WO2010040915A2 - Composition à base de matériau hydraulique et/ou pouzzolanique - Google Patents

Composition à base de matériau hydraulique et/ou pouzzolanique Download PDF

Info

Publication number
WO2010040915A2
WO2010040915A2 PCT/FR2009/001191 FR2009001191W WO2010040915A2 WO 2010040915 A2 WO2010040915 A2 WO 2010040915A2 FR 2009001191 W FR2009001191 W FR 2009001191W WO 2010040915 A2 WO2010040915 A2 WO 2010040915A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
cationic
calcium sulphate
pozzolanic
cationic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2009/001191
Other languages
English (en)
Other versions
WO2010040915A3 (fr
Inventor
Sébastien Georges
Cédric COMPARET
Bruno Thibaut
Emmanuel Villard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lafarge SA
Original Assignee
Lafarge SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES09752200.7T priority Critical patent/ES2627318T3/es
Priority to EP09752200.7A priority patent/EP2334615B1/fr
Priority to MX2011003729A priority patent/MX2011003729A/es
Priority to CA2740122A priority patent/CA2740122C/fr
Priority to CN200980139692.5A priority patent/CN102171158B/zh
Priority to US13/122,775 priority patent/US8466224B2/en
Application filed by Lafarge SA filed Critical Lafarge SA
Publication of WO2010040915A2 publication Critical patent/WO2010040915A2/fr
Publication of WO2010040915A3 publication Critical patent/WO2010040915A3/fr
Priority to EG2011040536A priority patent/EG26717A/en
Anticipated expiration legal-status Critical
Priority to MA33825A priority patent/MA32779B1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the subject of the present invention is a composition based on hydraulic and / or pozzolanic material making it possible to recover raw materials that have not been or can be used until now for the manufacture of a hydraulic composition, said materials not being a clinker or limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime.
  • hydraulic and / or pozzolanic materials that are not clinker, limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate or plaster, nor lime, in the formulation of cements to form hydraulic compositions is well known to those skilled in the art (see in particular the cements additions of types CEM II to CEM V according to standard EN 197-1, which specifies the nature and the amount of said hydraulic and / or pozzolanic materials).
  • hydraulic and / or pozzolanic materials that are not clinker, limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster, lime, have characteristics that make their use sometimes difficult because they do not intrinsically meet the requirements of formulators.
  • a more or less important part of said hydraulic and / or pozzolanic materials can not therefore be used for the manufacture of hydraulic compositions.
  • the use of such hydraulic materials and / or pozzolanic may for example cause problems in terms of water demand or overdose of adjuvants.
  • the problem to be solved by the invention is to provide a new means adapted to develop hydraulic and / or pozzolanic materials, which are not a clinker, or limestone, gypsum, or calcium sulfate, or anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime, which may be of little or no use until now for the manufacture of hydraulic compositions, while obtaining the performance of standard hydraulic compositions .
  • the present invention proposes a mixture comprising at least one hydraulic and / or pozzolanic material and at least one water-soluble cationic polymer, said cationic polymer having a cationic charge density greater than 0.5 meq / g and an intrinsic viscosity lower than 1 dl / g, and said hydraulic and / or pozzolanic material not being a clinker, nor limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster, nor lime.
  • the invention offers decisive advantages, in particular the hydraulic compositions obtained from the mixture according to the invention require a superplasticizer dosage much lower than that which would be necessary for a hydraulic composition obtained from the same hydraulic and / or pozzolanic materials in the same proportions but without cationic polymer, for consistency or identical fluidity.
  • the hydraulic compositions obtained from the mixture according to the invention require a total amount of water much lower than that which would be necessary for a hydraulic composition obtained from the same hydraulic materials and / or pozzolanic in the same proportions but without cationic polymer, for a consistency or identical fluidity.
  • the invention offers another advantage that the hydraulic compositions comprising the mixture according to the invention have a lower water demand than the same hydraulic and / or pozzolanic materials but without cationic polymer.
  • the hydraulic compositions comprising the mixture according to the invention exhibit a better maintenance of workability.
  • Another advantage of the invention is the reduction of CO 2 emissions.
  • the mixture according to the invention makes it possible to use, in substitution of the clinker, a greater quantity of hydraulic and / or pozzolanic materials, said materials not being a clinker, nor limestone, gypsum or sulphate.
  • the invention has the advantage of being easy to implement, since the determination of the amount of cationic polymer according to the invention can be easily determined by simply measuring the value of blue (see NF EN 933-9 appendix A and NF 18-595). Indeed, the value of blue makes it possible to determine the cleanliness of the granular materials, such as for example the hydraulic and / or pozzolanic materials as defined according to the invention, that is to say the amount of impurities (as for example clays) contained in these materials.
  • the invention has the advantage of being implemented in all industries, including the building industry, the chemical industry (adjuvants) and in all construction markets (building, civil engineering or prefabrication plant). ), the construction industry or the cement industry.
  • the invention relates to a mixture comprising at least one hydraulic and / or pozzolanic material and at least one water-soluble cationic polymer, said cationic polymer having a cationic charge density greater than 0.5 meq / g and an intrinsic viscosity of less than 1 dl / l. g, and said material not being a clinker, limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime.
  • hydraulic binder a material which, when mixed with water, forms a paste which sets and hardens as a result of hydration reactions and which, after curing, retains its strength and its stability even under water.
  • a hydraulic binder according to the invention is a clinker or a cement, advantageously a Portland cement.
  • hydraulic material according to the present invention is understood to mean a hydraulic binder which is not a clinker, nor limestone, gypsum, calcium sulphate, anhydrous calcium sulphate or sulphate of calcium. calcium hemihydrate, or plaster.
  • pozzolanic material means a material which hardens on contact with lime in an aqueous medium (see EN 197.1 paragraph 5.2.3.1). Although a pozzolanic material needs lime to harden, lime as such is not part of pozzolanic materials.
  • the hydraulic and / or pozzolanic materials according to the present invention can not be a clinker, whatever it is.
  • the hydraulic and / or pozzola ⁇ ic materials according to the present invention can not be limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime. .
  • the hydraulic and / or pozzolanic materials according to the invention may especially be natural pozzolans, calcined pozzolans, calcined clays, calcined schists, fly ash, slags, silica fumes or mixtures thereof.
  • the hydraulic and / or pozzolanic materials according to the present invention are pozzolans, calcined clays, fly ash, silica fumes or mixtures thereof.
  • pozzolans according to the present invention is understood to mean siliceous and / or silico-aluminous materials essentially comprising reactive SiO 2 and Al 2 O 3 .
  • Pozzolans include natural pozzolans, which are usually volcanic materials or sedimentary rocks, and calcined pozzolans, which are volcanic materials, clays, schists or sedimentary rocks that are activated. thermally. (see standard EN 197-1 paragraph 5.2.3)
  • the pozzolans according to the invention may be chosen from pumice, tuff, slag or mixtures thereof.
  • calcined clays means clays which have undergone heat treatment.
  • covers according to the present invention is understood to mean phyllosilicates, which are predominantly of sheet-like or even fibrous structure (for example aluminum and / or magnesium silicates), which, for example, are characterized by X-ray diffraction. an atomic mesh parameter of the [001] (d ( ooi ) ) crystallographic planes varying from 7 to 15 Angstroms.
  • calcined schist means a material produced in a special oven at a temperature of about 800 0 C mainly comprising dicalcium silicate and monocalcium aluminate. (see standard EN 197-1 section 5.2.5)
  • slag according to the present invention is understood to mean a slag chosen from granulated blast furnace slags according to the standard EN 197-1 paragraph 5.2.2, steelmaking slags or their mixtures.
  • fuse ash means a material obtained by electrostatic or mechanical precipitation of powdery particles contained in the fumes of the boilers fed with pulverized coal (see standard EN 197-1 paragraph 5.2.4).
  • the fly ash according to the invention may be of siliceous or calcic nature.
  • silica fume is understood to mean a material obtained by reducing high-purity quartz by charcoal in electric arc furnaces used for the production of silicon and ferrosilicon alloys (see standard EN 197 -1 paragraph 5.2.7).
  • the silica fumes are formed of spherical particles comprising at least 85% by mass of amorphous silica.
  • polymer according to the present invention means a compound having more than two monomers, identical or different, having a particular order or not.
  • clinker is meant according to the present invention the product obtained after cooking (clinkerization) of a mixture (the raw), composed among other limestone and clay for example.
  • the term "Portland clinker” means a hydraulic material consisting of at least two thirds by weight of calcium silicates (3CaO-SiO 2 and 2CaO, SiO 2 ), the remaining part being composed of phases containing aluminum and iron, as well as other components.
  • the mass ratio (CaOy (SiO 2 )) should not be less than 2.0
  • the magnesium oxide (MgO) content should not exceed 5.0% by mass
  • hydroaulic composition the present invention a composition having a hydraulic setting, and especially grout, mortar and concrete for all construction markets (building, civil engineering, well drilling or prefabrication plant).
  • cured object means an object obtained after setting and hardening of a hydraulic composition.
  • the object may be for example a wall, a floor, a foundation, a bridge pillar, a product from a prefabrication plant, a surface coating, a coating, a masonry binder, a jointing product or a sealant. glue.
  • water demand is understood to mean the amount of water required to achieve a target fluidity in a hydraulic composition.
  • active material means a compound that has an effect on the hydraulic materials and / or pozzolanic as defined according to the present invention as part of their use for the manufacture of a hydraulic composition.
  • the active ingredient is not a solvent.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material chosen from natural pozzolans, calcined pozzolans, calcined clays, fly ash, calcined schists, slags, silica fumes or their mixtures.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material chosen from pozzolans, calcined clays, fly ash, silica fumes or their mixtures.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material which is a pozzolan.
  • the pozzolans according to the invention are chosen from pumice, tuff, slag or mixtures thereof.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material which is a calcined clay.
  • the calcined clays according to the invention are chosen from kaolinite, smectites, illite, muscovite, chlorites, thermally activated, or their mixtures.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material which is a fly ash.
  • the mixture according to the invention comprises said at least one hydraulic and / or pozzolanic material which is silica fume.
  • the hydraulic material and / or pozzolanic according to the invention may be a calcined kaolinite, also called a metakaolin.
  • the mixture according to the invention further comprises at least one usual adjuvant, such as, for example, a grinding agent, an accelerator, an air-entraining agent, a viscosifying agent, a retarder, a fluidifier, an anti-aging agent, withdrawal or their mixtures.
  • at least one usual adjuvant such as, for example, a grinding agent, an accelerator, an air-entraining agent, a viscosifying agent, a retarder, a fluidifier, an anti-aging agent, withdrawal or their mixtures.
  • the mixture according to the invention comprises an amount of cationic polymer less than or equal to 2%, preferably less than or equal to 1% with respect to the hydraulic material and / or pozzolanic according to the invention.
  • the mixture according to the invention further comprises an accelerator.
  • Said accelerator may be any known accelerator, advantageously a calcium salt.
  • the cationic polymer is water-soluble and has a cationicity greater than 0.5 meq / g, preferably greater than 1 meq / g, and in particular greater than 2 meq / g.
  • the cationic polymer furthermore has a molecular weight expressed by an intrinsic viscosity of less than 1 dl / g, preferably less than 0.8 dl / g, and in particular less than 0.6 dl / g.
  • the cationic polymer according to the invention may have a linear, comb or branched structure.
  • the cationic polymer according to the invention is linear.
  • Cationic polymers according to the invention are excluded cationic polymers insoluble in an aqueous medium, such as, for example, the SBR cationic latexes as described in the patent application JP H09-020536.
  • the cationic groups may especially be phosphonium, pyridinium, sulfonium and quaternary amine groups, the latter being preferred. These cationic groups may be located in the polymer chain or as a pendant group.
  • cationic polymers are known as such.
  • Such polymers can be obtained directly by one of the known polymerization processes, such as radical polymerization, polycondensation or polyaddition. They can also be prepared by post-synthetic modification of a polymer, for example by grafting groups carrying one or more cationic functions on a polymer chain bearing suitable reactive groups.
  • the polymerization is carried out from at least one monomer carrying a cationic group or a suitable precursor.
  • Polymers obtained from monomers bearing amino and imine groups are particularly useful.
  • the nitrogen may be quaternized after polymerization in a known manner, for example by alkylation with an alkylating compound, for example with methyl chloride, or in an acidic medium, by protonation.
  • Cationic polymers containing quaternary amine cationic groups are particularly suitable.
  • diallyldialkyl ammonium salts quaternized dialkylaminoalkyl (meth) acrylates, and (meth) acrylamides N-substituted with a quaternized dialkylaminoalkyl.
  • the polymerization can be carried out with nonionic monomers, preferably short chain, having 2 to 6 carbon atoms.
  • Anionic monomers may also be present insofar as they do not affect the cationic groups.
  • grafted natural polymers such as cationic starches.
  • the cationic polymer according to the invention contains groups whose cationic character is manifested only in an acid medium.
  • Amino groups tertiary, cationic protonation in acidic medium are particularly preferred.
  • the absence of ionic character in hydraulic compositions of the concrete or mortar type having an alkaline pH makes it possible to further improve their robustness vis-à-vis other ionic compounds, especially anionic compounds.
  • cationic polymers of the family of polyvinylamines which can be obtained by polymerization of N-vinylformamide, followed by hydrolysis.
  • the quaternized polyvinylamines can be prepared as described in US Pat. No. 5,292,441. Polyethyleneimine polymers are also suitable.
  • cationic polymers obtained by polycondensation of epichlorohydrin with a mono- or dialkylamine, especially methylamine or dimethylamine. Their preparation has been described, for example, in US Pat. Nos. 3,738,945 and 3,725,312.
  • the cationic polymers may be polymers of natural origin. It may be mentioned in particular the protonated or quaternized chitosan.
  • the cationic polymer unit obtained by polycondensation of dimethylamine and epichlorohydrin can be represented as follows:
  • Mannich-modified polyacrylamide polymers such as N-dimethylaminomethyl-substituted polyacrylamide.
  • cationic polymers obtained by polycondensation of dicyandiamide and formaldehyde. These polymers and the process for obtaining them are described in patent FR 1 042 084.
  • the cationic polymers according to the invention may be quaternized with an ammonium salt other than ammonium chloride.
  • the cationic polymer according to the invention may have other properties in addition to those described in the present application.
  • the cationic polymer according to the invention may be an agent for grinding the clinker or hydraulic and / or pozzolanic materials according to the invention, also called grinding agent.
  • superplasticizer for grinding the clinker or hydraulic and / or pozzolanic materials according to the invention, also called grinding agent.
  • the mixture according to the invention comprises, in addition to a specific cationic polymer, also at least one superplasticizer.
  • superplasticizer is understood to mean an organic molecule commonly used in the field of hydraulic compositions in order to fluidify the hydraulic compositions or to reduce the dosage of water of equal consistency.
  • a superplasticizer according to the present invention may for example be an anionic polymer with a comb structure, such as a polycarboxylate polyoxide (PCP), a lignosulfonate, a polyoxyalkylene diphosphonate or mixtures thereof.
  • PCP polycarboxylate polyoxide
  • PCP polycarboxylate polyoxide
  • PES poly (ethylene oxide) esters
  • the superplasticizer according to the present invention is selected from those most effective for reducing the viscosity of hydraulic compositions.
  • the superplasticizer according to the present invention is selected from those most effective for reducing the viscosity of hydraulic compositions.
  • the superplasticizer according to the present invention has a molecular weight of less than 200000 g / mol, preferably less than 100000 g / mol and preferably less than 80000 g / mol.
  • the superplasticizer according to the invention may be of linear, branched or comb structure.
  • At least one of the cationic polymer and the superplasticizer has a comb structure.
  • the main chain is generally hydrocarbon.
  • the superplasticizer according to the invention may in particular comprise carboxylic, sulphonic, saccharide or amine groups.
  • the superplasticizer according to the invention may also contain nonionic pendant groups, in particular polyether groups.
  • the polyether groups generally comprise ethylene oxide or propyleneoxide units or a combination of both.
  • the superplasticizer according to the invention may also contain pendant groups of the di- or oligo-saccharide type (see, for example, patent application EP 2072531) or of polyamide polyamide type (see, for example, patent application EP 2065349).
  • the superplasticizer according to the invention can be added at different times in the manufacturing process, at the same time or apart from the cationic polymer according to the invention. It can first be mixed with the hydraulic material and / or pozzolanic according to the invention. According to a variant, it can be added at the time of preparation of the hydraulic composition according to the invention. Hydraulic composition
  • Another object according to the invention is a hydraulic composition
  • a hydraulic composition comprising at least one mixture according to the invention and at least one hydraulic binder.
  • said hydraulic binder is a Portland cement.
  • composition according to the invention can be obtained by separate grinding of the various constituents or by co-grinding of the various constituents.
  • the mixture, the cationic polymer and the superplasticizer of the hydraulic composition according to the invention have the same characteristics as those described above.
  • the hydraulic composition according to the invention further comprises aggregates.
  • the hydraulic composition according to the invention further comprises an accelerator.
  • Said accelerator may be any known accelerator, preferably a calcium salt.
  • Treatment Another object according to the invention is a process for treating a hydraulic and / or pozzolanic material, comprising the steps of: preparing a cationic composition comprising water and at least one water-soluble cationic polymer having a density of cationic charges greater than 0.5 meq / g and an intrinsic viscosity of less than 1 dl / g as active ingredient; mixing said cationic composition with said at least one hydraulic and / or pozzolanic material; said hydraulic and / or pozzolanic material not being a clinker, nor limestone, gypsum, calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime .
  • the method according to the invention comprises a step of preparing a cationic composition which further comprises at least one superplasticizer.
  • the method according to the invention comprises an additional step of adding an accelerator.
  • Said accelerator may be any known accelerator, advantageously a calcium salt.
  • the hydraulic and / or pozzolanic material, the water-soluble cationic polymer and the superplasticizer of the process according to the invention have the same characteristics as those described above.
  • a cationic composition comprising the two ionic polymers of opposite charge is particularly advantageous. Indeed, it is surprisingly stable and does not form a precipitate. It is assumed that this effect is related to the steric hindrance of the comb polymer, which limits the accessibility of the charges borne by the polymer and thus prevents the precipitation of the oppositely charged polymers.
  • the composition comprises at most 50% by weight, and in particular at most 30% by weight of superplasticizer.
  • a composition comprising from 20 to 30% by weight of superplasticizer relative to the total weight (superplasticizer + cationic polymer).
  • the cationic composition may be used according to the intended application, in the form of a solid (granule, ball, fine powder) or liquid. Preferably, it is in the form of an aqueous solution. It may comprise, in addition to the active ingredient and the solvent (s), in particular at least one usual adjuvant, such as, for example, a grinding agent, an accelerator, an air-entraining agent, a viscosifying agent, a retarder, a liquefying agent, a anti-shrink agent or mixtures thereof.
  • a grinding agent an accelerator, an air-entraining agent, a viscosifying agent, a retarder, a liquefying agent, a anti-shrink agent or mixtures thereof.
  • the dosage is particularly easy for liquid forms.
  • aqueous solutions with high concentrations of polymer without problems related to high viscosities. It is particularly interesting to use high polymer concentrations to reduce costs (transport, storage).
  • the polymer concentration in the solution can vary, but is generally between 20 and 80% by weight.
  • the cationic composition according to the invention is preferably in liquid form. It can be mixed, sprayed or sprayed on the hydraulic and / or pozzolanic materials according to the invention to be treated. Preferably the treatment will be performed by simple mixing or simple contact. The treatment of the hydraulic material and / or pozzolanic according to the invention can occur at different times. Firstly, the cationic composition according to the invention may be added before, during and / or after the grinding of said hydraulic and / or pozzolanic materials, preferably after said grinding. According to one variant, the cationic composition according to the invention may be mixed with said hydraulic and / or pozzolanic materials by means of all or part of the mixing water, before mixing with cement.
  • the cationic composition according to the invention can be added to said hydraulic and / or pozzolanic materials before, during and / or after co-grinding with Portland clinker.
  • Hydraulic and / or pozzolanic materials thus treated can be used in the usual manner, especially for the preparation of hydraulic compositions. They are useful in the preparation of hydraulic compositions having constant properties.
  • the cationic composition described is stable over time and resists heat and frost.
  • Another object according to the invention is the use of a mixture according to the invention for the manufacture of a hydraulic composition.
  • Another object according to the invention is the use of a hydraulic composition as described above for the manufacture of a cured object.
  • the mixture, the cement, the cationic polymer and the superplasticizer of the uses according to the invention have the same characteristics as those described above.
  • Another object according to the invention is a cured object obtained from a hydraulic composition as described above.
  • the mixture, the water-soluble cationic polymer and the superplasticizer of the cured object according to the invention have the same characteristics as those described above.
  • the spreading of a mortar is measured thanks to a mini cone of Abrams whose volume is 800 mL.
  • the dimensions of the cone are as follows:
  • the cone is placed on a dried glass plate and filled with fresh mortar. He is then leveled. The lifting of the cone causes a slump of the mortar paste on the glass plate. The diameter of the slab obtained is measured in millimeters. This is the spreading of the mortar. The consistency of a mortar is considered good when the measurement of the spread is close to 320 mm.
  • the cationic polymers are characterized by their cationicity and molecular weight.
  • the cationicity or density of cationic charges represents the amount of charges (in mmol) carried by 1 g of polymer. This property is measured by colloidal titration with an anionic polymer in the presence of a colored indicator sensitive to the ionicity of the excess polymer.
  • the cationicity was determined as follows. 60 ml of a 0.001 M sodium phosphate buffer solution - pH 6 and 1 ml of 4.1 ⁇ 10 -4 M blue o-toluidine solution and then 0.5 ml are introduced into a suitable container. of cationic polymer solution to be assayed.
  • V pc is the solution volume of the cationic polymer
  • C pc is the concentration of cationic polymer in solution
  • V ep v sk is the volume of solution of potassium polyvinyl sulphate
  • Np VSk is the normality of the potassium polyvinyl sulphate solution.
  • the intrinsic viscosity measurements of the cationic polymers are carried out in a 3M NaCl solution, with a Ubbelhode capillary viscometer, at 25 ° C.
  • the flow time in the capillary tube is measured between 2 marks for the solvent and solutions of the polymer at different concentrations.
  • the reduced viscosity is calculated by dividing the specific viscosity by the concentration of the polymer solution.
  • the specific viscosity is obtained for each concentration, by dividing the difference between the flow times of the polymer solution and the solvent, by the flow time of the solvent.
  • a straight line is obtained. The intersection with the ordinate of this line corresponds to the intrinsic viscosity for a concentration equal to zero.
  • the cement is a type CEM I 52.5N CE CP2 NF cement (from Le Havre - Lafarge factory).
  • Standardized sand is silica sand in accordance with EN 196.1 (supplier: Instituto-domea).
  • PE2LS sand is siliceous sand with a diameter of 0.315 mm or less (Supplier: Fulchiron).
  • the adjuvant is Glenium 27 (dry extract: 20.3% by weight, supplier: BASF).
  • the cationic polymer used for all the examples which follow is a polyamine epichlorohydrin-dimethylamine having a cationicity of 7.3 meq / g and an intrinsic viscosity of 0.04 dl / g (FL2250, dry extract: 55% by weight; Supplier: SNF).
  • the treatment of the hydraulic and / or pozzolanic materials according to the invention with the cationic composition is carried out by mixing the cationic solution with said hydraulic and / or pozzolanic materials. After mixing, the cationic solution and the hydraulic and / or pozzolanic materials are stirred vigorously for 20 to 30 seconds, then left to stand for 4 minutes, and finally used in the mortar.
  • the cationic polymer dosage is expressed in ppm (or mg / kg) of dry polymer per kilogram of hydraulic material and / or pozzolanic according to the invention.
  • Mortar preparation protocol In the bowl of a Perrier kneader, the sand is introduced, followed by the pre-wetting water while stirring at low speed (140 rpm). Allowed to stand for 4 minutes before introducing the binders (cement, hydraulic materials and / or pozzolanic as defined according to the present invention). The mixture is kneaded again for 1 minute at low speed and the mixing water added with the adjuvant is then added in 30 seconds at a low speed. Finally, it kneads another 2 minutes at 280 rpm.
  • - (1) corresponds to the degree of substitution of the cement by the hydraulic material and / or pozzolanic according to the invention (pozzolan or calcined clay);
  • Binder cement + hydraulic material and / or pozzolanic according to the invention (pozzolan or calcined clay).
  • the hydraulic compositions according to the invention make it possible to reduce the amount of adjuvant used to obtain a hydraulic composition having the same performance (rheology and mechanical strength). Indeed, if we compare Examples 4 and 6, the adjuvant dosage is 0.2% for the composition according to the invention (Example 6), whereas it is 0.3% for the composition without treatment, for equivalent rheology (spread at 5 minutes respectively at 330 mm for Example 4 and 335 mm for Example 6).
  • the hydraulic compositions according to the invention make it possible to obtain better resistances for the same amount of adjuvant.
  • the adjuvant dosage is 0.3% in both cases, but the E / Binder ratio is 0.63 for Example 4, whereas it is 0.53 for the hydraulic composition according to the invention (Example 7), and the 1-day strengths are respectively 9.4 MPa for Example 4 and 11.2 MPa for Example 7.
  • Table 2 like the rest of Table 3, illustrates the fact that the substitution of a part of the cement by a hydraulic and / or pozzolanic material, said material not being a clinker, or limestone, gypsum or Calcium sulphate, anhydrous calcium sulphate, calcium sulphate hemihydrate, plaster or lime generally leads to a degradation of the rheology but also of the mechanical performances (passage from line 1 to line 2 ). The loss in terms of rheology is traditionally recovered via an addition of water
  • Lines 5, 6 and 7 illustrate the interest of the invention since it allows, at constant rheology, to reduce the addition of water (passage from line 3 to line 5) and thus to obtain higher resistances, either to reduce by 30% the amount of adjuvant (passage from line 4 to line 6) or to reduce the amount of water without reducing the adjuvant (passage from line 4 to line 7) ) which allows to obtain higher resistances to the case without treatment (line 2), thus obtaining a binder having a rheology compatible with the expectations of users.
  • Examples with a fly ash The fly ash used for this example is the fly ash Rosa
  • the fly ash tested does not include clay as such, but may optionally include a particular form of calcined clay (mullite).
  • Y 2.35 g, which corresponds to about 800 ppm of adjuvant by weight relative to the cement.
  • the amount of cationic polymer is 1.08 g (which corresponds to 1000 ppm by weight relative to the cement) and 2.16 g (which corresponds to 2000 ppm by weight relative to the cement).
  • Table 5 lists the results obtained with the fly ash described above.
  • the treatment with the cationic polymer according to the invention leads to an increase in the spreading, which passes for example from 295 mm to 5 minutes, for the formulation with 75% of cement and 25% of fly ash without treatment, at 315 mm at 5 minutes, for a formulation with 75% cement and 25% fly ash treated with 1.08 g of cationic polymer.
  • the effect of the cationic polymer according to the invention for the formulations with 75% cement and 25% fly ash depends on the amount of cationic polymer used for the treatment. Indeed, the spread at 5 minutes for the formulation with 75% cement and 25% fly ash is 315 mm at 5 minutes with 1.08 g of cationic polymer and 335 mm with 2.16 g of cationic polymer .
  • the spread at 5 minutes for the formulation with 75% cement and 25% fly ash is 315 mm at 5 minutes with 1.08 g of cationic polymer and 335 mm with 2.16 g of cationic polymer .
  • the silica fume used for this example is marketed by the European Company of Refractory Products under the name MST.
  • the mortar formulation tested is that described in Table 1 above, in which the cement, the sands, the adjuvant and the cationic polymer are the same as those described.
  • the spreading of the mortar increases at all times. For example, the spreading of the mortar at 15 minutes increases from 270 mm to 285 mm. With the treatment with the cationic polymer according to the invention, the spreading of the mortar at 60 minutes also increases from 235 mm to 265 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention a pour objet un mélange comprenant au moins un matériau hydraulique et/ou pouzzolanique et au moins un polymère cationique hydrosoluble, ledit polymère cationique présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g, ledit matériau hydraulique et/ou pouzzolanique n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux La présente invention a également pour objet une composition hydraulique et un objet durci comprenant ledit mélange

Description

Composition à base de matériau hydraulique et/ou pouzzolanique
La présente invention a pour objet une composition à base de matériau hydraulique et/ou pouzzolanique permettant de valoriser des matières premières pas ou peu utilisables jusqu'à présent pour la fabrication d'une composition hydraulique, lesdits matériaux n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
L'utilisation de matériaux hydrauliques et/ou pouzzolaniques, qui ne sont pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, dans la formulation des ciments pour former des compositions hydrauliques est bien connue de l'homme du métier (voir notamment les ciments aux ajouts de types CEM II à CEM V selon la norme EN 197-1 , qui précise la nature et la quantité desdits matériaux hydrauliques et/ou pouzzolaniques).
Or, les matériaux hydrauliques et/ou pouzzolaniques, qui ne sont pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, ont des caractéristiques qui rendent leur utilisation parfois difficile car ils ne correspondent pas intrinsèquement aux exigences des formulateurs. Une partie plus ou moins importante desdits matériaux hydrauliques et/ou pouzzolaniques ne peut donc pas être utilisée pour la fabrication de compositions hydrauliques. L'utilisation de tels matériaux hydrauliques et/ou pouzzolaniques peut par exemple entraîner des problèmes en termes de demande en eau ou de surdosage en adjuvants. Afin de répondre aux exigences et aux besoins des formulateurs, il est devenu nécessaire de trouver un moyen pour valoriser des matériaux hydrauliques et/ou pouzzolaniques, qui ne sont pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, et qui ne conviennent pas ou peu pour la fabrication de compositions hydrauliques.
Aussi le problème que se propose de résoudre l'invention est de fournir un nouveau moyen adapté pour valoriser des matériaux hydrauliques et/ou pouzzolaniques, qui ne sont pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, et qui peuvent être pas ou peu utilisables jusqu'à présent pour la fabrication de compositions hydrauliques, tout en obtenant les performances des compositions hydrauliques standards. De manière inattendue, les inventeurs ont mis en évidence qu'il est possible d'utiliser des polymères cationiques particuliers pour valoriser les matériaux hydrauliques et/ou pouzzolaniques, lesdits matériaux n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
Dans ce but la présente invention propose un mélange comprenant au moins un matériau hydraulique et/ou pouzzolanique et au moins un polymère cationique hydrosoluble, ledit polymère cationique présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g, et ledit matériau hydraulique et/ou pouzzolanique n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
L'invention offre des avantages déterminants, en particulier les compositions hydrauliques obtenues à partir du mélange selon l'invention nécessitent un dosage en superplastifiant bien inférieur à celui qui serait nécessaire pour une composition hydraulique obtenue à partir des mêmes matériaux hydrauliques et/ou pouzzolaniques dans les mêmes proportions mais sans polymère cationique, pour une consistance ou fluidité identique.
Selon un autre avantage de l'invention, les compositions hydrauliques obtenues à partir du mélange selon l'invention nécessitent une quantité d'eau totale bien inférieure à celle qui serait nécessaire pour une composition hydraulique obtenue à partir des mêmes matériaux hydrauliques et/ou pouzzolaniques dans les mêmes proportions mais sans polymère cationique, pour une consistance ou fluidité identique.
L'invention offre comme autre avantage que les compositions hydrauliques comprenant le mélange selon l'invention ont une demande en eau inférieure à celle des mêmes matériaux hydrauliques et/ou pouzzolaniques mais sans polymère cationique.
Selon un autre avantage de l'invention, les compositions hydrauliques comprenant le mélange selon l'invention présentent un meilleur maintien d'ouvrabiiité.
Un autre avantage de l'invention est la réduction des émissions de CO2. En effet, le mélange selon l'invention permet d'utiliser en substitution du clinker une plus grande quantité de matériaux hydrauliques et/ou pouzzolaniques, lesdits matériaux n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, et ce, sans dégrader les performances des compositions hydrauliques obtenues, notamment en termes de rhéologie et de résistances mécaniques.
En outre, l'invention présente l'avantage d'être facile à mettre en œuvre, car la détermination de la quantité de polymère cationique selon l'invention peut être facilement déterminée par simple mesure de la valeur de bleu (voir les normes NF EN 933-9 annexe A et NF 18-595). En effet, la valeur de bleu permet de déterminer la propreté des matériaux granulaires, comme par exemple les matériaux hydrauliques et/ou pouzzolaniques tels que définis selon l'invention, c'est-à-dire la quantité d'impuretés (comme par exemples des argiles) contenues dans ces matériaux. Or, des tests de routine permettent de tracer la courbe (dosage en polymère cationique selon l'invention en fonction de la valeur de bleu mesurée) et ainsi de déterminer, pour un matériau granulaire donné, la relation existant entre la valeur de bleu et la quantité de polymère cationique selon l'invention nécessaire pour obtenir le résultat souhaité. Enfin l'invention a pour avantage de pouvoir être mise en œuvre dans toutes industries, notamment l'industrie du bâtiment, l'industrie chimique (adjuvantiers) et dans l'ensemble des marchés de la construction (bâtiment, génie civil ou usine de préfabrication), de l'industrie de la construction ou de l'industrie cimentière.
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre.
L'invention concerne un mélange comprenant au moins un matériau hydraulique et/ou pouzzolanique et au moins un polymère cationique hydrosoluble, ledit polymère cationique présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g, et ledit matériau n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
On entend par l'expression « liant hydraulique » selon la présente invention un matériau qui, gâché avec de l'eau, forme une pâte qui fait prise et durcit par suite de réactions d'hydratation et qui, après durcissement, conserve sa résistance et sa stabilité même sous l'eau. De préférence, un liant hydraulique selon l'invention est un clinker ou un ciment, avantageusement un ciment Portland.
On entend par l'expression « matériau hydraulique » selon la présente invention un liant hydraulique qui n'est pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre.
On entend par l'expression « matériau pouzzolanique » selon la présente invention un matériau qui durcit au contact de la chaux en milieu aqueux (voir EN 197.1 paragraphe 5.2.3.1 ). Même si un matériau pouzzolanique a besoin de chaux pour durcir, la chaux en tant que telle ne fait pas partie des matériaux pouzzolaniques.
Les matériaux hydrauliques et/ou pouzzolaniques selon la présente invention ne peuvent pas être un clinker, quel qu'il soit. Les matériaux hydrauliques et/ou pouzzolaπiques selon la présente invention ne peuvent pas être du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux. Les matériaux hydrauliques et/ou pouzzolaniques selon l'invention peuvent notamment être des pouzzolanes naturelles, des pouzzolanes calcinées, des argiles calcinées, des schistes calcinés, des cendres volantes, des laitiers, des fumées de silice ou leurs mélanges. De préférence, les matériaux hydrauliques et/ou pouzzolaniques selon la présente invention sont des pouzzolanes, des argiles calcinées, des cendres volantes, des fumées de silice ou leurs mélanges. On entend par le terme « pouzzolanes » selon la présente invention des matériaux siliceux et/ou silico-alumineux comprenant essentiellement du SiO2 réactif et du AI2O3. Parmi les pouzzolanes, on peut citer les pouzzolanes naturelles, qui sont en général des matériaux d'origine volcanique ou des roches sédimentaires, et les pouzzolanes calcinées, qui sont des matériaux d'origine volcanique, des argiles, des schistes ou des roches sédimentaires activés thermiquement. (voir norme EN 197-1 paragraphe 5.2.3) Les pouzzolanes selon l'invention peuvent être choisies parmi les ponces, les tuff, les scories ou leurs mélanges.
On entend par le terme « argiles calcinées » selon la présente invention des argiles qui ont subi un traitement thermique. On entend par le terme « argiles » selon la présente invention des phyllosilicates, principalement à structure en feuillets, voire fibreux (par exemple des silicates d'aluminium et/ou de magnésium), qui, caractérisés par diffraction par rayons X par exemple, possèdent un paramètre de maille atomique des plans cristallographiques [001] (d(ooi)) variant de 7 à 15 Angstroms. Les argiles selon l'invention peuvent être choisies parmi la kaolinite (d(OOi) = 7 Angstroms), les smectites (terme générique utilisé pour désigner les argiles gonflantes, dont la montmorillonite), l'illite, la muscovite (d<ooi) = 10 Angstroms), les chlorites (d(OOi) = 14 Angstrôms), ou leurs mélanges.
On entend par le terme « schiste calciné » selon la présente invention un matériau produit dans un four spécial à une température d'environ 8000C comprenant principalement du silicate bicalcique et de l'aluminate monocalcique. (voir norme EN 197-1 paragraphe 5.2.5)
On entend par le terme « laitier » selon la présente invention un laitier choisi parmi les laitiers granulés de haut fourneau selon la norme EN 197-1 paragraphe 5.2.2, les laitiers d'aciérie ou leurs mélanges. On entend par le terme « cendre volante » selon la présente invention un matériau obtenu par précipitation électrostatique ou mécanique de particules pulvérulentes contenues dans les fumées des chaudières alimentées au charbon pulvérisé (voir norme EN 197-1 paragraphe 5.2.4). Les cendres volantes selon l'invention peuvent être de nature siliceuse ou calcique.
On entend par le terme « fumée de silice » selon la présente invention un matériau obtenu par réduction de quartz de grande pureté par du charbon dans des fours à arcs électriques utilisés pour la production de silicium et d'alliages de ferrosilicium (voir norme EN 197-1 paragraphe 5.2.7). Les fumées de silice sont formées de particules sphériques comprenant au moins 85% en masse de silice amorphe.
On entend par le terme « polymère » selon la présente invention un composé comportant plus de deux monomères, identiques ou différents, présentant un ordre particulier ou non.
Par le terme « clinker », on entend selon la présente l'invention le produit obtenu après cuisson (la clinkérisation) d'un mélange (le cru), composé entre autres de calcaire et par exemple d'argile.
On entend par le terme « clinker Portland » selon la présente invention un matériau hydraulique constitué d'au moins deux tiers en masse de silicates de calcium (3CaO-SiO2 et 2CaO. SiO2), la partie restante étant constituée de phases contenant de l'aluminium et du fer, ainsi que d'autres composants. Le rapport massique (CaOy(SiO2) ne doit pas être inférieur à 2,0. La teneur en oxyde de magnésium (MgO) ne doit pas dépasser 5,0 % en masse. On entend par le terme « composition hydraulique » selon la présente invention une composition présentant une prise hydraulique, et tout particulièrement les coulis, mortiers et bétons destinés à l'ensemble des marchés de la construction (bâtiment, génie civil, puits de forage ou usine de préfabrication).
On entend par le terme « objet durci » selon la présente invention un objet obtenu après prise et durcissement d'une composition hydraulique. L'objet peut être par exemple un mur, un sol, une fondation, un pilier de pont, un produit issu d'une usine de préfabrication, un enduit de surface, un revêtement, un liant à maçonner, un produit de jointoiement ou une colle.
On entend par le terme « demande en eau » selon la présente invention la quantité d'eau nécessaire pour obtenir une fluidité cible dans une composition hydraulique.
On entend par le terme « matière active » selon la présente invention un composé qui a un effet sur les matériaux hydrauliques et/ou pouzzolaniques tels que définis selon la présente invention dans le cadre de leur utilisation pour la fabrication d'une composition hydraulique. En particulier, la matière active n'est pas un solvant. Mélange
De préférence, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique choisi parmi les pouzzolanes naturelles, les pouzzolanes calcinées, les argiles calcinées, les cendres volantes, les schistes calcinés, les laitiers, les fumées de silice ou leurs mélanges. Avantageusement, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique choisi parmi les pouzzolanes, les argiles calcinées, les cendres volantes, les fumées de silice ou leurs mélanges.
De préférence, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique qui est une pouzzolane. Avantageusement, les pouzzolanes selon l'invention sont choisies parmi les ponces, les tuff, les scories ou leurs mélanges.
De préférence, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique qui est une argile calcinée. Avantageusement, les argiles calcinées selon l'invention sont choisies parmi la kaolinite, les smectites, l'illite, la muscovite, les chlorites, activées thermiquement, ou leurs mélanges.
De préférence, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique qui est une cendre volante.
De préférence, le mélange selon l'invention comprend ledit au moins un matériau hydraulique et/ou pouzzolanique qui est de la fumée de silice.
De préférence, le matériau hydraulique et/ou pouzzolanique selon l'invention peut être une kaolinite calcinée, également appelée un métakaolin.
De préférence, le mélange selon l'invention comprend en outre au moins un adjuvant habituel, comme par exemple un agent de mouture, un accélérateur, un agent entraîneur d'air, un agent viscosant, un retardateur, un fluidifiant, un agent anti-retrait ou leurs mélanges.
De préférence, le mélange selon l'invention comprend une quantité de polymère cationique inférieure ou égale à 2 %, de préférence inférieure ou égale à 1 % par rapport au matériau hydraulique et/ou pouzzolanique selon l'invention. De préférence, le mélange selon l'invention comprend en outre un accélérateur.
Ledit accélérateur peut être n'importe quel accélérateur connu, avantageusement un sel de calcium. Polymère cationique
Selon l'invention, le polymère cationique est hydrosoluble et présente une cationicité supérieure à 0,5 meq/g, de préférence supérieure à 1 meq/g, et en particulier supérieure à 2 meq/g. Selon l'invention, le polymère cationique présente en outre un poids moléculaire exprimé par une viscosité intrinsèque inférieure à 1 dl/g, de préférence inférieure à 0,8 dl/g, et en particulier inférieure à 0,6 dl/g.
Le polymère cationique selon l'invention peut présenter une structure linéaire, peigne ou ramifiée. De préférence, le polymère cationique selon l'invention est linéaire.
Sont exclus des polymères cationiques selon l'invention les polymères cationiques insolubles en milieu aqueux, comme par exemple les latex cationiques SBR tels que décrits dans la demande de brevet JP H09-020536.
Les groupes cationiques peuvent être notamment des groupes phosphonium, pyridinium, sulfonium et aminé quaternaire, ces derniers étant préférés. Ces groupes cationiques peuvent être situés dans la chaîne du polymère ou comme groupe pendant.
Un grand nombre de polymères cationiques sont connus en tant que tels. De tels polymères peuvent être obtenus directement par un des procédés de polymérisation connus, tels que la polymérisation radicalaire, la polycondensation ou la polyaddition. Ils peuvent également être préparés par modification post-synthétique d'un polymère, par exemple par greffage de groupements portant une ou plusieurs fonctions cationiques sur une chaîne polymérique portant des groupes réactifs appropriés.
La polymérisation est réalisée à partir d'au moins un monomère portant un groupe cationique ou un précurseur adapté. Les polymères obtenus à partir de monomères portant des groupes aminé et imine sont particulièrement utiles. L'azote peut être quaternisé après polymérisation de manière connue, par exemple par alkylation à l'aide d'un composé alkylant, par exemple par du chlorure de méthyle, ou en milieu acide, par protonation.
Les polymères cationiques contenant des groupes cationiques d'aminé quaternaire sont particulièrement appropriés.
Parmi les monomères portant déjà une fonction aminé quaternaire cationique, on peut citer notamment les sels de diallyldialkyl ammonium, les (meth)acrylates de dialkylaminoalkyl quatemisés, et les (meth)acrylamides N-substitués par un dialkylaminoalkyl quaternisé. La polymérisation peut être réalisée avec des monomères non ioniques, de préférence à chaîne courte, comportant 2 à 6 atomes de carbone. Des monomères anioniques peuvent également être présents dans la mesure où ils n'affectent pas les groupements cationiques.
Dans le cadre de la modification de polymères par greffage, on peut citer les polymères naturels greffés, tels que les amidons cationiques.
Avantageusement, le polymère cationique selon l'invention contient des groupes dont le caractère cationique ne se manifeste qu'en milieu acide. Les groupes aminés tertiaires, cationiques par protonation en milieu acide, sont particulièrement préférés. L'absence de caractère ionique dans les compositions hydrauliques de type béton ou mortier présentant un pH alcalin permet d'améliorer encore leur robustesse vis-à-vis d'autres composés ioniques, notamment anioniques. A titre d'exemple, on peut citer des polymères cationiques de la famille des pofyvinylamines, lesquels peuvent être obtenus par polymérisation de N-vinylformamide, suivie d'une hydrolyse. Les polyvinylamines quatemisés peuvent être préparés comme décrit dans le brevet US 5,292,441. Sont également appropriés les polymères de type polyéthylèneimine. Ces derniers sont quatemisés par protonation. Particulièrement préférés sont les polymères cationiques obtenus par polycondensation d'épichlorhydrine avec une mono- ou dialkylamine, notamment la méthylamine ou la diméthylamine. Leur préparation a été décrite par exemple dans les brevets US 3,738,945 et US 3,725,312.
De préférence, les polymères cationiques peuvent être des polymères d'origine naturelle. On peut citer notamment le chitosan protoné ou quaternisé.
Le motif du polymère cationique obtenu par polycondensation de diméthylamine et d'épichlorhydrine peut être représenté comme suit :
Figure imgf000009_0001
Egalement appropriés sont les polymères de type polyacrylamide modifiés par réaction de Mannich tel que le polyacrylamide N-substitué par un groupe diméthylaminométhyle.
Egalement appropriés sont les polymères cationiques obtenus par polycondensation de dicyandiamide et de formaldéhyde. Ces polymères et leur procédé d'obtention sont décrits dans le brevet FR 1 042 084.
De préférence, les polymères cationiques selon l'invention peuvent être quatemisés par un sel d'ammonium autre que le chlorure d'ammonium.
Avantageusement, le polymère cationique selon l'invention peut posséder d'autres propriétés en plus de celles décrites dans la présente demande. En particulier, le polymère cationique selon l'invention peut être un agent d'aide au broyage du clinker ou des matériaux hydrauliques et/ou pouzzolaniques selon l'invention, également appelé agent de mouture. Superplastifiant
De préférence, le mélange selon l'invention comprend, outre un polymère cationique spécifique, également au moins un superplastifiant.
On entend par le terme « superplastifiant » selon la présente invention une molécule organique couramment utilisée dans le domaine des compositions hydrauliques afin de fluidifier les compositions hydrauliques ou réduire le dosage en eau à consistance égale. Un superplastifiant selon la présente invention peut par exemple être un polymère anionique à structure peigne, tel qu'un polycarboxylate polyoxyde (PCP), un lignosulfonate, un polyoxyalkylène diphosphonate ou leurs mélanges. On entend par le terme « polycarboxylate polyoxyde » ou « PCP » selon la présente invention un copolymère des acides acryliques ou méthacryliques, et de leurs esters de poly(oxyde d'éthylène) (POE).
De préférence, le superplastifiant selon la présente invention est choisi parmi ceux les plus efficaces pour réduire la viscosité des compositions hydrauliques. De préférence, le superplastifiant selon la présente invention est choisi parmi ceux les plus efficaces pour réduire la viscosité des compositions hydrauliques.
De préférence, le superplastifiant selon la présente invention a un poids moléculaire inférieur à 200000 g/mol, de préférence inférieur à 100000 g/mol et de préférence inférieur à 80000 g/mol. Le superplastifiant selon l'invention peut être de structure linéaire, ramifiée ou en peigne.
De préférence, au moins l'un parmi le polymère cationique et le superplastifiant présente une structure en peigne.
Tout particulièrement préféré est un superplastifiant de structure en peigne. Dans ce cas, la chaîne principale est en règle générale hydrocarbonée.
Le superplastifiant selon l'invention peut comprendre notamment des groupes carboxyliques, sulfoniques, saccharidiques ou aminés.
Le superplastifiant selon l'invention peut contenir par ailleurs des groupements pendants non ioniques, en particulier, des groupements polyéther. Les groupements polyéther comprennent généralement des motifs d'éthylèneoxyde ou de propylèneoxyde ou encore une combinaison des deux.
Le superplastifiant selon l'invention peut également contenir par ailleurs des groupements pendants de type di- ou oligo-saccharides (voir par exemple la demande de brevet EP 2072531 ) ou de type polyamine polyamide (voir par exemple la demande de brevet EP 2065349).
Un grand nombre de superplastifiants tels que décrits sont connus en tant que tels. Ils peuvent être obtenus directement par copolymérisation, voie décrite dans les brevets EP 0056627, JP 58074552, US 5,393,343.
Ils peuvent également être préparés par modification post-synthétique d'un polymère, comme décrit par exemple dans le brevet US 5,614,017. Le superplastifiant selon l'invention peut être ajouté à différents moments dans le procédé de fabrication, en même temps ou à part du polymère cationique selon l'invention. Il peut tout d'abord être mélangé au matériau hydraulique et/ou pouzzolanique selon l'invention. Selon une variante, il peut être ajouté au moment de la préparation de la composition hydraulique selon l'invention. Composition hydraulique
Un autre objet selon l'invention est une composition hydraulique comprenant au moins un mélange selon l'invention et au moins un liant hydraulique. De préférence, ledit liant hydraulique est un ciment Portland.
La composition selon l'invention peut être obtenue par broyage séparé des différents constituants ou par co-broyage des différents constituants.
De préférence, le mélange, le polymère cationique et le superplastifiant de la composition hydraulique selon l'invention présentent les mêmes caractéristiques que celles décrites ci-avant.
De préférence, la composition hydraulique selon l'invention comprend en outre des granulats.
De préférence, la composition hydraulique selon l'invention comprend en outre un accélérateur. Ledit accélérateur peut-être n'importe quel accélérateur connu, avantageusement un sel de calcium. Traitement Un autre objet selon l'invention est un procédé de traitement d'un matériau hydraulique et/ou pouzzolanique, comprenant les étapes de : préparation d'une composition cationique comprenant de l'eau et au moins un polymère cationique hydrosoluble présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g à titre de matière active ; mélange de ladite composition cationique avec ledit au moins un matériau hydraulique et/ou pouzzolanique ; ledit matériau hydraulique et/ou pouzzolanique n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
De préférence, le procédé selon l'invention comprend une étape de préparation d'une composition cationique qui comprend en outre au moins un superplastifiant. De préférence, le procédé selon l'invention comprend une étape supplémentaire d'ajout d'un accélérateur. Ledit accélérateur peut être n'importe quel accélérateur connu, avantageusement un sel de calcium.
De préférence, le matériau hydraulique et/ou pouzzolanique, le polymère cationique hydrosoluble et le superplastifiant du procédé selon l'invention présentent les mêmes caractéristiques que celles décrites ci-avant.
Une composition cationique comprenant les deux polymères ioniques de charge opposée est particulièrement avantageuse. En effet, elle est de manière surprenante stable et ne forme pas de précipité. II est supposé que cet effet est lié à l'encombrement stérique du polymère peigne, lequel limite l'accessibilité des charges portées par le polymère et évite ainsi la précipitation des polymères de charge opposée.
Avantageusement, la composition comprend au plus 50% en poids, et en particulier au plus 30% en poids de superplastifiant. Particulièrement préférée est une composition comprenant de 20 à 30% en poids de superplastifiant par rapport au poids total (superplastifiant + polymère cationique).
La composition cationique peut être utilisée selon l'application envisagée, sous forme de solide (granulé, bille, poudre fine) ou liquide. De préférence, elle se présente sous forme de solution aqueuse. Elle peut comprendre, outre la matière active et le ou les solvants, notamment au moins un adjuvant habituel, comme par exemple un agent de mouture, un accélérateur, un agent entraîneur d'air, un agent viscosant, un retardateur, un fluidifiant, un agent anti-retrait ou leurs mélanges.
Le dosage est particulièrement aisé pour des formes liquides. D'autre part, compte tenu du poids moléculaire relativement faible des macromolécules sélectionnées, il est possible d'utiliser des solutions aqueuses à concentrations élevées en polymère sans problème lié à de fortes viscosités. Il est particulièrement intéressant d'utiliser des concentrations en polymère élevées pour réduire les coûts (transport, stockage). La concentration en polymère dans la solution peut varier, mais est généralement comprise entre 20 et 80% en poids. En variante, il peut être envisagé de préparer un pré-mélange d'une petite quantité dudit matériau hydraulique et/ou pouzzolanique avec le polymère cationique hydrosoluble puis d'ajouter ce pré-mélange à la quantité restante dudit matériau hydraulique et/ou pouzzolanique.
La composition cationique selon l'invention est de préférence sous forme liquide. Elle peut être mélangée, aspergée ou vaporisée sur les matériaux hydrauliques et/ou pouzzolaniques selon l'invention à traiter. De préférence le traitement sera réalisé par simple mélange ou simple mise en contact. Le traitement du matériau hydraulique et/ou pouzzolanique selon l'invention peut intervenir à différents moments. Tout d'abord, la composition cationique selon l'invention peut être ajoutée avant, pendant et/ou après le broyage desdits matériaux hydrauliques et/ou pouzzolaniques, de préférence après ledit broyage. Selon une variante, la composition cationique selon l'invention peut être mélangée auxdits matériaux hydrauliques et/ou pouzzolaniques par le biais de tout ou partie de l'eau de gâchage, avant le mélange au ciment. Enfin, selon une autre variante, la composition cationique selon l'invention peut être ajoutée auxdits matériaux hydrauliques et/ou pouzzolaniques avant, pendant et/ou après le co-broyage avec le clinker Portland. Les matériaux hydrauliques et/ou pouzzolaniques ainsi traités peuvent être utilisés de manière habituelle, notamment pour la préparation de compositions hydrauliques. Ils sont utiles dans la préparation de compositions hydrauliques présentant des propriétés constantes.
La composition cationique décrite est stable dans le temps et résiste à la chaleur et au gel.
Un autre objet selon l'invention est l'utilisation d'un mélange selon l'invention pour la fabrication d'une composition hydraulique.
Un autre objet selon l'invention est l'utilisation d'une composition hydraulique telle que décrite ci-avant pour la fabrication d'un objet durci. De préférence, le mélange, le ciment, le polymère cationique et le superplastifiant des utilisations selon l'invention présentent les mêmes caractéristiques que celles décrites ci-avant.
Enfin, un autre objet selon l'invention est un objet durci obtenu à partir d'une composition hydraulique telle que décrite ci-avant. De préférence, le mélange, le polymère cationique hydrosoluble et le superplastifiant de l'objet durci selon l'invention présentent les mêmes caractéristiques que celles décrites ci-avant.
Les exemples suivants illustrent l'invention sans en limiter la portée. Mesure de ('étalement et suivi de la rhéologie
L'étalement d'un mortier est mesuré grâce à un mini cône d'Abrams dont le volume est de 800 mL. Les dimensions du cône sont les suivantes :
- diamètre du cercle de la base supérieure : 50 +/- 0,5 mm ;
- diamètre du cercle de la base inférieure : 100 +/- 0,5 mm ;
- hauteur : 150 +/- 0,5 mm.
Le cône est posé sur une plaque de verre séchée et rempli de mortier frais. Il est ensuite arasé. La levée du cône provoque un affaissement de la pâte de mortier sur la plaque de verre. Le diamètre de la galette obtenue est mesuré en millimètres. C'est l'étalement du mortier. La consistance d'un mortier est considérée comme bonne lorsque la mesure de l'étalement est voisine de 320 mm.
Ces opérations, répétées à plusieurs échéances (5, 15, 30 et 60 minutes), permettent de suivre l'évolution de la rhéologie du mortier pendant 1 heure. Mesure des résistances mécaniques
Une heure après le gâchage de la formulation, on coule trois éprouvettes dans des moules 4 x 4 x 16 cm en acier. Les éprouvettes sont coulées en une seule couche, et choquées 60 fois à la table à chocs. Les moules sont ensuite couverts par une vitre (avec un joint) et placés dans une armoire à 100 % d'hygrométrie. On démoule les éprouvettes à l'échéance 24 heures après le gâchage. L'une des éprouvettes est cassée immédiatement après le démoulage. Les deux autres éprouvettes sont immergées dans des bacs d'eau à 200C jusqu'à l'échéance de 28 jours après le gâchage et sont ensuite cassées. EXEMPLES Polymère cationique
Les polymères cationiques sont caractérisés au moyen de leur cationicité et poids moléculaire.
1 ) Mesure de la cationicité
La cationicité ou densité de charges cationiques (en meq/g) représente la quantité de charges (en mmol) portée par 1 g de polymère. Cette propriété est mesurée par titration colloïdale par un polymère anionique en présence d'un indicateur coloré sensible à l'ionicité du polymère en excès.
Dans les exemples ci-après, la cationicité a été déterminée de la manière suivante. Dans un récipient adapté, on introduit 60 ml d'une solution tampon de phosphate de sodium à 0,001 M - pH 6 et 1 ml de solution de bleu d'o-toluidine à 4,1 x 10~4 M puis 0,5 ml de solution de polymère cationique à doser.
Cette solution est titrée avec une solution de polyvinylsulfate de potassium jusqu'à virage de l'indicateur.
On obtient la cationicité par la relation suivante : Cationicité (meq/g) = (VePvsk * Npvsk ) / (Vp0 * Cpc)
Dans laquelle :
Vpc est le volume de solution du polymère cationique ; Cpc est la concentration de polymère cationique en solution ; Vepvsk est le volume de solution de polyvinylesulfate de potassium ; et NpVSk est la normalité de la solution de polyvinylesulfate de potassium. 2) Mesure de la viscosité intrinsèque
Les mesures de viscosité intrinsèque des polymères cationiques sont réalisées dans une solution NaCI 3 M, avec un viscosimètre capillaire de type Ubbelhode, à 25°C.
On mesure le temps d'écoulement dans le tube capillaire entre 2 repères pour le solvant et des solutions du polymère à différentes concentrations. On calcule la viscosité réduite en divisant la viscosité spécifique par la concentration de la solution de polymère. La viscosité spécifique est obtenue pour chaque concentration, en divisant la différence entre les temps d'écoulement de la solution de polymère et du solvant, par le temps d'écoulement du solvant. En traçant la droite de la viscosité réduite en fonction de la concentration de la solution de polymère, on obtient une droite. L'intersection avec l'ordonnée de cette droite correspond à la viscosité intrinsèque pour une concentration égale à zéro.
Cette valeur est corrélée au poids moléculaire moyen d'un polymère. Formules mortiers Tableau 1
Figure imgf000015_0001
Le ciment est un ciment de type CEM I 52.5N CE CP2 NF (provenance Le Havre - usine Lafarge).
Le sable normalisé est un sable siliceux conforme à la norme EN 196.1 (fournisseur : Société Nouvelle du Littoral).
Le sable PE2LS est un sable siliceux de diamètre inférieur ou égal à 0,315 mm (Fournisseur : Fulchiron).
L'adjuvant est le Glénium 27 (extrait sec : 20,3 % en masse ; Fournisseur : BASF).
Le polymère cationique utilisé pour tous les exemples qui vont suivre est une polyamine épichlorhydrine - diméthylamine, ayant une cationicité de 7,3 meq/g et une viscosité intrinsèque de 0,04 dl/g (FL2250 ; extrait sec : 55 % en masse ; Fournisseur : SNF). Le traitement des matériaux hydrauliques et/ou pouzzolaniques selon l'invention par la composition cationique est réalisé par mélange de la solution cationique avec lesdits matériaux hydrauliques et/ou pouzzolaniques. Après mélange, la solution cationique et les matériaux hydrauliques et/ou pouzzolaniques sont agités énergiquement pendant 20 à 30 secondes, puis laissés au repos pendant 4 minutes, et enfin utilisés dans le mortier.
Le dosage en polymère cationique est exprimé en ppm (ou mg/kg) de polymère sec par kilogramme de matériau hydraulique et/ou pouzzolanique selon l'invention.
Protocole de préparation du mortier : Dans le bol d'un malaxeur Perrier, on introduit le sable, puis l'eau de pré-mouillage en agitant à faible vitesse (140 tr/min). On laisse reposer pendant 4 minutes avant d'introduire les liants (ciment, matériaux hydrauliques et/ou pouzzolaniques tels que définis selon la présente invention). On malaxe à nouveau pendant 1 minute à petite vitesse puis on ajoute en 30 secondes à petite vitesse l'eau de gâchage additionnée de l'adjuvant. Enfin, on malaxe encore 2 minutes à 280 tr/min.
Dans les tableaux 2 et 3 ci-après, les notations (1) et (2) ont le sens suivant :
- (1 ) correspond au taux de substitution du ciment par le matériau hydraulique et/ou pouzzolanique selon l'invention (pouzzolane ou argile calcinée) ;
- (2) Liant = ciment + matériau hydraulique et/ou pouzzolanique selon l'invention (pouzzolane ou argile calcinée).
Exemples avec une pouzzolane naturelle : Pouzzolane de Milos - Grèce Tableau 2 as
Figure imgf000017_0001
Exemples avec une argile calcinée (provenance France - société Malet) Tableau 3
Figure imgf000018_0001
D'après les tableaux 2 et 3 ci-avant, on constate que les compositions hydrauliques selon l'invention permettent de diminuer la quantité d'adjuvant utilisée pour obtenir une composition hydraulique ayant les mêmes performances (rhéologie et résistances mécaniques). En effet, si l'on compare les exemples 4 et 6, le dosage en adjuvant est de 0.2 % pour la composition selon l'invention (exemple 6), alors qu'il est de 0.3 % pour la composition sans traitement, pour une rhéologie équivalente (étalement à 5 minutes respectivement à 330 mm pour l'exemple 4 et 335 mm pour l'exemple 6).
D'autre part, les compositions hydrauliques selon l'invention permettent d'obtenir de meilleures résistances pour une même quantité d'adjuvant. En effet, si l'on compare les exemples 4 et 7, le dosage en adjuvant est de 0.3 % dans les deux cas, mais le rapport E/Liant est de 0.63 pour l'exemple 4, alors qu'il est de 0.53 pour la composition hydraulique selon l'invention (exemple 7), et les résistances à 1 jour sont respectivement de 9.4 MPa pour l'exemple 4 et de 11.2 MPa pour l'exemple 7.
Le tableau 2, comme du reste le tableau 3, illustre le fait que la substitution d'une partie du ciment par un matériau hydraulique et/ou pouzzolanique, ledit matériau n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux, entraîne généralement une dégradation de la rhéologie mais aussi des performances mécaniques (passage de la ligne 1 à la ligne 2). La perte en terme de rhéologie est traditionnellement récupérée via un ajout d'eau
(passage de la ligne 2 à la ligne 3) ce qui se traduit par une forte baisse des performances mécaniques. Il est également possible de récupérer la rhéologie de référence par l'introduction d'un adjuvant (passage de la ligne 2 à la ligne 4) mais la quantité d'adjuvant est importante et impacte de façon notable le coût global de la formule. Le non ajout d'eau par rapport au cas de la ligne 3 permet alors d'obtenir les performances mécaniques mentionnées à la ligne 2.
Les lignes 5, 6 et 7 illustrent l'intérêt de l'invention puisqu'elle permet, à rhéologie constante, soit de diminuer l'ajout d'eau (passage de la ligne 3 à la ligne 5) et donc d'obtenir des résistances supérieures, soit de diminuer de 30 % la quantité d'adjuvant (passage de la ligne 4 à la ligne 6) ou soit de diminuer la quantité d'eau sans diminution de l'adjuvant (passage de la ligne 4 à la ligne 7) ce qui permet d'obtenir des résistances supérieures au cas sans traitement (ligne 2), permettant ainsi d'obtenir un liant présentant une rhéologie compatible avec les attentes des utilisateurs. Exemples avec une cendre volante La cendre volante utilisée pour le présent exemple est la cendre volante Rosa
(Fournisseur : ScotAsh) dont la composition chimique et la surface spécifiques sont données dans le tableau 4 suivant. Cette cendre volante a une perte au feu de 12,1 % en masse, mesurée selon la norme EN 196-2.
La cendre volante testée ne comprend pas d'argile en tant que telle, mais peut éventuellement comprendre une forme particulière d'argile calcinée (la mullite).
Tableau 4 (pourcentages massiques ou ppm)
Figure imgf000020_0001
Pour cet exemple, le taux de substitution du ciment est de 25 % en volume, ce qui correspond à X = 109,2 g de cendres volantes (voir tableau 1).
En ce qui concerne l'adjuvant, Y = 2,35 g, ce qui correspond à environ 800 ppm d'adjuvant en masse par rapport au ciment.
La quantité de polymère cationique est de 1 ,08 g (ce qui correspond à 1000 ppm en masse par rapport au ciment) et de 2,16 g (ce qui correspond à 2000 ppm en masse par rapport au ciment).
Le tableau 5 ci-dessous répertorie les résultats obtenus avec la cendre volante décrite ci-avant.
Tableau 5
Figure imgf000020_0002
D'après le tableau 5 ci-avant, on constate que la substitution d'une partie du ciment par des cendres volantes entraîne une diminution de l'étalement, qui passe par exemple de 330 mm à 5 minutes, pour une formulation avec 100 % de ciment sans traitement, à
295 mm à 5 minutes, pour une formulation avec 25 % de cendres volantes sans traitement.
Le traitement avec le polymère cationique selon l'invention entraine une augmentation de l'étalement, qui passe par exemple de 295 mm à 5 minutes, pour la formulation avec 75 % de ciment et 25 % de cendres volantes sans traitement, à 315 mm à 5 minutes, pour une formulation avec 75 % de ciment et 25 % de cendres volantes traités avec 1 ,08 g de polymère cationique.
D'autre part, contrairement à la formulation avec 100% de ciment traité, dont l'étalement à 5 minutes est de 360 mm quelle que soit la quantité de polymère cationique utilisée, l'effet du polymère cationique selon l'invention pour les formulations avec 75 % de ciment et 25 % de cendres volantes dépend de la quantité de polymère cationique utilisée pour le traitement. En effet, l'étalement à 5 minutes pour la formulation avec 75 % de ciment et 25 % de cendres volantes est de 315 mm à 5 minutes avec 1 ,08 g de polymère cationique et de 335 mm avec 2,16 g de polymère cationique. Pour les formulations comprenant des cendres volantes, on constate un plafonnement pour le même étalement (355-360 mm à 5 minutes) mais pour un dosage en polymère cationique selon l'invention plus élevé (à partir de 3,24 g de polymère cationique).
En outre, la cendre volante testée n'ayant pas d'argile, l'effet observé du polymère cationique selon l'invention n'est pas un effet d'inertage des argiles, mais bien un effet supplémentaire sur la cendre volante elle-même ou sur d'autres impuretés qu'elle peut comprendre. Enfin, il est à noter que l'étalement de la formulation avec 25 % de cendres volantes traitées avec 2,16 g de polymère cationique se rapproche de l'étalement de la formulation avec 100 % de ciment non traité. Exemple avec de la fumée de silice
La fumée de silice utilisée pour cet exemple est commercialisée par la Société Européenne des Produits Réfractaires sous le nom MST.
La formule de mortier testée est celle décrite dans le tableau 1 ci-avant, dans laquelle le ciment, les sables, l'adjuvant et le polymère cationique sont les mêmes que ceux décrits.
Le protocole de traitement par le polymère cationique selon l'invention et le protocole de préparation du mortier test sont les mêmes que ceux décrits précédemment. Le tableau 6 ci-après rassemble les résultats obtenus en substituant 10 % en masse de ciment par la fumée de silice décrite ci-dessus. Tableau 6
Figure imgf000022_0001
D'après le tableau 6 ci-dessus, quand on substitue une partie du ciment par de la fumée de silice, l'étalement du mortier à 5 minutes diminue et passe de 315 mm à 280 mm
Quand le liant comprenant du ciment et de la fumée de silice est traité avec le polymère cationique selon l'invention, l'étalement du mortier augmente à toutes les échéances Par exemple, l'étalement du mortier à 15 minutes passe de 270 mm à 285 mm grâce au traitement avec le polymère cationique selon l'invention De même, l'étalement du mortier à 60 minutes passe de 235 mm à 265 mm

Claims

REVENDICATIONS
1- Mélange comprenant au moins un matériau hydraulique et/ou pouzzolanique et au moins un polymère cationique hydrosoluble, ledit polymère cationique présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g, et ledit matériau hydraulique et/ou pouzzolanique n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
2- Mélange selon la revendication 1 , caractérisé en ce qu'il comprend en outre au moins un superplastifiant.
3- Mélange selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre un accélérateur.
4- Mélange selon l'un quelconque des revendications 1 à 3, caractérisé en ce que le matériau hydraulique et/ou pouzzolanique est choisi parmi les pouzzolanes naturelles, les pouzzolanes calcinées, les argiles calcinées, les cendres volantes, les schistes calcinés, les laitiers, les fumées de silice ou leurs mélanges.
5- Mélange selon la revendication 4, caractérisé en ce que les pouzzolanes sont choisies parmi les ponces, les tuff, les scories ou leurs mélanges.
6- Mélange selon la revendication 4, caractérisé en ce que les argiles calcinées sont choisies parmi la kaolinite, les smectites, l'illite, la muscovite, les chlorites, activées thermiquement, ou leurs mélanges.
7- Composition hydraulique comprenant au moins un mélange selon l'une des revendications 1 à 6 et au moins un liant hydraulique.
8- Composition hydraulique selon la revendication 7, caractérisée en ce que ledit liant hydraulique est un ciment Portland.
9- Composition hydraulique selon la revendication 7 ou 8, caractérisée en ce qu'elle comprend en outre des granulats. 10- Composition hydraulique selon l'une quelconque des revendications 7 à 9 caractérisée en ce qu'elle comprend en outre un accélérateur.
11- Procédé de traitement d'un matériau hydraulique et/ou pouzzolanique, comprenant les étapes de : préparation d'une composition cationique comprenant de l'eau et au moins un polymère cationique hydrosoluble présentant une densité de charges cationiques supérieure à 0,5 meq/g et une viscosité intrinsèque inférieure à 1 dl/g à titre de matière active ; - mélange de ladite composition cationique avec ledit au moins un matériau hydraulique et/ou pouzzolanique ; ledit matériau hydraulique et/ou pouzzolanique n'étant pas un clinker, ni du calcaire, ni du gypse, ni du sulfate de calcium, ni du sulfate de calcium anhydre, ni du sulfate de calcium semihydraté, ni du plâtre, ni de la chaux.
12- Procédé selon la revendication 11 , caractérisée en ce que ladite composition cationique comprend en outre au moins un superplastifiant.
13- Utilisation d'un mélange selon l'une des revendications 1 à 6 pour la fabrication d'une composition hydraulique.
14- Utilisation d'une composition hydraulique selon l'une quelconque des revendications 7 à 10 pour la fabrication d'un objet durci.
15- Objet durci obtenu à partir d'une composition hydraulique selon l'une quelconque des revendications 7 à 10.
PCT/FR2009/001191 2008-10-10 2009-10-08 Composition à base de matériau hydraulique et/ou pouzzolanique Ceased WO2010040915A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP09752200.7A EP2334615B1 (fr) 2008-10-10 2009-10-08 Composition à base de matériau hydraulique et/ou pouzzolanique
MX2011003729A MX2011003729A (es) 2008-10-10 2009-10-08 Composicion con una base de material hidraulico y/o pozzolanico.
CA2740122A CA2740122C (fr) 2008-10-10 2009-10-08 Composition a base de materiau hydraulique et/ou pouzzolanique
CN200980139692.5A CN102171158B (zh) 2008-10-10 2009-10-08 包含水硬和/或凝硬材料的组合物
US13/122,775 US8466224B2 (en) 2008-10-10 2009-10-08 Composition with a base of hydraulic and/or pozzolanic material
ES09752200.7T ES2627318T3 (es) 2008-10-10 2009-10-08 Composición a base de material hidráulico y/o puzolánico
EG2011040536A EG26717A (en) 2008-10-10 2011-04-06 Composition based on hydraulic and / or bozolane
MA33825A MA32779B1 (fr) 2008-10-10 2011-05-09 Composition a base de materiau hydraulique et/ou pouzzolanique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805597A FR2937032B1 (fr) 2008-10-10 2008-10-10 Composition a base de materiau hydraulique et/ou pouzzolanique autre que le clinker
FR08/05597 2008-10-10

Publications (2)

Publication Number Publication Date
WO2010040915A2 true WO2010040915A2 (fr) 2010-04-15
WO2010040915A3 WO2010040915A3 (fr) 2010-06-03

Family

ID=40673606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001191 Ceased WO2010040915A2 (fr) 2008-10-10 2009-10-08 Composition à base de matériau hydraulique et/ou pouzzolanique

Country Status (12)

Country Link
US (1) US8466224B2 (fr)
EP (1) EP2334615B1 (fr)
CN (1) CN102171158B (fr)
CA (1) CA2740122C (fr)
EC (1) ECSP11010957A (fr)
EG (1) EG26717A (fr)
ES (1) ES2627318T3 (fr)
FR (1) FR2937032B1 (fr)
MA (1) MA32779B1 (fr)
MX (1) MX2011003729A (fr)
PL (1) PL2334615T3 (fr)
WO (1) WO2010040915A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951159A1 (fr) * 2009-10-14 2011-04-15 Lafarge Sa Procede d'inertage d'impuretes
US8461245B2 (en) 2011-02-15 2013-06-11 W.R. Grace & Co.-Conn. Copolymers for treating construction aggregates
WO2015063419A1 (fr) * 2013-11-04 2015-05-07 Lafarge Composition pouzzolanique
US10011531B2 (en) 2010-03-02 2018-07-03 Lafarge Process to inert non-swelling clays
WO2022123037A1 (fr) 2020-12-11 2022-06-16 Chryso Adjuvant pour fluidifier une composition cimentaire à teneur réduite en ciment
WO2022136435A1 (fr) * 2020-12-21 2022-06-30 Holcim Technology Ltd Composition de béton à faible teneur en carbone et procédé de production d'une composition de béton à faible teneur en carbone

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169379A (zh) * 2011-12-30 2014-11-26 乔舒亚·V·布赖恩 用于建筑产品的低碳足印(footprint)涂布材料
KR20170023157A (ko) 2014-06-25 2017-03-02 씨알 미네랄즈 컴파니, 엘엘씨 시멘트질 재료에 사용하기 위한 플라이 애시 및 개선제를 포함하는 포졸란 조성물
US11339572B1 (en) 2017-01-23 2022-05-24 Gold Bond Building Products, Llc Method of manufacturing gypsum board with improved fire
US10457601B2 (en) 2017-02-24 2019-10-29 CR Minerals Company, LLC Settable compositions comprising remediated fly ash (RFA) and methods of cementing in subterranean formations
US11795364B2 (en) 2021-10-25 2023-10-24 Halliburton Energy Services, Inc. Low carbon footprint expansive composition and methods of making and using same
WO2024126798A1 (fr) * 2022-12-16 2024-06-20 Holcim Technology Ltd Procédé de préparation d'un ciment pour béton ou mortier, comprenant une étape d'ajout d'un agent dispersant
CN120290142B (zh) * 2025-06-07 2025-09-05 烟台驼峰建材有限公司 一种矿粉助磨剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051640A1 (fr) 1997-05-15 1998-11-19 Mbt Holding Ag Melange a base de ciment contenant un ciment de remplacement a haute teneur en pouzzolanes et des adjuvants compatibles
WO2006032786A2 (fr) 2004-09-21 2006-03-30 Lafarge Compositions d'inertage d'impuretes
FR2897057A1 (fr) 2006-02-06 2007-08-10 Lafarge Sa Adjuvant pour compositions hydrauliques.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1042084A (fr) 1951-09-10 1953-10-28 Jacques Wolf & Co Produit de condensation solubilisé de la dicyanodiamide et de la formaldéhyde et son procédé d'obtention
US3725312A (en) * 1971-02-16 1973-04-03 American Cyanamid Co Polyquaternary flocculants and processes of preparing them by quaternizing alkylene polyamine resin polymers from epihalohydrin and monoalkyl amines
US3738945A (en) * 1972-02-04 1973-06-12 H Panzer Polyquaternary flocculants
EP0056627B1 (fr) 1981-01-16 1984-10-03 Nippon Shokubai Kagaku Kogyo Co., Ltd Copolymère et méthode de sa préparation
JPS5918338B2 (ja) 1981-10-30 1984-04-26 株式会社日本触媒 セメント分散剤
JPH0753280B2 (ja) * 1989-09-14 1995-06-07 ハイモ株式会社 気泡混入掘削ずりの処理法
US5292441A (en) * 1993-01-12 1994-03-08 Betz Laboratories, Inc. Quaternized polyvinylamine water clarification agents
US5393343A (en) * 1993-09-29 1995-02-28 W. R. Grace & Co.-Conn. Cement and cement composition having improved rheological properties
JPH0920536A (ja) * 1995-06-30 1997-01-21 Mitsui Cytec Kk 炭素繊維補強モルタル用の混和材
US5614017A (en) * 1996-03-26 1997-03-25 Arco Chemical Technology, L.P. Cement additives
DE102005005691A1 (de) * 2005-02-08 2006-08-10 Eduard Buzetzki Bindemittel auf Basis von Calciumaluminat
WO2008032798A1 (fr) 2006-09-13 2008-03-20 Toho Chemical Industry Co., Ltd. Dispersant de ciment
EP2072531A1 (fr) 2007-12-21 2009-06-24 Sika Technology AG Polymère à chaînes latérales de saccharides et son utilisation en tant qu'agent dispersant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051640A1 (fr) 1997-05-15 1998-11-19 Mbt Holding Ag Melange a base de ciment contenant un ciment de remplacement a haute teneur en pouzzolanes et des adjuvants compatibles
WO2006032786A2 (fr) 2004-09-21 2006-03-30 Lafarge Compositions d'inertage d'impuretes
FR2897057A1 (fr) 2006-02-06 2007-08-10 Lafarge Sa Adjuvant pour compositions hydrauliques.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951159A1 (fr) * 2009-10-14 2011-04-15 Lafarge Sa Procede d'inertage d'impuretes
WO2011045528A3 (fr) * 2009-10-14 2011-06-16 Lafarge Procede d'inertage d'impuretes
US9624129B2 (en) 2009-10-14 2017-04-18 Lafarge Inerting process for impurities
US10011531B2 (en) 2010-03-02 2018-07-03 Lafarge Process to inert non-swelling clays
US8461245B2 (en) 2011-02-15 2013-06-11 W.R. Grace & Co.-Conn. Copolymers for treating construction aggregates
US8598262B2 (en) 2011-02-15 2013-12-03 W. R. Grace & Co.-Conn. Copolymers for treating construction aggregates
WO2015063419A1 (fr) * 2013-11-04 2015-05-07 Lafarge Composition pouzzolanique
FR3012809A1 (fr) * 2013-11-04 2015-05-08 Lafarge Sa Composition pouzzolanique
WO2022123037A1 (fr) 2020-12-11 2022-06-16 Chryso Adjuvant pour fluidifier une composition cimentaire à teneur réduite en ciment
FR3117484A1 (fr) 2020-12-11 2022-06-17 Chryso Adjuvant pour fluidifier une composition cimentaire à teneur réduite en ciment
WO2022136435A1 (fr) * 2020-12-21 2022-06-30 Holcim Technology Ltd Composition de béton à faible teneur en carbone et procédé de production d'une composition de béton à faible teneur en carbone

Also Published As

Publication number Publication date
EP2334615A2 (fr) 2011-06-22
CN102171158A (zh) 2011-08-31
CA2740122C (fr) 2017-06-20
CN102171158B (zh) 2016-11-16
FR2937032B1 (fr) 2011-06-03
EP2334615B1 (fr) 2017-04-19
MX2011003729A (es) 2011-05-25
ECSP11010957A (es) 2011-05-31
US20110196069A1 (en) 2011-08-11
FR2937032A1 (fr) 2010-04-16
WO2010040915A3 (fr) 2010-06-03
ES2627318T3 (es) 2017-07-27
MA32779B1 (fr) 2011-11-01
US8466224B2 (en) 2013-06-18
PL2334615T3 (pl) 2017-09-29
CA2740122A1 (fr) 2010-04-15
EG26717A (en) 2014-06-15

Similar Documents

Publication Publication Date Title
EP2334615B1 (fr) Composition à base de matériau hydraulique et/ou pouzzolanique
EP2542511B1 (fr) Procede d&#39;inertage d&#39;argiles non gonflantes
EP1678099B1 (fr) Mortier dense a base de liant ettringitique binaire, comprenant au moins un polymere peigne de poly(oxyde d alkylene) et au moins une resine organique structurante
EP2467349A2 (fr) Ciment geopolymerique et son utilisation
EP2552850B1 (fr) Melange fluidifiant pour composition hydraulique
EP2560929A1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton
FR2978761A1 (fr) Procede de fabrication d&#39;un liant hydraulique rapide
EP4259592B1 (fr) Adjuvant pour fluidifier une composition cimentaire à teneur réduite en ciment
EP2398750B1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton contenant un sel de calcium
CN1195698C (zh) 建筑材料
EP2585416A1 (fr) Procede de transport d&#39;une composition hydraulique
FR2975096A1 (fr) Procede de cure d&#39;un beton permeable
EP2507189B1 (fr) Agents inertants des argiles dans des compositions hydrauliques
CN117024029A (zh) 一种复合型早强外加剂及其制备方法和应用
CN113429134A (zh) 一种调整化学激发胶凝材料体系流动性与凝结时间的方法
Guo et al. Synthesis, Performance, and Mechanism of Polycarboxylate Superplasticizers Containing Adsorption Groups
EP3596025A1 (fr) Agent de cure pour formulation cimentaire
CN120842510A (zh) 一种泵送混凝土用改性萘系减水剂的制备方法
CN120463438A (zh) 一种磺酸化碳点引气剂、抗冻融混凝土及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139692.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09752200

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: DZP2011000158

Country of ref document: DZ

REEP Request for entry into the european phase

Ref document number: 2009752200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009752200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2153/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12011500601

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13122775

Country of ref document: US

ENP Entry into the national phase

Ref document number: 0128111

Country of ref document: KE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/003729

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2740122

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE