60の範囲内とし、二種類のゴム弾性体のゴム硬度の差を、JIS A硬度で5〜15の範囲内とする。
なおここで、「JIS A硬度」は、JIS K6253に規定される、タイプAデュロメータを用いたデュロメータ硬さ試験により得られるデュロメータ硬さをいう。
Preferably, both rubber hardnesses of the two types of rubber elastic bodies are within the range of 40 to 60 in terms of JIS A hardness, and the difference in rubber hardness between the two types of rubber elastic bodies is 5 to 5 in terms of JIS A hardness. Within the range of 15.
Here, “JIS A hardness” refers to durometer hardness obtained by a durometer hardness test using a type A durometer as defined in JIS K6253.

図2に、有限要素法を用いた解析結果を、入力振動の周波数に対する動的ばね定数の変化のグラフで示す。
この数値解析では、図1に正面図で示すような、正面視で「ハ」の字状の弾性体で、ほぼ中央域に設けた貫通孔の、内筒が固着される周面及び、外筒の内周面が固着される弾性体外周面のそれぞれを固定端とした状態をモデル化し、ゴム硬度が、JIS A硬度44と55で互いに異なる二種類の弾性要素の配設域を、図3に示すように各種変更したものについて、振動が入力した際の、動的バネ定数の変化をそれぞれ算出した。
FIG. 2 shows an analysis result using the finite element method as a graph of the change of the dynamic spring constant with respect to the frequency of the input vibration.
In this numerical analysis, as shown in the front view of FIG. 1, an elastic body having a letter “C” in front view, a through-hole provided in a substantially central region, a peripheral surface to which the inner cylinder is fixed, and an outer surface A state in which each of the outer peripheral surfaces of the elastic body to which the inner peripheral surface of the cylinder is fixed is used as a fixed end is modeled, and an arrangement area of two types of elastic elements having different rubber hardnesses with JIS A hardnesses 44 and 55 is illustrated. As shown in FIG. 3, the change in the dynamic spring constant when vibration was input was calculated for each change.

ここで、図3(a)に正面図で示す弾性体は、図に仮想線で示す平面の一方側と他方側とで、硬度の異なる弾性要素を配設し、それらの弾性要素の相互を、仮想線上の接触域で固着させたものである。また、図3(b)〜(d)に側面図で示す弾性体は、硬度の異なる弾性要素を軸線方向の一方側と他方側とのそれぞれに配設して、それらの弾性要素の相互を、図に仮想線で示す位置で固着させたものである。なおここでは、図3(b)〜(d)で、硬度55と硬度45との弾性要素の体積比を図示のように相違させた。
なお、図2では参考のため、ゴム硬度が45または55のいずれか一種類だけの弾性要素からなる弾性体のそれぞれの解析結果についても示した。
Here, in the elastic body shown in the front view in FIG. 3A, elastic elements having different hardnesses are arranged on one side and the other side of the plane indicated by the phantom line in the figure, and the elastic elements are mutually connected. , Fixed in the contact area on the imaginary line. The elastic bodies shown in side views in FIGS. 3B to 3D have elastic elements having different hardnesses arranged on one side and the other side in the axial direction, and the elastic elements are mutually connected. These are fixed at positions indicated by virtual lines in the figure. Here, in FIGS. 3B to 3D, the volume ratio of the elastic elements of hardness 55 and hardness 45 is made different as shown in the figure.
For the sake of reference, FIG. 2 also shows the analysis results of each elastic body composed of only one elastic element having a rubber hardness of 45 or 55.

図2に示すように、図3(a)〜(d)に示す、ゴム硬度の異なる二種類の弾性要素を相互に固着させてなる弾性体では、ゴム硬度が45または55のいずれか一種類だけの弾性要素からなる弾性体(以下、それぞれ「硬度45の弾性体」及び「硬度55の弾性体」という。)のそれぞれの、動的ばね定数のピークに対応する二つのピークが生じているが、図3(a)〜(d)に示す弾性体では、硬度45の弾性体及び、硬度55の弾性体のそれぞれのピークに比して、対応する二つのピークがいずれも大幅に低減されていることがわかる。   As shown in FIG. 2, in the elastic body in which two kinds of elastic elements having different rubber hardnesses shown in FIGS. 3A to 3D are fixed to each other, the rubber hardness is either 45 or 55. There are two peaks corresponding to the dynamic spring constant peaks of the elastic body composed of only the elastic elements (hereinafter referred to as “elastic body with hardness 45” and “elastic body with hardness 55”, respectively). However, in the elastic body shown in FIGS. 3A to 3D, the two corresponding peaks are greatly reduced as compared with the respective peaks of the elastic body having a hardness of 45 and the elastic body having a hardness of 55. You can see that

このことから、この発明の防振装置によれば、外筒及び内筒の相互を連結するゴム部材を、図3に例示する弾性体のように、ゴム硬度が異なる二種類のゴム弾性体の相互を少なくとも一部で一体的に固着させて構成したことにより、エンジンマウントまたはモーターマウント等に必要とされる所要の静的ばね特性を発揮させつつも、ゴム部材自身の動的ばね定数のピークを大幅に低減させることができるので、従来技術でいう「独立マス部材」等の配設に起因する、製造コストの増加、装置の質量の増大及び静粛性能の悪化を招くことなしに、サージング現象の発生を有効に防止することができる。   Therefore, according to the vibration isolator of the present invention, the rubber member that connects the outer cylinder and the inner cylinder is made of two types of rubber elastic bodies having different rubber hardness, such as the elastic body illustrated in FIG. The structure is made by fixing them together at least partially so that the required static spring characteristics required for engine mounts or motor mounts can be exhibited, while the dynamic spring constant of the rubber member itself is at its peak. Therefore, the surging phenomenon can be achieved without increasing the manufacturing cost, increasing the mass of the apparatus, and deteriorating the quiet performance due to the arrangement of the “independent mass member” or the like in the prior art. Can be effectively prevented.

ここで、図2に示す解析結果から、図3(a)に示す、中心軸線を含む平面により区分けされる一方側と他方側とで弾性要素の硬度を相違させた弾性体では、硬度45の弾性体及び、硬度55の弾性体のそれぞれの、動的ばね定数のピークに対して、対応する二つのピークがともに半分程度にまで低減されていることがわかる。
このことは、中心軸線を含む平面により区分けされる一方側の弾性要素と他方側の弾性要素とで、ゴム硬度を相違させたことにより、それらの弾性要素の相互の固着面積が小さいことに起因して、入力振動に対し、内筒側から外筒側に延びる二個の脚部が、互いに大きな影響を及ぼし合うことなく、それぞれ独立して自励振動するので、ばね質量の半減に基づき、二つのピークの発生周波数が低周波数側もしくは高周波数側に大きくシフトせずに、それらのピーク値が減少することによるものと考えられる。
Here, from the analysis result shown in FIG. 2, in the elastic body in which the hardness of the elastic element is differentiated between the one side and the other side divided by the plane including the central axis shown in FIG. It can be seen that the two corresponding peaks are reduced to about half with respect to the dynamic spring constant peaks of the elastic body and the elastic body of hardness 55, respectively.
This is due to the fact that the elastic area on one side and the elastic element on the other side, which are divided by the plane including the central axis, are different from each other, so that the mutual fixing area of these elastic elements is small. Then, the two legs extending from the inner cylinder side to the outer cylinder side with respect to the input vibration vibrate independently of each other without greatly affecting each other. It can be considered that the frequency of the two peaks is not shifted greatly to the low frequency side or the high frequency side, and the peak value decreases.

したがって、上述した防振装置において、図3(a)に示す弾性体のように、ゴム部材のそれぞれのゴム脚部分を、外筒の中心軸線を含む平面を隔てて位置させ、ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、前記平面に区分けされる一方側と他方側のそれぞれに配置するとともに、該ゴム弾性体の相互を、前記被覆ゴム部分で、外筒の軸線方法にわたって固着させたときは、硬度の異なるゴム脚部分のそれぞれの自励振動に基づき、動的ばね定数の二つのピークの発生周波数を大きくシフトさせずに、それらの二つのピークをともに大幅に低減することができる。   Therefore, in the above-described vibration isolator, like the elastic body shown in FIG. 3A, each rubber leg portion of the rubber member is positioned with a plane including the central axis of the outer cylinder, and the rubber member Each of the two types of rubber elastic bodies having different rubber hardness is disposed on each of the one side and the other side divided into the plane, and the rubber elastic bodies are connected to each other by the covering rubber portion and the outer cylinder. When fixed over the axial method, both of the two peaks are greatly increased without significantly shifting the frequency of the two dynamic spring constant peaks based on the self-excited vibration of the rubber leg portions of different hardness. Can be reduced.

またここで、図2に示す結果より、図3(b)〜(d)に示す、軸線方向の一方側と他方側とで硬度の異なる弾性要素を配設した弾性体では、動的ばね定数の二つのピークが低減されていることに加えて、二つのピークが発生するそれぞれの周波数の少なくとも一方が、硬度45の弾性体及び、硬度55の弾性体のそれぞれの、対応するピークの発生周波数よりも低周波数側もしくは高周波数側にシフトしていることがわかる。   Further, from the results shown in FIG. 2, the elastic spring constant shown in FIGS. 3B to 3D is an elastic body in which elastic elements having different hardness are arranged on one side and the other side in the axial direction. In addition to the reduction of the two peaks, at least one of the frequencies at which the two peaks are generated is the frequency at which the corresponding peak is generated for each of the elastic body having a hardness of 45 and the elastic body having a hardness of 55. It turns out that it has shifted to the low frequency side or the high frequency side.

このことは、図3(b)〜(d)に示すような弾性体を構成する、ゴム硬度が45の弾性要素と、それに大きな面積で一体的に固着されたゴム硬度が55の弾性要素とが、互いに振幅の大きさ及び位相の異なる挙動を示すことによって、振動の入力時に、二個の弾性要素が、相互に大きな影響を及ぼし合って、弾性要素自身の振動の増幅を互いに抑制し合うことによるものと考えられる。   This means that an elastic element having a rubber hardness of 45 and an elastic element having a rubber hardness of 55, which are integrally fixed to a large area, constitute an elastic body as shown in FIGS. 3 (b) to 3 (d). However, when the vibration is input, the two elastic elements exert a great influence on each other, thereby suppressing the amplification of the vibration of the elastic element itself. This is probably due to this.

したがって、上述した防振装置において、図3(b)〜(d)に示す弾性体のように、ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、外筒の軸線方向の一方側と他方側のそれぞれに配置するとともに、該ゴム弾性体の相互を、外筒の中心軸線に直交する断面で、ゴム部材の全域にわたって固着させたときは、ゴム部材の動的ばね定数のピークを低減させるとともに、そのピークの発生周波数を、従来の装置でサージングが生じる入力振動の周波数より高周波数側もしくは低周波数側にシフトさせることができる。   Therefore, in the above-described vibration isolator, each of the two types of rubber elastic bodies having different rubber hardness of the rubber member, such as the elastic bodies shown in FIGS. When the rubber elastic bodies are fixed to each other over the entire area of the rubber member in a cross section orthogonal to the central axis of the outer cylinder, the dynamic spring constant of the rubber member In addition, the peak generation frequency can be shifted to a higher frequency side or a lower frequency side than the frequency of the input vibration in which surging occurs in the conventional apparatus.

なお、図2に示すところでは、図3(b)〜(d)に示す弾性体のうち、ゴム硬度が55の弾性要素が占める体積の小さいものほど、硬度55の弾性体のピーク周波数付近に発生する、動的ばね定数のピークが低下する一方で、硬度45の弾性体のピーク周波数付近に発生する、動的ばね定数のピークが増加する傾向にあり、また、ゴム硬度が異なる二個の弾性要素の体積比に応じて、硬度45の弾性体及び、硬度55の弾性体のそれぞれのピークに対応する二つのピークの発生周波数が、高周波側もしくは低周波側にシフトすることがわかる。   2, among the elastic bodies shown in FIGS. 3B to 3D, the smaller the volume occupied by the elastic element having a rubber hardness of 55, the closer to the peak frequency of the elastic body having a hardness of 55. While the peak of the generated dynamic spring constant decreases, the peak of the dynamic spring constant generated near the peak frequency of the elastic body having a hardness of 45 tends to increase, and two rubber hardnesses differ from each other. It can be seen that the frequency at which two peaks corresponding to the peaks of the elastic body with hardness 45 and the elastic body with hardness 55 shift to the high frequency side or the low frequency side according to the volume ratio of the elastic elements.

なおここで、上述した防振装置において、前記二種類のゴム弾性体の、それぞれのゴム硬度をともに、JIS A硬度で40〜60の範囲内とし、二種類のゴム弾性体のゴム硬度の差を、JIS A硬度で5〜15の範囲内としたときは、ゴム部材の所要の静的バネ定数を確保して、動倍率(静的ばね定数に対する静的ばね定数の比)を小さく、耐久性を十分に高めることができるとともに、ゴム部材を二種類のゴム弾性体で構成することに基づく、ゴム部材の動的ばね定数のピーク低減効果と、ゴム部材による入力振動の抑制効果とを高い次元で両立させることができる。   Here, in the above-described vibration isolator, the rubber hardness of each of the two types of rubber elastic bodies is set within a range of 40 to 60 in JIS A hardness, and the difference in rubber hardness between the two types of rubber elastic bodies. When the JIS A hardness is in the range of 5 to 15, the required static spring constant of the rubber member is secured, the dynamic magnification (ratio of the static spring constant to the static spring constant) is reduced, and the durability The effect of reducing the dynamic spring constant peak of the rubber member and the effect of suppressing the input vibration by the rubber member are high based on the rubber member being composed of two types of rubber elastic bodies. It can be made compatible in dimension.

これを言い換えれば、少なくとも一方のゴム弾性体のゴム硬度を40未満とした場合は、ゴム部材の静的ばね定数の不足によって、振動発生側部材及び伝達側部材を十分強固に連結することができないおそれがあり、この一方で、前記ゴム硬度を、60を超えるものとした場合は、ゴム部材の動倍率が高くなることによる防振性能の低下、ゴム部材の耐久性悪化の懸念がある。
また、ゴム硬度の差を5未満とした場合は、ゴム硬度の差が小さいことによって、振動入力時に、ゴム硬度の差に基づく、ゴム部材の動的ばね定数のピーク低減効果が十分に発揮されない結果、入力振動によっては、サージング現象が生じるおそれがあり、この一方で、ゴム硬度の差を、15を超えるものとした場合は、二種類のゴム弾性体のいずれかのゴム硬度が小さすぎるか、もしくは大きすぎることから、ゴム部材の剪断変形による入力振動の吸収が適正に行われないおそれがある。
In other words, when the rubber hardness of at least one rubber elastic body is less than 40, the vibration generation side member and the transmission side member cannot be connected sufficiently firmly due to the lack of the static spring constant of the rubber member. On the other hand, when the rubber hardness is more than 60, there is a concern that the vibration isolation performance is lowered and the durability of the rubber member is deteriorated due to an increase in the dynamic magnification of the rubber member.
Further, when the difference in rubber hardness is less than 5, the difference in rubber hardness is small, so that the effect of reducing the peak of the dynamic spring constant of the rubber member based on the difference in rubber hardness is not sufficiently exhibited during vibration input. As a result, a surging phenomenon may occur depending on the input vibration. On the other hand, if the difference in rubber hardness exceeds 15, the rubber hardness of one of the two types of rubber elastic bodies is too small. Or, since it is too large, there is a possibility that the input vibration due to the shear deformation of the rubber member is not properly absorbed.

有限要素法による数値解析に用いた弾性体モデルを示す正面図である。It is a front view which shows the elastic body model used for the numerical analysis by a finite element method. 有限要素法による解析結果を、入力振動の周波数に対する動的ばね定数の変化で表すグラフである。It is a graph showing the analysis result by a finite element method by the change of the dynamic spring constant with respect to the frequency of input vibration. 数値解析に用いたそれぞれの弾性体モデルの、二種類の弾性要素の配設態様を示す図である。It is a figure which shows the arrangement | positioning aspect of two types of elastic elements of each elastic body model used for the numerical analysis. この発明の一の実施形態を示す、装置の横断面図である。1 is a cross-sectional view of an apparatus showing an embodiment of the present invention. 他の実施形態を示す、装置の中心軸線を含む縦断面図である。It is a longitudinal cross-sectional view containing the center axis line of the apparatus which shows other embodiment.

以下に図面を参照しつつ、この発明の実施の形態について説明する。
図4に例示する防振装置1は、例えば円筒状をなす外筒2と、外筒2の内側で、図では中心軸線位置を外筒2のそれよりも幾分上方側にずらして配置した、図示の横断面視で方形の角筒状をなす内筒3と、外筒2及び内筒3の相互を連結するゴム部材4とを具えてなる。
なお、図示は省略するが、内筒は、横断面視で円形をなす円筒状とすることもできる。
Embodiments of the present invention will be described below with reference to the drawings.
The vibration isolator 1 illustrated in FIG. 4 is arranged, for example, in a cylindrical outer cylinder 2 and the inner side of the outer cylinder 2, with the center axis position slightly shifted above that of the outer cylinder 2 in the figure. The inner cylinder 3 has a rectangular rectangular tube shape in the cross-sectional view shown in the figure, and the outer cylinder 2 and the rubber member 4 that connects the inner cylinder 3 to each other.
In addition, although illustration is abbreviate | omitted, an inner cylinder can also be made into the cylindrical shape which makes | forms a circle by a cross sectional view.

ここで、ゴム部材4は、内筒3の周囲を取り囲んで内筒3を被覆する薄肉の被覆ゴム部分4a、及び、被覆ゴム部分4aに連続して、外筒2側にそれぞれ延びる二個のゴム脚部分4bからなり、それらの二個のゴム脚部分4bによって、外筒2と内筒3とを、外筒2の周方向の二箇所で連結する。
このように構成したゴム部材4には、外筒2と内筒3との間で、内外筒の軸線方向に貫通する、図では上下二箇所の空所5a、5bが形成されることになる。
Here, the rubber member 4 includes a thin covering rubber portion 4a surrounding the inner tube 3 and covering the inner tube 3, and two pieces extending to the outer tube 2 side continuously to the covering rubber portion 4a. The outer cylinder 2 and the inner cylinder 3 are connected at two locations in the circumferential direction of the outer cylinder 2 by the two rubber leg parts 4b.
In the rubber member 4 configured in this manner, two spaces 5a and 5b are formed between the outer cylinder 2 and the inner cylinder 3 in the axial direction of the inner and outer cylinders in the figure. .

このような防振装置は、外筒2を、振動発生側もしくは振動伝達側のいずれか一方側の部材に取り付けるとともに、内筒3を、他方側の部材に取り付けて使用に供することができ、振動発生側からの、図4では上下方向の入力振動を、主として、ゴム部材4の剪断変形で吸収することで、入力振動の、振動伝達側の部材への伝達を防止するべく機能する。   Such a vibration isolator can attach the outer cylinder 2 to a member on either the vibration generation side or the vibration transmission side, and attach the inner cylinder 3 to the other member for use. In FIG. 4, the input vibration in the vertical direction in FIG. 4 from the vibration generation side is mainly absorbed by the shear deformation of the rubber member 4, thereby functioning to prevent the input vibration from being transmitted to the vibration transmission side member.

ここにおいて、外筒2及び内筒3の相互を連結する各ゴム脚部分4bをばねおよび質量とするばね―質量系にあって、固有振動周波数、たとえば1000Hz前後の周波数の振動が入力された場合は、ゴム脚部分4bのそれぞれが自励振動して、振幅及び動的ばね定数が増加するサージング現象が生じることがあるので、かかるサージング現象に対処するべく、図4に示す実施形態では、ゴム部材4のそれぞれのゴム脚部分4bを、外筒2の中心軸線を含む平面Pを隔てて位置させ、ゴム部材4の、前記平面Pによって区分けされる一方側に存在する被覆ゴム部分4aの半部及びゴム脚部分4bと、他方側に存在する被覆ゴム部分4aの半部及びゴム脚部分4bとを、互いにゴム硬度の異なる二種類のゴム弾性体Rh1、Rh2で構成し、該ゴム弾性体Rh1、Rh2の相互を、前記被覆ゴム部分4aで、外筒2の軸線方向にわたって固着させる。   Here, in a spring-mass system in which the rubber leg portions 4b that connect the outer cylinder 2 and the inner cylinder 3 to each other are used as a spring and a mass, and a vibration having a natural vibration frequency, for example, a frequency around 1000 Hz is input. In the embodiment shown in FIG. 4, in order to cope with the surging phenomenon, each of the rubber leg portions 4b may cause a surging phenomenon in which the amplitude and the dynamic spring constant increase due to self-excited vibration. Each rubber leg portion 4b of the member 4 is positioned with a plane P including the central axis of the outer cylinder 2 separated, and half of the covered rubber portion 4a existing on one side of the rubber member 4 divided by the plane P. The rubber part 4b and the half part of the covering rubber part 4a existing on the other side and the rubber leg part 4b are composed of two types of rubber elastic bodies Rh1, Rh2 having different rubber hardness, Mutual beam elastic body Rh1, Rh2, with the coating rubber portion 4a, to fix over the axial direction of the outer cylinder 2.

なお、図4に示すところでは、外筒2の内周面の全体に、ゴム部材4が図の上下方向に大きく変形した際のストッパとして機能するストッパゴム部材6を、ゴム部材4のゴム脚部分4bのそれぞれに連続させて設けるとともに、このストッパゴム部材6もまた、平面Pの一方側と他方側とで硬度を相違させたが、このことは、この発明の必須の構成ではない。   4, a stopper rubber member 6 that functions as a stopper when the rubber member 4 is greatly deformed in the vertical direction in the figure is provided on the entire inner peripheral surface of the outer cylinder 2. The stopper rubber member 6 is provided continuously with each of the portions 4b, and the hardness of the stopper rubber member 6 is also different between the one side and the other side of the plane P, but this is not an essential configuration of the present invention.

図4に示す防振装置1では、ゴム弾性体Rh1とゴム弾性体Rh2との相互の固着面積が十分に小さいことに起因して、振動入力に際し、内筒3側から外筒2側に延びる二個のゴム脚部分4bが、互いに大きな影響を及ぼし合うことなく、それぞれ独立して自励振動することになる。
その結果として、この防振装置1によれば、ゴム部材4の動的ばね定数のピークの発生周波数を大きくシフトさせることなく、そのピーク値を、たとえばゴム部材が一種類のゴム弾性体からなる装置におけるピーク値の半分程度にまで低減することができるので、ゴム部材4を高硬度と低硬度の二種類のゴム弾性体Rh1、Rh2で構成することに基づき、エンジンマウントまたはモーターマウント等に必要とされる所要の静的ばね特性を発揮させつつも、サージング現象の発生を有効に防止することができる。
In the vibration isolator 1 shown in FIG. 4, the rubber elastic body Rh <b> 1 and the rubber elastic body Rh <b> 2 have a sufficiently small mutual sticking area, and therefore, when the vibration is input, the rubber elastic body Rh <b> 1 extends from the inner cylinder 3 side to the outer cylinder 2 side. The two rubber leg portions 4b independently vibrate independently without greatly affecting each other.
As a result, according to the vibration isolator 1, the peak value of the dynamic spring constant of the rubber member 4 is not greatly shifted, for example, the rubber member is made of one type of rubber elastic body. Since it can be reduced to about half of the peak value in the apparatus, it is necessary for the engine mount or motor mount based on the rubber member 4 comprising two types of rubber elastic bodies Rh1 and Rh2 of high hardness and low hardness. The surging phenomenon can be effectively prevented while the required static spring characteristics are exhibited.

ここで好ましくは、ゴム部材の、相対的に硬度の低いゴム弾性体Rh1及び、硬度の高いゴム弾性体Rh2のゴム硬度をともに、JIS A硬度で40〜60の範囲内とするとともに、それらのゴム弾性体Rh1、Rh2のゴム硬度の差を、同様の硬度で5〜15の範囲内とする。   Here, preferably, the rubber hardness of the rubber member Rh1 having a relatively low hardness and the rubber member Rh2 having a high hardness are both in the range of 40-60 in terms of JIS A hardness, The difference in rubber hardness between the rubber elastic bodies Rh1 and Rh2 is set within the range of 5 to 15 with the same hardness.

ところで、上記の防振装置の製造は、たとえば、図示は省略するが、はじめに、型開きしたモールド内に、外筒および内筒のそれぞれを配置し、次いで、モールドを型締めして、それの内部に形成されるキャビティに、二つの注入口から、二種類の粘性流体状の生ゴムのそれぞれを射出してキャビティ内に充満させ、しかる後に、生ゴムを加硫することによって行うことができる。
このようにして装置1を製造することにより、ゴム硬度が異なるゴム弾性体Rh1とRh2とを、それらの接触域で互いに一体的に固着させることができる。
By the way, although manufacture of said vibration isolator is abbreviate | omitted illustration, for example, first, each of an outer cylinder and an inner cylinder are arrange | positioned in the mold which opened the mold, and then the mold is clamped, Each of two types of viscous fluid raw rubber is injected into the cavity formed inside from two injection ports to fill the cavity, and then the raw rubber is vulcanized.
By manufacturing the device 1 in this manner, the rubber elastic bodies Rh1 and Rh2 having different rubber hardness can be integrally fixed to each other in their contact areas.

図5に、他の実施形態を、装置の中心軸方向を含む縦断面図で示す。図5に示す装置10は、ゴム部材を構成する二種類のゴム弾性体を、図4に示す装置1とは異なる態様で配置したものであり、装置10の、ゴム弾性体の配置態様以外の構成は装置1と同様である。
すなわち、図5に示す装置10のゴム部材14は、外筒2の軸線方向の一方側と他方側とのそれぞれに、ゴム硬度の異なる二種類のゴム弾性体Rh1、Rh2のそれぞれを配置するとともに、該ゴム弾性体Rh1、Rh2の相互を、外筒2の中心軸線Cに直交する断面で、ゴム部材14の全域にわたって固着させて構成している。
FIG. 5 shows another embodiment in a longitudinal sectional view including the direction of the central axis of the apparatus. The apparatus 10 shown in FIG. 5 has two types of rubber elastic bodies constituting the rubber member arranged in a different mode from the apparatus 1 shown in FIG. 4, and the apparatus 10 has a configuration other than the arrangement mode of the rubber elastic bodies. The configuration is the same as that of the apparatus 1.
That is, the rubber member 14 of the apparatus 10 shown in FIG. 5 has two types of rubber elastic bodies Rh1 and Rh2 having different rubber hardness respectively disposed on one side and the other side of the outer cylinder 2 in the axial direction. The rubber elastic bodies Rh <b> 1 and Rh <b> 2 are configured to be fixed over the entire area of the rubber member 14 in a cross section orthogonal to the central axis C of the outer cylinder 2.

図5に示す防振装置10では、大きな面積で相互に一体的に固着させたゴム弾性体Rh1とRh2とが、振動の入力時に、互いに振幅の大きさ及び位相の異なる挙動を示すことによって、硬度の異なる二種類の弾性体Rh1、Rh2が、相互に大きな影響を及ぼし合って、ゴム弾性体自身の振動の振幅を互いに抑制するべく機能する。
それにより、この防振装置10によれば、ゴム部材14の動的ばね定数のピークが低減されるとともに、そのピークの発生周波数が、従来の装置でサージングが生じる入力振動の周波数より高周波数側もしくは低周波数側にシフトすることになるので、所要の静的ばね定数を大幅に低下させることなしに、サージング現象の発生のおそれを効果的に取り除くことができる。
In the vibration isolator 10 shown in FIG. 5, the rubber elastic bodies Rh1 and Rh2 that are integrally fixed to each other with a large area exhibit different behaviors in amplitude and phase from each other when vibration is input. Two types of elastic bodies Rh1 and Rh2 having different hardnesses exert a great influence on each other and function to suppress the vibration amplitude of the rubber elastic body itself.
Thereby, according to this vibration isolator 10, the peak of the dynamic spring constant of the rubber member 14 is reduced, and the frequency of the peak is higher than the frequency of the input vibration that causes surging in the conventional device. Alternatively, since the shift is to the low frequency side, it is possible to effectively eliminate the possibility of the surging phenomenon without significantly reducing the required static spring constant.

図5に示すところでは、外筒2の軸線方向の一方側と他方側に配置した二種類のゴム弾性体Rh1、Rh2の体積比を、1:1としているが、この比率はこれに限定されるものではないので、二種類のゴム弾性体Rh1、Rh2を、たとえば、図示は省略するが、1:4もしくは4:1の体積比で配置することも可能である。
先に述べた解析結果によれば、図5に示すような防振装置10では、所定の周波数域で動的ばね定数のピークが二つ発生することになり、二種類のゴム弾性体の体積比を変更することによって、前記二つのピークの増減とともに、少なくとも一方のピークの発生周波数を、より低周波数側もしくは高周波数側にシフトさせることができるので、二種類のゴム弾性体の体積比を適宜選択することによって、サージングの発生をより確実に防止することができる。
In FIG. 5, the volume ratio of the two types of rubber elastic bodies Rh1 and Rh2 arranged on one side and the other side in the axial direction of the outer cylinder 2 is 1: 1, but this ratio is limited to this. Therefore, the two types of rubber elastic bodies Rh1 and Rh2 can be arranged in a volume ratio of 1: 4 or 4: 1, for example, although not shown.
According to the analysis results described above, in the vibration isolator 10 as shown in FIG. 5, two dynamic spring constant peaks occur in a predetermined frequency range, and the volume of two types of rubber elastic bodies. By changing the ratio, the frequency of occurrence of at least one peak can be shifted to a lower frequency side or a higher frequency side with the increase or decrease of the two peaks, so the volume ratio of the two types of rubber elastic bodies can be increased. By selecting appropriately, the occurrence of surging can be prevented more reliably.

なお、図5に示す装置10では、外筒2の内周面を被覆するストッパゴム部材16もまた、外筒の軸線方向の一方側の部分と他方側の部分とで、ゴム硬度を相違させている。   In the device 10 shown in FIG. 5, the stopper rubber member 16 covering the inner peripheral surface of the outer cylinder 2 is also made to have a different rubber hardness between the one side part and the other side part in the axial direction of the outer cylinder. ing.

1、10 防振装置
2 外筒
3 内筒
4、14 ゴム部材
4a、14a 被覆ゴム部分
4b ゴム脚部分
5a、5b 空所
Rh1 低硬度のゴム弾性体
Rh2 高硬度のゴム弾性体
DESCRIPTION OF SYMBOLS 1, 10 Vibration isolator 2 Outer cylinder 3 Inner cylinder 4, 14 Rubber member 4a, 14a Cover rubber part 4b Rubber leg part 5a, 5b Space Rh1 Low hardness rubber elastic body Rh2 High hardness rubber elastic body

Claims (4)

外筒と、外筒の内側に配置した内筒と、内筒の周囲を取り囲む被覆ゴム部分及び、該被覆ゴム部分に連続して外筒側にそれぞれ延びて、外筒及び内筒の相互を、外筒の周方向の二箇所で連結するそれぞれのゴム脚部分からなるゴム部材とを具えてなる防振装置であって、
前記ゴム部材を、ゴム硬度が異なる二種類のゴム弾性体の相互を少なくとも一部で一体的に固着させて構成し
前記ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体は、それぞれ、前記外筒及び前記内筒の相互を連結している、防振装置。
An outer cylinder, an inner cylinder disposed inside the outer cylinder, a covering rubber portion surrounding the inner cylinder, and extending continuously toward the outer cylinder side of the covering rubber portion. An anti-vibration device comprising a rubber member composed of respective rubber legs connected at two locations in the circumferential direction of the outer cylinder,
The rubber member is constituted by integrally fixing at least a part of two types of rubber elastic bodies having different rubber hardness ,
The two types of rubber elastic bodies having different rubber hardnesses of the rubber member are respectively connected to the outer cylinder and the inner cylinder .
ゴム部材のそれぞれのゴム脚部分を、外筒の中心軸線を含む平面を隔てて位置させ、ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、前記平面により区分けされる一方側と他方側とのそれぞれに配置するとともに、該ゴム弾性体の相互を、前記被覆ゴム部分で、外筒の軸線方向にわたって固着させてなる請求項1に記載の防振装置。   While each rubber leg portion of the rubber member is positioned across a plane including the central axis of the outer cylinder, each of the two types of rubber elastic bodies having different rubber hardnesses of the rubber member is divided by the plane. 2. The vibration isolator according to claim 1, wherein the anti-vibration device is disposed on each of the first side and the second side, and the rubber elastic bodies are fixed to each other over the axial direction of the outer cylinder at the covering rubber portion. ゴム部材の、ゴム硬度の異なる前記二種類のゴム弾性体のそれぞれを、外筒の軸線方向の一方側と他方側とのそれぞれに配置するとともに、該ゴム弾性体の相互を、外筒の中心軸線に直交する断面で、ゴム部材の全域にわたって固着させてなる請求項1に記載の防振装置。   Each of the two types of rubber elastic bodies having different rubber hardnesses is arranged on one side and the other side in the axial direction of the outer cylinder, and the rubber elastic bodies are arranged at the center of the outer cylinder. The anti-vibration device according to claim 1, wherein the rubber member is fixed over the entire area in a cross section perpendicular to the axis. 前記二種類のゴム弾性体の、それぞれのゴム硬度をともに、JIS A硬度で40〜60の範囲内とし、二種類のゴム弾性体のゴム硬度の差を、JIS A硬度で5〜15の範囲内としてなる請求項1〜3のいずれかに記載の防振装置。   Each of the two types of rubber elastic bodies has a rubber hardness in the range of 40 to 60 in JIS A hardness, and the difference in rubber hardness between the two types of rubber elastic bodies in the range of 5 to 15 in JIS A hardness. The vibration isolator according to any one of claims 1 to 3, wherein the anti-vibration device is provided inside.
JP2011127526A 2011-06-07 2011-06-07 Vibration isolator Expired - Fee Related JP5693386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127526A JP5693386B2 (en) 2011-06-07 2011-06-07 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127526A JP5693386B2 (en) 2011-06-07 2011-06-07 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2012255461A JP2012255461A (en) 2012-12-27
JP5693386B2 true JP5693386B2 (en) 2015-04-01

Family

ID=47527209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127526A Expired - Fee Related JP5693386B2 (en) 2011-06-07 2011-06-07 Vibration isolator

Country Status (1)

Country Link
JP (1) JP5693386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025472A (en) * 2013-07-24 2015-02-05 株式会社ブリヂストン Vibration control device
JP6107689B2 (en) * 2014-02-05 2017-04-05 トヨタ自動車株式会社 vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213838A (en) * 1985-07-10 1987-01-22 Honda Motor Co Ltd Rubber vibration insulator
JPH04357342A (en) * 1991-05-31 1992-12-10 Kubota Corp Engine supporting vibration-proof rubber
JP2007270925A (en) * 2006-03-30 2007-10-18 Tokai Rubber Ind Ltd Vibration isolation device and method for manufacturing vibration isolation device

Also Published As

Publication number Publication date
JP2012255461A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
EP2610522B1 (en) Torque rod and engine mount system using same
JP3848840B2 (en) Vibration isolator
JP2005226745A (en) Engine mount
JP5693386B2 (en) Vibration isolator
JP4833883B2 (en) Vibration isolator
WO2012120992A1 (en) Anti-vibration device
JP5925545B2 (en) Liquid-filled vibration isolator
JP2013117259A (en) Vibration damping device
JP2005106192A (en) Cylindrical engine mount
JP2007064353A (en) Swing damping device
JP4958690B2 (en) Cylindrical member for vibration isolator and vibration isolator
JP5653698B2 (en) Vibration isolator and vibration isolator bracket
JP4543318B2 (en) Dynamic damper
JP4471507B2 (en) Antivibration structure of tubular structure
JP5475422B2 (en) Liquid-filled vibration isolator
JP2010196850A (en) Vibration control device
JP5893482B2 (en) Liquid-filled vibration isolator
JP5336299B2 (en) Vibration isolator
KR101251492B1 (en) Hydraulic engine mount
JP5555572B2 (en) Torque rod
JP5336321B2 (en) Vibration isolator
JP2010053966A (en) Dynamic damper
JP4633751B2 (en) Vibration isolator
JP2005098484A (en) Fluid sealed cylindrical vibration damper
JP5121750B2 (en) Vibration isolator and its mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees