WO2010038833A1 - ポリ乳酸系フィルムまたはシート - Google Patents

ポリ乳酸系フィルムまたはシート Download PDF

Info

Publication number
WO2010038833A1
WO2010038833A1 PCT/JP2009/067176 JP2009067176W WO2010038833A1 WO 2010038833 A1 WO2010038833 A1 WO 2010038833A1 JP 2009067176 W JP2009067176 W JP 2009067176W WO 2010038833 A1 WO2010038833 A1 WO 2010038833A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
film
resin composition
crystallization
weight
Prior art date
Application number
PCT/JP2009/067176
Other languages
English (en)
French (fr)
Inventor
石黒 繁樹
洋毅 千田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US13/122,076 priority Critical patent/US20110201746A1/en
Priority to EP09817865.0A priority patent/EP2345691B1/en
Priority to CN200980139110.3A priority patent/CN102171278B/zh
Publication of WO2010038833A1 publication Critical patent/WO2010038833A1/ja
Priority to US14/875,736 priority patent/US10253145B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/906Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using roller calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a polylactic acid film or sheet having improved heat resistance capable of maintaining the shape of a film formed even at high temperatures.
  • Polylactic acid is a plant-derived biomass polymer and has attracted attention as a resin that replaces petroleum-derived polymers.
  • polylactic acid referred to in the present invention as poly-L-lactic acid mainly composed of L isomer of optical isomer
  • poly-L-lactic acid mainly composed of L isomer of optical isomer
  • crystallization speed is very slow.
  • it In the method of niping with a cooling roll after forming a certain melt film, it hardly crystallizes. Therefore, conventionally, attempts have been made to improve the heat resistance of polylactic acid-based films by the following several methods.
  • Patent Document 1 After forming into a sheet by a melt extrusion method or the like, the film is stretched and oriented and crystallized by biaxial stretching to express the heat resistance of forming a film of polylactic acid (Patent Document 1).
  • Patent Document 1 the film is stretched and oriented and crystallized by biaxial stretching to express the heat resistance of forming a film of polylactic acid (Patent Document 1).
  • this method has an internal residual stress at the time of stretching, so that there is a disadvantage that the heat shrinkage becomes very large when the use temperature becomes high. For this reason, the actual usable temperature is up to about 100 ° C. at most.
  • Patent Document 2 attempts have been made to develop heat resistance by blending other high melting point materials with polylactic acid (Patent Document 2).
  • Patent Document 2 attempts have been made to develop heat resistance by blending other high melting point materials with polylactic acid (Patent Document 2).
  • this method causes problems such as a decrease in the ratio of plant-derived components (biomass degree) and a decrease in transparency.
  • the present inventors have conducted intensive research to solve the above problems, and as a result, by adding an acidic functional group-modified olefin polymer to polylactic acid, it is possible to roll even at a glass transition temperature or higher (more specifically, at a melting state higher than the melting point). Can be easily peeled off, and by adding a tetrafluoroethylene-based polymer to polylactic acid, the melt tension can be improved, and the film-forming film shape can be maintained sufficiently even at temperatures of 100 ° C. or higher (ie, near the melting point).
  • the tetrafluoroethylene-based polymer contributes to the promotion of polylactic acid crystallization, and the crystallization temperature of the polylactic acid is more effectively set by setting the crystallization temperature of the resin mixture in the process immediately after film formation.
  • the present invention has been completed. That is, the present invention is as follows. [1] A method for producing a film or sheet of a resin composition containing polylactic acid using a melt film-forming method, wherein the resin composition contains polylactic acid (A) and an acidic functional group, and its acid value Is composed of an acidic functional group-modified olefin polymer (B) having a weight average molecular weight of 10,000 to 80,000 and a tetrafluoroethylene polymer (C).
  • the temperature of the resin composition in the film forming step is a temperature between the temperature of the crystallization temperature (Tc) in the temperature-decreasing process of the resin composition + 15 ° C. and the melting temperature (Tm) ⁇ 5 ° C. in the temperature-raising process. Or the melted film-formed resin composition is cooled and solidified after undergoing a crystallization promotion step of a crystallization temperature (Tc) ⁇ 10 ° C. in the temperature lowering process. Production method. [2] The temperature of the resin composition in the melt film-forming step is between the crystallization temperature (Tc) + 15 ° C. in the temperature-decreasing process of the resin composition and the melting temperature (Tm) ⁇ 5 ° C.
  • the melt film formation method is a method in which the molten resin composition is finally formed into a desired thickness by passing through the gap between the two metal rolls.
  • a film or sheet on which a resin composition containing polylactic acid is formed by a calendar film forming method wherein the resin composition contains 100 parts by weight of polylactic acid (A) and an acidic functional group, and its acid value 0.1 to 5.0 parts by weight of an acidic functional group-modified olefin polymer (B) having a weight average molecular weight of 10,000 to 80,000, and a tetrafluoroethylene polymer.
  • B acidic functional group-modified olefin polymer
  • C each containing 0.1 to 10.0 parts by weight, and the temperature of the resin composition at the time of calender roll rolling in the calendar film-forming method is the crystallization temperature (Tc) +15 in the temperature-decreasing process of the resin composition From the temperature of 0 ° C.
  • the temperature of the resin composition during calender roll rolling in the calendar film forming method is from the crystallization temperature (Tc) + 15 ° C. in the temperature-decreasing process of the resin composition to the melting temperature (Tm) in the temperature-raising process.
  • the resin composition having a temperature between ⁇ 5 ° C.
  • a film or sheet containing polylactic acid which contains polylactic acid (A), an acidic functional group, an acid value of 10 to 70 mgKOH / g, and a weight average molecular weight of 10,000 to 80, 000, a resin composition comprising an acidic functional group-modified olefin polymer (B) and a tetrafluoroethylene polymer (C), and in an atmosphere of 150 ° C.
  • Relative crystallization rate (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm ⁇ 100 (1)
  • ⁇ Hc is the calorific value of the exothermic peak accompanying crystallization in the temperature rising process of the film sample after film formation
  • ⁇ Hm represents the calorific value accompanying melting
  • a film or sheet containing polylactic acid comprising polylactic acid (A), an acidic functional group, an acid value of 10 to 70 mg KOH / g, and a weight average molecular weight of 10,000 to 80, 000, a resin composition comprising an acidic functional group-modified olefin polymer (B) and a tetrafluoroethylene polymer (C), and the following when stored for 10 minutes in a temperature atmosphere at 150 ° C.
  • Heat shrinkage rate (%) (L1-L2) / L1 ⁇ 100 (2) (In the formula, L1 indicates the marked line length before the test, and L2 indicates the marked line length after the test)
  • FIG. 1 is a schematic diagram of a calendar film forming machine.
  • FIG. 2 is a schematic diagram of a polishing film forming machine.
  • the polylactic acid film or sheet of the present invention is produced by forming a film blended with (A) polylactic acid, (B) an acidic functional group-modified olefin polymer, and (C) a tetrafluoroethylene polymer.
  • the film or sheet refers to a plastic film, and the thickness is usually 10 to 500 ⁇ m, preferably 20 to 400 ⁇ m, more preferably 30 to 300 ⁇ m.
  • the polylactic acid (A) used in the present invention is a polymer containing L-form lactic acid as a main component.
  • the polylactic acid to be used can use what is marketed. Specific examples include Lacia H-400 (manufactured by Mitsui Chemicals).
  • the acidic functional group-modified olefin polymer used in the present invention is mainly added in order to obtain roll lubricity of (A) polylactic acid.
  • the acidic functional group of the acidic functional group-modified olefin polymer include a carboxyl group, a carboxyl derivative group, and the like.
  • the carboxyl derivative group is chemically derived from a carboxyl group, for example, an ester Group, amide group, imide group, cyano group and the like.
  • the acidic functional group-modified olefin polymer is obtained, for example, by grafting an acidic functional group-containing unsaturated compound onto an unmodified polyolefin polymer.
  • Non-modified polyolefin polymers include high density polyethylene, medium density polyethylene, low density polyethylene, propylene polymer, polybutene, poly-4-methylpentene-1, copolymer of ethylene and ⁇ -olefin, propylene and ⁇ - Polyolefins such as olefin copolymers or oligomers thereof, ethylene-propylene rubber, ethylene-propylene-diene copolymer rubber, butyl rubber, butadiene rubber, low crystalline ethylene-propylene copolymer, propylene-butene copolymer Ethylene-vinyl ester copolymer, ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer,
  • Polyolefin series Lastomers and mixtures of two or more of these may be mentioned.
  • Preferred are propylene copolymers, copolymers of propylene and ⁇ -olefins, low-density polyethylene and oligomers thereof, and particularly preferred are propylene polymers, copolymers of propylene and ⁇ -olefins and oligomers thereof. is there.
  • the oligomer include those obtained by a molecular weight degradation method by thermal decomposition or a polymerization method.
  • Examples of the acidic functional group-containing unsaturated compound include a carboxyl group-containing unsaturated compound, a carboxyl derivative group-containing unsaturated compound, and the carboxyl group-containing unsaturated compound includes (anhydrous) maleic acid, (anhydrous) itaconic acid, Examples include chloro (anhydride) itaconic acid, chloro (anhydride) maleic acid, (anhydrous) citraconic acid, and (meth) acrylic acid.
  • the unsaturated compound containing a carboxyl derivative group examples include (meth) acrylic acid esters such as methyl (meth) acrylate, glycidyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, maleimide and (meth) ) Vinyl cyanides such as acrylonitrile.
  • it is a carboxyl group-containing unsaturated compound, more preferably an acid anhydride group-containing unsaturated compound, and most preferably maleic anhydride.
  • the (B) acidic functional group-modified olefin polymer has a weight average molecular weight of 10,000 to 80,000 as measured by gel permeation chromatography (GPC), preferably 15,000 to 70. 20,000, more preferably 20,000 to 60,000. If it is less than 10,000, it will cause bleed-out after molding, and if it exceeds 80,000, it will separate from polylactic acid during roll kneading. Bleed out refers to a phenomenon in which low molecular weight components appear on the film surface over time after film formation.
  • the acid functional group-modified olefin polymer preferably has an acid value of 10 to 70 mgKOH / g, more preferably 20 to 60 mgKOH / g. If it is less than 10 mgKOH / g, the roll peeling effect cannot be obtained, and if it exceeds 70 mgKOH / g, it causes plate-out to the roll.
  • the plate-out referred to in the present invention is a component blended in the resin composition on the surface of the metal roll or its oxidized, decomposed, compounded, or deteriorated product when the resin composition is melt-formed using the metal roll. It means that etc. adhere or deposit.
  • the acid value was measured according to the neutralization titration method of JIS K0070-1992.
  • the acidic functional group-modified olefin polymer is obtained by reacting an acidic functional group-containing unsaturated compound with an unmodified polyolefin polymer in the presence of an organic peroxide.
  • an organic peroxide those generally used as an initiator in radical polymerization can be used.
  • a solution method or a melting method can be used.
  • the solution method can be obtained by dissolving a mixture of an unmodified polyolefin polymer and an acidic functional group-containing unsaturated compound in an organic solvent together with an organic peroxide and heating.
  • the reaction temperature is preferably about 110 to 170 ° C.
  • melt-mixed a mixture of an unmodified polyolefin polymer and an acidic functional group-containing unsaturated compound is mixed with an organic peroxide, melt-mixed and reacted.
  • Melt mixing can be performed with various mixers such as an extruder, a plastic bender, a kneader, and a Banbury mixer, and the kneading temperature is usually in the temperature range of the melting point of the unmodified polyolefin polymer to 300 ° C.
  • (B) As the acidic functional group-modified olefin polymer a commercially available product can be used. Weight average molecular weight: 32,000, modification ratio: 10% by weight), “Yumex 1001” (maleic anhydride group-containing modified polypropylene, acid value: 26 mg KOH / g, weight average molecular weight: 49,000, modification ratio: 5% by weight ), “Yumex 2000” (maleic anhydride group-containing modified polyethylene, acid value: 30 mg KOH / g, weight average molecular weight: 20,000, modification ratio: 5% by weight) and the like.
  • the acidic functional group-modified olefin polymer is usually 0.1 to 5.0 parts by weight with respect to (A) 100 parts by weight of polylactic acid, preferably from the viewpoint of sustaining the roll slip effect and maintaining the degree of biomass. 0.3 to 3.0 parts by weight. If the amount is less than 0.1 parts by weight, the roll lubricity effect is difficult to obtain. If the amount exceeds 5.0 parts by weight, the effect corresponding to the amount added cannot be obtained, and a decrease in the degree of biomass becomes a problem.
  • the biomass degree is the ratio of the dry weight of the used biomass to the dry weight of the film or sheet.
  • the (C) tetrafluoroethylene-based polymer used in the present invention may be a tetrafluoroethylene homopolymer or a copolymer of tetrafluoroethylene and another monomer.
  • tetrafluoroethylene-based polymer examples include polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluorodioxazole copolymer, and the like.
  • the crystallization promoting effect of the tetrafluoroethylene polymer on polylactic acid depends on the crystal structure of the tetrafluoroethylene polymer.
  • the plane spacing of the polylactic acid crystal lattice was 4.8 angstroms, whereas that of the tetrafluoroethylene-based polymer was 4.9 angstroms. From this, it is considered that the effect of polylactic acid as a crystal nucleating agent can be obtained when the tetrafluoroethylene-based polymer has an epitaxy action.
  • the epitaxy action means a growth mode in which polylactic acid grows on the surface of the tetrafluoroethylene-based polymer, and the polylactic acid is aligned with the crystal plane of the crystal surface of the tetrafluoroethylene-based polymer.
  • the interplanar spacing of the tetrafluoroethylene polymer is a copolymer, the interplanar spacing is the same because it is governed by the crystal form of the tetrafluoroethylene portion. Therefore, the amount of the copolymerization component is not particularly limited as long as the crystal form of polytetrafluoroethylene can be maintained and the physical properties do not greatly change. Usually, the proportion of the copolymerization component in the tetrafluoroethylene-based polymer is It is desirable that the amount be 5% by weight or less.
  • the polymerization method of the tetrafluoroethylene-based polymer is particularly preferably that obtained by emulsion polymerization.
  • the tetrafluoroethylene-based polymer obtained by emulsion polymerization is likely to form a network structure in polylactic acid because it is easily fiberized, and is considered to be effective in promoting crystallization of polylactic acid in the flow field during the melt film formation process. It is done.
  • tetrafluoroethylene-based polymer particles are modified with a polymer having good affinity with polylactic acid such as a (meth) acrylic acid ester-based polymer. preferable.
  • Methbrene (registered trademark) A series As commercial products of acrylic modified tetrafluoroethylene-based polymers, Mitsubishi Rayon Co., Ltd. has commercially available Methbrene A-3000, Methbrene A-3800, etc. as Methbrene (registered trademark) A series.
  • the tetrafluoroethylene-based polymer is usually 0.1 to 10 parts by weight per 100 parts by weight of (A) polylactic acid, preferably 1.0 to 5.0 from the viewpoint of improving the melt tension and maintaining the degree of biomass. Parts by weight. If the amount is less than 0.1 part by weight, the effect of improving the melt tension is not sufficient. If the amount exceeds 10 parts by weight, the effect corresponding to the amount added cannot be obtained, and a decrease in the degree of biomass becomes a problem.
  • the present invention includes a crystallization promotion step for controlling temperature conditions during film formation.
  • the crystallization promotion step is to promote crystallization by temporarily maintaining the resin composition that has been melt-formed in the melt film-forming step at a crystallization temperature (Tc) ⁇ 10 ° C. during the temperature-decreasing process of the resin composition. It is a process.
  • the resin composition that has been melt-formed is cooled and solidified after a crystallization promoting step.
  • the resin composition that has been melt-deposited is exposed to a temperature controlled to a crystallization temperature (Tc) ⁇ 10 ° C., and the surface shape after the melt-deposition is maintained. , Crystallization is promoted.
  • Tc crystallization temperature
  • the method is not particularly limited. For example, a method in which a melted film is directly brought into contact with a roll or belt that can be heated to a predetermined temperature, and the process can be performed continuously from the film formation, because the processing takes a short time. Desirable in terms of productivity.
  • the process in which the temperature can be controlled at the crystallization temperature (Tc) ⁇ 10 ° C. in the temperature-decreasing process of the resin composition, that is, the crystallization promoting process is as long as possible. Since it ultimately depends on the degree of crystallization of the resin composition, it cannot be specified unconditionally, but preferably, if the condition setting is such that the heat deformation rate is 40% or less, the film at that temperature or The use of a sheet is considered possible.
  • the resin composition of the present invention may contain (D) a crystal accelerator.
  • the crystal accelerator is not particularly limited as long as the effect of promoting crystallization is recognized, but it is desirable to select a substance having a crystal structure having a face spacing close to the face spacing of the polylactic acid crystal lattice. This is because a substance with a close spacing is more effective as a nucleating agent. Examples thereof include melamine polyphosphate, melamine cyanurate, zinc phenylphosphonate, calcium phenylphosphonate, magnesium phenylphosphonate, and inorganic substances such as talc and clay, which are organic substances.
  • zinc phenylphosphonate is most preferable because the face spacing is most similar to the face spacing of polylactic acid and provides a good crystal formation promoting effect.
  • the commercially available crystal accelerator can be used. Specific examples include zinc phenylphosphonate; Eco Promote (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • the crystal accelerator is usually 0.1 to 5 parts by weight with respect to 100 parts by weight of (A) polylactic acid, preferably 0.3 to 3 parts by weight from the viewpoint of better crystal promotion effect and maintaining the degree of biomass. It is. If the amount is less than 0.1 parts by weight, the effect of promoting crystallization is not sufficient. If the amount exceeds 5 parts by weight, the effect corresponding to the amount added cannot be obtained, and a decrease in the degree of biomass becomes a problem.
  • the roll is preferably a metal roll. It is desirable that the resin composition has a composition that can be easily peeled off from the metal roll. From this viewpoint, it is necessary to add the above-mentioned (B) acidic functional group-modified olefin polymer.
  • a calendar film forming method may be used as the melt film forming method.
  • the temperature of the resin composition at the time of calender roll rolling is between the temperature of the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process and the melting temperature (Tm) ⁇ 5 ° C. in the temperature rising process.
  • Tc crystallization temperature
  • Tm melting temperature
  • C The tetrafluoroethylene-based polymer is fibrillated and networked in the resin composition, so that the orientation crystallization effect is remarkably improved. This is considered to be a synergistic effect with the crystal nucleating agent effect of (C) tetrafluoroethylene-based polymer.
  • the polylactic acid film or sheet of the present invention is a resin in which each component is uniformly dispersed by a continuous melt kneader such as a twin screw extruder or a batch type melt kneader such as a pressure kneader, a Banbury mixer, or a roll kneader.
  • a composition was prepared, and this was passed through a gap between two metal rolls in a molten state to a desired thickness, and then passed through a roll set at the temperature-falling crystallization temperature of the resin composition, and finally Obtained by cooling.
  • an apparatus polishing film forming method, roller head film forming method or the like in which about 2 to 4 metal rolls are attached to the tip of the extruder is used to remove the resin composition with the extruder.
  • a melted state is continuously supplied to a metal roll part, and a film is formed to a desired thickness at the metal roll part, and 3 to 6 resin compositions melted by roll kneading or an extruder are used.
  • a calendar film forming method in which a desired thickness is finally obtained by sequentially passing through the gaps between the metal rolls of a certain degree.
  • the molten resin is passed through the heated gap between the metal rolls, it is desirable to have a composition that can be easily peeled off from the surface of the metal roll. Furthermore, from the viewpoint of always controlling the crystallization temperature, it is desirable that the roll set to the temperature-falling crystallization temperature is also a metal roll. Also about this, it is desirable to make it the composition which can peel a resin composition easily from a metal roll similarly. From the above viewpoint, it is necessary to add the above-mentioned (B) acidic functional group-modified olefin polymer.
  • the thickness of the film or sheet is appropriately adjusted depending on the application, but is generally 10 to 500 ⁇ m, preferably 20 to 400 ⁇ m, and particularly preferably 30 to 300 ⁇ m.
  • the film or sheet of the present invention can be used for the same application as that of a generally used film or sheet, but can be particularly suitably used as a substrate for an adhesive film or sheet.
  • the temperature of the resin composition at the time of film formation of the extruder or roll is between the temperature of the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process and the melting temperature (Tm) ⁇ 5 ° C. in the temperature rising process.
  • Tc crystallization temperature
  • Tm melting temperature
  • the tetrafluoroethylene-based polymer is fibrillated and networked in the resin composition, so that the orientation crystallization effect is remarkably improved. This is considered to be a synergistic effect with the crystal nucleating agent effect of (C) tetrafluoroethylene-based polymer.
  • the highly crystallized film or sheet formed by the method of the present invention can maintain the shape up to the vicinity of the melting point of polylactic acid, and can be used sufficiently even in applications requiring heat resistance that could not be used so far. is there. Furthermore, it is a very useful technique in terms of economy and productivity because the process of heating again is unnecessary.
  • FIG. 1 is a schematic diagram of a calendar film forming machine according to an embodiment of the present invention.
  • the molten resin is rolled between four calender rolls of a first roll 1, a second roll 2, a third roll 3, and a fourth roll 4, and gradually thinned.
  • it is prepared to have a desired thickness when passing between the roll 3 and the roll 4.
  • film formation of the resin composition on the calendar rolls 1 to 4 corresponds to a “melt film formation step”.
  • the take-off roll 5 set to the crystallization temperature indicates a roll group in which the produced film or sheet 8 is first contacted, and is composed of one or two (three in FIG. 1) roll groups.
  • one roll for example, roll 6
  • the roll surface is designed to give the surface shape of the sheet 8
  • a rubber roll is used as the other roll (for example, roll 7).
  • the arrow in a figure shows the rotation direction of a roll.
  • FIG. 2 is a schematic view of a polishing film forming machine according to another embodiment of the present invention.
  • an extruder tip 10 of an extruder (not shown) is placed between heated rolls 2 and 3 and placed between rolls 2 and 3 at a preset extrusion speed.
  • the molten resin is continuously extruded.
  • the extruded molten resin is rolled between the rolls 2 and 3 to be thin, and finally prepared to have a desired thickness when passing between the rolls 3 and 4.
  • the solidified sheet 8 is produced by passing through the three take-off rolls 5 set at the crystallization temperature and finally passing through the cooling rolls 6 and 7.
  • Example 1 After preparing a resin composition in which the above raw materials are blended in the blending ratios shown in Table 1 below and performing melt kneading with a Banbury mixer, the thickness is 0.1 mm with a reverse L-shaped four-calendar Film formation was performed. Next, as shown in FIG. 1, three rolls (take-off rolls in the case of calendar film formation) that can be heated to an arbitrary temperature are arranged immediately after calender rolling film formation (that is, corresponding to the melt film formation step). And it was set as the crystallization acceleration
  • the resin temperature in the rolling process (that is, the resin temperature in the melt film formation process) is substituted by the surface temperature of the calendar roll 4 in the case of the calendar film formation.
  • the film forming speed is 5 m / min, and the substantial crystallization time (take-off roll passing time) is about 5 seconds.
  • Example 2 to 10 Resin compositions blended at the blending ratios shown in Table 1 below were prepared, and the films of Examples 2 to 10 were formed in the same manner as in Example 1.
  • Comparative Examples 1 to 4 Resin compositions blended at the blending ratios shown in Table 1 below were prepared, and films of Comparative Examples 1 to 4 were formed in the same manner as in Example 1.
  • ⁇ Melting temperature> The temperature at the top of the endothermic peak accompanying melting in the process of re-heating the film sample after film formation, measured by DSC, was taken as the melting temperature (also referred to as Tm, crystal melting peak temperature).
  • ⁇ Crystalization temperature> The temperature at the peak top of the exothermic peak accompanying the crystallization of the film sample after film formation, measured by DSC, during the temperature lowering process from 200 ° C. was defined as the crystallization temperature (Tc, also referred to as crystallization peak temperature).
  • ⁇ Resin temperature in melt film formation process It is the set temperature (° C.) of the resin in the melt film formation step.
  • this corresponds to the temperature of the resin composition in the rolling process of the resin composition with a calendar roll.
  • the surface temperature of the fourth roll was measured and used as the resin temperature in the melt film formation step.
  • the crystallization promotion process was performed by making a film sample contact a take-off roll. At that time, the surface temperatures of the three take-off rolls 5 in FIG.
  • the crystallization promotion temperature is preferably crystallization temperature (Tc) ⁇ 10 ° C. Further, the three take-off rolls may have different temperatures as long as they are within the temperature range.
  • Relative crystallization rate (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm ⁇ 100 (3)
  • the DSC and measurement conditions used in the measurement of the crystallization temperature and the relative crystallization rate are as follows.
  • ⁇ Heating deformation rate> It measured according to the heat deformation test method of JISC3005.
  • the measurement apparatus and measurement conditions used are as follows. (Measuring device) Tester Sangyo Co., Ltd. Heating deformation tester (Sample size) Thickness 1 mm x Width 25 mm x Length 40 mm (The film was stacked on a total thickness of 1 mm) (Measurement condition) a) Measurement temperature (150 ° C) b) Load (10N) c) Measurement time: 30 minutes (in consideration of recrystallization, test start without aging) (Heating deformation rate calculation method) The thickness T1 before the test and the thickness T2 after the test were measured and calculated using the following formula (4). Note that Comparative Examples 1 and 2 were not measured because film formation by a calendar could not be performed.
  • Heat shrinkage> A film was cut out of 150 mm ⁇ 150 mm, a 100 mm mark was written in each of the flow direction (hereinafter referred to as MD direction) and the width direction (hereinafter referred to as TD direction) during film formation, and the film was heated to 150 ° C. The dimensional change after taking out for 10 minutes and taking out was confirmed.
  • Heat shrinkage calculation method The marked line length L1 before the test and the marked line length L2 after the test were measured and calculated using the following formula (5). Note that Comparative Examples 1 and 2 were not measured because film formation by a calendar could not be performed.
  • the comprehensive judgment is ( ⁇ or ⁇ ). Met.
  • the film formability the peelability and the film surface state are all good, and the plate-out to the roll does not occur.
  • the temperature of the resin composition in the melt film-forming step is the melting temperature in the temperature rising process from the temperature of the crystallization temperature (Tc) + 15 ° C. in the temperature lowering process of the resin composition.
  • the resin composition that has been melt-formed is subjected to a crystallization promotion step of crystallization temperature (Tc) ⁇ 10 ° C. during the temperature lowering process.
  • Tc crystallization temperature
  • the crystallization process is performed at two locations, so that the crystallization is further accelerated.
  • the crystallization rate in Example 2 that passed through the treatments (i) and (ii) above was as high as 82%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリ乳酸を含む樹脂組成物を溶融成膜法により成膜するフィルムまたはシートであって、樹脂組成物は、ポリ乳酸(A)と、酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、テトラフルオロエチレン系ポリマー(C)をそれぞれ含んでなり、溶融成膜時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、または溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃で温度制御化能な工程を経てから冷却固化されることを特徴とし、耐熱性が改善されたポリ乳酸系フィルムまたはシートの製造方法である。

Description

ポリ乳酸系フィルムまたはシート
 本発明は、高温でも成膜フィルム形状を保持できる耐熱性が改善されたポリ乳酸系フィルムまたはシートに関する。
 ポリ乳酸は植物由来のバイオマスポリマーであり、石油由来のポリマーに替わる樹脂として注目されている。
 しかし、ポリ乳酸(本発明では光学異性体のL体を主成分としたポリL乳酸のことを言う)は、結晶性ポリマーであるが非常に結晶化速度が遅いため、通常の成膜条件である溶融フィルム化後に冷却ロールでニップする方法では、ほとんど結晶化しない。
 そこで従来、以下のようないくつかの方法によるポリ乳酸系フィルムの耐熱性改善が試みられている。
 例えば、溶融押出法等でシート化した後に、二軸延伸することで延伸配向結晶化させ、ポリ乳酸のフィルム化の耐熱性を発現している(特許文献1)。
 しかし、この方法では延伸時の内部残留応力があるため、使用温度が高くなると熱収縮が非常に大きくなるという欠点がある。そのため、実際に使用できる温度はせいぜい100℃程度までとなってしまう。
 また、ポリ乳酸に他の高融点材料をブレンドすることで耐熱性を発現する試みがなされている(特許文献2)。
 しかし、この方法では植物由来成分比率(バイオマス度)の低下、透明性の低下等の問題が生じてしまう。
 成形材料の分野では、結晶核剤等の添加により、結晶成長速度を速くすることで、金型温度を低く、短時間で成形するという試みが盛んであるが、フィルム成形の場合は、一般的にはフィルムの形状を保持するため溶融成膜後に直ぐにガラス転移温度以下まで冷却を行う。そのため、成形部品に比べフィルムは薄いこともあり、この冷却方法では冷却速度が速くなってしまうため、有用な核剤を添加してもほとんど効果が得られない。
 当該問題について、フィルム成形後の後の工程で、60~100℃に加熱工程を設けることで、結晶化を促進することが提案されている(特許文献3)。なお、当該温度範囲はポリ乳酸の金属ロールからの剥離不良による成膜フィルムの変形を抑制するためとも記載されている。
 しかし、この方法では一度冷却固化してから、再度、加熱するため非効率である。
特許第330712号公報 特開平11-116788号公報 特開2007-130894号公報
 従来のポリ乳酸系フィルムでは、ポリ乳酸のガラス転移温度(およそ60℃)以上の環境下では熱変形を起こし、もとの形状を維持できない場合や、透明性のものであれば、再結晶化に伴う白化現象を引き起こす問題があった。また、ポリ乳酸系フィルムを基材とし、これに粘着剤を塗布してなる粘着テープでは、例えば溶剤系または水系の粘着剤を塗布する場合、100~150℃程度のオーブンに通し、粘着剤を固形分のみとすることで粘着テープを得るため、乾燥過程でのフィルムの変形や、融解の恐れがある。そのため、粘着剤を別に作製して、フィルムに転写させて得る手法でしか、粘着テープを作製することができず、製品構成の自由度が小さくなる等の多くの問題点を有していた。
 そこで本発明者等は、上記の課題を解消するべく鋭意研究した結果、酸性官能基変性オレフィン系ポリマーをポリ乳酸に添加することでガラス転移温度以上(さらに言えば融点以上の溶融状態)でもロールからの剥離が容易であること、テトラフルオロエチレン系ポリマーをポリ乳酸に添加することで溶融張力を改善でき100℃以上(さらに言えば融点付近の温度)でも十分に成膜フィルム形状を保持可能となること、テトラフルオロエチレン系ポリマーがポリ乳酸の結晶促進に寄与していること、さらに成膜直後の工程で樹脂混和物の結晶化温度に設定することで、より効果的にポリ乳酸の結晶化を促進できることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下のとおりである。
〔1〕溶融成膜法を用いてポリ乳酸を含む樹脂組成物のフィルムまたはシートを製造する方法であって、樹脂組成物は、ポリ乳酸(A)と、酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、テトラフルオロエチレン系ポリマー(C)を含んでなり、溶融成膜工程における樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、または、溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、フィルムまたはシートの製造方法。
〔2〕溶融成膜工程における樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、上記〔1〕記載のフィルムまたはシートの製造方法。
〔3〕ポリ乳酸(A)100重量部に対し、酸性官能基変性オレフィン系ポリマー(B)を0.1~5.0重量部含んでなることを特徴とする、上記〔1〕または〔2〕のいずれかに記載のフィルムまたはシートの製造方法。
〔4〕ポリ乳酸(A)100重量部に対し、テトラフルオロエチレン系ポリマー(C)を0.1~10.0重量部含んでなることを特徴とする、上記〔1〕~〔3〕のいずれかに記載のフィルムまたはシートの製造方法。
〔5〕溶融成膜法が、最終的に溶融状態の樹脂組成物が二本の金属ロール間空隙を通過することで所望の厚さに成膜する手法である、上記〔1〕~〔4〕のいずれかに記載のフィルムまたはシートの製造方法。
〔6〕溶融成膜法がカレンダー成膜法であることを特徴とする、上記〔5〕に記載のフィルムまたはシートの製造方法。
〔7〕ポリ乳酸を含む樹脂組成物をカレンダー成膜法により成膜するフィルムまたはシートであって、樹脂組成物は、ポリ乳酸(A)100重量部と、酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)0.1~5.0重量部と、テトラフルオロエチレン系ポリマー(C)0.1~10.0重量部をそれぞれ含んでなり、カレンダー成膜法におけるカレンダーロール圧延時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、または溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、フィルムまたはシートの製造方法。
〔8〕カレンダー成膜法におけるカレンダーロール圧延時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、上記〔7〕記載のフィルムまたはシートの製造方法。
〔9〕酸性官能基変性オレフィン系ポリマーの酸性官能基が酸無水物である、上記〔1〕~〔8〕のいずれかに記載のフィルムまたはシートの製造方法。
〔10〕ポリ乳酸(A)100重量部に対し、さらに結晶促進剤(D)0.1~5.0重量部を含んでなる、上記〔1〕~〔9〕のいずれかに記載のフィルムまたはシートの製造方法。
〔11〕樹脂組成物の前記結晶化促進工程が金属ロールによるものであることを特徴とする、上記〔1〕~〔10〕のいずれかに記載のフィルムまたはシートの製造方法。
〔12〕ポリ乳酸を含むフィルムまたはシートであって、ポリ乳酸(A)と、酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、テトラフルオロエチレン系ポリマー(C)を含んでなる樹脂組成物からなり、JISC3005の加熱変形試験方法に準じて、150℃の雰囲気下で10N、30分間の荷重を加えたときの変化率が、40%以下であり、下記式(1)
  相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100  (1)
(式中、ΔHcは成膜後のフィルムサンプルの昇温過程での結晶化に伴う発熱ピークの熱量であり、ΔHmは融解に伴う熱量を示す)
で求められる相対結晶化率が50%以上であることを特徴とする、フィルムまたはシート。
〔13〕ポリ乳酸を含むフィルムまたはシートであって、ポリ乳酸(A)と、酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、テトラフルオロエチレン系ポリマー(C)と、を含んでなる樹脂組成物からなり、150℃の温度雰囲気下で10分間保存した時の下記式(2)
  加熱収縮率(%)=(L1-L2)/L1×100  (2)
(式中、L1は試験前の標線長さ、L2は試験後の標線長さを示す)
で求められる加熱収縮率が、流れ方向(MD方向)、幅方向(TD方向)ともに5%以下であることを特徴とする、上記〔12〕記載のフィルムまたはシート。
〔14〕ポリ乳酸(A)100重量部に対し、酸性官能基変性オレフィン系ポリマー(B)を0.1~5.0重量部含んでなることを特徴とする、上記〔12〕または〔13〕のいずれかに記載のフィルムまたはシート。
〔15〕ポリ乳酸(A)100重量部に対し、テトラフルオロエチレン系ポリマー(C)を0.1~10.0重量部含んでなることを特徴とする、上記〔12〕~〔14〕のいずれかに記載のフィルムまたはシート。
〔16〕酸性官能基変性オレフィン系ポリマーの酸性官能基が酸無水物である、上記〔12〕~〔15〕のいずれかに記載のフィルムまたはシート。
〔17〕ポリ乳酸(A)100重量部に対し、さらに結晶促進剤(D)0.1~5.0重量部を含んでなる、上記〔12〕~〔16〕のいずれかに記載のフィルムまたはシート。
 耐熱性が改善されたポリ乳酸系フィルムまたはシートの提供。
図1はカレンダー成膜機の模式図である。 図2はポリッシング成膜機の模式図である。
 以下、本発明について詳細に説明する。
 本発明のポリ乳酸系フィルムまたはシートは、(A)ポリ乳酸、(B)酸性官能基変性オレフィン系ポリマーおよび(C)テトラフルオロエチレン系ポリマーを配合したものを成膜し、製造する。フィルムまたはシートとは、プラスチックフィルムのことをいい、厚さは、通常10~500μm、好ましくは20~400μm、より好ましくは30~300μmである。
 ポリ乳酸の原料モノマーである乳酸は、不斉炭素原子を有するため、光学異性体のL体とD体が存在する。本発明で使用する(A)ポリ乳酸は、L体の乳酸を主成分とした重合物である。製造時に不純物として混入するD体の乳酸の含有量が少ないものほど、高結晶性で高融点の重合物となるため、できるだけL体純度の高いものを用いるのが好ましく、より好ましくはL体純度が95%以上のものを用いる。なお、使用するポリ乳酸は、市販されているものを用いることができる。具体的には例えばレイシアH-400(三井化学(株)製)等が挙げられる。
 本発明で使用する(B)酸性官能基変性オレフィン系ポリマーは、主に(A)ポリ乳酸のロール滑性を得るために添加する。酸性官能基変性オレフィン系ポリマーの酸性官能基としては、例えば、カルボキシル基、カルボキシル誘導体基等が挙げられ、カルボキシル誘導体基とは、カルボキシル基から化学的に誘導されるものであって、例えば、エステル基、アミド基、イミド基およびシアノ基等が挙げられる。
 (B)酸性官能基変性オレフィン系ポリマーは、例えば、未変性ポリオレフィン系重合体に、酸性官能基含有不飽和化合物をグラフトして得られる。
 未変性ポリオレフィン系重合体としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、プロピレン重合体、ポリブテン、ポリ-4-メチルペンテン-1、エチレンとα-オレフィンの共重合体、プロピレンとα-オレフィンの共重合体等のポリオレフィン類またはそのオリゴマー類、エチレン-プロピレンゴム、エチレン-プロピレン-ジエン共重合体ゴム、ブチルゴム、ブタジエンゴム、低結晶性エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-ビニルエステル共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-無水マレイン酸共重合体、ポリプロピレンとエチレン-プロピレンゴムのブレンド等のポリオレフィン系エラストマー類およびこれらの二種以上の混和物が挙げられる。好ましくはプロピレン共重合体、プロピレンとα-オレフィンの共重合体、低密度ポリエチレンおよびそれらのオリゴマー類であり、特に好ましくはプロピレン重合体、プロピレンとα-オレフィンの共重合体およびそれらのオリゴマー類である。なお、オリゴマー類は、熱分解による分子量減成法、あるいは重合法により得られるものが挙げられる。
 酸性官能基含有不飽和化合物としては、カルボキシル基含有不飽和化合物、カルボキシル誘導体基含有不飽和化合物等が挙げられ、カルボキシル基含有不飽和化合物としては、(無水)マレイン酸、(無水)イタコン酸、クロロ(無水)イタコン酸、クロロ(無水)マレイン酸、(無水)シトラコン酸、および(メタ)アクリル酸等が挙げられる。また、カルボキシル誘導体基含有不飽和化合物としては、メチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル、(メタ)アクリルアミド、マレイミドおよび(メタ)アクリロニトリル等のビニルシアニドが挙げられる。好ましくは、カルボキシル基含有不飽和化合物であり、より好ましくは酸無水物基含有不飽和化合物であり、最も好ましくは無水マレイン酸である。
 (B)酸性官能基変性オレフィン系ポリマーは、ゲルパーミエーションクロマトグラフィー(GPC)で測定される重量平均分子量が10,000~80,000であることが重要であり、好ましくは15,000~70,000、より好ましくは20,000~60,000である。10,000未満では成形後のブリードアウトの原因となり、80,000を超えるとロール混練中にポリ乳酸と分離してしまう。なお、ブリードアウトとはフィルム成形後に時間経過により低分子量成分がフィルム表面に出てくる現象をいう。
 (B)酸性官能基変性オレフィン系ポリマーは、酸価が10~70mgKOH/gであるのが好ましく、20~60mgKOH/gがより好ましい。10mgKOH/g未満ではロール剥離効果が得られず、70mgKOH/gを超えるとロールへのプレートアウトを引き起こす。本発明でいうプレートアウトとは、金属ロールを用いて樹脂組成物を溶融成膜する際に、金属ロールの表面に樹脂組成物に配合される成分又はその酸化、分解、化合、劣化した生成物等が付着もしくは堆積することをいう。本発明において、酸価はJIS K0070-1992の中和滴定法に準拠して測定した。
 (B)酸性官能基変性オレフィン系ポリマーは、酸性官能基含有不飽和化合物と未変性ポリオレフィン系重合体とを有機過酸化物の存在下で反応させることによって得られる。有機過酸化物としては、一般にラジカル重合において開始剤として用いられているものが使用できる。反応は、溶液法、溶融法のいずれの方法も用いることができる。溶液法では、未変性ポリオレフィン系重合体および酸性官能基含有不飽和化合物の混合物を有機過酸化物とともに有機溶媒に溶解し、加熱することにより得ることができる。反応温度は好ましくは110~170℃程度である。また、溶融法では未変性ポリオレフィン系重合体および酸性官能基含有不飽和化合物の混合物を有機過酸化物と混合し、溶融混合して反応させることによって得ることができる。溶融混合は、押し出し機、プラベンダー、ニーダーおよびバンバリーミキサー等の各種混合機で行うことができ、混練温度は通常、未変性ポリオレフィン系重合体の融点~300℃の温度範囲である。
 (B)酸性官能基変性オレフィン系ポリマーは、市販品を用いることができ、例えば、三洋化成工業(株)製の「ユーメックス1010」(無水マレイン酸基含有変性ポリプロピレン、酸価:52mgKOH/g、重量平均分子量:32,000、変性割合:10重量%)、「ユーメックス1001」(無水マレイン酸基含有変性ポリプロピレン、酸価:26mgKOH/g、重量平均分子量:49,000、変性割合:5重量%)、「ユーメックス2000」(無水マレイン酸基含有変性ポリエチレン、酸価:30mgKOH/g、重量平均分子量:20,000、変性割合:5重量%)等が挙げられる。
 (B)酸性官能基変性オレフィン系ポリマーは、(A)ポリ乳酸100重量部に対して通常0.1~5.0重量部、ロール滑性効果の持続性とバイオマス度維持の観点から好ましくは0.3~3.0重量部である。0.1重量部未満ではロール滑性効果が得がたく、5.0重量部を超えると添加量に応じた効果が得られず、またバイオマス度の低下が問題となる。ここでバイオマス度とは、フィルムまたはシートの乾燥重量に対する使用したバイオマスの乾燥重量の割合のことである。
 本発明で使用する(C)テトラフルオロエチレン系ポリマーは、テトラフルオロエチレンの単独重合体またはテトラフルオロエチレンと他の単量体との共重合体であってもよい。
 使用できるテトラフルオロエチレン系ポリマーとしては、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン-テトラフルオロエチレンコポリマー、テトラフルオロエチレン-パーフルオロジイオキゾールコポリマー等が挙げられる。
 テトラフルオロエチレン系ポリマーのポリ乳酸に対する結晶化促進効果は、テトラフルオロエチレン系ポリマーの結晶構造に依存していると考えられる。広角X線回折を行ったところ、ポリ乳酸の結晶格子の面間隔が4.8オングストロームであるのに対して、テトラフルオロエチレン系ポリマーの面間隔は4.9オングストロームであった。このことより、テトラフルオロエチレン系ポリマーがエピタキシー的作用を有することにより、ポリ乳酸の結晶核剤としての効果が得られるものと考えられる。ここで、エピタキシー的作用とは、テトラフルオロエチレン系ポリマーの表面でポリ乳酸が結晶成長し、テトラフルオロエチレン系ポリマーの結晶表面の結晶面にそろえてポリ乳酸が配列する成長の様式をいう。
 テトラフルオロエチレン系ポリマーの面間隔は共重合体であっても、テトラフルオロエチレン部の結晶形態に支配されるため、面間隔はいずれも同じである。従って、ポリテトラフルオロエチレンの結晶形態が維持でき、物性が大きく変わらない程度であれば、共重合成分の量は特に限定されないが、通常、テトラフルオロエチレン系ポリマー中での共重合成分の割合は5重量%以下であることが望ましい。
 さらに、テトラフルオロエチレン系ポリマーの重合方法は、乳化重合で得られたものが特に好ましい。乳化重合で得られたテトラフルオロエチレン系ポリマーは、繊維化しやすいためポリ乳酸中でネットワーク構造を取りやすくなり、溶融成膜過程の流動場でのポリ乳酸の結晶化促進に効果的であると考えられる。
 また、ポリ乳酸中に均一に分散させるために、テトラフルオロエチレン系ポリマーの粒子を、例えば(メタ)アクリル酸エステル系重合体のようなポリ乳酸との親和性が良好なポリマーで変性したものが好ましい。
 アクリル変性テトラフルオロエチレン系ポリマーの市販品としては、三菱レイヨン(株)から、メタブレン(登録商標)Aシリーズとして、メタブレンA-3000、メタブレンA-3800などが市販されている。
 (C)テトラフルオロエチレン系ポリマーは、(A)ポリ乳酸100重量部に対して通常0.1~10重量部、溶融張力向上効果とバイオマス度維持の観点から好ましくは1.0~5.0重量部である。0.1重量部未満では溶融張力向上の効果が十分でなく、10重量部を超えると添加量に応じた効果が得られず、またバイオマス度の低下が問題となる。
 (C)テトラフルオロエチレン系ポリマーの結晶形成促進効果をより有効にするために、本発明は成膜時の温度条件を制御する結晶化促進工程を備える。結晶化促進工程とは、溶融成膜工程において溶融成膜された樹脂組成物を、樹脂組成物の降温過程での結晶化温度(Tc)±10℃に一旦保持することで結晶化を促進させる工程である。溶融成膜された樹脂組成物は結晶化促進工程を経てから冷却固化させる。すなわち、結晶化促進工程等は、溶融成膜された樹脂組成物を結晶化温度(Tc)±10℃に温度制御された状態に晒すことにより、溶融成膜後の表面形状を保持した状態で、結晶化が促進される。その方法は特に限定されないが、例えば、所定の温度に加熱可能なロールやベルト等に、溶融成膜したものを直接接触させて、成膜から連続で行える方式が、処理が短時間となるため、生産性の点で望ましい。
 なお、樹脂組成物の降温過程での結晶化温度(Tc)±10℃で温度制御可能な工程、すなわち、結晶化促進工程は、できればできるだけ長時間のほうが好ましい。最終的に樹脂組成物の結晶化の度合いに依存するので、一概には指定できないが、好ましくは加熱変形率が40%以下となるような条件設定であれば、十分にその温度でのフィルムまたはシートの使用が可能と考えられる。
 本発明の樹脂組成物は、(D)結晶促進剤を含んでもよい。結晶促進剤は、結晶化促進の効果が認められるものであれば、特に限定されないが、ポリ乳酸の結晶格子の面間隔に近い面間隔を持つ結晶構造を有する物質を選択することが望ましい。面間隔が近い物質ほど核剤としての効果が高いからである。例えば、有機系物質であるポリリン酸メラミン、メラミンシアヌレート、フェニルホスホン酸亜鉛、フェニルホスホン酸カルシウム、フェニルホスホン酸マグネシウム、無機系物質のタルク、クレー等が挙げられる。それらのうちでも、最も面間隔がポリ乳酸の面間隔に類似し、良好な結晶形成促進効果が得られるフェニルホスホン酸亜鉛が好ましい。なお、使用する結晶促進剤は、市販されているものを用いることができる。具体的には例えば、フェニルホスホン酸亜鉛;エコプロモート(日産化学工業(株)製)等が挙げられる。
 (D)結晶促進剤は、(A)ポリ乳酸100重量部に対して通常0.1~5重量部、より良好な結晶促進効果とバイオマス度維持の観点から好ましくは0.3~3重量部である。0.1重量部未満では結晶促進の効果が十分でなく、5重量部を超えると添加量に応じた効果が得られず、またバイオマス度の低下が問題となる。
 結晶化温度に常に制御する観点から、ロールは金属ロールであることが望ましい。樹脂組成物を金属ロールから簡単に剥離できる組成にすることが望ましく、この観点からも上述の(B)酸性官能基変性オレフィン系ポリマーの添加が必要となる。
 また本発明において、溶融成膜法としてカレンダー成膜法を用いてもよい。この場合、カレンダーロール圧延時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から昇温過程での融解温度(Tm)-5℃の間の温度であることにより、さらに結晶化を促進することが可能である。これは、融点以下の温度で圧延することにより配向結晶化効果を得るものである。(C)テトラフルオロエチレン系ポリマーが、樹脂組成物中でフィブリル化し、ネットワーク化することで、配向結晶化効果が格段に向上する。これは(C)テトラフルオロエチレン系ポリマーの結晶核剤効果との相乗効果と考えられる。上記温度範囲で圧延することにより、平滑な面状態と良好な配向結晶化効果を得ることができる。
 本発明のポリ乳酸系フィルムまたはシートは、各成分を二軸押出機などによる連続溶融混練機、あるいは、加圧ニーダー、バンバリーミキサー、ロール混練機などのバッチ式溶融混練機により均一分散させた樹脂組成物を作製し、これを溶融状態で二本の金属ロール間空隙を通すことで所望の厚さにしたものを、さらに樹脂組成物の降温結晶化温度に設定したロールに通し、最終的に冷却することで得られる。
 成膜方法の具体的な手段としては、押出機の先に2~4本程度の金属ロールが付属した装置(ポリッシング成膜法、ローラーヘッド成膜法)などで、押出機で樹脂組成物を溶融状態にしたものを連続的に金属ロール部に供給し、金属ロール部で所望の厚さに成膜する方法や、ロール混練や押出機などで溶融させた樹脂組成物を、3~6本程度の金属ロールのロール間空隙を順次に通過させることで、最終的に所望の厚さにするカレンダー成膜法などがある。いずれも溶融状態の樹脂を加熱した金属ロール間空隙に通すため、金属ロール表面から簡単に剥離できる組成にすることが望ましい。さらに結晶化温度を常に制御する観点から、降温結晶化温度に設定するロールも金属ロールであることが望ましい。こちらについても、同様に樹脂組成物を金属ロールから簡単に剥離できる組成にすることが望ましい。以上の観点から上述の(B)酸性官能基変性オレフィン系ポリマーの添加が必要となる。
 フィルムまたはシートの厚さはその用途に応じ、適宜調整されるが一般的には10~500μm、好ましくは20~400μm、特に好ましくは30~300μmである。本発明のフィルムまたはシートは一般に用いられるフィルムまたはシートと同様の用途に使用できるが、特に粘着フィルムまたはシートの基材として好適に使用できる。
 押出機やロール成膜時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から昇温過程での融解温度(Tm)-5℃の間の温度であることにより、結晶化を促進することが可能である。これは、融点以下の温度で成膜することにより配向結晶化効果を得るものである。(C)テトラフルオロエチレン系ポリマーが、樹脂組成物中でフィブリル化し、ネットワーク化することで、配向結晶化効果が格段に向上する。これは(C)テトラフルオロエチレン系ポリマーの結晶核剤効果との相乗効果と考えられる。上記温度範囲で成膜することにより、平滑な面状態と良好な配向結晶化効果を得ることができる。
 本発明は、他の結晶核剤の添加等で樹脂混和物の結晶化温度が変化しても、予め示差走査熱分析装置(以下、DSCと略する。)で測定を行い、降温過程での結晶化に伴う発熱ピークの最高点温度を把握しておくことにより、常に最適な結晶化条件を得ることができる。その際、加熱温度の変化による成膜フィルムの形状変化は、ほとんど考慮する必要がない。
 また、結晶化促進工程でフィルムまたはシートの結晶化を進めた後に冷却固化するため、内部応力が残存しにくく、使用時の極端な加熱収縮を引き起こすことは無い。そのため、本発明の手法で成膜された高結晶化フィルムまたはシートは、ポリ乳酸の融点付近まで形状保持が可能であり、これまで使用できなかった耐熱性が必要な用途でも十分に使用可能である。
 さらに、再度加熱する工程が不要のため、経済性、生産性の面でも非常に有用な手法である。
 図1は、本発明の一実施形態のカレンダー成膜機の模式図である。図1を詳細に説明すると、第1ロール1、第2ロール2、第3ロール3、第4ロール4という、4本のカレンダーロール間で溶融樹脂を圧延して徐々に薄くしていき、最終的にロール3とロール4の間を通過した時に所望の厚さになるよう調製する。カレンダー成膜の場合にはカレンダーロール1~4における樹脂組成物の成膜が「溶融成膜工程」に相当する。また、結晶化温度に設定したテイクオフロール5は、作製されたフィルムまたはシート8が最初に接触するロール群を示し、1つまたは2つ以上(図1では3本)のロール群で構成され、カレンダーロール4から溶融状態のシート8を剥離する役割を果たす。テイクオフロール5の本数は多いほうが、等温結晶化時間が長くなり、結晶化を促進するのに有利である。カレンダー成膜の場合にはテイクオフロール5において、溶融成膜されたシート8の結晶化が促進されるので、シート8がテイクオフロール5を通過する工程が「結晶化促進工程」に相当する。二本の冷却ロール6および7は、それらの間にシート8を通過させることによりシート8を冷却し、固化させるとともにシート8の表面を所望の形状に成形する役割を果たす。そのため、通常は一方のロール(例えば、ロール6)が金属ロールで、シート8の表面形状を出すためにロール表面がデザインされたものであり、他方のロール(例えば、ロール7)としてゴムロールが使用される。なお、図中の矢印はロールの回転方向を示す。
 図2は、本発明の他の実施形態のポリッシング成膜機の模式図である。図2に示すように、押出機(図示せず。)の押出機先端部10を、加熱したロール2および3の間に配置し、予め設定された押出し速度で、ロール2および3の間に溶融樹脂を連続的に押し出す。押し出された溶融樹脂は、ロール2および3の間で圧延されて薄くなり、最終的にロール3とロール4の間を通過した時に所望の厚さになるよう調製される。その後、結晶化温度に設定された3本のテイクオフロール5を通過し、最後に冷却ロール6および7を通過することで、固化したシート8が作製される。
 以下、本発明について実施例および比較例を挙げてさらに具体的に説明する。本発明はこれらにより何ら限定されるものではない。なお、実施例等における評価は下記のようにして行った。
 後述する表1に用いる材料名の略号を下記に示す。
 ポリ乳酸
 A1:レイシアH-400(三井化学(株)製)
 酸性官能基変性オレフィン系ポリマー
 B1:無水マレイン酸基含有変性ポリプロピレン(重量平均分子量=49,000、酸価=26mgKOH/g):ユーメックス1001(三洋化成工業(株)製)
 B2:無水マレイン酸基含有変性ポリプロピレン(重量平均分子量=32,000、酸価=52mgKOH/g):ユーメックス1010(三洋化成工業(株)製)
 B’:未変性の低分子量ポリプロピレン(重量平均分子量=23,000、酸価=0mgKOH/g):ビスコール440P(三洋化成工業(株)製)
ポリテトラフルオロエチレン系ポリマー
 C1:ポリテトラフルオロエチレン:フルオンCD-014(旭硝子(株)製)
 C2:アクリル変性ポリテトラフルオロエチレン:メタブレンA-3000(三菱レイヨン(株)製)
 C’:高分子量アクリル重合体:メタブレンP-531A(三菱レイヨン(株)製)
結晶促進剤
 D1:フェニルホスホン酸亜鉛:エコプロモート(日産化学工業(株)製)
 [実施例1]
 上記の原材料が下記表1に示す配合割合で配合された樹脂組成物を調製し、バンバリーミキサーにて溶融混練を行った後、逆L型4本カレンダーにて厚さ0.1mmになるように成膜を行った。次に、図1のようにカレンダー圧延成膜(すなわち、溶融成膜工程に相当する。)の直後に、任意の温度に加熱可能なロール(カレンダー成膜の場合はテイクオフロール)を3本配し、圧延フィルムが上下交互に通過できるようにすることで結晶化促進工程とした。その後に冷却ロールを通過することでフィルムを固化する。圧延過程での樹脂温度(すなわち、溶融成膜工程における樹脂温度である。)は、カレンダー成膜の場合はカレンダーロール4の表面温度で代用する。成膜速度は5m/minとし、実質的な結晶化時間(テイクオフロール通過時間)は約5秒である。
 [実施例2~10]
 下記表1に示す配合割合で配合された樹脂組成物を調製し、実施例1と同様の操作により実施例2~10のフィルムをそれぞれ成膜した。
 [比較例1~4]
 下記表1に示す配合割合で配合された樹脂組成物を調製し、実施例1と同様の操作により比較例1~4のフィルムをそれぞれ成膜した。
<融解温度>
 DSCにて測定した、成膜後のフィルムサンプルの再昇温過程での融解に伴う吸熱ピークのトップ時の温度を融解温度(Tm、結晶融解ピーク温度ともいう)とした。
<結晶化温度>
 DSCにて測定した、成膜後のフィルムサンプルの200℃からの降温過程での結晶化に伴う発熱ピークのピークトップ時の温度を結晶化温度(Tc、結晶化ピーク温度ともいう)とした。
<溶融成膜工程における樹脂温度>
 溶融成膜工程における樹脂の設定温度(℃)のことである。例えば、カレンダー成膜法の場合には、カレンダーロールによる樹脂組成物の圧延工程における樹脂組成物の温度に該当する。なお、実施例1~10、比較例1~4では、第4ロールの表面温度を測定して、溶融成膜工程における樹脂温度とした。
<結晶化促進温度>
 本実施形態では、フィルムサンプルをテイクオフロールに接触させることにより結晶化促進工程を行った。その際、図1の3本のテイクオフロール5の表面温度を略同一とし、その温度を結晶化促進温度(℃)とした。なお、本願発明では、結晶化促進温度は、結晶化温度(Tc)±10℃が好ましい。また、該温度範囲内であれば、3本のテイクオフロールが互いに異なった温度であっても良い。
<成膜性結果>
 (1)ロールへのプレートアウト: ロール表面の汚れを目視により評価し、ロール表面の汚れがない状態を「なし」、ロール表面の汚れがある状態を「あり」と判断した。なお、比較例1および2については、カレンダーによる成膜ができなかったため、測定をしていない。
 (2)膜の剥離性: 第4ロール4からの溶融膜の剥離性により評価し、テイクオフロールで引き取り可能である状態を「良好」、テイクオフロールで引き取り不可である状態を「不良」と判断した。
 (3)フィルム面状態: 目視により評価し、フィルム表面に粗さがなく平滑である状態を「良好」、バンクマーク(樹脂の流れムラによる凹凸)やサメ肌、ピンホールがある状態を「不良」と判断した。なお、比較例1および2については、カレンダーによる成膜ができなかったため、測定をしていない。
<相対結晶化率の算出方法>
 DSCにて測定した、成膜後のフィルムサンプルの昇温過程での結晶化に伴う発熱ピークの熱量ΔHcと、その後の融解に伴う熱量ΔHmから、以下の式(3)を用い算出した。なお、比較例1および2については、カレンダーによる成膜ができなかったため、測定をしていない。
  相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100  (3)
 (合否判定) 相対結晶化率50%以上を合格とする。
 結晶化温度および相対結晶化率の測定で使用したDSCおよび測定条件は、以下のとおりである。
(試験装置)エスアイアイ・ナノテクノロジー(株)製 DSC6220
(試験条件)
 a)測定温度域 20℃→200℃→0℃→200℃
 (まず20℃から200℃への昇温過程での測定に続けて、200℃から0℃への降温過程での測定を行い、最後に0℃から200℃への再昇温過程での測定を行った。)
 b)昇温/降温速度:2℃/min
 c)測定雰囲気:窒素雰囲気下(200ml/min)
 なお、再昇温過程で、結晶化に伴うピークが無かったことから、2℃/minの昇温速度で結晶化可能領域が100%結晶化するものと判断し、相対結晶化率の算出式の妥当性を確認した。
<加熱変形率>
 JISC3005の加熱変形試験方法に準じ測定した。使用した測定装置および測定条件は、以下のとおりである。
(測定装置)テスター産業(株)製 加熱変形試験機
(試料サイズ)厚さ1mm×幅25mm×長さ40mm(フィルムを総厚1mmに重ねた)
(測定条件)
 a)測定温度(150℃)
 b)荷重(10N)
 c)測定時間:30分(再結晶化を考慮し、エージングなしで試験開始)
(加熱変形率算出方法)試験前の厚みT1と試験後の厚みT2を測定し、以下の式(4)を用い算出した。なお、比較例1および2については、カレンダーによる成膜ができなかったため、測定をしていない。
  加熱変形率(%)=(T1-T2)/T1×100  (4)
 (合否判定) 40%以下を合格とする。
<加熱収縮率>
 フィルムを150mm×150mm切り出し、フィルム成膜時の流れ方向(以下、MD方向という。)と幅方向(以下、TD方向という。)のそれぞれに100mmの標線を書き込み、それを150℃に加熱したオーブンに10分間投入し、取り出した後の寸法変化を確認した。
 加熱収縮率算出方法;試験前の標線長さL1と試験後の標線長さL2を測定し、以下の式(5)を用い算出した。なお、比較例1および2については、カレンダーによる成膜ができなかったため、測定をしていない。
  加熱収縮率(%)=(L1-L2)/L1×100  (5)
 (合否判定) MD方向、TD方向ともそれぞれ5%以下を合格とする
 (総合判定) 総合的な評価結果として、全ての評価結果が合格基準を満たすものを○、相対結晶化率に関する項目が合格していれば△、相対結晶化率に関する項目が不合格の場合は×として総合判定を行った。
 実施例1~10および比較例1~4の評価結果をそれぞれ表2および表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示す評価結果から、本発明に係る実施例1~10はいずれも相対結晶化率が高く、結果として加熱変形率が抑制されているため、総合判定が(○または△)であった。また成膜性についても、剥離性およびフィルム面状態は全て良好で、ロールへのプレートアウトも発生していない。
 実施例1~10のなかでも、(i)溶融成膜工程における樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、(ii)溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されるフィルム(実施例1~3、8)については、結晶化工程が2箇所で行われることになるため、結晶化がより促進されるという効果がある。例えば、上記(i)の処理のみを経由した実施例7のフィルムの相対結晶化率(63%)、または上記(ii)の処理のみを経由した実施例4のフィルムの相対結晶化率(52%)に比べると、上記(i)および(ii)の処理を共に経由した実施例2については結晶化率が82%とより高くなっている。
 一方、本発明に係る配合割合を充足しないか、または製造工程を踏襲しない比較例1~4では、相対結晶化率が50%未満であり、加熱変形率について所望の物性値を満足するフィルムは得られず、総合判定はいずれも×であった。
 本出願は日本で出願された特願2008-257383を基礎としており、それらの内容は本明細書にすべて包含される。
1  第1ロール
2  第2ロール
3  第3ロール
4  第4ロール
5  テイクオフロール
6  冷却ロール
7  冷却ロール
8  冷却された圧延シート
9  バンク(樹脂だまり)
10  押出機先端部

Claims (17)

  1.  溶融成膜法を用いてポリ乳酸を含む樹脂組成物のフィルムまたはシートを製造する方法であって、
     樹脂組成物は、
      ポリ乳酸(A)と、
      酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、
      テトラフルオロエチレン系ポリマー(C)を含んでなり、
     溶融成膜工程における樹脂組成物の温度が、
      樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、
      または、溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、
    フィルムまたはシートの製造方法。
  2.  溶融成膜工程における樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、
     溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、請求項1記載のフィルムまたはシートの製造方法。
  3.  ポリ乳酸(A)100重量部に対し、酸性官能基変性オレフィン系ポリマー(B)を0.1~5.0重量部含んでなることを特徴とする、請求項1または2のいずれか1項に記載のフィルムまたはシートの製造方法。
  4.  ポリ乳酸(A)100重量部に対し、テトラフルオロエチレン系ポリマー(C)を0.1~10.0重量部含んでなることを特徴とする、請求項1~3のいずれか1項に記載のフィルムまたはシートの製造方法。
  5.  溶融成膜法が、最終的に溶融状態の樹脂組成物が二本の金属ロール間空隙を通過することで所望の厚さに成膜する手法である、請求項1~4のいずれか1項に記載のフィルムまたはシートの製造方法。
  6.  溶融成膜法がカレンダー成膜法であることを特徴とする、請求項5に記載のフィルムまたはシートの製造方法。
  7.  ポリ乳酸を含む樹脂組成物をカレンダー成膜法により成膜するフィルムまたはシートであって、
     樹脂組成物は、
      ポリ乳酸(A)100重量部と、
      酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)0.1~5.0重量部と、
      テトラフルオロエチレン系ポリマー(C)0.1~10.0重量部をそれぞれ含んでなり、
     カレンダー成膜法におけるカレンダーロール圧延時の樹脂組成物の温度が、
      樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であるか、または
      溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃の結晶化促進工程を経てから冷却固化されることを特徴とする、フィルムまたはシートの製造方法。
  8.  カレンダー成膜法におけるカレンダーロール圧延時の樹脂組成物の温度が、樹脂組成物の降温過程での結晶化温度(Tc)+15℃の温度から、昇温過程での融解温度(Tm)-5℃の間の温度であり、かつ、溶融成膜された該樹脂組成物が、降温過程での結晶化温度(Tc)±10℃結晶化促進工程を経てから冷却固化されることを特徴とする、請求項7記載のフィルムまたはシートの製造方法。
  9.  酸性官能基変性オレフィン系ポリマーの酸性官能基が酸無水物である、請求項1~8のいずれか1項に記載のフィルムまたはシートの製造方法。
  10.  ポリ乳酸(A)100重量部に対し、さらに結晶促進剤(D)0.1~5.0重量部を含んでなる、請求項1~9のいずれか1項に記載のフィルムまたはシートの製造方法。
  11.  樹脂組成物の前記結晶化促進工程が金属ロールによるものであることを特徴とする、請求項1~10のいずれか1項に記載のフィルムまたはシートの製造方法。
  12.  ポリ乳酸を含むフィルムまたはシートであって、
     ポリ乳酸(A)と、
     酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、
     テトラフルオロエチレン系ポリマー(C)と、
    を含んでなる樹脂組成物からなり、
     JISC3005の加熱変形試験方法に準じて、150℃の雰囲気下で10N、30分間の荷重を加えたときの変化率が、40%以下であり、
     下記式(1)で求められる相対結晶化率が50%以上である
      相対結晶化率(%)=(ΔHm-ΔHc)/ΔHm×100  (1)
    (式中、ΔHcは成膜後のフィルムサンプルの昇温過程での結晶化に伴う発熱ピークの熱量であり、ΔHmは融解に伴う熱量を示す)
    ことを特徴とするフィルムまたはシート。
  13.  ポリ乳酸を含むフィルムまたはシートであって、
     ポリ乳酸(A)と、
     酸性官能基を含み、その酸価が10~70mgKOH/gであり、かつ、重量平均分子量10,000~80,000である、酸性官能基変性オレフィン系ポリマー(B)と、
     テトラフルオロエチレン系ポリマー(C)を含んでなる樹脂組成物からなり、
     150℃の温度雰囲気下で10分間保存した時の下記式(2)
      加熱収縮率(%)=(L1-L2)/L1×100  (2)
    (式中、L1は試験前の標線長さ、L2は試験後の標線長さを示す)
    で求められる加熱収縮率が、流れ方向(MD方向)、幅方向(TD方向)ともに5%以下であることを特徴とする、請求項12記載のフィルムまたはシート。
  14.  ポリ乳酸(A)100重量部に対し、酸性官能基変性オレフィン系ポリマー(B)を0.1~5.0重量部含んでなることを特徴とする、請求項12または13に記載のフィルムまたはシート。
  15.  ポリ乳酸(A)100重量部に対し、テトラフルオロエチレン系ポリマー(C)を0.1~10.0重量部含んでなることを特徴とする、請求項12~14のいずれか1項に記載のフィルムまたはシート。
  16.  酸性官能基変性オレフィン系ポリマーの酸性官能基が酸無水物である、請求項12~15のいずれか1項に記載のフィルムまたはシート。
  17.  ポリ乳酸(A)100重量部に対し、さらに結晶促進剤(D)0.1~5.0重量部を含んでなる、請求項12~16のいずれか1項に記載のフィルムまたはシート。
PCT/JP2009/067176 2008-10-02 2009-10-01 ポリ乳酸系フィルムまたはシート WO2010038833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/122,076 US20110201746A1 (en) 2008-10-02 2009-10-01 Polylactic acid-based film or sheet
EP09817865.0A EP2345691B1 (en) 2008-10-02 2009-10-01 Polylactic acid-based film or sheet
CN200980139110.3A CN102171278B (zh) 2008-10-02 2009-10-01 聚乳酸类膜或片
US14/875,736 US10253145B2 (en) 2008-10-02 2015-10-06 Method for producing a polylactic acid-based film or sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257383 2008-10-02
JP2008-257383 2008-10-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/122,076 A-371-Of-International US20110201746A1 (en) 2008-10-02 2009-10-01 Polylactic acid-based film or sheet
US14/875,736 Division US10253145B2 (en) 2008-10-02 2015-10-06 Method for producing a polylactic acid-based film or sheet

Publications (1)

Publication Number Publication Date
WO2010038833A1 true WO2010038833A1 (ja) 2010-04-08

Family

ID=42073591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067176 WO2010038833A1 (ja) 2008-10-02 2009-10-01 ポリ乳酸系フィルムまたはシート

Country Status (5)

Country Link
US (2) US20110201746A1 (ja)
EP (1) EP2345691B1 (ja)
JP (1) JP5543750B2 (ja)
CN (1) CN102171278B (ja)
WO (1) WO2010038833A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083838A1 (ja) * 2010-01-08 2011-07-14 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
WO2011122464A1 (ja) * 2010-03-30 2011-10-06 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
WO2011122465A1 (ja) * 2010-03-30 2011-10-06 日東電工株式会社 ポリ乳酸系フィルム又はシート、及びその製造方法
CN103228713A (zh) * 2010-11-26 2013-07-31 日东电工株式会社 聚乳酸系薄膜或片
WO2013118406A1 (ja) * 2012-02-10 2013-08-15 日東電工株式会社 ポリ乳酸系フィルム又はシート、及び、粘着テープ又はシート
EP2644643A1 (en) * 2010-11-26 2013-10-02 Nitto Denko Corporation Polylactic acid film or sheet
EP2670577B1 (de) 2011-02-03 2021-04-07 battenfeld-cincinnati Germany GmbH Kühlvorrichtung und kühlverfahren für ein extrudat

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530110B1 (en) * 2010-01-28 2015-04-15 Nitto Denko Corporation Flame-retardant polylactic acid film or sheet, and process for production thereof
JP2012111204A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp セパレータ
JP2012111208A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 保護フィルム
JP2012116888A (ja) * 2010-11-29 2012-06-21 Nitto Denko Corp 粘着テープ又はシート
JP2012111914A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp ポリ乳酸系フィルム又はシート
JP2012116889A (ja) * 2010-11-29 2012-06-21 Nitto Denko Corp 保護フィルム
JP2012116887A (ja) * 2010-11-29 2012-06-21 Nitto Denko Corp ポリ乳酸系フィルム又はシート
JP2012111206A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 保護フィルム
JP2012111918A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 粘着テープ又はシート
JP2012111207A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 保護フィルム
JP2012116012A (ja) * 2010-11-29 2012-06-21 Nitto Denko Corp セパレータ
JP5913798B2 (ja) * 2010-11-26 2016-04-27 日東電工株式会社 ポリ乳酸系フィルム又はシート
JP2012111203A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp セパレータ
JP2012111205A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp セパレータ
JP2012111917A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 粘着テープ又はシート
JP2012111919A (ja) * 2010-11-26 2012-06-14 Nitto Denko Corp 粘着テープ又はシート
JP5731174B2 (ja) * 2010-11-26 2015-06-10 日東電工株式会社 ポリ乳酸系フィルム又はシート
JP5775831B2 (ja) * 2012-02-10 2015-09-09 日東電工株式会社 ポリ乳酸系フィルム又はシート、及び、粘着テープ又はシート
JP5883306B2 (ja) * 2012-02-10 2016-03-15 日東電工株式会社 剥離ライナー
JP5883307B2 (ja) * 2012-02-10 2016-03-15 日東電工株式会社 保護フィルム
JPWO2014208403A1 (ja) * 2013-06-27 2017-02-23 地方独立行政法人 大阪市立工業研究所 ポリ乳酸系樹脂フィルムの製造方法
CA3018516A1 (en) 2017-09-26 2019-03-26 Davis-Standard, Llc Casting apparatus for manufacturing polymer film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330712B2 (ja) 1985-12-06 1991-05-01 Mazda Motor
JPH08252895A (ja) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd 分解性ラミネート材料
JPH11116788A (ja) 1997-10-09 1999-04-27 Mitsui Chem Inc ポリ乳酸系樹脂組成物
JP2002129042A (ja) * 2000-10-24 2002-05-09 Mitsubishi Rayon Co Ltd 生分解性樹脂の改質剤および生分解性樹脂組成物
JP2007130893A (ja) * 2005-11-10 2007-05-31 Kao Corp 生分解性樹脂成形品の製造法。
JP2007130894A (ja) 2005-11-10 2007-05-31 Kao Corp 生分解性樹脂成形品の製造法。
JP2007516867A (ja) * 2003-12-18 2007-06-28 イーストマン ケミカル カンパニー ポリエステルのカレンダー加工方法
JP2008257383A (ja) 2007-04-03 2008-10-23 Seiko Epson Corp 印刷装置、印刷方法、およびコンピュータプログラム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330712B2 (ja) 1994-01-11 2002-09-30 三菱樹脂株式会社 ポリ乳酸系フィルムの製造方法
US6066217A (en) * 1998-10-22 2000-05-23 Sonics & Materials, Inc. Method for producing fabric covered panels
JP3948192B2 (ja) * 1999-11-10 2007-07-25 凸版印刷株式会社 ポリエステル系樹脂組成物、ボトル、フィルムおよびトレー
JP3949922B2 (ja) 2001-03-01 2007-07-25 三菱レイヨン株式会社 熱可塑性樹脂組成物の成形性改良方法および製造方法
JP3962242B2 (ja) * 2001-11-12 2007-08-22 三菱レイヨン株式会社 熱可塑性樹脂組成物及びそれを用いた成形体
EP1454958B1 (en) * 2001-11-15 2006-10-04 New Japan Chemical Co.,Ltd. Lactic acid polymer composition and molded object thereof
JP4469149B2 (ja) * 2003-08-07 2010-05-26 ダイセルポリマー株式会社 熱可塑性樹脂組成物及び成形品
US7354653B2 (en) * 2003-12-18 2008-04-08 Eastman Chemical Company High clarity films with improved thermal properties
US20050137304A1 (en) * 2003-12-18 2005-06-23 Strand Marc A. Process for calendering of polyesters
JP2006045487A (ja) * 2004-01-09 2006-02-16 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JP4802459B2 (ja) * 2004-06-30 2011-10-26 東レ株式会社 樹脂組成物ならびにそれからなる成形品
ATE509985T1 (de) * 2004-09-17 2011-06-15 Toray Industries Harzzusammensetzung und formkörper daraus
JP5162076B2 (ja) * 2004-12-08 2013-03-13 三菱レイヨン株式会社 脂肪族ポリエステル樹脂組成物
JP4983079B2 (ja) * 2005-04-20 2012-07-25 東レ株式会社 樹脂組成物およびそれからなる成形品
JP5277531B2 (ja) * 2005-11-29 2013-08-28 東レ株式会社 樹脂組成物およびそれからなる成形品
JP2007326940A (ja) * 2006-06-07 2007-12-20 Sharp Corp 熱可塑性樹脂組成物、熱可塑性樹脂成形体および熱可塑性樹脂成形体の製造方法、ならびに熱可塑性樹脂の再資源化方法
AU2007282489A1 (en) * 2006-08-08 2008-02-14 Musashino Chemical Laboratory, Ltd. Polylactic acid and method for producing the same
TW200909512A (en) * 2007-03-30 2009-03-01 Teijin Ltd Polylactic acid composition and fiber composed of the same
JP4922124B2 (ja) * 2007-10-17 2012-04-25 株式会社イノアックコーポレーション ポリ乳酸系樹脂組成物及びその成形体
WO2011083838A1 (ja) * 2010-01-08 2011-07-14 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
EP2530110B1 (en) * 2010-01-28 2015-04-15 Nitto Denko Corporation Flame-retardant polylactic acid film or sheet, and process for production thereof
US9403955B2 (en) * 2010-03-30 2016-08-02 Nitto Denko Corporation Poly lactic acid-containing film or sheet, and method for manufacturing thereof
WO2011122464A1 (ja) * 2010-03-30 2011-10-06 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330712B2 (ja) 1985-12-06 1991-05-01 Mazda Motor
JPH08252895A (ja) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd 分解性ラミネート材料
JPH11116788A (ja) 1997-10-09 1999-04-27 Mitsui Chem Inc ポリ乳酸系樹脂組成物
JP2002129042A (ja) * 2000-10-24 2002-05-09 Mitsubishi Rayon Co Ltd 生分解性樹脂の改質剤および生分解性樹脂組成物
JP2007516867A (ja) * 2003-12-18 2007-06-28 イーストマン ケミカル カンパニー ポリエステルのカレンダー加工方法
JP2007130893A (ja) * 2005-11-10 2007-05-31 Kao Corp 生分解性樹脂成形品の製造法。
JP2007130894A (ja) 2005-11-10 2007-05-31 Kao Corp 生分解性樹脂成形品の製造法。
JP2008257383A (ja) 2007-04-03 2008-10-23 Seiko Epson Corp 印刷装置、印刷方法、およびコンピュータプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROFUMI INOUE: "Hensei Teibunshiryo Polyolefin-kei Jushi Kaishitsuzai", SAN'YO KASEI NEWS, 2005, pages 1 - 4, XP008142227 *
See also references of EP2345691A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694165B2 (ja) * 2010-01-08 2015-04-01 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
US8916631B2 (en) 2010-01-08 2014-12-23 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof
WO2011083838A1 (ja) * 2010-01-08 2011-07-14 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
US8729165B2 (en) 2010-03-30 2014-05-20 Nitto Denko Corporation Flame-retardant poly lactic acid-containing film or sheet, and method for manufacturing thereof
WO2011122464A1 (ja) * 2010-03-30 2011-10-06 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
WO2011122465A1 (ja) * 2010-03-30 2011-10-06 日東電工株式会社 ポリ乳酸系フィルム又はシート、及びその製造方法
US9403955B2 (en) 2010-03-30 2016-08-02 Nitto Denko Corporation Poly lactic acid-containing film or sheet, and method for manufacturing thereof
JP5726078B2 (ja) * 2010-03-30 2015-05-27 日東電工株式会社 ポリ乳酸系フィルム又はシート、及びその製造方法
JP5726077B2 (ja) * 2010-03-30 2015-05-27 日東電工株式会社 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
EP2644643A4 (en) * 2010-11-26 2014-04-09 Nitto Denko Corp POLYLACTIC ACID FILM OR SHEET
EP2644643A1 (en) * 2010-11-26 2013-10-02 Nitto Denko Corporation Polylactic acid film or sheet
CN103228713A (zh) * 2010-11-26 2013-07-31 日东电工株式会社 聚乳酸系薄膜或片
EP2670577B1 (de) 2011-02-03 2021-04-07 battenfeld-cincinnati Germany GmbH Kühlvorrichtung und kühlverfahren für ein extrudat
WO2013118407A1 (ja) * 2012-02-10 2013-08-15 日東電工株式会社 セパレータ
WO2013118408A1 (ja) * 2012-02-10 2013-08-15 日東電工株式会社 保護フィルム
WO2013118406A1 (ja) * 2012-02-10 2013-08-15 日東電工株式会社 ポリ乳酸系フィルム又はシート、及び、粘着テープ又はシート
US10118999B2 (en) 2012-02-10 2018-11-06 Nitto Denko Corporation Polylactic acid film or sheet, and pressure-sensitive adhesive tape or sheet

Also Published As

Publication number Publication date
US20110201746A1 (en) 2011-08-18
CN102171278A (zh) 2011-08-31
CN102171278B (zh) 2015-01-21
US10253145B2 (en) 2019-04-09
EP2345691B1 (en) 2015-01-14
EP2345691A4 (en) 2012-02-29
US20160024265A1 (en) 2016-01-28
JP2010106272A (ja) 2010-05-13
JP5543750B2 (ja) 2014-07-09
EP2345691A1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5543750B2 (ja) ポリ乳酸系フィルムまたはシート
JP5658667B2 (ja) 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
JP5694165B2 (ja) 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
CN104136507B (zh) 保护薄膜
JP5726078B2 (ja) ポリ乳酸系フィルム又はシート、及びその製造方法
JP5726077B2 (ja) 難燃性ポリ乳酸系フィルム又はシート、及びその製造方法
JP2003321599A (ja) 熱可塑性樹脂成形品
JP5913798B2 (ja) ポリ乳酸系フィルム又はシート
JP5731174B2 (ja) ポリ乳酸系フィルム又はシート
JP2012111205A (ja) セパレータ
JP2012111207A (ja) 保護フィルム
JP2012111914A (ja) ポリ乳酸系フィルム又はシート
JP2012111204A (ja) セパレータ
JP2012116887A (ja) ポリ乳酸系フィルム又はシート
JP2012116012A (ja) セパレータ
JP2012111919A (ja) 粘着テープ又はシート
JP2012111918A (ja) 粘着テープ又はシート
JP2012111208A (ja) 保護フィルム
JP2012116888A (ja) 粘着テープ又はシート
JP2012111203A (ja) セパレータ
JP2012111206A (ja) 保護フィルム
JP2012116889A (ja) 保護フィルム
JP2012111917A (ja) 粘着テープ又はシート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139110.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13122076

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009817865

Country of ref document: EP