WO2010041514A1 - 光学フィルム、及びそれを用いた偏光板 - Google Patents

光学フィルム、及びそれを用いた偏光板 Download PDF

Info

Publication number
WO2010041514A1
WO2010041514A1 PCT/JP2009/064173 JP2009064173W WO2010041514A1 WO 2010041514 A1 WO2010041514 A1 WO 2010041514A1 JP 2009064173 W JP2009064173 W JP 2009064173W WO 2010041514 A1 WO2010041514 A1 WO 2010041514A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
film
optical film
group
ester
Prior art date
Application number
PCT/JP2009/064173
Other languages
English (en)
French (fr)
Inventor
真一郎 鈴木
理英子 れん
光世 長谷川
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010041514A1 publication Critical patent/WO2010041514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to an optical film and a polarizing plate using the same.
  • LCDs liquid crystal display devices
  • various optical films such as a polarizing film and a retardation film are used.
  • the object of the present invention is excellent in moisture permeability even when stretched at a high magnification, improves the wet heat resistance of the polarizer when used in a polarizing plate protective film, and at the same time, excellent in mass change of the film after wet heat conditions.
  • An object of the present invention is to provide an optical film excellent in front contrast and a polarizing plate using the same by suppressing disorder of molecular orientation of the additive and cellulose even when stretched at a magnification.
  • B- (GA) n-GB (Wherein B is a benzene monocarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 0 or more.) 2.
  • the optical film has a width of 1.6 to 4 m and is stretched by 1.07 to 2.0 times in at least one direction of a film longitudinal direction (MD) and a film width direction (TD). The optical film as described in 1 above.
  • a polarizing plate characterized by using the optical film according to 1 or 2 on at least one surface of a polarizer.
  • the present invention has excellent moisture permeability even when stretched at a high magnification, improves the wet heat resistance of the polarizer when used in a polarizing plate protective film, and at the same time has excellent mass change of the film after wet heat conditions, and further has a high magnification.
  • An optical film excellent in front contrast and a polarizing plate using the same can be provided by suppressing the disorder of molecular orientation of the additive and cellulose even when stretched in the same manner.
  • the optical film of the present invention is an optical film containing at least the compound represented by the general formula (1) and a cellulose ester, and the elastic modulus of the optical film measured in a 23 ° C. and 55% RH environment is the film longitudinal direction.
  • MD film width direction
  • TD film width direction
  • the width of the optical film is increased by 1.6 m or more by a high-stretching operation in order to improve productivity, an unprecedented problem occurs. For example, under conditions of high temperature and high humidity, moisture permeability deteriorates, the function as a polarizing plate protective film decreases, and polarizer deterioration easily proceeds. Further, when the optical film is incorporated into a polarizing plate as a polarizing plate protective film and mounted on a liquid crystal display device, the front contrast is lowered due to the disorder of the orientation of the optical film that occurs during stretching.
  • an optical film containing a cellulose ester has a compound represented by the above general formula (1), and a film longitudinal direction (MD) and film by a stretching operation.
  • TD film longitudinal direction
  • it has excellent moisture permeability even when stretched at a high magnification, and improves the wet heat resistance of the polarizer when used for a polarizing plate protective film, and at the same time wet heat
  • an optical film excellent in front contrast can be obtained by suppressing the disorder of molecular orientation of the additive and cellulose even when stretched at a high magnification, excellent in mass change of the film after conditions.
  • the elastic modulus is also called the tensile elastic modulus.
  • ISO 527-3 a tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used to conduct a tensile test at 23 ° C. and 55% RH, and 10% strain strength data. It was obtained from.
  • the elastic modulus is measured in both the film longitudinal direction (hereinafter referred to as MD direction) and the film width direction (hereinafter referred to as TD direction), both of which are 3.4 GPA (measured in an environment of 23 ° C. and 55% RH) or more. It is necessary to set the elastic modulus in the TD direction higher than the elastic modulus in the MD direction so that the TD elastic modulus / MD elastic modulus is 1.05 to 2.0. To achieve this, the compound represented by the general formula (1) can be contained and subjected to a stretching operation.
  • Elastic modulus is a physical property value that indicates the difficulty of deformation.
  • the water content of the optical film containing cellulose ester can be controlled by changing the production method and formulation and controlling the elastic modulus by a stretching operation. Therefore, it was found that when the elastic modulus is in a specific range, the polarizing plate is hardly deteriorated and the film mass value after the wet heat condition is also difficult to change. Furthermore, it has been found that when the elastic modulus is within a specific range, the polarizing plate itself is not easily deformed or misaligned, and the contrast increases.
  • the elastic modulus is preferably in the range of 3.4 GPA or more and 4.5 GPA or less.
  • the compound represented by the general formula (1) is a polyester plasticizer, more specifically an aromatic terminal ester plasticizer.
  • B- (GA) n-GB (Wherein B is a benzene monocarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
  • benzene monocarboxylic acid component of the polyester plasticizer used in the present invention examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, and normalpropyl.
  • benzoic acid aminobenzoic acid, acetoxybenzoic acid, etc., and these can be used as 1 type, or 2 or more types of mixtures, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1, 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neo Pentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane) 3-methyl-1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pen Diols,
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols include 1 It can be used as a seed or a mixture of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the polyester plasticizer used in the present invention is preferably in the range of 300 to 1500, more preferably 400 to 1000.
  • the acid value is 0.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
  • Example No. 1 (Aromatic terminal ester sample)> A reaction vessel was charged with 410 parts of phthalic acid, 610 parts of benzoic acid, 737 parts of dipropylene glycol, and 0.40 part of tetraisopropyl titanate as a catalyst. While the monohydric alcohol was refluxed, heating was continued at 130 to 250 ° C. until the acid value became 2 or less, and water produced was continuously removed. Next, the distillate is removed at 200 to 230 ° C. under reduced pressure of 1.33 ⁇ 10 4 Pa to finally 4 ⁇ 10 2 Pa or less, and then filtered to remove an aromatic terminal ester plastic having the following properties: An agent was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 43400 Acid value: 0.2 ⁇ Sample No. 2 (Aromatic terminal ester sample)> Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 341 parts of ethylene glycol, and 0.35 part of tetraisopropyl titanate as a catalyst were used in the reaction vessel. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 31000 Acid value: 0.1 ⁇ Sample No. 3 (Aromatic terminal ester sample)> Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 418 parts of 1,2-propanediol, and 0.35 part of tetraisopropyl titanate as the catalyst were used in the reaction vessel. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 38000 Acid value: 0.05 ⁇ Sample No. 4 (Aromatic terminal ester sample)> Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 418 parts of 1,3-propanediol, and 0.35 part of tetraisopropyl titanate as a catalyst were used in the reaction vessel. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 37000 Acid value: 0.05
  • the specific compound of the aromatic terminal ester plasticizer which can be used for this invention below is shown, this invention is not limited to this.
  • the above compound is preferably contained in the optical film in an amount of 1 to 35% by mass, particularly 5 to 30% by mass. Within this range, it is preferable that the excellent effects of the present invention are exhibited and there is no bleeding out during storage of the raw material.
  • the cellulose ester used in the optical film of the present invention is not particularly limited, but the cellulose ester is a carboxylic acid ester having about 2 to 22 carbon atoms, and may be an aromatic carboxylic acid ester, particularly a cellulose lower fatty acid ester. Preferably there is.
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • the acyl group bonded to the hydroxyl group may be linear or branched or may form a ring. Furthermore, another substituent may be substituted. In the case of the same degree of substitution, birefringence decreases when the number of carbon atoms is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
  • the cellulose ester preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
  • the cellulose ester may be an acyl group derived from a mixed acid, and particularly preferably an acyl group having 2 and 3 carbon atoms, or 2 and 4 carbon atoms.
  • a cellulose ester a mixed fatty acid ester of cellulose to which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate is used.
  • the butyryl group forming butyrate may be linear or branched.
  • cellulose ester preferably used in the present invention cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, and cellulose acetate phthalate are particularly preferably used.
  • the retardation value can be appropriately controlled by the kind of the acyl group of the cellulose ester and the substitution degree of the acyl group to the pyranose ring of the cellulose resin skeleton.
  • Preferred cellulose esters for the present invention are those that simultaneously satisfy the following formulas (1) and (2).
  • Formula (2) 0 ⁇ Y ⁇ 1.5
  • X is the degree of substitution of the acetyl group
  • Y is the degree of substitution of the propionyl group or butyryl group.
  • triacetyl cellulose and cellulose acetate propionate are particularly preferably used.
  • cellulose acetate propionate 1.0 ⁇ X ⁇ 2.5, preferably 0.1 ⁇ Y ⁇ 1.5, and 2.0 ⁇ X + Y ⁇ 3.0.
  • the method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • substitution degree of the acyl group is too low, there will be more unreacted parts with respect to the hydroxyl groups of the pyranose ring constituting the skeleton of the cellulose resin.
  • the ability to protect the polarizer as a film may decrease, which is not preferable.
  • the value of the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester according to the present invention is preferably 1.4 to 3.0.
  • the cellulose ester film may contain, as a material, a cellulose ester having a Mw / Mn value of 1.4 to 3.0, but the cellulose ester contained in the film (preferably cellulose triacetate) (Or cellulose acetate propionate)
  • the overall Mw / Mn value is more preferably in the range of 1.4 to 3.0. More preferably, it is 1.7 to 2.2.
  • the molecular weight of the cellulose ester used in the optical film according to the present invention is preferably a number average molecular weight (Mn) of 80000-200000. More preferred are 100,000 to 200,000, particularly preferably 150,000 to 200,000.
  • the average molecular weight and molecular weight distribution of cellulose ester can be measured by a known method using high performance liquid chromatography. Using this, the number average molecular weight and the weight average molecular weight can be calculated, and the ratio (Mw / Mn) can be calculated.
  • the cellulose used as a raw material for the cellulose ester used in the present invention is not particularly limited, and wood pulp (coniferous pulp, hardwood pulp), cotton linter, and the like can be used.
  • the Mw of the cellulose ester can be controlled by the type of cellulose and the use of a plurality of raw material celluloses. For example, if esterification is performed using pre-hydrolysis kraft pulp, the Mw of the cellulose ester increases, and if softwood sulfite pulp is used, the Mw tends to decrease. Therefore, cellulose may be used singly or in combination of two or more. For example, softwood pulp and cotton linter or hardwood pulp may be used in combination. As cellulose, usually pulp (particularly softwood pulp) is often used.
  • the ⁇ -cellulose content (mass%) of cellulose is usually from 94 to 99 (eg, 95 to 99), preferably from about 96 to 98.5 (eg, 97.3 to 98). .
  • the acylating agent of the cellulose raw material is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • the cellulose ester according to the present invention uses an organic solvent such as acetic acid or an organic solvent such as methylene chloride.
  • the reaction is carried out using a protic catalyst such as sulfuric acid.
  • the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl)
  • the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the average substitution degree of the acyl group at the 6-position of the glucose unit of the cellulose ester used in the present invention is preferably 0.5 to 0.9.
  • the glucose unit constituting the cellulose ester has a highly reactive primary hydroxyl group, and this primary hydroxyl group is sulfated during the production of cellulose ester using sulfuric acid as a catalyst.
  • Esters are preferentially formed. Therefore, by increasing the amount of catalytic sulfuric acid in the esterification reaction of cellulose, it is possible to increase the average substitution degree at the 2nd and 3rd positions rather than the 6th position of the glucose unit as compared with a normal cellulose ester. Furthermore, if the cellulose is tritylated as necessary, the hydroxyl group at the 6-position of the glucose unit can be selectively protected.
  • the trityl group protects the hydroxyl group at the 6-position, and after esterification, the trityl group (protection)
  • the average substitution degree at the 2nd and 3rd positions can be increased from the 6th position of the glucose unit.
  • a cellulose ester produced by the method described in JP-A No. 2005-281645 can also be preferably used.
  • the degree of decomposition can be defined by the value of weight average molecular weight (Mw) / number average molecular weight (Mn) that is usually used. That is, in the process of acetylation of cellulose triacetate, the weight average molecular weight used as one index of the reaction degree for allowing the acetylation reaction to be carried out for a sufficient time for acetylation without being excessively decomposed too much.
  • the value of (Mw) / number average molecular weight (Mn) can be used.
  • a method for producing cellulose ester is shown below. 100 parts by weight of a cotton linter was crushed as a cellulose raw material, 40 parts by weight of acetic acid was added, and pretreatment activation was performed at 36 ° C. for 20 minutes. Thereafter, 8 parts by mass of sulfuric acid, 260 parts by mass of acetic anhydride and 350 parts by mass of acetic acid were added, and esterification was performed at 36 ° C. for 120 minutes. After neutralization with 11 parts by mass of a 24% magnesium acetate aqueous solution, saponification aging was carried out at 63 ° C. for 35 minutes to obtain acetylcellulose.
  • acetylcellulose having an acetyl substitution degree of 2.75.
  • This acetylcellulose had Mn of 92000, Mw of 156000, and Mw / Mn of 1.7.
  • cellulose esters having different degrees of substitution and Mw / Mn ratios can be synthesized by adjusting the esterification conditions (temperature, time, stirring) and hydrolysis conditions of the cellulose ester.
  • the Mw / Mn ratio of the cellulose ester is preferably 1.4 to 5.0.
  • the synthesized cellulose ester is preferably purified to remove low molecular weight components or to remove unacetylated or low acetylated components by filtration.
  • cellulose ester is also affected by trace metal components in cellulose ester. These are considered to be related to water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, and metal ions such as iron, calcium, and magnesium contain organic acidic groups. Insoluble matter may be formed by salt formation with a polymer degradation product or the like that may be present, and it is preferable that the amount is small.
  • the iron (Fe) component is preferably 1 ppm or less.
  • the calcium (Ca) component it is easy to form a coordination compound, that is, a complex with an acidic component such as carboxylic acid or sulfonic acid, and many ligands. Starch, turbidity).
  • the calcium (Ca) component is 60 ppm or less, preferably 0 to 30 ppm.
  • the magnesium (Mg) component is preferably in the range of 0 to 70 ppm, and more preferably in the range of 0 to 20 ppm.
  • Metal components such as iron (Fe) content, calcium (Ca) content, magnesium (Mg) content, etc. are pre-processed by completely digesting cellulose ester with micro digest wet cracking equipment (sulfuric acid decomposition) and alkali melting. After being performed, it can be analyzed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
  • the optical film of the present invention preferably contains an acrylic copolymer (hereinafter also referred to as an acrylic polymer).
  • the acrylic polymer preferably contains an acrylic polymer having a weight average molecular weight of 500 or more and 30000 or less in order to exert an effect on the stability of the retardation.
  • an ethylenic polymer having no aromatic ring and no hydrophilic group in the molecule is particularly preferred.
  • Polymer X is obtained by copolymerizing ethylenically unsaturated monomer Xa having no aromatic ring and hydrophilic group in the molecule and ethylenically unsaturated monomer Xb having no aromatic ring and having a hydrophilic group in the molecule.
  • the obtained polymer having a weight average molecular weight of 5,000 to 30,000.
  • Xa is an acrylic or methacrylic monomer that does not have an aromatic ring and a hydrophilic group in the molecule
  • Xb is an acrylic or methacrylic monomer that does not have an aromatic ring in the molecule and has a hydrophilic group.
  • Polymer X is represented by the following general formula (X).
  • R 1 and R 3 represent H or CH 3.
  • R 2 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group.
  • R 4 represents —CH 2 —, —C 2 H 4 —.
  • the monomer as a monomer unit which comprises the polymer X is mentioned below, it is not limited to this.
  • the hydrophilic group means a group having a hydroxyl group or an ethylene oxide chain.
  • Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and no hydrophilic group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), and butyl acrylate (n-, i- , S-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n- I-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-ethoxyethyl), etc., or those obtained by replacing the above acrylic ester with a methacrylic ester.
  • the ethylenically unsaturated monomer Xb having no aromatic ring in the molecule and having a hydrophilic group is preferably acrylic acid or methacrylic acid ester as a monomer unit having a hydroxyl group.
  • acrylic acid (2-hydroxyethyl) List acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), or those in which these acrylic acids are replaced by methacrylic acid.
  • Xc is not particularly limited as long as it is an ethylenically unsaturated monomer other than Xa and Xb and copolymerizable, but preferably has no aromatic ring.
  • the molar composition ratio m: n of Xa, Xb and Xc is preferably in the range of 99: 1 to 65:35, more preferably in the range of 95: 5 to 75:25.
  • P of Xc is 0-10.
  • Xc may be a plurality of monomer units.
  • the molecular weight of the polymer X has a weight average molecular weight of 5,000 to 30,000, more preferably 8,000 to 25,000.
  • the weight average molecular weight be 5000 or more because advantages such as a small dimensional change under high temperature and high humidity as an optical film and less curl when used as a protective film for a polarizing plate are obtained.
  • the weight average molecular weight is within 30000, the compatibility with the cellulose ester is further improved, bleeding out under high temperature and high humidity, and further haze generation during stretching are suppressed.
  • the weight average molecular weight of the polymer X of the present invention can be adjusted by a known molecular weight adjusting method.
  • a molecular weight adjusting method include a method of adding a chain transfer agent such as carbon tetrachloride, lauryl mercaptan, octyl thioglycolate, and the like.
  • the polymerization temperature is usually room temperature to 130 ° C., preferably 50 ° C. to 100 ° C., and this temperature or the polymerization reaction time can be adjusted.
  • the method for measuring the weight average molecular weight can be as follows.
  • Weight average molecular weight measurement method The weight average molecular weight Mw was measured using gel permeation chromatography.
  • the measurement conditions are as follows.
  • Polymer Y is a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring.
  • a weight average molecular weight of 500 or more is preferable because the residual monomer of the polymer is reduced.
  • Ya is preferably an acrylic or methacrylic monomer having no aromatic ring.
  • Polymer Y is represented by the following general formula (Y).
  • the ethylenically unsaturated monomer Ya constituting the polymer Y obtained by polymerizing an ethylenically unsaturated monomer having no aromatic ring is, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i- , N-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (N-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2- Ethyl hexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid
  • Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya.
  • vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, and vinyl caproate.
  • Vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate and the like are preferred.
  • Yb may be plural.
  • a method that can align the molecular weight as much as possible without increasing the molecular weight examples include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator.
  • a method using a chain transfer agent such as carbon tetrachloride a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP-A Nos. 2000-128911 and 2000-344823.
  • examples thereof include a compound having one thiol group and a secondary hydroxyl group, or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination.
  • polymer Y uses a compound having a thiol group and a secondary hydroxyl group in the molecule as a chain transfer agent.
  • the polymerization method of use is preferred.
  • the terminal of the polymer Y has a hydroxyl group and a thioether resulting from the polymerization catalyst and the chain transfer agent.
  • the compatibility of Y and cellulose ester can be adjusted by this terminal residue.
  • Polymers X and Y preferably have a hydroxyl value of 30 to 150 [mg KOH / g].
  • hydroxyl value is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated.
  • sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml) is accurately added thereto. Attach an air cooling tube to the mouth of the flask and heat in a glycerin bath at 95-100 ° C.
  • Hydroxyl value ⁇ (BC) ⁇ f ⁇ 28.05 / X ⁇ + D (Wherein B is the amount of 0.5 mol / L potassium hydroxide ethanol solution used in the blank test (ml), and C is the amount of 0.5 mol / L potassium hydroxide ethanol solution used in the titration (ml).
  • the content of the polymer X and the polymer Y in the cellulose ester film is preferably in a range satisfying the following formulas (i) and (ii).
  • a preferred range of formula (i) is 10 to 25% by mass.
  • the polymer X and the polymer Y have a sufficient effect for reducing the retardation value Rt. Moreover, if it is 35 mass% or less as a total amount, adhesiveness with a polyvinyl alcohol-type polarizer will be favorable.
  • Polymer X and polymer Y can be directly added and dissolved as a material constituting the dope liquid described later, or can be added to the dope liquid after being previously dissolved in an organic solvent for dissolving the cellulose ester.
  • the optical film of the present invention comprises a compound (sugar ester) having at least one furanose structure or pyranose structure and esterifying all or part of OH groups in the compound having 1 to 12 furanose structures or pyranose structures bonded thereto. It may be referred to as a compound).
  • a compound sucgar ester
  • Glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, cellotriose, maltotriose, raffinose and the like can be mentioned, and those having both a furanose structure and a pyranose structure are particularly preferable.
  • An example is sucrose.
  • a compound (sugar ester compound) in which all or part of OH groups in a compound having at least one furanose structure or pyranose structure and 1 to 12 furanose structures or pyranose structures bonded to each other is esterified” is synthesized.
  • the monocarboxylic acid used at the time is not particularly limited, and the sugar ester compound used in the present invention is esterified with a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, or the like. Can be synthesized.
  • the carboxylic acid used may be one type or a mixture of two or more types.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids and cinnamic acids having 1 to 5 substituents such as alkyl groups or alkoxy groups introduced into the benzene ring of benzoic acids such as benzoic acid and toluic acid.
  • An aromatic monocarboxylic acid having two or more benzene rings such as benzyl acid, biphenyl carboxylic acid, naphthalene carboxylic acid, tetralin carboxylic acid, or a derivative thereof may be mentioned, and benzoic acid is particularly preferable.
  • the optical film of the present invention has at least one furanose structure or pyranose structure in order to suppress the occurrence of haze at the time of stretching, and the OH group of the compound in which 1 to 12 of the furanose structure or pyranose structure is bonded. It is preferable to contain 1 to 35% by mass, particularly 5 to 30% by mass, in the optical film, of a compound obtained by esterifying all or part of the compound. Within this range, it is preferable that the excellent effects of the present invention are exhibited and there is no bleeding out during storage of the raw material.
  • the optical film of the present invention can contain other plasticizers as necessary for obtaining the effects of the present invention.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, an acrylic plasticizer. Selected from agents and the like. Of these, when two or more plasticizers are used, at least one plasticizer is preferably a polyhydric alcohol ester plasticizer. These plasticizers are preferably used in the range of 1 to 30% by mass with respect to the cellulose ester.
  • the polyhydric alcohol ester plasticizer is a compound represented by the following general formula (2).
  • R1- (OH) n (In the formula, R1 represents an n-valent organic group, and n represents a positive integer of 2 or more)
  • preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • acetic acid is preferred because the compatibility with the cellulose ester is increased, and it is also preferred to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, or derivatives thereof.
  • Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
  • the aromatic monocarboxylic acid which has, or those derivatives can be mentioned. In particular, benzoic acid is preferred.
  • the molecular weight of the polyhydric alcohol ester is preferably in the range of 300 to 1500, more preferably in the range of 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
  • the carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the specific compound of a polyhydric alcohol ester is shown below.
  • trimethylolpropane triacetate pentaerythritol tetraacetate, and the like are also preferably used.
  • the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
  • citrate plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
  • fatty acid ester plasticizers examples include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the polyvalent carboxylic acid ester compound is composed of an ester of a divalent or higher, preferably a divalent to 20valent polyvalent carboxylic acid and an alcohol.
  • the aliphatic polyvalent carboxylic acid is preferably divalent to 20-valent, and in the case of an aromatic polyvalent carboxylic acid or alicyclic polyvalent carboxylic acid, it is preferably trivalent to 20-valent.
  • the polyvalent carboxylic acid is represented by the following general formula (3).
  • R 2 (COOH) m (OH) n (Wherein R 2 is an (m + n) -valent organic group, m is a positive integer of 2 or more, n is an integer of 0 or more, a COOH group is a carboxyl group, and an OH group is an alcoholic or phenolic hydroxyl group)
  • R 2 is an (m + n) -valent organic group, m is a positive integer of 2 or more, n is an integer of 0 or more, a COOH group is a carboxyl group, and an OH group is an alcoholic or phenolic hydroxyl group
  • Examples of preferred polyvalent carboxylic acids include the following, but the present invention is not limited to these.
  • Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal
  • An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used.
  • the alcohol used in the polyvalent carboxylic acid ester compound that can be used in the present invention is not particularly limited, and known alcohols and phenols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can also be preferably used.
  • the alcoholic or phenolic hydroxyl group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
  • monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid. And aromatic monocarboxylic acids possessed by them, or derivatives thereof. Particularly preferred are acetic acid, propionic acid, and benzoic acid.
  • the molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but is preferably in the range of 300 to 1000, and more preferably in the range of 350 to 750. The larger one is preferable in terms of improving the retention, and the smaller one is preferable in terms of moisture permeability and compatibility with the cellulose ester.
  • the alcohol used for the polyvalent carboxylic acid ester may be one kind or a mixture of two or more kinds.
  • the acid value of the polycarboxylic acid ester compound is preferably 1 mgKOH / g or less, more preferably 0.2 mgKOH / g or less. Setting the acid value in the above range is preferable because the environmental fluctuation of the retardation is also suppressed.
  • the acid value means the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxyl group present in the sample) contained in 1 g of the sample.
  • the acid value is measured according to JIS K0070.
  • Examples of particularly preferred polyvalent carboxylic acid ester compounds are shown below, but the present invention is not limited thereto.
  • Examples include tributyl trimellitic acid and tetrabutyl pyromellitic acid.
  • the optical film according to the present invention preferably contains an ultraviolet absorber.
  • the ultraviolet absorber is intended to improve durability by absorbing ultraviolet light having a wavelength of 400 nm or less, and the transmittance at a wavelength of 370 nm is particularly preferably 10% or less, more preferably 5% or less. Preferably it is 2% or less.
  • the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body.
  • the UV absorbers preferably used in the present invention are benzotriazole UV absorbers, benzophenone UV absorbers, and triazine UV absorbers, particularly preferably benzotriazole UV absorbers and benzophenone UV absorbers. .
  • benzotriazole-based ultraviolet absorber a compound represented by the following general formula (a) can be used.
  • R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different, and are a hydrogen atom, a halogen atom, a nitro group, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, an alkoxyl group, an acyloxy group.
  • Group, aryloxy group, alkylthio group, arylthio group, mono- or dialkylamino group, acylamino group or 5- to 6-membered heterocyclic group, R 4 and R 5 are closed to form a 5- to 6-membered carbocycle May be.
  • benzotriazole-based ultraviolet absorber used in the present invention are listed below, but the present invention is not limited to these.
  • UV-1 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
  • UV-2 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • UV-3 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole
  • UV-4 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole
  • UV-5 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole
  • UV-6 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
  • UV-7 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-ch
  • Y represents a hydrogen atom, a halogen atom or an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group may have a substituent.
  • A represents a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group, a cycloalkyl group, an alkylcarbonyl group, an alkylsulfonyl group or a —CO (NH) n-1-D group, and D represents an alkyl group, an alkenyl group or a substituent.
  • the alkyl group represents, for example, a linear or branched aliphatic group having up to 24 carbon atoms
  • the alkoxyl group represents, for example, an alkoxyl group having up to 18 carbon atoms
  • the alkenyl group has, for example, carbon number
  • An alkenyl group up to 16 represents an allyl group, a 2-butenyl group, or the like.
  • alkyl groups alkenyl groups, and phenyl groups
  • halogen atoms such as chlorine atoms, bromine atoms, fluorine atoms, hydroxyl groups, phenyl groups (this phenyl group is substituted with alkyl groups or halogen atoms, etc.) May be used).
  • benzophenone ultraviolet absorber represented by the general formula (b) Specific examples of the benzophenone ultraviolet absorber represented by the general formula (b) are shown below, but the present invention is not limited thereto.
  • UV-10 2,4-dihydroxybenzophenone
  • UV-11 2,2'-dihydroxy-4-methoxybenzophenone
  • UV-12 2-hydroxy-4-methoxy-5-sulfobenzophenone
  • UV-13 Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as the ultraviolet absorber.
  • the polarizing plate protective film according to the present invention preferably contains two or more ultraviolet absorbers.
  • a polymeric ultraviolet absorber can be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used.
  • the method of adding the UV absorber may be added to the dope after the UV absorber is dissolved in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane, or a mixed solvent thereof. Or you may add directly in dope composition.
  • a dissolver or a sand mill is used in the organic solvent and cellulose ester to disperse and then added to the dope.
  • the amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the optical film has a dry film thickness of 30 to 200 ⁇ m, it is 0.5 to 10% by mass relative to the optical film. Is preferably 0.6 to 4% by mass.
  • the optical film of the present invention preferably contains fine particles from the viewpoint of slipperiness and storage stability.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
  • the content of these fine particles in the optical film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of an optical film having a multilayer structure by the co-casting method, it is preferable to contain fine particles of this addition amount on the surface.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
  • Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • Examples of the polymer include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the optical film low.
  • the dynamic friction coefficient of at least one surface is preferably 0.2 to 1.0.
  • a dye may be added to the optical film of the present invention for color adjustment.
  • a blue dye may be added to suppress the yellowness of the film.
  • Preferred examples of the dye include anthraquinone dyes.
  • the anthraquinone dye can have an arbitrary substituent at any position from the 1st position to the 8th position of the anthraquinone.
  • Preferred substituents include an anilino group, hydroxyl group, amino group, nitro group, or hydrogen atom.
  • additives may be batch-added to a dope that is a cellulose ester-containing solution before film formation, or an additive solution may be separately prepared and added in-line.
  • an additive solution may be separately prepared and added in-line.
  • the additive solution When the additive solution is added in-line, it is preferably dissolved in a small amount of cellulose ester in order to improve mixing with the dope.
  • a preferable amount of the cellulose ester is 1 to 10 parts by mass, and more preferably 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.
  • an in-line mixer such as a static mixer (manufactured by Toray Engineering), SWJ (Toray static type in-tube mixer Hi-Mixer) or the like is preferably used.
  • the optical film of the present invention can be preferably used, whether it is a film produced by a solution casting method or a film produced by a melt casting method.
  • Production by the solution casting method of the optical film of the present invention is a step of preparing a dope by dissolving the cellulose ester and the additive in a solvent, a step of casting the dope on an endless metal support that moves infinitely, It is performed by a step of drying the cast dope as a web, a step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the cellulose ester acetate acetyl group substitution degree 2.4
  • cellulose Acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
  • the good solvent is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, etc. are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but even if these are included, they are preferably reused. Can be purified and reused if necessary.
  • a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and does not boil under pressure, in order to prevent the formation of massive undissolved material called gel or mako. Moreover, after mixing a cellulose ester with a poor solvent and making it wet or swell, the method of adding a good solvent and melt
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used.
  • plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
  • a bright spot foreign object is placed when two polarizing plates are placed in a crossed Nicols state, an optical film is placed between them, light is applied from one polarizing plate, and the opposite is observed when observed from the other polarizing plate. It is a point (foreign matter) where light from the side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m. Since the width of the optical film of the present invention is preferably 1.6 to 4 m, the cast width is necessarily wide.
  • the surface temperature of the metal support in the casting step is ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
  • the support temperature is preferably 0 to 40 ° C, more preferably 5 to 30 ° C.
  • the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. And particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, particularly The content is preferably 0 to 0.01% by mass or less.
  • a roll drying method (a method in which a plurality of rolls arranged at the top and bottom are alternately passed through the web for drying) or a tenter method for drying while transporting the web is employed.
  • a tenter method is used in which the web is stretched in the longitudinal direction (MD direction) where the amount of residual solvent of the web immediately after peeling from the metal support is large, and the both ends of the web are gripped by clips or the like. It is preferable to perform stretching in the width direction (TD direction).
  • peeling is preferably performed at a peeling tension of 210 N / m or more, particularly preferably 220 to 300 N / m.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying step is preferably 90 ° C. to 200 ° C., more preferably 110 ° C. to 160 ° C.
  • the drying temperature is preferably increased stepwise.
  • the preferred drying time depends on the drying temperature, but is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 30 minutes.
  • the film thickness of the optical film is not particularly limited, but 10 to 200 ⁇ m is used.
  • the film thickness is particularly preferably 10 to 100 ⁇ m. More preferably, it is 20 to 60 ⁇ m.
  • the optical film of the present invention has a width of 1 to 4 m. From the viewpoint of productivity, those having a width of 1.6 to 4 m are preferably used, and particularly preferably 1.8 to 3.6 m. If it exceeds 4 m, conveyance becomes difficult.
  • the elastic modulus of the optical film of the present invention measured in a 23 ° C. and 55% RH environment is 3.4 GPA or more and 7.0 GPA or less in both the film longitudinal direction (MD) and the film width direction (TD).
  • the MD elastic modulus is adjusted to 1.05 to 2.0.
  • the elastic modulus is preferably adjusted to a range of 3.4 GPA or more and 4.5 GPA or less.
  • the optical film has the configuration of the present invention and the following stretching operation is performed.
  • the stretching operation can be performed sequentially or simultaneously with respect to the MD direction and the TD direction of the film.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.07 to 2.0 times in the MD direction and 1.07 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.07 to 1.5 times and 1.07 to 2.0 times in the TD direction.
  • the method of stretching the web There is no particular limitation on the method of stretching the web.
  • a method of stretching in the MD direction a method of stretching in the transverse direction and stretching in the TD direction, a method of stretching in the MD / TD direction simultaneously and stretching in both the MD / TD directions, and the like.
  • these methods may be used in combination.
  • driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • a tenter it may be a pin tenter or a clip tenter.
  • the film transport tension in the film forming process such as in the tenter depends on the temperature, but is preferably 120 N / m to 200 N / m, and more preferably 140 N / m to 200 N / m. 140 N / m to 160 N / m is most preferable.
  • the film When stretching, assuming that the glass transition temperature of the film of the present invention is Tg, the film is heated in the range of (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C. in the MD direction. Or it is preferable to extend in the TD direction.
  • the Tg of the optical film can be controlled by the material type constituting the film and the ratio of the constituting materials.
  • the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. This is because when the optical film of the present invention is used for a liquid crystal display device, if the Tg of the film is lower than the above, the temperature and humidity of the use environment and the influence of the heat of the backlight cause the molecules fixed inside the film. The orientation state is affected, and there is a high possibility that the retardation value and the dimensional stability and shape as a film are greatly changed. In addition, the shape of the film may not be maintained.
  • the glass transition temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower.
  • the Tg of the film can be determined by the method described in JIS K7121.
  • the temperature during stretching is not particularly limited, but is preferably 150 ° C. or higher because haze stability is improved.
  • the optical film is preferably heat-set after stretching, but the heat-setting may be performed at a temperature higher than the final TD direction stretching temperature and within a temperature range of Tg ⁇ 20 ° C., usually 0.5 to 300 seconds. preferable. At this time, it is preferable to perform heat fixing while sequentially raising the temperature in a range where the temperature difference is 1 to 100 ° C. in the region divided into two or more.
  • the heat-fixed film is usually cooled to Tg or less, and the clip gripping portions at both ends of the film are cut and wound.
  • a relaxation treatment of 0.1 to 10% in the TD direction and / or MD direction within a temperature range not higher than the final heat setting temperature and not lower than Tg.
  • the cooling is gradually performed from the final heat setting temperature to Tg at a cooling rate of 100 ° C. or less per second.
  • Means for cooling and relaxation treatment are not particularly limited, and can be performed by a conventionally known means. In particular, it is preferable to carry out these treatments while sequentially cooling in a plurality of temperature ranges from the viewpoint of improving the dimensional stability of the film.
  • the cooling rate is a value obtained by (T1 ⁇ Tg) / t, where T1 is the final heat setting temperature and t is the time until the film reaches Tg from the final heat setting temperature.
  • More optimal conditions of these heat setting conditions, cooling, and relaxation treatment conditions vary depending on the type of additives such as cellulose ester and plasticizer constituting the film, so the physical properties of the obtained biaxially stretched film are measured and preferable characteristics are obtained. What is necessary is just to determine by adjusting suitably so that it may have.
  • ⁇ 1 is preferably ⁇ 1 ° or more and + 1 ° or less, and ⁇ 0. More preferably, it is 5 ° or more and + 0.5 ° or less.
  • This ⁇ 1 can be defined as an orientation angle, and the measurement of ⁇ 1 can be performed using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments).
  • the moisture permeability of the optical film according to the present invention is preferably 10 to 1200 g / m 2 ⁇ 24 h at 40 ° C. and 90% RH, more preferably 20 to 1000 g / m 2 ⁇ 24 h, and 20 to 850 g / m 2 ⁇ 24 h. Is particularly preferred.
  • the moisture permeability can be measured according to the method described in JIS Z 0208.
  • the optical film according to the present invention has a breaking elongation of preferably 10 to 80%, more preferably 20 to 50%.
  • the visible light transmittance of the optical film according to the present invention is preferably 90% or more, and more preferably 93% or more.
  • the haze of the optical film according to the present invention is preferably less than 1%, particularly preferably 0 to 0.1%.
  • the optical film of the present invention preferably has a retardation value Ro represented by the following formula of 0 to 20 nm and Rt of ⁇ 20 to 70 nm.
  • Ro (nx ⁇ ny) ⁇ d
  • Rt ((nx + ny) / 2 ⁇ nz) ⁇ d
  • Ro is the retardation value in the film plane
  • Rt is the retardation value in the film thickness direction
  • nx is the refractive index in the slow axis direction in the film plane
  • ny is the refractive index in the fast axis direction in the film plane
  • nz represents the refractive index in the thickness direction of the film
  • d represents the thickness (nm) of the film.
  • the refractive index can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments).
  • the retardation value Ro is preferably in the range of 0 to 5 nm, and Rt is preferably in the range of ⁇ 10 to 50 nm in order to enhance the effect of the present invention.
  • the optical film has the configuration of the present invention, and the refractive index is controlled by a stretching operation.
  • an antistatic layer In the production of the optical film of the present invention, before and / or after stretching, an antistatic layer, a hard coat layer, a back coat layer, a slippery layer, an adhesive layer, a barrier layer, an antiglare layer, an antireflection layer, and an optical compensation layer.
  • a functional layer such as
  • the polarizing plate of the present invention is a polarizing plate formed by sandwiching at least one surface of a polarizer with the optical film of the present invention.
  • the polarizing plate can be produced by a general method.
  • the optical film of the present invention is preferably bonded to at least one surface of a polarizer prepared by subjecting the polarizer side of the optical film to alkali saponification treatment and immersion drawing in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the optical film may be used on the other surface, or another optical film may be used.
  • cellulose ester films for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC8UY-HA, KC8UTA-HA, KC8UX Opt Co., Ltd.
  • cellulose ester films for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1, KC8UY-HA, KC8UTA-HA, KC8UX Opt Co., Ltd.
  • the optical film of the present invention is an optical film A
  • the optical film having the retardation function is not particularly limited, and these films can be produced by, for example, methods described in JP-A Nos. 2005-196149 and 2005-275104. It is also preferable to use an optical film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal.
  • the optically anisotropic layer can be formed by the method described in JP-A-2005-275083.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
  • the film thickness of the polarizer is preferably 5 to 30 ⁇ m, particularly preferably 10 to 20 ⁇ m.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • the difference in hot water cutting temperature between two points 5 cm away in the TD direction of the film is more preferably 1 ° C. or less in order to reduce color spots, and two points separated 1 cm in the TD direction of the film. In order to reduce color spots, it is more preferable that the difference in the hot water cutting temperature is 0.5 ° C. or less.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability performance and has few color spots, and is particularly preferably used for a large liquid crystal display device.
  • the polarizer obtained as described above is usually used as a polarizing plate with a protective film bonded to both sides or one side.
  • the adhesive used for pasting include a PVA-based adhesive and a urethane-based adhesive. Among them, a PVA-based adhesive is preferably used.
  • liquid crystal display device By incorporating the polarizing plate of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced.
  • the optical film of the present invention can be used in liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. Particularly preferred are VA (MVA, PVA) type and IPS type liquid crystal display devices.
  • a polarizing plate using the optical film of the present invention can impart excellent front contrast when used in a large-screen liquid crystal display device.
  • optical film F-1 Silicon dioxide dispersion
  • Aerosil 972V manufactured by Nippon Aerosil Co., Ltd.
  • 10 parts by mass average primary particle diameter 16 nm, apparent specific gravity 90 g / liter
  • 90 parts by mass of ethanol or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin.
  • 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution.
  • the solution was filtered with a fine particle dispersion diluent filter 14 (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N) in FIG.
  • Tinuvin 928 manufactured by Ciba Japan Co., Ltd. 15 parts by mass Methylene chloride 100 parts by mass The above was put into a hermetic container, heated, stirred and completely dissolved and filtered.
  • the inline additive solution was filtered with an inline additive solution feed filter 8 (Finemet NF manufactured by Nippon Seisen Co., Ltd.). A filter medium with a nominal filtration accuracy of 20 ⁇ m was used.
  • the web of the peeled cellulose ester film was evaporated at 35 ° C., slit to 1.65 m width, and then stretched 1.5 times in the TD direction (the width direction of the film) with a tenter. Dried at the drying temperature. At this time, the residual solvent amount when starting stretching with a tenter was 20%. Then, after being dried for 15 minutes while being transported in a drying apparatus 105 at 120 ° C. with a large number of rolls, it is slit to 2.2 m width, subjected to knurling with a width of 15 mm and a height of 10 ⁇ m at both ends of the film, Winding up to obtain optical film F-1.
  • the residual solvent amount of the optical film was 0.2%, the film thickness was 60 ⁇ m, and the winding number was 6000 m.
  • the elastic modulus in both the film longitudinal direction (MD direction) and the film width direction (TD direction) was 23 ° C. and 55% using a tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd. according to ISO 527-3. A tensile test was performed at RH, and the strength data of 10% strain was obtained.
  • the elastic modulus in the MD direction of the optical film F-1 was 3.6 GPA
  • the elastic modulus in the TD direction was 4.0 GPA
  • the TD elastic modulus / MD elastic modulus was 1.11.
  • optical films F-2 to F-5 Optical films F-2 to F- were prepared in the same manner except that the type of additive, amount added, width direction stretching conditions (temperature, magnification), film thickness, and product width were changed as shown in Tables 3 and 4. 54 was produced.
  • optical films F-1 to F-54 prepared above were alkali-treated with a 2.5 mol / L sodium hydroxide aqueous solution at 40 ° C. for 90 seconds, washed with water for 45 seconds, and 10 mass% HCl at 30 ° C. for 45 seconds. Then, the mixture was washed with water at 30 ° C. for 45 seconds and saponified to obtain an alkali-treated film.
  • a 120 ⁇ m thick polyvinyl alcohol film was uniaxially stretched (temperature 110 ° C., stretch ratio 6 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. This was washed with water and dried to obtain a 3.0 m wide polarizer.
  • the optical compensation film 1 produced as described below was saponified by the above method, and the optical films F-1 to F-54, the polarizer, and the optical compensation film 1 were used in this order using a fully saponified polyvinyl alcohol 5% aqueous solution as an adhesive.
  • polarizing plates 1 to 54 on the viewing side were prepared.
  • ⁇ In-line additive solution> The following cellulose acetate propionate was added to a dissolution tank containing methylene chloride and heated to completely dissolve, and this was then added to Azumi Filter Paper No. Filtered using 244.
  • ⁇ Composition of main dope solution Methylene chloride 380 parts by mass Ethanol 70 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.90, propionyl group substitution degree 0.70, total acyl group substitution degree 2.60) 100 parts by mass Trimethylolpropane tribenzoate 15 parts by mass The above was put into a sealed container, heated and stirred to dissolve completely, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.
  • the dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line.
  • the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • the peeled cellulose ester web was evaporated at 50 ° C. and slit to a width of 1.9 m, and then stretched in the TD direction by a tenter at a stretching ratio of 1.7 times at 160 ° C. Drying is completed while transporting through a 120 ° C drying zone with many rolls, slitting to a width of 3.0m, knurling at both ends of the film with a width of 15mm and an average height of 10 ⁇ m, and optical compensation with an average film thickness of 40 ⁇ m Film 1 was produced.
  • the film winding length was 6000 m.
  • a liquid crystal panel for viewing angle measurement was produced as follows, and the characteristics as a liquid crystal display device were evaluated.
  • the polarizing plate 1 to 54 prepared as described above was peeled off so that the polarizing plate on the viewing side of the 40-inch display KLV-40J3000 made by SONY, which is a VA mode type liquid crystal display device, was bonded in advance so that the absorption axes of the polarizing plates coincided.
  • Mass change rate (%) ⁇ (J1-J0) / J0 ⁇ ⁇ 100 (Front contrast evaluation of liquid crystal display devices)
  • EZ-contrast manufactured by ELDIM was used, and the amount of transmitted light during black display and white display in the normal direction of the film surface was measured.
  • the optical film of the present invention is excellent in polarizer deterioration and film mass change under wet heat conditions, and also has high front contrast.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明の目的は、高倍率に延伸しても透湿性に優れ、偏光板保護フィルムに用いた場合偏光子の湿熱耐性を改善し、同時に湿熱条件後のフィルムの質量変化に優れ、更に高倍率に延伸しても添加剤とセルロースの分子配向の乱れを抑えることにより、正面コントラストに優れる光学フィルム、及びそれを用いた偏光板を提供することにある。  本発明の光学フィルムは、少なくとも下記一般式(1)で表されるポリエステル系化合物とセルロースエステルを含有する光学フィルムであって、該光学フィルムの23℃55%RH環境で測定する弾性率がフィルム長手方向(MD)、フィルム幅手方向(TD)共に3.4GPA以上、7.0GPA以下であり、TD弾性率/MD弾性率=1.05~2.0であることを特徴とする。  一般式(1) B-(G-A)n-G-B

Description

光学フィルム、及びそれを用いた偏光板
 本発明は、光学フィルム、及びそれを用いた偏光板に関する。
 昨今、自動車搭載用の液晶ディスプレイ、大型液晶テレビのディスプレイ、携帯電話、ノートパソコン等の普及から液晶表示装置(以下、LCDとも言う)の需要が旺盛である。このようなLCDには、偏光フィルムや位相差フィルムなどの種々な光学フィルムが使用されている。
 LCDの需要が増加し、これに合わせ使用される偏光板についても薄膜化、軽量化、高生産化が要望されている。更に、LCDの大画面化に伴い、部材としての光学フィルムも薄膜化、高生産化に伴う広幅化が求められており、機械的強度物性を中心とする膜特性を向上する検討も進められている。
 しかしながら薄膜化を行うとフィルムの透湿性が増す為に、該光学フィルムを偏光板保護フィルム等に使用すると高温多湿条件下では偏光子の劣化が生じ易くなる。そのため、光学フィルム中に可塑剤を添加することで透湿性を抑えようとする技術が開示されている(例えば、特許文献1~3参照。)。
 この様な光学フィルムを製造する場合、光学特性や平面性、更に得られるフィルムの膜厚や幅を調整するために、一般に製膜後にテンターにより延伸することで調整する場合が多い。
 光学フィルムを広幅化、薄膜化しようとして高倍率で延伸すると、特に1.6mを越えるような広幅な光学フィルムを生産する場合、上記透湿性を改善する技術では不十分であり、高温多湿条件下では偏光子劣化や可塑剤の揮発、ブリードも生じ易くフィルムの質量変化が起こることが分かった。
 また、該光学フィルムを構成部材として用いた偏光板を液晶表示装置に装着した場合、高倍率の延伸によりセルロース配向の乱れが生じやすく正面コントラストが低下するという問題もある。
特開2008-69225号公報 特開2008-88292号公報 特開2008-115221号公報
 従って本発明の目的は、高倍率に延伸しても透湿性に優れ、偏光板保護フィルムに用いた場合偏光子の湿熱耐性を改善し、同時に湿熱条件後のフィルムの質量変化に優れ、更に高倍率に延伸しても添加剤とセルロースの分子配向の乱れを抑えることにより、正面コントラストに優れる光学フィルム、及びそれを用いた偏光板を提供することにある。
 本発明の上記課題は以下の構成により達成される。
 1.少なくとも下記一般式(1)で表される化合物とセルロースエステルを含有する光学フィルムであって、該光学フィルムの23℃55%RH環境で測定する弾性率がフィルム長手方向(MD)、フィルム幅手方向(TD)共に3.4GPA以上、7.0GPA以下であり、TD弾性率/MD弾性率=1.05~2.0であることを特徴とする光学フィルム。
 一般式(1) B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは0以上の整数を表す。)
 2.前記光学フィルムの幅が1.6~4mであり、かつフィルム長手方向(MD)、フィルム幅手方向(TD)の少なくとも一方向に1.07~2.0倍に延伸されていることを特徴とする前記1に記載の光学フィルム。
 3.前記1または2に記載の光学フィルムを偏光子の少なくとも一方の面に用いたことを特徴とする偏光板。
 本発明によれば、高倍率に延伸しても透湿性に優れ、偏光板保護フィルムに用いた場合偏光子の湿熱耐性を改善し、同時に湿熱条件後のフィルムの質量変化に優れ、更に高倍率に延伸しても添加剤とセルロースの分子配向の乱れを抑えることにより、正面コントラストに優れる光学フィルム、及びそれを用いた偏光板を提供することができる。
本発明の光学フィルムの製造方法を示すフローシートである。
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明の光学フィルムは、少なくとも上記一般式(1)で表される化合物とセルロースエステルを含有する光学フィルムであって、該光学フィルムの23℃55%RH環境で測定する弾性率がフィルム長手方向(MD)、フィルム幅手方向(TD)共に3.4GPA以上、7.0GPA以下であり、TD弾性率/MD弾性率=1.05~2.0であることを特徴とする。
 光学フィルムの幅は生産性向上の為に1.6m以上の広幅化を高倍率の延伸操作で行うと従来にない問題点が発生する。例えば、高温多湿の条件下では透湿性が劣化し、偏光板保護フィルムとしての機能が低下して偏光子劣化が進みやすくなる。また、該光学フィルムを偏光板保護フィルムとして偏光板に組み込み液晶表示装置に装着すると、延伸時に発生する光学フィルムの配向の乱れにより、正面コントラストの低下が発生する。
 本発明者らは上記課題に対し鋭意検討した結果、セルロースエステルを含有する光学フィルムが、上記一般式(1)で表される化合物を有し、且つ延伸操作によりフィルム長手方向(MD)、フィルム幅手方向(TD)の弾性率を特定の範囲に制御することで、高倍率に延伸しても透湿性に優れ、偏光板保護フィルムに用いた場合偏光子の湿熱耐性を改善し、同時に湿熱条件後のフィルムの質量変化に優れ、更に高倍率に延伸しても添加剤とセルロースの分子配向の乱れを抑えることにより、正面コントラストに優れる光学フィルムが得られることを見出したものである。
 以下、本発明を詳細に説明する。
 《弾性率》
 弾性率は引張り弾性率ともいい、ISO 527-3に準じて、東洋精機製作所(株)製の引張試験機を用いて、23℃、55%RHで引張試験を行い、10%歪みの強度データから求めたものである。
 本発明では、フィルム長手方向(以下、MD方向)、フィルム幅手向(以下、TD方向)の両方向の弾性率を測定し、共に3.4GPA(23℃55%RH環境で測定)以上、7.0GPA以下にし、且つTD弾性率/MD弾性率=1.05~2.0となるようにTD方向弾性率をMD方向弾性率より高くすることが必要であり、弾性率をこの範囲に調整するには、上記一般式(1)で表される化合物の含有、及び延伸操作を施すことにより達成できる。
 弾性率は、変形のしにくさを表す物性値である。本発明では検討の結果、製法や処方を変え延伸操作により弾性率を制御することにより、セルロースエステルを含有する光学フィルムの含水度合いを制御できることが分かった。そのため、弾性率が特定の範囲にあると偏光板の劣化が起こりにくく、湿熱条件後のフィルム質量値も変化しづらいことが分かった。更に、弾性率が特定の範囲にあると偏光板自体が変形や軸ずれを起こしづらくコントラストが上がることが分かった。
 延伸操作の安定性、破断等を回避するために、弾性率は3.4GPA以上、4.5GPA以下の範囲であることが好ましい。
 《一般式(1)で表される化合物》
 一般式(1)で表される化合物はポリエステル系可塑剤であり、より詳しくは芳香族末端エステル系可塑剤である。
 一般式(1) B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(1)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基またはオキシアルキレングリコール残基またはアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基またはアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
 本発明で使用されるポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。
 本発明に用いることのできるポリエステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。特に炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。
 また、上記芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種または2種以上の混合物として使用できる。
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種または2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等がある。
 本発明で使用されるポリエステル系可塑剤は、数平均分子量が、好ましくは300~1500、より好ましくは400~1000の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、水酸基価は15mgKOH/g以下のものである。
 以下、本発明に用いることのできる芳香族末端エステル系可塑剤の合成例を示す。
 〈サンプルNo.1(芳香族末端エステルサンプル)〉
 反応容器にフタル酸410部、安息香酸610部、ジプロピレングリコール737部、及び触媒としてテトライソプロピルチタネート0.40部を一括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2以下になるまで130~250℃で加熱を続け生成する水を連続的に除去した。次いで200~230℃で1.33×10Pa~最終的に4×10Pa以下の減圧下、留出分を除去し、この後濾過して次の性状を有する芳香族末端エステル系可塑剤を得た。
 粘度(25℃、mPa・s);43400
 酸価           ;0.2
 〈サンプルNo.2(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410部、安息香酸610部、エチレングリコール341部、及び触媒としてテトライソプロピルチタネート0.35部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);31000
 酸価           ;0.1
 〈サンプルNo.3(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410部、安息香酸610部、1,2-プロパンジオール418部、及び触媒としてテトライソプロピルチタネート0.35部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);38000
 酸価           ;0.05
 〈サンプルNo.4(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410部、安息香酸610部、1,3-プロパンジオール418部、及び触媒としてテトライソプロピルチタネート0.35部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);37000
 酸価           ;0.05
 以下に、本発明に用いることのできる芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記化合物は、光学フィルム中に1~35質量%、特に5~30質量%含むことが好ましい。この範囲内であれば、本発明の優れた効果を呈すると共に、原反保管中におけるブリードアウトなどもなく好ましい。
 《セルロースエステル》
 本発明の光学フィルムに用いるセルロースエステルには特に限定はないが、セルロースエステルとしては炭素数2~22程度のカルボン酸エステルであり、芳香族カルボン酸のエステルでもよく、特にセルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味している。水酸基に結合するアシル基は、直鎖であっても分岐してもよく、また環を形成してもよい。更に別の置換基が置換してもよい。同じ置換度である場合、前記炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましい。前記セルロースエステルとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。
 前記セルロースエステルは、混合酸由来のアシル基を用いることもでき、特に好ましくは炭素数が2と3、或いは炭素数が2と4のアシル基を用いることができる。本発明ではセルロースエステルとして、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルを用いることができる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。本発明において好ましく用いられるセルロースエステルとしては、特にセルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレートが好ましく用いられる。
 また、リターデーション値は、セルロースエステルの前記アシル基の種類とセルロース樹脂骨格のピラノース環へのアシル基の置換度等によって、適宜制御することができる。
 本発明に好ましいセルロースエステルとしては、下記式(1)及び(2)を同時に満足するものが好ましい。
 式(1)  2.0≦X+Y≦3.0
 式(2)  0≦Y≦1.5
 式中、Xはアセチル基の置換度、Yはプロピオニル基またはブチリル基の置換度である。上記2式を満足するものは、本発明の目的に叶う優れた物理特性、光学特性を示すフィルムを得ることができる。
 この中で特にトリアセチルセルロース、セルロースアセテートプロピオネートが好ましく用いられる。セルロースアセテートプロピオネートでは、1.0≦X≦2.5であり、0.1≦Y≦1.5、2.0≦X+Y≦3.0であることが好ましい。アシル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。
 前記アシル基の置換度が低過ぎると、セルロース樹脂の骨格を構成するピラノース環の水酸基に対して未反応部分が多くなり、該水酸基が多く残存することにより、リターデーションの湿度変化や偏光板保護フィルムとして偏光子を保護する能力が低下してしまうことがあり、好ましくない。
 本発明に係わるセルロースエステルの重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、1.4~3.0であることが好ましい。尚、本発明においては、セルロースエステルフィルムが、材料として、Mw/Mnの値が1.4~3.0であるセルロースエステルを含有すればよいが、フィルムに含まれるセルロースエステル(好ましくはセルローストリアセテート又はセルロースアセテートプロピオネート)全体のMw/Mnの値は1.4~3.0の範囲であることがより好ましい。より好ましくは1.7~2.2である。
 本発明に係わる光学フィルムに用いられるセルロースエステルの分子量は、数平均分子量(Mn)で80000~200000のものを用いることが好ましい。100000~200000のものが更に好ましく、150000~200000が特に好ましい。
 セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて公知の方法で測定することが出来る。これを用いて数平均分子量、重量平均分子量を算出し、その比(Mw/Mn)を計算することが出来る。
 高速液体クロマトグラフィーにより下記条件で測定する。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、木材パルプ(針葉樹パルプ、広葉樹パルプ)や綿花リンターなどが使用できる。セルロースの種類や複数の原料セルロースの使用により、セルロースエステルのMwを制御できる。例えば、広葉樹前加水分解クラフトパルプを用いてエステル化すると、セルロースエステルのMwが大きくなり、針葉樹サルファイトパルプを用いると、Mwが小さくなり易い。そのため、セルロースは単独で又は二種以上組み合わせてもよく、例えば、針葉樹パルプと、綿花リンター又は広葉樹パルプとを併用してもよい。セルロースとしては、通常、パルプ(特に針葉樹パルプ)を用いる場合が多い。なお、セルロースのα-セルロース含有量(質量%)は、通常、94~99(例えば、95~99)、好ましくは96~98.5(例えば、97.3~98)程度であってもよい。
 本発明に係わるセルロースエステルは、セルロース原料のアシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いて反応が行われる。アシル化剤が酸クロライド(CHCOCl、CCOCl、CCOCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には特開平10-45804号に記載の方法を参考にして合成することができる。
 本発明で用いられるセルロースエステルのグルコース単位の6位のアシル基の平均置換度が0.5~0.9であることが好ましい。
 セルロースエステルを構成するグルコース単位の6位には、2位及び3位と異なり、反応性の高い一級ヒドロキシル基が存在し、この一級ヒドロキシル基は、硫酸を触媒とするセルロースエステルの製造過程で硫酸エステルを優先的に形成する。そのため、セルロースのエステル化反応において、触媒硫酸量を増加させることにより、通常のセルロースエステルに比べて、グルコース単位の6位よりも2位及び3位の平均置換度を高めることができる。更に、必要に応じて、セルロースをトリチル化すると、グルコース単位の6位のヒドロキシル基を選択的に保護できるため、トリチル化により6位のヒドロキシル基を保護し、エステル化した後、トリチル基(保護基)を脱離することにより、グルコース単位の6位よりも2位及び3位の平均置換度を高めることができる。具体的には、特開2005-281645号記載の方法で製造されたセルロースエステルも好ましく用いることができる。
 アセチルセルロースの場合、酢化率を上げようとすれば、酢化反応の時間を延長する必要がある。但し、反応時間を余り長くとると分解が同時に進行し、ポリマー鎖の切断やアセチル基の分解などが起こり、好ましくない結果をもたらす。従って、酢化度を上げ、分解をある程度抑えるためには反応時間はある範囲に設定することが必要である。反応時間で規定することは反応条件が様々であり、反応装置や設備その他の条件で大きく変わるので適切でない。ポリマーの分解は進むにつれ、分子量分布が広くなってゆくので、セルロースエステルの場合にも、分解の度合いは通常用いられる重量平均分子量(Mw)/数平均分子量(Mn)の値で規定できる。即ちセルローストリアセテートの酢化の過程で、余り長過ぎて分解が進み過ぎることがなく、且つ酢化には十分な時間酢化反応を行わせしめるための反応度合いの一つの指標として用いられる重量平均分子量(Mw)/数平均分子量(Mn)の値を用いることができる。
 セルロースエステルの製造法の一例を以下に示すと、セルロース原料として綿化リンター100質量部を解砕し、40質量部の酢酸を添加し、36℃で20分間前処理活性化をした。その後、硫酸8質量部、無水酢酸260質量部、酢酸350質量部を添加し、36℃で120分間エステル化を行った。24%酢酸マグネシウム水溶液11質量部で中和した後、63℃で35分間ケン化熟成し、アセチルセルロースを得た。これを10倍の酢酸水溶液(酢酸:水=1:1(質量比))を用いて、室温で160分間攪拌した後、濾過、乾燥させてアセチル置換度2.75の精製アセチルセルロースを得た。このアセチルセルロースはMnが92000、Mwが156000、Mw/Mnは1.7であった。同様にセルロースエステルのエステル化条件(温度、時間、攪拌)、加水分解条件を調整することによって置換度、Mw/Mn比の異なるセルロースエステルを合成することができる。セルロースエステルのMw/Mn比は1.4~5.0が好ましく用いられる。
 尚、合成されたセルロースエステルは、精製して低分子量成分を除去したり、未酢化または低酢化度の成分を濾過で取り除くことも好ましく行われる。
 また、混酸セルロースエステルの場合には、特開平10-45804号公報に記載の方法で得ることができる。
 また、セルロースエステルは、セルロースエステル中の微量金属成分によっても影響を受ける。これらは製造工程で使われる水に関係していると考えられるが、不溶性の核となり得るような成分は少ない方が好ましく、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより不溶物を形成する場合があり、少ないことが好ましい。鉄(Fe)成分については、1ppm以下であることが好ましい。カルシウム(Ca)成分については、カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子と配位化合物即ち、錯体を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成する。
 カルシウム(Ca)成分は60ppm以下、好ましくは0~30ppmである。マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、0~70ppmであることが好ましく、特に0~20ppmであることが好ましい。鉄(Fe)分の含量、カルシウム(Ca)分含量、マグネシウム(Mg)分含量等の金属成分は、絶乾したセルロースエステルをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析することができる。
 (アクリル系共重合体)
 本発明の光学フィルムには、アクリル系共重合体(以降、アクリルポリマーともいう)を含有することも好ましい。
 アクリルポリマーはリターデーションの安定性に効果を発揮する為に、重量平均分子量が500以上30000以下であるアクリルポリマーを含有することが好ましく、中でも分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーX、より好ましくは、分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーXと、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーYとを含有することが好ましい。
 〈ポリマーX、ポリマーY〉
 ポリマーXは分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーである。
 好ましくは、Xaは分子内に芳香環と親水性基を有しないアクリルまたはメタクリルモノマー、Xbは分子内に芳香環を有せず親水性基を有するアクリルまたはメタクリルモノマーである。
 ポリマーXは、下記一般式(X)で表される。
 一般式(X)
 -(Xa)m-(Xb)n-(Xc)p-
 更に好ましくは、下記一般式(X-1)で表されるポリマーである。
 一般式(X-1)
 -[CH-C(-R)(-CO)]m-[CH-C(-R)(-CO-OH)-]n-[Xc]p-
 (式中、R、Rは、HまたはCHを表す。Rは炭素数1~12のアルキル基、シクロアルキル基を表す。Rは-CH-、-C-または-C-を表す。Xcは、Xa、Xbに重合可能なモノマー単位を表す。m、n及びpは、モル組成比を表す。ただしm≠0、n≠0、m+n+p=100である。)
 ポリマーXを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
 Xにおいて、親水性基とは、水酸基、エチレンオキシド連鎖を有する基をいう。
 分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i-、n-)であることが好ましい。
 分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbは、水酸基を有するモノマー単位として、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2-ヒドロキシエチル)及びメタクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)である。
 Xcとしては、Xa、Xb以外のものでかつ共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、芳香環を有していないものが好ましい。
 Xa、Xb及びXcのモル組成比m:nは99:1~65:35の範囲が好ましく、更に好ましくは95:5~75:25の範囲である。Xcのpは0~10である。Xcは複数のモノマー単位であってもよい。
 Xaのモル組成比が多いとセルロースエステルとの相溶性が良化するがフィルム厚み方向のリターデーション値Rtが大きくなる。Xbのモル組成比が多いと上記相溶性が悪くなるが、Rtを低減させる効果が高い。また、Xbのモル組成比が上記範囲を超えると製膜時にヘイズが出る傾向があり、これらの最適化を図りXa、Xbのモル組成比を決めることが好ましい。
 ポリマーXの分子量は重量平均分子量が5000以上30000以下であり、更に好ましくは8000以上25000以下である。
 重量平均分子量を5000以上とすることにより、光学フィルムとして高温高湿下における寸法変化が少ない、偏光板の保護フィルムとして用いた場合にカールが少ない等の利点が得られ好ましい。重量平均分子量が30000を以内とした場合は、セルロースエステルとの相溶性がより向上し、高温高湿下においてブリードアウト、更に延伸時におけるヘイズの発生が抑制される。
 本発明のポリマーXの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。また、重合温度は通常室温から130℃、好ましくは50℃から100℃で行われるが、この温度または重合反応時間を調整することで可能である。
 重量平均分子量の測定方法は下記方法によることができる。
 (重量平均分子量測定方法)
 重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィーを用いて測定した。
 測定条件は以下の通りである。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
 ポリマーYは芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーである。重量平均分子量500以上ではポリマーの残存モノマーが減少し好ましい。また、3000以下とすることは、リターデーション値Rt低下性能を維持するために好ましい。Yaは、好ましくは芳香環を有さないアクリルまたはメタクリルモノマーである。
 ポリマーYは、下記一般式(Y)で表される。
 一般式(Y)
 -(Ya)k-(Yb)q-
 更に好ましくは、下記一般式(Y-1)で表されるポリマーである。
 一般式(Y-1)
 -[CH-C(-R)(-CO)]k-[Yb]q-
(式中、Rは、HまたはCHを表す。Rは炭素数1~12のアルキル基またはシクロアルキル基を表す。Ybは、Yaと共重合可能なモノマー単位を表す。k及びqは、モル組成比を表す。ただしk≠0、k+q=100である。)
 Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はない。Ybは複数であってもよい。k+q=100、qは好ましくは0~30である。
 芳香環を有さないエチレン性不飽和モノマーを重合して得られるポリマーYを構成するエチレン性不飽和モノマーYaはアクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。
 Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はないが、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル等が好ましい。Ybは複数であってもよい。
 ポリマーX、Yを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、更に特開2000-128911号または同2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、或いは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも本発明において好ましく用いられるが、特に、ポリマーYは、分子中にチオール基と2級の水酸基とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。この場合、ポリマーYの末端には、重合触媒及び連鎖移動剤に起因する水酸基、チオエーテルを有することとなる。この末端残基により、Yとセルロースエステルとの相溶性を調整することができる。
 ポリマーX及びYの水酸基価は30~150[mgKOH/g]であることが好ましい。
 (水酸基価の測定方法)
 この測定は、JIS K 0070(1992)に準ずる。この水酸基価は、試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。具体的には試料Xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95~100℃のグリセリン浴にて加熱する。1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。更に空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。水酸基価は、次の式によって算出する。
 水酸基価={(B-C)×f×28.05/X}+D
(式中、Bは空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは酸価、また、28.05は水酸化カリウムの1mol量56.11の1/2を表す)
 上述のXポリマーポリマーYは何れもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。
 ポリマーXとポリマーYのセルロースエステルフィルム中での含有量は、下記式(i)、式(ii)を満足する範囲であることが好ましい。ポリマーXの含有量をXg(質量%=ポリマーXの質量/セルロースエステルの質量×100)、ポリマーYの含有量をYg(質量%)とすると、
 式(i) 5≦Xg+Yg≦35(質量%)
 式(ii) 0.05≦Yg/(Xg+Yg)≦0.4
 式(i)の好ましい範囲は、10~25質量%である。
 ポリマーXとポリマーYは総量として5質量%以上であれば、リターデーション値Rtの低減に十分な作用をする。また、総量として35質量%以下であれば、ポリビニルアルコール系の偏光子との接着性が良好である。
 ポリマーXとポリマーYは後述するドープ液を構成する素材として直接添加、溶解するか、もしくはセルロースエステルを溶解する有機溶媒に予め溶解した後ドープ液に添加することができる。
 (フラノース構造もしくはピラノース構造を有する化合物)
 本発明の光学フィルムは、フラノース構造もしくはピラノース構造を少なくとも1個有し、該フラノース構造もしくはピラノース構造が1~12個結合した化合物中のOH基のすべてもしくは一部をエステル化した化合物(糖エステル化合物ということがある。)を含むことが好ましい。好ましい「フラノース構造もしくはピラノース構造を少なくとも1個有し、該フラノース構造もしくはピラノース構造が1~12個結合した化合物」の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、セロビオース、セロトリオース、マルトトリオース、ラフィノースなどが挙げられるが、特にフラノース構造とピラノース構造を両方有するものが好ましい。例としてはスクロースが挙げられる。
 「フラノース構造もしくはピラノース構造を少なくとも1個有し、該フラノース構造もしくはピラノース構造が1~12個結合した化合物中のOH基のすべてもしくは一部をエステル化した化合物(糖エステル化合物)」を合成する際に用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いてエステル化し、本発明に用いられる糖エステル化合物を合成することができる。用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環に1~5個のアルキル基もしくはアルコキシ基等の置換基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができるが、特に安息香酸が好ましい。
 これらの化合物の製造方法の詳細は、特開昭62-42996号公報及び特開平10-237084号公報に記載されている。
 以下に、具体例を挙げるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 本発明の光学フィルムは、延伸時のヘイズの発生を抑制する為に、前記フラノース構造もしくはピラノース構造を少なくとも1個有し、該フラノース構造もしくはピラノース構造が1~12個結合した化合物のOH基のすべてもしくは一部をエステル化した化合物を、光学フィルム中に1~35質量%、特に5~30質量%含むことが好ましい。この範囲内であれば、本発明の優れた効果を呈すると共に、原反保管中におけるブリードアウトなどもなく好ましい。
 (可塑剤)
 本発明の光学フィルムは、一般式(1)で表される可塑剤以外に、本発明の効果を得る上で必要に応じて他の可塑剤を含有することができる。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、アクリル系可塑剤等から選択される。そのうち、可塑剤を2種以上用いる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。これらの可塑剤は、セルロースエステルに対して1~30質量%の範囲で使用されることが好ましい。
 多価アルコールエステル系可塑剤は下記一般式(2)で表される化合物である。
 一般式(2)  R1-(OH)n
(式中、R1はn価の有機基、nは2以上の正の整数を表す)
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール、ペンタエリスリトール、ジペンタエリスリトールなどを挙げることができる。中でも、トリメチロールプロパン、ペンタエリスリトールが好ましい。
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸などを用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると、透湿性、保留性を向上させる点で好ましい。好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、これに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。酢酸を用いるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上持つ芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に、安息香酸が好ましい。
 多価アルコールエステルの分子量300~1500の範囲であることが好ましく、350~750の範囲であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基は全てエステル化してもよいし、一部をOH基のままで残してもよい。以下に、多価アルコールエステルの具体的化合物を示す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 この他、トリメチロールプロパントリアセテート、ペンタエリスリトールテトラアセテートなども好ましく用いられる。
 グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
 フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
 クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
 脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
 リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
 多価カルボン酸エステル化合物としては、2価以上、好ましくは2価~20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3価~20価であることが好ましい。
 多価カルボン酸は次の一般式(3)で表される。
 一般式(3)  R(COOH)m(OH)n
(但し、Rは(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシル基、OH基はアルコール性またはフェノール性水酸基を表す)
 好ましい多価カルボン酸の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸またはその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマール酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特にオキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。
 本発明に用いることのできる多価カルボン酸エステル化合物に用いられるアルコールとしては特に制限はなく公知のアルコール、フェノール類を用いることができる。例えば炭素数1~32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコールまたはその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコールまたはその誘導体なども好ましく用いることができる。
 多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性またはフェノール性の水酸基をモノカルボン酸を用いてエステル化しても良い。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては炭素数1~32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。
 好ましい脂肪族モノカルボン酸としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸であることが好ましい。
 多価カルボン酸エステル化合物の分子量は特に制限はないが、分子量300~1000の範囲であることが好ましく、350~750の範囲であることが更に好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
 多価カルボン酸エステルに用いられるアルコール類は一種類でも良いし、二種以上の混合であっても良い。
 多価カルボン酸エステル化合物の酸価は1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによって、リターデーションの環境変動も抑制されるため好ましい。
 (酸価)
 酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシル基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
 特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、本発明はこれに限定されるものではない。例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(ATEC)、アセチルトリブチルシトレート(ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。
 (紫外線吸収剤)
 本発明に係る光学フィルムは、紫外線吸収剤を含有することが好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類があり、これらはいずれもチバ・ジャパン社製の市販品であり好ましく使用できる。
 本発明で好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、である。
 例えば、ベンゾトリアゾール系紫外線吸収剤としては下記一般式(a)で示される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000010
 式中、R、R、R、R及びRは同一でも異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノもしくはジアルキルアミノ基、アシルアミノ基または5~6員の複素環基を表し、RとRは閉環して5~6員の炭素環を形成してもよい。
 また、上記記載のこれらの基は、任意の置換基を有していてよい。
 以下に本発明に用いられるベンゾトリアゾール系紫外線吸収剤の具体例を挙げるが、本発明はこれらに限定されない。
 UV-1:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール
 UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
 UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
 UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
 UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
 UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
 UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
 UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171)
 UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(TINUVIN109)
 更に、ベンゾフェノン系紫外線吸収剤としては下記一般式(b)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000011
 式中、Yは水素原子、ハロゲン原子またはアルキル基、アルケニル基、アルコキシル基、及びフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基または-CO(NH)n-1-D基を表し、Dはアルキル基、アルケニル基または置換基を有していてもよいフェニル基を表す。m及びnは1または2を表す。
 上記において、アルキル基としては、例えば、炭素数24までの直鎖または分岐の脂肪族基を表し、アルコキシル基としては例えば、炭素数18までのアルコキシル基を表し、アルケニル基としては例えば、炭素数16までのアルケニル基でアリル基、2-ブテニル基等を表す。また、アルキル基、アルケニル基、フェニル基への置換基としてはハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等を置換していてもよい)等が挙げられる。
 以下に一般式(b)で表されるベンゾフェノン系紫外線吸収剤の具体例を示すが、本発明はこれらに限定されない。
 UV-10:2,4-ジヒドロキシベンゾフェノン
 UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
 UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
 UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
 この他、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。
 本発明に係わる偏光板保護フィルムは紫外線吸収剤を2種以上を含有することが好ましい。
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒或いはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、または直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、光学フィルムの乾燥膜厚が30~200μmの場合は、光学フィルムに対して0.5~10質量%が好ましく、0.6~4質量%が更に好ましい。
 (微粒子)
 本発明の光学フィルムは、微粒子を含有することが滑り性、保管安定性の観点で好ましい。
 微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子は珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの2次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。光学フィルム中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の光学フィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
 これらの中でもアエロジル200V、アエロジルR972Vが光学フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明の光学フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。
 (染料)
 本発明の光学フィルムには、色味調整のため染料を添加することもできる。例えば、フィルムの黄色味を抑えるために青色染料を添加してもよい。好ましい染料としてはアンスラキノン系染料が挙げられる。
 アンスラキノン系染料は、アンスラキノンの1位から8位迄の任意の位置に任意の置換基を有することができる。好ましい置換基としてはアニリノ基、ヒドロキシル基、アミノ基、ニトロ基、または水素原子が挙げられる。特に特開2001-154017号記載の青色染料、特にアントラキノン系染料を含有することが好ましい。
 各種添加剤は製膜前のセルロースエステル含有溶液であるドープにバッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に微粒子は濾過材への負荷を減らすために、一部または全量をインライン添加することが好ましい。
 添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、少量のセルロースエステルに溶解するのが好ましい。好ましいセルロースエステルの量は、溶剤100質量部に対して1~10質量部で、より好ましくは、3~5質量部である。
 本発明においてインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。
 (光学フィルムの製造方法)
 次に、本発明の光学フィルムの製造方法について説明する。
 本発明の光学フィルムは溶液流延法で製造されたフィルムであっても、溶融流延法で製造されたフィルムであっても、どちらも好ましく用いることができる。
 本発明の光学フィルムの溶液流延法による製造は、セルロースエステル及び前記添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
 ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。
 ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
 良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。
 また、貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。また、セルロースエステルの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。回収溶剤中に、セルロースエステルに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
 溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
 もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。
 次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、且つ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 ここで、ドープの流延について説明する。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。本発明の光学フィルムの幅は好ましくは、1.6~4mである為、必然的にキャスト幅も広幅となる。流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度は0~40℃であり、5~30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 光学フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。
 本発明においては、残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、光学フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 本発明の光学フィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで長手方向(MD方向)に延伸し、更にウェブの両端をクリップ等で把持するテンター方式で幅手方向(TD方向)に延伸を行うことが好ましい。
 剥離直後にMD方向に延伸するために、剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220~300N/mである。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。
 ウェブの乾燥工程における乾燥温度は90℃~200℃が好ましく、より好ましくは110℃~160℃である。乾燥温度は段階的に高くしていくことが好ましい。
 好ましい乾燥時間は、乾燥温度にもよるが、5分~60分が好ましく、10分~30分がより好ましい。
 光学フィルムの膜厚は、特に限定はされないが10~200μmが用いられる。特に膜厚は10~100μmであることが特に好ましい。更に好ましくは20~60μmである。
 本発明の光学フィルムは、幅1~4mのものが用いられる。生産性の観点から幅1.6~4mのものが好ましく用いられ、特に好ましくは1.8~3.6mである。4mを超えると搬送が困難となる。
 (延伸操作)
 本発明の光学フィルムの23℃55%RH環境で測定する弾性率は、フィルム長手方向(MD)、フィルム幅手方向(TD)共に3.4GPA以上、7.0GPA以下であり、TD弾性率/MD弾性率=1.05~2.0となるように調整される。延伸操作の安定性、破断等を回避するために、弾性率は好ましくは、3.4GPA以上、4.5GPA以下の範囲に調整される。
 光学フィルムは本発明の構成をとり、以下の延伸操作を行うことが好ましい。
 延伸操作は、フィルムのMD方向、及びTD方向に対して、逐次または同時に延伸することができる。互いに直交する2軸方向の延伸倍率は、それぞれ最終的にはMD方向に1.07~2.0倍、TD方向に1.07~2.0倍の範囲とすることが好ましく、MD方向に1.07~1.5倍、TD方向に1.07~2.0倍の範囲で行うことが好ましい。
 ウェブを延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、或いはMD/TD方向同時に広げてMD/TD両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。
 製膜工程のこれらの幅保持或いは幅手方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 テンター内などの製膜工程でのフィルム搬送張力は温度にもよるが、120N/m~200N/mが好ましく、140N/m~200N/mが更に好ましい。140N/m~160N/mが最も好ましい。
 延伸する際は、本発明のフィルムのガラス転移温度をTgとすると(Tg-30)~(Tg+100)℃、より好ましくは(Tg-20)~(Tg+80)℃の範囲内で加熱してMD方向或いはTD方向に延伸することが好ましい。
 光学フィルムのTgは、フィルムを構成する材料種及び構成する材料の比率によって制御することができる。本発明の用途においてはフィルムの乾燥時のTgは110℃以上が好ましく、更に120℃以上が好ましい。これは液晶表示装置に本発明の光学フィルムを用いた場合、該フィルムのTgが上記よりも低いと、使用環境の温度や湿度、バックライトの熱による影響によって、フィルム内部に固定された分子の配向状態に影響を与え、リターデーション値及びフィルムとしての寸法安定性や形状に大きな変化を与える可能性が高くなる。また、フィルムの形状を保持できなくなることがある。逆に該フィルムのTgが高過ぎると、フィルム構成材料の分解温度に近づくため製造しにくくなり、フィルム化するときに用いる材料自身の分解によって揮発成分の存在や着色を呈することがある。従ってガラス転移温度は180℃以下、より好ましくは150℃以下であることが好ましい。このとき、フィルムのTgはJIS K7121に記載の方法などによって求めることができる。
 本発明では、延伸する際の温度は特に制限されるものではないが、150℃以上にするとヘイズ安定性が向上する為好ましい。
 光学フィルムは延伸後、熱固定されることが好ましいが、熱固定はその最終TD方向延伸温度より高温で、Tg-20℃以下の温度範囲内で通常0.5~300秒間熱固定することが好ましい。この際、2つ以上に分割された領域で温度差が1~100℃となる範囲で順次昇温しながら熱固定することが好ましい。
 熱固定されたフィルムは通常Tg以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。この際、最終熱固定温度以下、Tg以上の温度範囲内で、TD方向及び/またはMD方向に0.1~10%弛緩処理することが好ましい。また冷却は、最終熱固定温度からTgまでを、毎秒100℃以下の冷却速度で徐冷することが好ましい。冷却、弛緩処理する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。尚、冷却速度は、最終熱固定温度をT1、フィルムが最終熱固定温度からTgに達するまでの時間をtとした時、(T1-Tg)/tで求めた値である。
 これら熱固定条件、冷却、弛緩処理条件のより最適な条件は、フィルムを構成するセルロースエステルや可塑剤等の添加剤種により異なるので、得られた二軸延伸フィルムの物性を測定し、好ましい特性を有するように適宜調整することにより決定すればよい。
 本発明の光学フィルムの遅相軸または進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とするとθ1は-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制または防止することに寄与でき、カラー液晶表示装置においては忠実な色再現を得ることに寄与できる。
 〈物性、光学特性〉
 本発明でに係る光学フィルムの透湿度は、40℃、90%RHで10~1200g/m・24hが好ましく、更に20~1000g/m・24hが好ましく、20~850g/m・24hが特に好ましい。透湿度はJIS Z 0208に記載の方法に従い測定することができる。
 本発明に係る光学フィルムは破断伸度は10~80%であることが好ましく20~50%であることが更に好ましい。
 本発明に係る光学フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。
 本発明に係る光学フィルムのヘイズは1%未満であることが好ましく0~0.1%であることが特に好ましい。
 本発明の光学フィルムは、下記式で表されるリターデーション値Roが0~20nm、Rtが-20~70nmであることが好ましい。
 式(i) Ro=(nx-ny)×d
 式(ii) Rt=((nx+ny)/2-nz)×d
(式中、Roはフィルム面内リターデーション値、Rtはフィルム厚み方向リターデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率、dはフィルムの厚さ(nm)を表す。)
 上記屈折率は、例えばKOBRA-21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることができる。
 更に、リターデーション値Roは0~5nmの範囲であり、且つRtが-10~50nmの範囲にあることが、本発明の効果を高める上でより好ましい。
 上記リターデーション値Ro、Rtを得るには、光学フィルムが本発明の構成をとり、更に延伸操作により屈折率制御を行うことが好ましい。
 (機能性層)
 本発明の光学フィルム製造に際し、延伸の前及び/または後で帯電防止層、ハードコート層、バックコート層、易滑性層、接着層、バリアー層、防眩層、反射防止層、光学補償層等の機能性層を塗設してもよい。
 《偏光板、液晶表示装置》
 本発明の偏光板、それを用いた液晶表示装置について説明する。
 (偏光板)
 本発明の偏光板は、本発明の光学フィルムにより、偏光子の少なくとも一方の面を挟持してなる偏光板である。
 偏光板は一般的な方法で作製することができる。本発明の光学フィルムの偏光子側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には該光学フィルムを用いても、また別の光学フィルムを用いてもよい。市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)も好ましく用いられる。
 本発明の光学フィルムを光学フィルムAとしたとき、偏光子を介して反対側に用いられる光学フィルムは波長590nmで測定した面内リターデーションRoが20~100nm、Rt=70~300nmの位相差機能を有する光学フィルムであることが好ましい。
 該位相差機能を有する光学フィルムについては特に限定されるものではなく、これらは例えば、特開2005-196149号、特開2005-275104号記載の方法で作製することができる。また、ディスコチック液晶などの液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる光学フィルムを用いることも好ましい。例えば、特開2005-275083号記載の方法で光学異方性層を形成することができる。上記光学フィルムは、本発明の光学フィルムと組み合わせて使用することによって、安定した視野角拡大効果を有する液晶表示装置を得ることができる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5~30μmが好ましく、特に10~20μmであることが好ましい。
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。中でも熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。又、フィルムのTD方向に5cm離れた二点間の熱水切断温度の差が1℃以下であることが、色斑を低減させるうえで更に好ましく、更にフィルムのTD方向に1cm離れた二点間の熱水切断温度の差が0.5℃以下であることが、色斑を低減させるうえで更に好ましい。
 このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れているうえに、色斑が少なく、大型液晶表示装置に特に好ましく用いられる。
 以上のようにして得られた偏光子は、通常、その両面または片面に保護フィルムが貼合されて偏光板として使用される。貼合する際に用いられる接着剤としては、PVA系の接着剤やウレタン系の接着剤などを挙げることができるが、中でもPVA系の接着剤が好ましく用いられる。
 (液晶表示装置)
 本発明の偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。本発明の光学フィルムはSTN、TN、OCB、HAN、VA(MVA、PVA)、IPSなどの各種駆動方式の液晶表示装置に用いることができる。特に好ましくはVA(MVA,PVA)型、及びIPS型液晶表示装置である。
 特に本発明の光学フィルムを用いた偏光板は大画面の液晶表示装置に使用した場合に優れた正面コントラスト性を付与することができる。
 画面が17型以上、特に画面が30型以上の大画面の液晶表示装置では、本発明の効果以外にも、色ムラや波打ちムラ等の歪みがないため、長時間の鑑賞でも目が疲れないという効果があった。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 <一般式(1)で表される化合物の合成>
 (添加剤T-1の合成)
 エチレングリコールを310g(5mol)、コハク酸を236g(2mol)、安息香酸を610g(5mol)、エステル化触媒としてテトライソプロピルチタネート0.086gを、温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四ツ口フラスコに仕込み、窒素気流下で攪拌しながら220℃まで段階的に昇温し、その後220℃で反応させ、合計15時間脱水縮合反応させた。反応後、200℃で未反応のエチレングリコールを減圧留去することによって、エステル化合物を含有する添加剤T-1を得た。
 (添加剤T-2の合成)
 1,2-プロピレングリコールを300g(5mol)、マレイン酸を232g(2mol)、パラターシャリブチル安息香酸を890(5mol)、エステル化触媒としてテトライソプロピルチタネート0.086gを、温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四ツ口フラスコに仕込み、窒素気流下で攪拌しながら220℃まで段階的に昇温し、その後220℃で反応させ、合計15時間脱水縮合反応させた。反応後、200℃で未反応の1,2-プロピレングリコールを減圧留去することによって、エステル化合物を含有する添加剤T-2を得た。
 (添加剤T-3の合成)
 1,3-プロピレングリコールを300g(5mol)、フマール酸を232g(2mol)、オルトルイル酸を681g(5mol)、エステル化触媒としてテトライソプロピルチタネート0.086gを、温度計、攪拌器、及び還流冷却器を付した内容積3リットルの四ツ口フラスコに仕込み、窒素気流下で攪拌しながら220℃まで段階的に昇温し、その後220℃で反応させ、合計15時間脱水縮合反応させた。反応後、200℃で未反応の1,3-プロピレングリコールを減圧留去することによって、エステル化合物を含有する添加剤T-3を得た。
 (添加剤T-4~T-34の合成)
 添加剤T-4以降はT-1~3を参考に、mol数を合わせたまま表1、表2に示すように原料を変えて合成を行った。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 <光学フィルムの作製>
 図1に実施例に用いたセルロースエステルフィルムの製造装置のフローシートを示す。
 (光学フィルムF-1の作製)
 (二酸化珪素分散液)
 アエロジル972V(日本アエロジル(株)製)     10質量部
 (一次粒子の平均径16nm、見掛け比重90g/リットル)
 エタノール                      90質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。図1における微粒子分散希釈液濾過器14(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過した。
 (インライン添加液の作製)
 チヌビン928(チバ・ジャパン(株)製)       15質量部
 メチレンクロライド                 100質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
 これに二酸化珪素分散希釈液を36質量部、撹拌しながら加えて、更に30分間撹拌した後、下記セルローストリアセテート6質量部を撹拌しながら加えて、更に60分間撹拌した後、インライン添加液送液濾過器8(日本精線(株)製のファインメットNF)でインライン添加液を濾過した。公称濾過精度は20μmの濾材を使用した。
 (ドープ組成物)
 セルロースエステル(リンター綿から合成されたセルローストリアセテート、酢化度:61.5%、Mw=290000)     100質量部
 添加剤 T-1                    10質量部
 メチレンクロライド                 430質量部
 エタノール                      40質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
 次に、インライン添加液送液濾過器8(日本精線(株)製のファインメットNF)でインライン添加液を濾過した。公称濾過精度は20μmの濾材を使用した。濾過したドープを100質量部に対し、濾過したインライン添加液を2.5質量部加えて、インラインミキサー10(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1.8m幅でステンレスバンド支持体101に均一に流延した。ステンレスバンド支持体101で、残留溶剤量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体101上から剥離した。剥離したセルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.65m幅にスリットし、その後、テンターでTD方向(フィルムの幅手方向)に1.5倍に延伸しながら、160℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は20%であった。その後、120℃の乾燥装置105内を多数のロールで搬送させながら15分間乾燥させた後、2.2m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、光学フィルムF-1を得た。光学フィルムの残留溶剤量は0.2%であり、膜厚は60μm、巻数は6000mであった。
 尚、ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.00倍であった。
 〈弾性率の測定〉
 フィルム長手方向(MD方向)、フィルム幅手方向(TD方向)の両方向の弾性率を、ISO 527-3に準じて東洋精機製作所(株)製の引張試験機を用いて、23℃、55%RHで引張試験を行い10%歪みの強度データから求めた。
 光学フィルムF-1のMD方向の弾性率は3.6GPA、TD方向の弾性率は4.0GPAであり、TD弾性率/MD弾性率は1.11であった。
 (光学フィルムF-2~F-54作製)
 添加剤の種類、添加量、幅手方向延伸条件(温度、倍率)、膜厚、製品幅を表3、表4のように変化させた以外は同様にして、光学フィルムF-2~F-54を作製した。
 〈偏光板の作製〉
 上記作製した光学フィルムF-1~F-54を、40℃の2.5mol/L水酸化ナトリウム水溶液で90秒間アルカリ処理し、45秒間間水洗し、10質量%HClにて30℃45秒間中和し、次いで30℃45秒間水洗して鹸化処理し、アルカリ処理フィルムを得た。
 次いで、厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率6倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し3.0m幅の偏光子を得た。
 次に下記作製した光学補償フィルム1を上記の方法で鹸化処理し、完全鹸化型ポリビニルアルコール5%水溶液を粘着剤として、光学フィルムF-1~F-54、偏光子、光学補償フィルム1の順で積層して視認側の偏光板1~54を作製した。
 (光学補償フィルム1の作製)
 〈微粒子分散液〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)
                            11質量部
 エタノール                      89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
 〈インライン添加液〉
 メチレンクロライドを入れた溶解タンクに下記セルロースアセテートプロピオネートを添加し、加熱して完全に溶解させた後、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した。
 濾過後のセルロースエステル溶液を充分に攪拌しながら、ここに微粒子分散液をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、インライン添加液を調製した。
 メチレンクロライド                  99質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.90、プロピオニル基置換度0.60、総アシル基置換度2.50)   4質量部
 微粒子分散液                     11質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートプロピオネートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
 〈主ドープ液の組成〉
 メチレンクロライド                 380質量部
 エタノール                      70質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.90、プロピオニル基置換度0.70、総アシル基置換度2.60) 100質量部
 トリメチロールプロパントリベンゾエート        15質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
 製膜ライン中で日本精線(株)製のファインメットNFでドープ液を濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液を濾過した。濾過したドープ液を100質量部に対し、濾過したインライン添加液を2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、2.0m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを50℃で溶媒を蒸発させ、1.9m幅にスリットし、その後、テンターでTD方向に、160℃で1.7倍の延伸倍率で延伸した。120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、3.0m幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、平均膜厚が40μmの光学補償フィルム1を作製した。フィルム巻き取り長は6000mとした。
 光学補償フィルム1のリターデーションはRo=60nm、Rt=130nmであった。
 〈液晶表示装置の作製〉
 視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
 VAモード型液晶表示装置であるSONY製40型ディスプレイKLV-40J3000の予め貼合されていた視認側の偏光板を剥がして、偏光板の吸収軸が一致するように上記作製した偏光板1~54を液晶セルのガラス面に貼合しVAモード型液晶表示装置を作製した。その際、光学補償フィルム1が液晶セル側になるように貼合した。
 《評価》
 (偏光子劣化)
 上記方法で作製した偏光板について先ず平行透過率と直行透過率を測定し、下記式にしたがって偏光度を算出した。その後各々の偏光板を60℃90%RHの条件下で1000時間の強制劣化後、再度平行透過率と直行透過率を測定し、下記式に従って偏光度を算出した。偏光度変化量を下記式により求めた。
偏光度P=((H0-H90)/(H0+H90))0.5×100
偏光度変化量=P0-P1000
H0   :平行透過率
H90  :直行透過率
P0   :強制劣化前の偏光度
P1000:強制劣化1000時間後の偏光度
○:偏光度変化率10%未満
△:偏光度変化率10%以上25%未満
×:偏光度変化率25%以上
 (質量変化)
 各光学フィルムを幅手方向40mm×長手方向120mmサイズに裁断し、光学フィルムを23℃、55%RHの環境下で24時間調湿し、質量J0を測定した。次に試料を80℃・90%RHの環境下で2週間放置した後、再び前記23℃、55%RHの環境下で24時間調湿したフィルムについて、再び質量J1を測定した。下記式に質量変化率(%)を求めた。
 質量変化率(%)={(J1-J0)/J0}×100
 (液晶表示装置の正面コントラスト評価)
 正面コントラストの評価にはELDIM社製EZ-contrastを用い、フィルム面法線方向の黒表示及び白表示時の透過光量を測定した。正面コントラストの評価は正面コントラスト=(白表示時の透過光量)/(黒表示時の透過光量)を算出した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表3、表4の結果から、本発明の光学フィルムは、湿熱条件下における偏光子劣化、フィルム質量変化に優れ、更に正面コントラストも高いことが分かる。
 1 主ドープ仕込み釜
 2 ドープ送液ポンプ
 3 ドープ静置釜
 4 主濾過器
 5 ドープ濾過器
 6 インライン添加液釜
 7 インライン添加液循環濾過器
 8 インライン添加液送液濾過器
 9 インライン添加液送液ポンプ
 10 スタチィックミキサー
 101 ステンレスバンド
 102 剥離ロール
 103 フィルム
 104 テンター・乾燥装置
 105 ロール搬送・乾燥装置
 106 フィルム巻き取り装置

Claims (3)

  1. 少なくとも下記一般式(1)で表される化合物とセルロースエステルを含有する光学フィルムであって、該光学フィルムの23℃55%RH環境で測定する弾性率がフィルム長手方向(MD)、フィルム幅手方向(TD)共に3.4GPA以上、7.0GPA以下であり、TD弾性率/MD弾性率=1.05~2.0であることを特徴とする光学フィルム。
     一般式(1) B-(G-A)n-G-B
    (式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは0以上の整数を表す。)
  2. 前記光学フィルムの幅が1.6~4mであり、かつフィルム長手方向(MD)、フィルム幅手方向(TD)の少なくとも一方向に1.07~2.0倍に延伸されていることを特徴とする請求項1に記載の光学フィルム。
  3. 請求項1または2に記載の光学フィルムを偏光子の少なくとも一方の面に用いたことを特徴とする偏光板。
PCT/JP2009/064173 2008-10-08 2009-08-11 光学フィルム、及びそれを用いた偏光板 WO2010041514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008261417 2008-10-08
JP2008-261417 2008-10-08

Publications (1)

Publication Number Publication Date
WO2010041514A1 true WO2010041514A1 (ja) 2010-04-15

Family

ID=42100470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064173 WO2010041514A1 (ja) 2008-10-08 2009-08-11 光学フィルム、及びそれを用いた偏光板

Country Status (2)

Country Link
TW (1) TW201030075A (ja)
WO (1) WO2010041514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203796A1 (ja) * 2013-06-17 2014-12-24 Dic株式会社 セルロースエステル樹脂組成物、セルロースエステル光学フィルム、偏光板及び液晶表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008743A1 (ja) * 2013-07-17 2015-01-22 コニカミノルタ株式会社 偏光板および液晶表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061595A1 (ja) * 2003-12-24 2005-07-07 Konica Minolta Opto, Inc. 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP2006154384A (ja) * 2004-11-30 2006-06-15 Konica Minolta Opto Inc 位相差フィルム、及びそれを用いた偏光板、表示装置
JP2006282987A (ja) * 2005-03-11 2006-10-19 Dainippon Ink & Chem Inc セルロースエステル樹脂用改質剤、及びそれを含有してなるフィルム
WO2006118168A1 (ja) * 2005-04-28 2006-11-09 Konica Minolta Opto, Inc. 光学フィルム、偏光板及び液晶表示装置
JP2006342227A (ja) * 2005-06-08 2006-12-21 Konica Minolta Opto Inc セルロースエステルフィルム、偏光板および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061595A1 (ja) * 2003-12-24 2005-07-07 Konica Minolta Opto, Inc. 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP2006154384A (ja) * 2004-11-30 2006-06-15 Konica Minolta Opto Inc 位相差フィルム、及びそれを用いた偏光板、表示装置
JP2006282987A (ja) * 2005-03-11 2006-10-19 Dainippon Ink & Chem Inc セルロースエステル樹脂用改質剤、及びそれを含有してなるフィルム
WO2006118168A1 (ja) * 2005-04-28 2006-11-09 Konica Minolta Opto, Inc. 光学フィルム、偏光板及び液晶表示装置
JP2006342227A (ja) * 2005-06-08 2006-12-21 Konica Minolta Opto Inc セルロースエステルフィルム、偏光板および液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203796A1 (ja) * 2013-06-17 2014-12-24 Dic株式会社 セルロースエステル樹脂組成物、セルロースエステル光学フィルム、偏光板及び液晶表示装置
JPWO2014203796A1 (ja) * 2013-06-17 2017-02-23 Dic株式会社 セルロースエステル樹脂組成物、セルロースエステル光学フィルム、偏光板及び液晶表示装置

Also Published As

Publication number Publication date
TW201030075A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
JP5067369B2 (ja) 偏光板保護フィルム、偏光板及び液晶表示装置
JP5181862B2 (ja) 光学フィルム、及び偏光板
JP5262114B2 (ja) セルロースエステルフィルム、光拡散フィルム、偏光板及び液晶表示装置
JP5201135B2 (ja) 光学補償フィルムとそれを用いた偏光板及び液晶表示装置
JP2009210777A (ja) 光学フィルム、及びそれを用いた偏光板
JP2009001696A (ja) セルロースエステルフィルム、それを用いた偏光板及び液晶表示装置
WO2012077587A1 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5861700B2 (ja) 延伸セルロースエステルフィルム、及びその製造方法
JP2007178992A (ja) 偏光板及び液晶表示装置
JP5751054B2 (ja) 光学フィルムの製造方法、及び偏光板
WO2010041514A1 (ja) 光学フィルム、及びそれを用いた偏光板
JP5233935B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置並びにリターデーション発現剤
JP6330870B2 (ja) 偏光板およびこれを用いた液晶表示装置
JPWO2013125419A1 (ja) 光学フィルム、偏光板及び液晶表示装置
JP6330807B2 (ja) 偏光板および液晶表示装置
JP5299110B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5435030B2 (ja) セルロースエステル光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP6146446B2 (ja) 偏光板およびこれを用いた液晶表示装置
JP5450775B2 (ja) 光学フィルム、及び偏光板
JP2014098911A (ja) 偏光板およびこれを用いた液晶表示装置
WO2011046027A1 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2012072223A (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
WO2012111324A1 (ja) 延伸セルロースエステルフィルム、及びその製造方法
JP2012118177A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、及び液晶表示装置
JP5282310B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP