WO2010040253A1 - 一种正交频分复用多址接入方法及正交频分复用系统 - Google Patents

一种正交频分复用多址接入方法及正交频分复用系统 Download PDF

Info

Publication number
WO2010040253A1
WO2010040253A1 PCT/CN2008/002119 CN2008002119W WO2010040253A1 WO 2010040253 A1 WO2010040253 A1 WO 2010040253A1 CN 2008002119 W CN2008002119 W CN 2008002119W WO 2010040253 A1 WO2010040253 A1 WO 2010040253A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiple access
frequency division
division multiplexing
data
user terminal
Prior art date
Application number
PCT/CN2008/002119
Other languages
English (en)
French (fr)
Inventor
毕峰
苟伟
韩小江
袁明
米德忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010040253A1 publication Critical patent/WO2010040253A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the invention belongs to the field of mobile communications, and in particular relates to an orthogonal frequency division multiplexing multiple access method and an orthogonal frequency division multiplexing system.
  • RS Relay Station
  • OFDM Orthogonal Frequency Division Multiplexing
  • the characteristics of the relay station can be utilized to ensure the coverage of the relay station and to improve the link of the relay station.
  • the performance and the throughput of the entire network to solve the problem that the link performance is degraded by considering only the Peak Average Power Ratio (PAPR) in the existing system (such as the LTE (Long Term Evolution) system).
  • PAPR Peak Average Power Ratio
  • each data stream has a relatively low bit rate by decomposing the data stream into a plurality of sub-data streams, and then each sub-data stream is separately modulated onto a corresponding sub-carrier and transmitted.
  • each subcarrier of OFDM is not only orthogonal to each other but also has 1/2 overlap.
  • the data to be transmitted enters the constellation modulation module after necessary processing, and realizes the conversion of bit-level data to symbol-level data, and then serial-converts the symbol data, converts the serial data into parallel data, and then performs sub-transformation.
  • Carrier mapping ; Then perform multi-day technical processing on the mapped data, such as spatial diversity and multiplexing, and then perform IFFT (Inverse Fast Fourier Transform) to achieve orthogonality of each subcarrier, and then add CP (Cyclic) Prefix, cyclic prefix) to eliminate interference between OFDM symbols, and finally transmitted through the antenna.
  • IFFT Inverse Fast Fourier Transform
  • FIG. 2 is a schematic diagram of a transmitter structure of a system based on SC-OFDM (Single Carrier-Orthogonal Frequency Division Multiplexing), which describes an interface relationship between main modules of a transmitter and The process of sending data.
  • SC-OFDM Single Carrier-Orthogonal Frequency Division Multiplexing
  • Figure 2 Compared with the transmitter shown in Figure 1, the transmitter adds a DFT (Discrete Fourier Transform) module, and the functions of other modules are consistent.
  • DFT Discrete Fourier Transform
  • the DFT module is used to implement the inverse transformation of the IFFT module.
  • the data is subjected to DFT processing in advance, so that after the IFFT is performed, the data can be kept substantially consistent with the peak-to-average ratio of the data before the IFFT. This is the unique aspect of SC-OFDM.
  • the PAPR problem of the User Terminal needs to be considered, because the instantaneous value of the output signal of the transmitter may fluctuate greatly.
  • This requires some components within the system, such as power amplifiers, A/D, D/A converters, etc., to have a large linear dynamic range.
  • the nonlinearity of the above components also produces nonlinear distortion for signals with a large dynamic range, and the generated harmonics cause mutual interference of subchannels, thereby affecting the performance of the OFDM system.
  • the uplink multiple access finally selects the Single Carrier-Frequency Division Multiplex Access (SC-FDMA) method.
  • SC-FDMA Single Carrier-Frequency Division Multiplex Access
  • the important reason is the peak-to-average ratio problem. Since the data symbols of a single carrier system are directly modulated into the time domain (or modulated into the time domain after some simple deformation), the peak-to-average ratio is relatively low; in contrast, the multi-carrier system, due to the number of times at the same time The subcarriers transmit data symbols at the same time, and the data symbols carried by each subcarrier are independent of each other, so the peak-to-average ratio is relatively high, generally 2 to 3 dB larger than the single carrier system. A higher peak-to-average ratio increases the linearity of the power amplifier. This is especially disadvantageous for user terminals (terminals), so an ideal uplink multiple access scheme is a single-carrier system with cyclic prefix, SC-FDMA.
  • the system downlink uses Orthogonal Frequency Division Multiplex Access (OFDMA), and the uplink uses SC-FDMA, which is not well suited for checkpoint.
  • OFDMA Orthogonal Frequency Division Multiplex Access
  • SC-FDMA causes the link between the relay station and the base station to not obtain sufficient frequency diversity and link performance, which in turn causes the link performance between the relay station and the base station to decrease, and the bit error rate Rising, throughput is decreasing, which is an unsolved problem in the prior art.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for multiplexing multiple multiple access methods in an orthogonal frequency division multiplexing system and a corresponding orthogonal frequency division multiplexing system.
  • the present invention provides a method for multiple access in an orthogonal frequency division multiplexing system, in which a cell including a relay station is accessed by a hybrid multiple access method, and the hybrid multiple access mode is accessed as an uplink.
  • Link access or downlink access is simultaneously accessed by single carrier frequency division multiplexing multiple access and orthogonal frequency division multiplexing multiple access.
  • the uplink access includes the following steps:
  • the base station determines whether the user terminal uploads data to the relay station, and if so, the user terminal transmits the data to the relay station, and then the relay station transmits the data to the base station; otherwise, the user terminal transmits the data to the base station;
  • the base station After receiving the data sent by the relay station or the user terminal, the base station performs demodulation processing
  • the user terminal transmits data to the relay station by using a single carrier frequency division multiplexing multiple access method or an orthogonal frequency division multiplexing multiple access method; the relay station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division
  • the multiplexed multiple access method transmits data to the base station; the user terminal transmits data to the base station by using an orthogonal frequency division multiplexing multiple access method or a single carrier frequency division multiplexing multiple access method.
  • the downlink access includes the following steps:
  • the base station determines whether the data is sent to the user terminal via the relay station, and if so, the base station transmits the data to the relay station, and then the relay station transmits the data to the user terminal; otherwise, the base station transmits the data to the user terminal;
  • the user terminal performs demodulation processing after receiving the data transmitted by the relay station or the base station;
  • the base station transmits data to the relay station by using an orthogonal frequency division multiplexing multiple access method or a single carrier frequency division multiplexing multiple access method; the relay station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division
  • the data is transmitted to the user terminal by using a multiple access method; the base station transmits the data to the user terminal by using an orthogonal frequency division multiplexing multiple access method or a single carrier frequency division multiplexing multiple access method.
  • the base station determines whether the user terminal passes through the relay station according to one or more of the following factors: Data is uploaded thereto, and whether data is delivered to the user terminal via the relay station: service characteristics, and/or regional load, and/or signal to noise ratio.
  • the present invention also provides a method for multiple access in an orthogonal frequency division multiplexing system, in which a cell including a relay station is accessed by a hybrid multiple access method, and the hybrid multiple access mode is accessed as an uplink access.
  • downlink access simultaneously uses at least two types of multiple access methods: single carrier frequency division multiplexing multiple access, orthogonal frequency division multiplexing multiple access, clustered single carrier frequency division multiplexing multiple access, N Parallel single carrier frequency division multiplexing multiple access.
  • the uplink access includes the following steps:
  • the base station determines whether the user terminal uploads data to the relay station, and if so, the user terminal transmits the data to the relay station, and then the relay station transmits the data to the base station; otherwise, the user terminal transmits the data to the base station;
  • the base station After receiving the data sent by the relay station or the user terminal, the base station performs demodulation processing
  • the user terminal uses a single carrier frequency division multiplexing multiple access method, or an orthogonal frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency divisions. Multiplexing multiple access mode to send data to the relay station;
  • the relay station adopts orthogonal frequency division multiplexing multiple access mode, or single carrier frequency division multiplexing multiple access mode, or clustered single carrier frequency division multiplexing multiple access mode, or N parallel single carrier frequency division multiplexing multiple
  • the address mode sends data to the base station;
  • the user terminal uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency division multiplexing
  • the multiple access method sends data to the base station.
  • the downlink access includes the following steps:
  • the base station determines whether the data is sent to the user terminal via the relay station, and if so, the base station transmits the data to the relay station, and then the relay station transmits the data to the user terminal; otherwise, the base station transmits the data to the user terminal;
  • the user terminal After receiving the data sent by the relay station or the relay station, the user terminal performs demodulation processing; wherein, the base station uses an orthogonal frequency division multiplexing multiple access method or a single carrier frequency division multiplexing multiple access method, Or transmitting the data to the relay station by clustering single carrier frequency division multiplexing multiple access mode or N parallel single carrier frequency division multiplexing multiple access methods;
  • the relay station adopts orthogonal frequency division multiplexing multiple access mode, or single carrier frequency division multiplexing multiple access mode, or clustered single carrier frequency division multiplexing multiple access mode, or N parallel single carrier frequency division multiplexing multiple
  • the address mode sends data to the user terminal;
  • the base station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency division multiplexing multiple
  • the address mode sends data to the user terminal.
  • the base station determines whether the user terminal uploads data to the user terminal via the relay station according to one or more of the following factors, and whether the data is sent to the user terminal via the relay station: service characteristics, and/or regional load, and/or signal to noise ratio .
  • the present invention also provides an orthogonal frequency division multiplexing system, including a base station, a user terminal, and the system further includes a relay station;
  • the base station is configured to determine whether the user terminal uploads data to the relay station, and if yes, the user terminal sends data to the relay station, and the relay station sends data to the base station; otherwise The user terminal sends data to the base station;
  • the base station After receiving the data sent by the relay station or the user terminal, the base station performs demodulation processing
  • the user terminal uses a single carrier frequency division multiplexing multiple access method, or an orthogonal frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carriers. Transmitting data to the relay station by frequency division multiplexing multiple access;
  • the relay station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency division multiple Transmitting data to the base station in a multiple access manner;
  • the user terminal uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency divisions
  • the multiplexed multiple access method transmits data to the base station.
  • the present invention also provides an orthogonal frequency division multiplexing system, including a base station, a user terminal, and the system further includes a relay station;
  • the base station is configured to determine whether the data is sent to the user terminal by the relay station, and if yes, the base station sends data to the relay station, and the relay station sends data to the user terminal; otherwise The base station sends data to the user terminal;
  • the base station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequencies. Transmit multiplexed multiple access mode to send data to the relay station;
  • the relay station uses an orthogonal frequency division multiplexing multiple access method, or a single carrier frequency division multiplexing multiple access method, or a clustered single carrier frequency division multiplexing multiple access method, or N parallel single carrier frequency division multiple Transmitting data to the user terminal by using a multiple access method;
  • the base station adopts orthogonal frequency division multiplexing multiple access mode, or single carrier frequency division multiplexing multiple access mode, or clustered single carrier frequency division multiplexing multiple access mode, or N parallel single carrier frequency division multiple Data is transmitted to the user terminal in a multiple access manner.
  • the technical solution of the present invention overcomes the shortcomings caused by the use of a single multiple access method when there is a relay station in the prior art.
  • the hybrid sub-access method not only ensures the coverage of the network, but also obtains more frequency diversity gain, reduces the bit error rate, and also improves the performance of the relay link and the throughput of the whole network.
  • FIG. 1 is a schematic diagram of a transmitter structure of a system for OFDM multiple access technology
  • FIG. 2 is a schematic diagram of a transmitter structure of a system of SC-OFDM multiple access technology
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 6 is a flowchart showing the operation of the uplink of the orthogonal frequency division multiplexing system according to the embodiment of the present invention
  • FIG. 7 is a flowchart showing the operation of the downlink of the orthogonal frequency division multiplexing system according to the embodiment of the present invention.
  • the core idea of the present invention is to use a hybrid sub-access (HDMA) mode access in a cell containing a relay station.
  • the hybrid sub-access mode access refers to uplink access or downlink access simultaneously adopting at least two of the following multiple access methods: SC-FDMA, OFDMA, clustering Single-carrier frequency division multiplexing multiple access (clustered SC-FDMA), N parallel single-carrier frequency division multiplexing multiple access (NX SC-FDMA).
  • the base station selects an uplink multiple access mode according to whether a relay station is received when receiving data from a terminal in the cell, and/or selects a downlink when the data is transmitted to a terminal in the cell.
  • Address access mode; the multiple access mode includes at least: orthogonal frequency division multiplexing multiple access, and single carrier frequency division multiplexing multiple access.
  • the multiple access mode of the link between the base station and the user terminal and the link between the user terminal and the base station is preferably a multiple access method in the existing system. That is, the downlink uses OFDMA, and the uplink uses SC-FDMA.
  • FIG. 3 is a schematic diagram of a data transmission process when a clustered single-carrier frequency division multiplexing multiple access method is used, which specifically includes the following process: data to be transmitted is subjected to code block segmentation, channel coding, constellation modulation, DFT transform, and sub-transformation. Carrier mapping, spatial diversity or multiplexing (optional, not shown), clustering, inversion fast Fourier IFFT transform, adding cyclic prefix CP processing.
  • FIG. 4 is a schematic diagram of a data transmission process when using N parallel single-carrier frequency division multiplexing multiple access methods, specifically including the following process: data to be transmitted sequentially undergoes code block segmentation, channel coding, constellation modulation, DFT conversion, Subcarrier mapping, spatial diversity or multiplexing (optional, not shown), inversion fast Fourier IFFT transform, adding cyclic prefix CP processing.
  • f ⁇ f 5 represent frequency
  • t represents time.
  • FIG. 5 is a schematic structural diagram of an Orthogonal Frequency Division Multiplexing (OFDM) system according to an embodiment of the present invention. As shown in FIG. 5, the system includes a base station, a relay station, and a user terminal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink includes: a link between the user terminal and the relay station, a link between the relay station and the base station, and a link between the user terminal and the base station.
  • the process includes the following steps:
  • Step S302 The base station determines whether the user terminal in the cell transmits data to the user through the relay station. If the relay station passes, the process goes to step S304. If the relay station does not pass, the process goes to step S308.
  • the base station can determine whether the user terminal sends data to and from the relay station according to factors such as service characteristics, and/or regional load, and/or signal to noise ratio.
  • the base station After determining the multiple access mode of the uplink of the terminal according to the foregoing determination result, the base station needs to indicate the terminal or the uplink multiple access mode that the terminal and the relay station need to use.
  • Step S304 the user terminal preferably uploads data to the relay station by using the SC-FDMA method, performs DFT, subcarrier mapping, IFFT on the modulated constellation symbol, and transmits the signal to the relay station after adding the CP, and then performs step S306.
  • the user terminal may also upload data to the relay station by using OFDMA, or clustered single carrier frequency division multiple access, or N parallel single carrier frequency division multiplexing multiple access methods.
  • Step S306 the relay station receives the data uploaded by the user terminal, performs demodulation processing, and uploads the demodulated data to the base station.
  • the relay station preferably uses the OFDMA method to upload data to the base station, and performs the string on the modulated constellation symbol. And convert, subcarrier mapping, IFFT, and transmit to the base station after adding the CP, and then jump to step S310.
  • the relay station may also use SC-FDMA, or clustered single carrier frequency division multiplexing multiple access, or N parallel single carrier frequency division multiplexing multiple access methods to upload data to the base station.
  • Step S308 the user terminal preferably uses the SC-FDMA method to upload data to the base station, performs DFT, subcarrier mapping, IFFT on the modulated constellation symbol, and transmits the signal to the base station after adding the CP. Then step S310 is performed.
  • the user terminal may also upload data to the base station by using OFDMA, or clustered single carrier frequency division multiple access, or N parallel single carrier frequency division multiplexing multiple access methods.
  • Step S310 after receiving the data uploaded by the relay station or the user terminal, the base station performs demodulation processing according to the multiple access mode selected in step S302.
  • FIG. 7 is a flowchart of the operation of the downlink of the orthogonal frequency division multiplexing system according to the embodiment of the present invention.
  • the downlink includes: a link between the base station and the relay station, a link between the relay station and the user terminal, and a link between the base station and the user terminal.
  • the process includes the following steps:
  • Step S402 the base station determines whether the data is transmitted to the user terminal in the cell through the relay station, and if it passes through the relay station, the process goes to step S404, and if it can directly communicate with the user terminal without passing through the relay station, the process goes to step S408.
  • the base station can determine whether the data is transmitted to the user terminal via the relay station according to factors such as service characteristics, and/or regional load, and/or signal to noise ratio.
  • the base station after determining the multiple access mode of the downlink according to the foregoing determination result, the base station needs to indicate the terminal, or the downlink multiple access mode that indicates the terminal and the relay station need to be used.
  • Step S404 the base station preferably sends data to the relay station by using the OFDMA method, performs serial-to-parallel conversion, sub-carrier mapping, IFFT on the modulated constellation symbol, and transmits the signal to the relay station after adding the CP, and then performs step S406.
  • SC-FDMA or clustered single carrier frequency division multiplexing multiple access
  • N parallel single-carrier frequency division multiplexing multiple access methods deliver data to the relay station.
  • Step S406 After receiving the data sent by the base station, the relay station performs demodulation processing, and sends the demodulated data to the user terminal by the relay station.
  • the relay station preferably sends the data to the user terminal by using the OFDMA method.
  • the modulated constellation symbols are subjected to serial-to-parallel conversion, subcarrier mapping, IFFT, and transmitted to the user terminal after the CP is added, and then jumps to step S410.
  • the relay station may also send data to the user terminal by using SC-FDMA, or clustered single carrier frequency division multiplexing multiple access, or N parallel single carrier frequency division multiplexing multiple access methods.
  • Step S408 the base station preferably sends the data to the user terminal by using the OFDMA method.
  • the constellation symbols are subjected to serial-to-parallel conversion, subcarrier mapping, IFFT, and are sent to the user terminal after the CP is added, and then step S410 is performed.
  • the base station may also send data to the user terminal by using SC-FDMA, or clustered single-carrier frequency division multiplexing multiple access, or N parallel single-carrier frequency division multiplexing multiple access methods.
  • Step S410 After receiving the data sent by the relay station or the base station, the user terminal performs demodulation processing.
  • the technical solution of the present invention overcomes the drawbacks caused by the use of a single multiple access method when there is a relay station in the prior art.
  • the hybrid sub-access method not only ensures the coverage of the network, but also obtains more frequency diversity gain, reduces the bit error rate, and also improves the performance of the relay link and the throughput of the whole network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

一种正交频分复用多址接入方法及正交频分复用系统
技术领域
本发明属于移动通讯领域, 尤其涉及一种正交频分复用多址接入方法及 正交频分复用系统。
背景技术
在正交频分复用 ( Orthogonal Frequency Division Multiplexing , 简称 OFDM ) 系统中存在中继站(Relay Station, 简称 RS ) 时, 可以利用中继站 的特性, 既保证中继站的覆盖范围, 也有利于提高中继站链路的性能及整个 网络的吞吐量, 以解决现有系统(如 LTE ( Long Term Evolution, 长期演进) 系统 )中仅考虑峰均比( Peak Average Power Ratio , 简称 PAPR )而使得链路 性能下降的问题。
在 OFDM系统中通过把数据流分解为若干个子数据流,使得每一子数据 流具有比较低的比特速率, 然后将各子数据流分别调制到相应的子载波上并 行发送。 需要指出的是, OFDM各个子载波之间不仅是相互正交的, 而且具 有 1/2的重叠。
图 于 OFDM多址技术的系统的发射机结构示意图, 图中描述了发 射机主要模块之间的接口关系和数据的发送过程。
如图 1所示, 待传输数据经过必要处理后进入星座调制模块, 实现比特 级数据到符号级数据的转换, 然后对符号数据进行串并转换, 把串行数据转 换为并行数据, 再进行子载波映射; 然后对映射后的数据进行多天技术处理, 例如空间分集和复用, 然后进行 IFFT ( Inverse Fast Fourier Transform, 快速傅 立叶逆变换 ) ,实现各子载波的正交,然后添加 CP( Cyclic Prefix,循环前缀 ) , 以消除 OFDM符号间的干扰, 最后通过天线发送。
图 2 是基于 SC-OFDM ( Single Carrier-Orthogonal Frequency Division Multiplexing, 单载波正交频分复用) 多址技术的系统的发射机结构示意图, 图中描述了发射机主要模块之间的接口关系和数据的发送过程。 图 2所示的 发射机与图 1所示的发射机相比 ,增加了一个 DFT( Discrete Fourier Transform, 离散傅立叶变换)模块, 其它模块的功能是一致的。
DFT模块用于实现 IFFT模块反变换的过程。 为了使数据在 IFFT模块处 理之后保持低的峰均比, 事先先对数据进行 DFT处理, 这样再进行 IFFT后, 可以使数据保持与进行 IFFT之前的数据的峰均比基本一致。 这是 SC-OFDM 的独特之处。
在 LTE系统中, 需要考虑用户终端( User Terminal, 简称 UT ) 的 PAPR 问题, 这是由于发射机的输出信号的瞬时值会有较大的波动。 这要求系统内 的一些部件,例如功率放大器、 A/D、 D/A转换器等具有很大的线性动态范围。 此外, 上述部件的非线性也会对动态范围较大的信号产生非线性失真, 所产 生的谐波会造成子信道的相互干扰, 从而影响 OFDM系统的性能。
在 LTE系统中, 上行多址最终选择单载波频分复用多址( Single Carrier- Frequency Division Multiplex Access , 简称 SC-FDMA )方式,很重要的原因是 峰均比问题。 由于单载波系统的数据符号是直接调制到时域上的 (或者经过 某些简单的变形后调制到时域上), 所以其峰均比比较低; 反观多载波系统, 由于在同一时间有多个子载波同时传输数据符号, 而各个子载波承载的数据 符号又是相互独立的, 所以峰均比比较高, 一般要比单载波系统大 2至 3dB。 较高的峰均比提高了对功放线性性的要求, 这一点对用户终端 (简称终端) 尤其不利, 所以一个比较理想的上行多址方案是带循环前缀的单载波系统, 即 SC-FDMA。
目前, 对于以 OFDM系统为基础的多址接入的研究是一个热点, 但没有 存在中继站时的多址接入方案。 以 LTE系统(目前没有引入中继站)为例, 系统下行釆用正交频分复用多址 ( Orthogonal Frequency Division Multiplex Access, 简称 OFDMA )方式, 上行釆用 SC-FDMA方式, 不能很好地适用于 中继站。
如果引入中继站后上行仍然釆用单一的多址接入方式, 即用户终端到中 继站之间的链路釆用 SC-FDMA, 中继站到基站(Base Station, 简称 BS )之 间的链路也釆用 SC-FDMA,会导致中继站到基站之间的链路没有获得充分的 频率分集和链路性能, 进而造成中继站到基站之间的链路性能下降, 误码率 上升, 吞吐量下降, 这是现有技术中尚未解决的一个问题。
发明内容
本发明所要解决的技术问题是, 克服现有技术的不足, 提供一种在正交 频分复用系统中釆用多种多址接入方式的方法及相应的正交频分复用系统。
为了解决上述问题,本发明提供一种正交频分复用系统多址接入的方法, 在包含中继站的小区釆用混合分多址方式接入, 所述混合分多址方式接入为 上行链路接入或下行链路接入同时釆用单载波频分复用多址和正交频分复用 多址的方式接入。
此外, 所述上行链路接入包括如下步骤:
基站判断用户终端是否经过中继站向其上传数据, 如果是, 则用户终端 将数据发送给中继站, 再由中继站将数据发送给基站; 否则, 用户终端将数 据发送给基站;
基站接收到中继站、 或用户终端发送的数据后进行解调处理;
其中, 用户终端釆用单载波频分复用多址方式、 或正交频分复用多址方 式将数据发送给中继站; 中继站釆用正交频分复用多址方式、 或单载波频分 复用多址方式将数据发送给基站; 用户终端釆用正交频分复用多址方式、 或 单载波频分复用多址方式将数据发送给基站。
此外, 所述下行链路接入包括如下步骤:
基站判断是否经过中继站向用户终端下发数据, 如果是, 则基站将数据 发送给中继站, 再由中继站将数据发送给用户终端; 否则, 基站将数据发送 给用户终端;
用户终端接收到中继站、 或基站发送的数据后进行解调处理;
其中, 基站釆用正交频分复用多址方式、 或单载波频分复用多址方式将 数据发送给中继站; 中继站釆用正交频分复用多址方式、 或单载波频分复用 多址方式将数据发送给用户终端; 基站釆用正交频分复用多址方式、 或单载 波频分复用多址方式将数据发送给用户终端。
此外, 基站根据以下因素中的一种或多种判断用户终端是否经过中继站 向其上传数据、 以及是否经过中继站向用户终端下发数据: 业务特性、 和 /或 区域负载、 和 /或信噪比。
本发明还提供一种正交频分复用系统多址接入的方法, 在包含中继站的 小区釆用混合分多址方式接入, 所述混合分多址方式接入为上行链路接入或 下行链路接入同时釆用以下至少两种多址接入方式: 单载波频分复用多址、 正交频分复用多址、 分簇的单载波频分复用多址、 N个并列的单载波频分复 用多址。
此外, 所述上行链路接入包括如下步骤:
基站判断用户终端是否经过中继站向其上传数据, 如果是, 则用户终端 将数据发送给中继站, 再由中继站将数据发送给基站; 否则, 用户终端将数 据发送给基站;
基站接收到中继站、 或用户终端发送的数据后进行解调处理;
其中, 用户终端釆用单载波频分复用多址方式、 或正交频分复用多址方 式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址 方式将数据发送给中继站;
中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分 簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数 据发送给基站;
用户终端釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或 分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将 数据发送给基站。
此外, 所述下行链路接入包括如下步骤:
基站判断是否经过中继站向用户终端下发数据, 如果是, 则基站将数据 发送给中继站, 再由中继站将数据发送给用户终端; 否则, 基站将数据发送 给用户终端;
用户终端接收到中继站、 或中继站发送的数据后进行解调处理; 其中, 基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给中继站;
中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分 簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数 据发送给用户终端;
基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇 的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数据 发送给用户终端。
此外, 基站根据以下因素中的一种或多种判断用户终端是否经过中继站 向其上传数据、 以及是否经过中继站向用户终端下发数据: 业务特性、 和 /或 区域负载、 和 /或信噪比。
本发明还提供一种正交频分复用系统, 包括基站、 用户终端, 该系统还 包括中继站;
所述基站用于判断所述用户终端是否经过所述中继站向其上传数据, 如 果是, 则所述用户终端将数据发送给所述中继站, 再由所述中继站将数据发 送给所述基站; 否则, 所述用户终端将数据发送给所述基站;
所述基站接收到所述中继站、 或所述用户终端发送的数据后进行解调处 理;
其中, 所述用户终端釆用单载波频分复用多址方式、 或正交频分复用多 址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用 多址方式将数据发送给所述中继站;
所述中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述基站;
所述用户终端釆用正交频分复用多址方式、或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述基站。 本发明还提供一种正交频分复用系统, 包括基站、 用户终端, 该系统还 包括中继站;
所述基站用于判断是否经过所述中继站向所述用户终端下发数据, 如果 是, 则所述基站将数据发送给所述中继站, 再由所述中继站将数据发送给所 述用户终端; 否则, 所述基站将数据发送给所述用户终端;
所述用户终端接收到所述中继站、 或所述基站发送的数据后进行解调处 理;
其中, 所述基站釆用正交频分复用多址方式、 或单载波频分复用多址方 式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址 方式将数据发送给所述中继站;
所述中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述用户终端;
所述基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或 分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将 数据发送给所述用户终端。
釆用本发明的技术方案, 克服了现有技术中存在中继站时只釆用单一的 多址接入方式带来的缺陷。 混合分多址方式既保证了网络的覆盖范围, 并可 获得更多的频率分集增益, 降低误码率, 也有利于提高中继站链路的性能及 整网的吞吐量。
附图概述
图 1 ^^于 OFDM多址技术的系统的发射机结构示意图;
图 2 ^^于 SC-OFDM多址技术的系统的发射机结构示意图;
图 3为釆用分簇的单载波频分复用多址方式时的数据发送过程示意图; 图 4为釆用 N个并列的单载波频分复用多址方式时的数据发送过程示意 图;
图 5是本发明实施例正交频分复用系统的结构示意图;
图 6是本发明实施例正交频分复用系统上行链路的工作流程图; 图 7是本发明实施例正交频分复用系统下行链路的工作流程图。 本发明的较佳实施方式
本发明的核心思想是, 在包含中继站的小区釆用混合分多址(HDMA ) 方式接入。 对于基站来说, 所述混合分多址方式接入是指上行链路接入或下 行链路接入同时釆用以下多址接入方式中的至少两种: SC-FDMA、 OFDMA、 分簇的单载波频分复用多址( clustered SC-FDMA ) 、 N个并列的单载波频分 复用多址( N X SC-FDMA ) 。
具体地说, 基站根据从小区中的终端接收数据时是否经过中继站来选择 上行链路的多址接入方式、 和 /或向小区中的终端发送数据时是否经过中继站 来选择下行链路的多址接入方式; 所述多址接入方式至少包括: 正交频分复 用多址、 和单载波频分复用多址。
此外, 如果需要考虑系统的后向兼容性, 基站到用户终端之间的链路和 用户终端到基站之间的链路的多址接入方式优选釆用现有系统中的多址接入 方式, 即下行链路釆用 OFDMA, 上行链路釆用 SC-FDMA。
图 3为釆用分簇的单载波频分复用多址方式时的数据发送过程示意图, 具体包括以下过程: 待发送的数据先后经过码块分段、 信道编码、 星座调制、 DFT变换、 子载波映射、 空间分集或复用 (可选, 图中未示出) 、 分簇、 反 转快速傅立叶 IFFT变换、 添加循环前缀 CP处理。
图 4为釆用 N个并列的单载波频分复用多址方式时的数据发送过程示意 图, 具体包括以下过程: 待发送的数据先后经过码块分段、 信道编码、 星座 调制、 DFT变换、 子载波映射、 空间分集或复用 (可选, 图中未示出) 、 反 转快速傅立叶 IFFT变换、 添加循环前缀 CP处理。 图 4中的 f ~ f5表示频率, t表示时间。 下面将结合附图和实施例对本发明的正交频分复用多址接入方法以及相 应的正交频分复用系统进行详细描述。
图 5是本发明实施例正交频分复用系统的结构示意图, 如图 5所示, 该 系统包含基站、 中继站和用户终端。
图 6是本发明实施例正交频分复用系统上行链路的工作流程图。 上行链 路包括: 用户终端到中继站之间的链路、 中继站到基站之间的链路、 用户终 端到基站之间的链路。 如图 6所示, 该流程包括如下步骤:
步骤 S302, 基站判断小区中的用户终端是否经过中继站向其发送数据, 如果经过中继站, 则跳转至步骤 S304, 如果不经过中继站, 则跳转至步骤 S308。
基站可根据: 业务特性、 和 /或区域负载、 和 /或信噪比等因素判断用户终 端是否经过中继站向到其发送数据。
此外, 基站根据上述判断结果确定终端上行链路的多址接入方式后, 需 要指示终端、 或指示终端和中继站需釆用的上行多址接入方式。
步骤 S304, 用户终端优选釆用 SC-FDMA方式向中继站上传数据, 对经 过调制的星座符号进行 DFT、 子载波映射、 IFFT、 并在添加 CP后发射给中 继站, 然后执行步骤 S306。
当然, 本步骤中用户终端也可以釆用 OFDMA、 或分簇的单载波频分复 用多址、 或 N个并列的单载波频分复用多址方式向中继站上传数据。
步骤 S306, 中继站接收到用户终端上传的数据后进行解调处理, 把解调 出的数据上传给基站; 本步骤中, 中继站优选釆用 OFDMA方式向基站上传 数据, 对经过调制的星座符号进行串并转换、 子载波映射、 IFFT、 并在添加 CP后发射给基站, 然后跳转至步骤 S310。
当然,本步骤中中继站也可以釆用 SC-FDMA、或分簇的单载波频分复用 多址、 或 N个并列的单载波频分复用多址方式向基站上传数据。
步骤 S308, 用户终端优选釆用 SC-FDMA方式向基站上传数据, 对经过 调制的星座符号进行 DFT、 子载波映射、 IFFT、 并在添加 CP后发射给基站, 然后执行步骤 S310。
当然, 本步骤中用户终端也可以釆用 OFDMA、 或分簇的单载波频分复 用多址、 或 N个并列的单载波频分复用多址方式向基站上传数据。
步骤 S310,基站接收到中继站或用户终端上传的数据后,根据步骤 S302 中选定的多址接入方式进行解调处理。
图 7是本发明实施例正交频分复用系统下行链路的工作流程图。 下行链 路包括: 基站到中继站之间的链路、 中继站到用户终端之间的链路、 基站到 用户终端之间的链路。 如图 7所示, 该流程包括如下步骤:
步骤 S402, 基站判断是否经过中继站向小区中的用户终端发送数据, 如 果经过中继站, 则跳转到步骤 S404, 如果不经过中继站而可以直接与用户终 端通信, 则跳转到步骤 S408。
基站可根据: 业务特性、 和 /或区域负载、 和 /或信噪比等因素判断是否经 过中继站向用户终端发送数据。
此外, 基站根据上述判断结果确定下行链路的多址接入方式后, 需要指 示终端、 或指示终端和中继站需釆用的下行多址接入方式。
步骤 S404, 基站优选釆用 OFDMA方式向中继站下发数据, 对经过调制 的星座符号进行串并转换、 子载波映射、 IFFT、 并在添加 CP后发射给中继 站, 然后执行步骤 S406。
当然, 本步骤中也可釆用 SC-FDMA、 或分簇的单载波频分复用多址、 或
N个并列的单载波频分复用多址方式向中继站下发数据。
步骤 S406, 中继站接收到基站下发的数据后进行解调处理, 把解调出的 数据由中继站下发给用户终端; 本步骤中, 中继站优选釆用 OFDMA方式向 用户终端下发数据,对经过调制的星座符号进行串并转换、子载波映射、 IFFT、 并在添加 CP后发射给用户终端, 然后跳转至步骤 S410。
当然,本步骤中中继站也可以釆用 SC-FDMA、或分簇的单载波频分复用 多址、 或 N个并列的单载波频分复用多址方式向用户终端下发数据。
步骤 S408, 基站优选釆用 OFDMA方式向用户终端下发数据, 对经过调 制的星座符号进行串并转换、 子载波映射、 IFFT、 并在添加 CP后下发给用 户终端, 然后执行步骤 S410。
当然,本步骤中基站也可以釆用 SC-FDMA、或分簇的单载波频分复用多 址、 或 N个并列的单载波频分复用多址方式向用户终端下发数据。
步骤 S410,用户终端接收到中继站或基站下发的数据后,进行解调处理。
工业实用性 釆用本发明的技术方案, 克服了现有技术中存在中继站时只釆用单一的 多址接入方式带来的缺陷。 混合分多址方式既保证了网络的覆盖范围, 并可 获得更多的频率分集增益, 降低误码率, 也有利于提高中继站链路的性能及 整网的吞吐量。

Claims

权 利 要 求 书
1、 一种正交频分复用系统多址接入的方法,其特征在于,在包含中继站 的小区釆用混合分多址方式接入, 所述混合分多址方式接入为上行链路接入 或下行链路接入同时釆用单载波频分复用多址和正交频分复用多址的方式接 入。
2、 根据权利要求 1所述的方法,其特征在于, 所述上行链路接入包括如 下步骤:
基站判断用户终端是否经过中继站向其上传数据, 如果是, 则用户终端 将数据发送给中继站, 再由中继站将数据发送给基站; 否则, 用户终端将数 据发送给基站;
基站接收到中继站、 或用户终端发送的数据后进行解调处理;
其中, 用户终端釆用单载波频分复用多址方式、 或正交频分复用多址方 式将数据发送给中继站; 中继站釆用正交频分复用多址方式、 或单载波频分 复用多址方式将数据发送给基站; 用户终端釆用正交频分复用多址方式、 或 单载波频分复用多址方式将数据发送给基站。
3、 根据权利要求 1所述的方法,其特征在于, 所述下行链路接入包括如 下步骤:
基站判断是否经过中继站向用户终端下发数据, 如果是, 则基站将数据 发送给中继站, 再由中继站将数据发送给用户终端; 否则, 基站将数据发送 给用户终端;
用户终端接收到中继站、 或基站发送的数据后进行解调处理;
其中, 基站釆用正交频分复用多址方式、 或单载波频分复用多址方式将 数据发送给中继站; 中继站釆用正交频分复用多址方式、 或单载波频分复用 多址方式将数据发送给用户终端; 基站釆用正交频分复用多址方式、 或单载 波频分复用多址方式将数据发送给用户终端。
4、 根据权利要求 1所述的方法, 其特征在于, 基站根据以下因素中的一种或多种判断用户终端是否经过中继站向其上 传数据、 以及是否经过中继站向用户终端下发数据: 业务特性、 和 /或区域负 载、 和 /或信噪比。
5、 一种正交频分复用系统多址接入的方法,其特征在于,在包含中继站 的小区釆用混合分多址方式接入, 所述混合分多址方式接入为上行链路接入 或下行链路接入同时釆用以下至少两种多址接入方式:单载波频分复用多址、 正交频分复用多址、 分簇的单载波频分复用多址、 N个并列的单载波频分复 用多址。
6、 根据权利要求 5所述的方法,其特征在于, 所述上行链路接入包括如 下步骤:
基站判断用户终端是否经过中继站向其上传数据, 如果是, 则用户终端 将数据发送给中继站, 再由中继站将数据发送给基站; 否则, 用户终端将数 据发送给基站;
基站接收到中继站、 或用户终端发送的数据后进行解调处理;
其中, 用户终端釆用单载波频分复用多址方式、 或正交频分复用多址方 式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址 方式将数据发送给中继站;
中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分 簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数 据发送给基站;
用户终端釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或 分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将 数据发送给基站。
7、 根据权利要求 5所述的方法,其特征在于, 所述下行链路接入包括如 下步骤:
基站判断是否经过中继站向用户终端下发数据, 如果是, 则基站将数据 发送给中继站, 再由中继站将数据发送给用户终端; 否则, 基站将数据发送 给用户终端;
用户终端接收到中继站、 或中继站发送的数据后进行解调处理; 其中, 基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给中继站;
中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分 簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数 据发送给用户终端;
基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇 的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将数据 发送给用户终端。
8、 根据权利要求 5所述的方法, 其特征在于,
基站根据以下因素中的一种或多种判断用户终端是否经过中继站向其上 传数据、 以及是否经过中继站向用户终端下发数据: 业务特性、 和 /或区域负 载、 和 /或信噪比。
9、 一种正交频分复用系统, 包括基站、 用户终端, 其特征在于, 该系统 还包括中继站;
所述基站用于判断所述用户终端是否经过所述中继站向其上传数据, 如 果是, 则所述用户终端将数据发送给所述中继站, 再由所述中继站将数据发 送给所述基站; 否则, 所述用户终端将数据发送给所述基站;
所述基站接收到所述中继站、 或所述用户终端发送的数据后进行解调处 理;
其中, 所述用户终端釆用单载波频分复用多址方式、 或正交频分复用多 址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用 多址方式将数据发送给所述中继站;
所述中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述基站;
所述用户终端釆用正交频分复用多址方式、或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述基站。
10、 一种正交频分复用系统, 包括基站、 用户终端, 其特征在于, 该系 统还包括中继站;
所述基站用于判断是否经过所述中继站向所述用户终端下发数据, 如果 是, 则所述基站将数据发送给所述中继站, 再由所述中继站将数据发送给所 述用户终端; 否则, 所述基站将数据发送给所述用户终端;
所述用户终端接收到所述中继站、 或所述基站发送的数据后进行解调处 理;
其中, 所述基站釆用正交频分复用多址方式、 或单载波频分复用多址方 式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址 方式将数据发送给所述中继站;
所述中继站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式 将数据发送给所述用户终端;
所述基站釆用正交频分复用多址方式、 或单载波频分复用多址方式、 或 分簇的单载波频分复用多址方式、 或 N个并列的单载波频分复用多址方式将 数据发送给所述用户终端。
PCT/CN2008/002119 2008-10-10 2008-12-29 一种正交频分复用多址接入方法及正交频分复用系统 WO2010040253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102167333A CN101729478B (zh) 2008-10-10 2008-10-10 一种正交频分复用系统多址接入的方法
CN200810216733.3 2008-10-10

Publications (1)

Publication Number Publication Date
WO2010040253A1 true WO2010040253A1 (zh) 2010-04-15

Family

ID=42100182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/002119 WO2010040253A1 (zh) 2008-10-10 2008-12-29 一种正交频分复用多址接入方法及正交频分复用系统

Country Status (2)

Country Link
CN (1) CN101729478B (zh)
WO (1) WO2010040253A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886248A (zh) * 2023-09-08 2023-10-13 南昌大学 一种基于hdma的多用户检测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644372B2 (ja) * 2010-10-27 2014-12-24 ソニー株式会社 信号処理装置および方法、並びに、プログラム
CN105337920B (zh) * 2015-09-24 2018-09-04 南京楚卿电子科技有限公司 一种基于干扰消除的多模式无线通信系统
CN108965185B (zh) * 2017-05-26 2020-11-13 中国移动通信集团公司 一种混合调制和解调多载波的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797989A (zh) * 2004-12-29 2006-07-05 三星电子株式会社 基于正交频分多址的蜂窝通信系统的中继通信方法
CN1964221A (zh) * 2005-11-11 2007-05-16 华为技术有限公司 无线中转通信正交频分复用接入系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797989A (zh) * 2004-12-29 2006-07-05 三星电子株式会社 基于正交频分多址的蜂窝通信系统的中继通信方法
CN1964221A (zh) * 2005-11-11 2007-05-16 华为技术有限公司 无线中转通信正交频分复用接入系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TR25.814 V7.1.0, September 2006 (2006-09-01) *
EIKO SEIDEL: "Progress on ''LTE Advanced''-the new 4G standard", NOMOR RESEARCH, 24 July 2008 (2008-07-24) *
XIE, XIANZHONG: "Comparison of Transmission Schemes for 3G Long Term Evolution", TELECOMMUNICATIONS SCIENCE, no. 2, February 2006 (2006-02-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886248A (zh) * 2023-09-08 2023-10-13 南昌大学 一种基于hdma的多用户检测方法及系统
CN116886248B (zh) * 2023-09-08 2023-12-01 南昌大学 一种基于hdma的多用户检测方法及系统

Also Published As

Publication number Publication date
CN101729478B (zh) 2012-07-04
CN101729478A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5702387B2 (ja) 上りリンク送信ダイバーシチのためのシグナリング及びチャネル推定
CN1863181B (zh) 在无线通信系统中多路复用数据和控制信息的方法和系统
US7974258B2 (en) Adaptive mode transmitter for PAPR reduction and link optimization
KR101065846B1 (ko) Ofdma에서의 패킷 데이터 전송 방법 및 장치
US20060227888A1 (en) Apparatus and method for FT pre-coding of data to reduce PAPR in a multi-carrier wireless network
CN101502069A (zh) 频分多址系统中的低峰均功率比传输
KR20100017049A (ko) Papr을 줄이기 위한 무선 접속 방식
US8472537B2 (en) Systems and associated methods to reduce signal field symbol peak-to-average power ratio (PAPR)
KR20080031345A (ko) 무선 통신 장치 및 무선 통신 방법
US7697409B2 (en) Transmitter apparatus and method for transmitting packet data units in a communication system
US7646703B2 (en) Backward-compatible long training sequences for wireless communication networks
RU2543977C2 (ru) Способ ретрансляции и базовая станция
CN101394385A (zh) 基于时域处理联合信道估计的正交频分复用系统
JP6718523B2 (ja) 送信装置、受信装置及び通信方法
WO2010040253A1 (zh) 一种正交频分复用多址接入方法及正交频分复用系统
WO2011006380A1 (zh) 一种发射端及数据发射方法
CN101946436A (zh) 中继设备、通信系统及通信方法
CN101521650A (zh) 基于Haar小波变换的二进制相移键控/正交频分复用系统
US8780854B2 (en) Method and apparatus for multiple frequency point multiple access
CN101577691B (zh) 导频分配方法及导频功率优化方法
US20140334285A1 (en) Base station apparatus for decreasing amount of transmission data with cloud radio access network
WO2010054571A1 (zh) 物理信道多址接入方法和装置
CN102624672B (zh) 基于分块的双变换正交频分复用通信方法
WO2022206634A1 (zh) 一种相位噪声的确定方法及相关装置
CN108737304B (zh) 一种上行通信方法、装置、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08877223

Country of ref document: EP

Kind code of ref document: A1