WO2010038780A1 - Exposure apparatus, supporting apparatus, and device manufacturing method - Google Patents

Exposure apparatus, supporting apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2010038780A1
WO2010038780A1 PCT/JP2009/067033 JP2009067033W WO2010038780A1 WO 2010038780 A1 WO2010038780 A1 WO 2010038780A1 JP 2009067033 W JP2009067033 W JP 2009067033W WO 2010038780 A1 WO2010038780 A1 WO 2010038780A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure apparatus
support base
main body
unit
vibration
Prior art date
Application number
PCT/JP2009/067033
Other languages
French (fr)
Japanese (ja)
Inventor
敏正 下田
宏行 川又
正崇 立花
Original Assignee
株式会社 ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ニコン filed Critical 株式会社 ニコン
Publication of WO2010038780A1 publication Critical patent/WO2010038780A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground

Definitions

  • the present invention relates to an exposure apparatus that performs lithography processing and a device manufacturing method using the exposure apparatus.
  • the present invention also relates to a support device that supports an exposure apparatus main body that performs lithography processing.
  • an exposure apparatus for manufacturing a micro device such as a semiconductor integrated circuit includes an illumination optical system and a projection optical system.
  • the illumination optical system irradiates exposure light onto a mask such as a reticle on which a predetermined pattern is formed.
  • the projection optical system projects an image of a mask pattern irradiated with exposure light onto a substrate such as a wafer or glass plate coated with a photosensitive material.
  • EUV Extreme Ultraviolet
  • EB Electro Beam
  • the exposure apparatus main body includes a chamber having an internal space set in a vacuum atmosphere.
  • An illumination optical system, a reticle stage that holds a reticle, a projection optical system, and a wafer stage that holds a wafer are disposed in the chamber.
  • a vacuum exhaust apparatus for reducing the pressure in the optical path of the exposure light or in the chamber is generally installed on the side wall of the chamber, that is, the exposure apparatus main body.
  • the side wall of the exposure apparatus main body electrical wiring for various apparatuses in the exposure apparatus, cooling piping for various optical elements, and the like are provided.
  • installation space such as electrical wiring and cooling piping is required, and therefore the size and number of vacuum exhaust devices installed on the side wall of the exposure apparatus main body are limited. Therefore, since a large evacuation apparatus or a plurality of evacuation apparatuses cannot be used, it takes a considerable time to reduce the pressure in the optical path of the exposure light or the chamber to a desired pressure.
  • An object of the present invention is to provide an exposure apparatus, a support apparatus, and a device manufacturing method that can quickly depressurize the optical path of light in the exposure apparatus main body.
  • an illumination optical system (17) capable of illuminating the first surface (23a) with light (EL) emitted from the light source unit (44)
  • an exposure apparatus body (15) having a projection optical system (19) capable of projecting an image of a predetermined pattern onto a second surface (30a) different from the first surface (23a), and the exposure apparatus body (15 ) From below and a vacuum evacuation section (below the exposure apparatus main body (15)) for reducing the pressure in the optical path of the light (EL) in the exposure apparatus main body (15).
  • 63, 79) is provided.
  • the exposure apparatus main body is supported by the support base disposed below the exposure apparatus main body.
  • the light path in the exposure apparatus main body is depressurized by a vacuum exhaust unit disposed below the exposure apparatus main body.
  • the vacuum exhaust unit is arranged on the side wall of the exposure apparatus main body where various pipes and various electrical wirings are installed, the size and number of the vacuum exhaust units are not limited. Therefore, it is possible to quickly depressurize the light path in the exposure apparatus main body.
  • the exposure apparatus is mounted on an exposure apparatus (11) having an exposure apparatus body (15) having an internal space adjusted to be lower than atmospheric pressure,
  • a support device (14) for supporting the exposure apparatus main body (15) from below a support base (51) having a support surface (50) for supporting the exposure apparatus main body (15), and in the exposure apparatus main body (15)
  • a support device is provided that includes a vibration attenuating portion (70) disposed in the communication path (62) and attenuating vibration generated based on the driving of the evacuation portion (63).
  • the exposure apparatus main body is supported by the support base of the support apparatus disposed below the exposure apparatus main body.
  • the inside of the exposure apparatus main body is depressurized by a vacuum exhaust part of the support device.
  • the vacuum exhaust unit is arranged on the side wall of the exposure apparatus main body where various pipes and various electrical wirings are installed, the size and number of the vacuum exhaust units are not limited. Therefore, the inside of the exposure apparatus main body can be quickly depressurized.
  • the schematic diagram which shows the exposure apparatus in this embodiment The sectional side view which shows typically the internal structure of a support apparatus. Schematic which shows the structure of a light source device. The side sectional view showing typically the composition of a turbo molecular pump. The sectional side view which shows the structure of a communicating member typically.
  • the flowchart which shows the manufacturing process of a device. 6 is a flowchart for explaining substrate processing of a semiconductor device.
  • the exposure apparatus 11 is an EUV exposure apparatus that uses extreme ultraviolet light, ie, EUV (Extreme Ultraviolet) light, which is a soft X-ray region having a wavelength of about 100 nm or less, as exposure light EL.
  • the exposure light EL is emitted from the light source device 12.
  • the exposure apparatus 11 includes a support device 14, an exposure apparatus main body 15, and a control apparatus 100.
  • the support device 14 is fixed on the floor 13 of the floor on which the exposure device 11 is installed.
  • the exposure apparatus main body 15 is disposed above the support apparatus 14.
  • the control device 100 controls the support device 14 and the exposure apparatus main body 15.
  • the exposure apparatus main body 15 includes a first chamber 16.
  • the internal space of the first chamber 16 is set to a vacuum atmosphere having a lower pressure than the atmosphere.
  • a reflective reticle R on which a predetermined pattern is formed, and a wafer W having a surface coated with a photosensitive material such as a resist are installed.
  • the exposure light EL is incident from the light source device 12 into the first chamber 16.
  • the exposure light EL emitted from the light source device 12 is guided to the reticle R held on the reticle stage 18 via the illumination optical system 17 disposed in the first chamber 16.
  • the exposure light EL reflected by the reticle R is guided to the wafer W held on the wafer stage 20 via the projection optical system 19 arranged in the first chamber 16.
  • the illumination optical system 17 includes a housing 21 having an internal space set in a vacuum atmosphere, like the first chamber 16.
  • a plurality of reflecting mirrors (not shown) that can reflect the exposure light EL that has entered the casing 21 from the light source device 12 are provided in the casing 21.
  • the exposure light EL is sequentially reflected by the respective reflecting mirrors, and then enters the folding reflecting mirror 22 installed in a lens barrel 25 described later.
  • the exposure light EL is reflected by the reflecting mirror 22 and then guided to the reticle R held on the reticle stage 18.
  • a reflection layer is formed on each reflection surface of each reflection mirror (including the reflection mirror 22 for turning back) that constitutes the illumination optical system 17.
  • the reflective layer is a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
  • the reticle stage 18 is disposed on the object plane side of the projection optical system 19 (above shown in FIG. 1).
  • the reticle stage 18 includes an electrostatic chuck 23, a reticle stage driving unit (not shown), and a support stage 24 that supports the electrostatic chuck 23.
  • the electrostatic chuck 23 has an attracting surface 23 a that electrostatically attracts the reticle R.
  • the reticle stage drive unit moves the reticle R with a predetermined stroke in the Y-axis direction (left-right direction in FIG. 1).
  • the reticle stage drive unit also moves the reticle R in the X-axis direction (direction orthogonal to the paper surface in FIG. 1) and the ⁇ z direction (rotation direction around the Z-axis).
  • an illumination region extending in the X-axis direction is formed on a part of the pattern surface Ra.
  • the projection optical system 19 reduces the image of the pattern formed by illuminating the pattern surface Ra of the reticle R with the exposure light EL to a predetermined reduction magnification (for example, 1/4 times). Similar to the first chamber 16, the projection optical system 19 includes a lens barrel 25 having an internal space set in a vacuum atmosphere. A flange portion 26 is provided at an intermediate position of the lens barrel 25 in the Z-axis direction (vertical direction in FIGS. 1 and 2). A support member 28 that supports the vibration absorbing mechanism 27 is provided on the inner wall of the first chamber 16 slightly on the ⁇ Z direction side (lower side in FIG. 1) from the flange portion 26. The lens barrel 25 is supported by the first chamber 16 with the flange portion 26 placed on the vibration absorbing mechanism 27. Based on a control command from the control device 100, the vibration absorbing mechanism 27 vibrates with a phase opposite to the periodic vibration transmitted to the lens barrel 25 and absorbs vibration transmitted to the lens barrel 25 from the outside.
  • a plurality of (for example, six, only one is shown in FIG. 1) reflective mirrors 29 are accommodated in the lens barrel 25. Then, the exposure light EL guided from the reticle R is sequentially reflected by each mirror 29 and guided to the wafer W held on the wafer stage 20. A reflective layer is formed on the reflective surface of each mirror 29.
  • the reflective layer is a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
  • the wafer stage 20 includes an electrostatic chuck 30 and a wafer stage driving unit (not shown).
  • the electrostatic chuck 30 has an attracting surface 30 a that electrostatically attracts the wafer W.
  • the wafer stage drive unit moves the wafer W with a predetermined stroke in the Y-axis direction.
  • the wafer stage drive unit moves the wafer W also in the X-axis direction and the Z-axis direction.
  • a wafer holder (not shown) that holds the electrostatic chuck 30 and a Z leveling mechanism (not shown) are incorporated in the wafer stage 20.
  • the Z leveling mechanism adjusts the position of the wafer holder in the Z-axis direction and the tilt angles around the X-axis and the Y-axis.
  • the reticle R when a pattern image is projected onto the wafer W by the exposure apparatus main body 15, the reticle R is moved by the reticle stage drive unit at predetermined strokes in the Y-axis direction. Thereby, the illumination area on the reticle R moves from the ⁇ Y direction side of the pattern surface Ra of the reticle R along the + Y direction side (from the left side to the right side in FIG. 1). That is, the pattern of the reticle R is scanned sequentially from the ⁇ Y direction side to the + Y direction side.
  • the wafer W is driven by the wafer stage drive unit, and moves from the ⁇ Y direction side to the + Y direction side at a speed ratio corresponding to the reduction magnification of the projection optical system 19 with respect to the movement of the reticle R along the Y axis direction. Move in synchronization with the movement of the reticle R.
  • a pattern obtained by reducing the pattern on the reticle R to a predetermined reduction ratio is formed in accordance with the synchronous movement of the reticle R and the wafer W.
  • the pattern formation on one shot area is completed, the pattern formation on the other shot areas of the wafer W is continuously performed.
  • the light source device 12 emits EUV light having a wavelength of “5 to 50 nm (for example, 13.5 nm)” as exposure light EL into the exposure device main body 15 located obliquely above.
  • the light source device 12 is provided on a base member 40 that is disposed on the ⁇ Y direction side (right side in FIG. 2) of the support device 14 and disposed on the floor 13. ing.
  • the base member 40 is provided with a light source support surface 41 that extends obliquely with respect to the floor 13.
  • a light source device main body 42 is provided on the light source support surface 41 .
  • the light source device main body 42 includes a second chamber 43 having an internal space set in a vacuum atmosphere. In the second chamber 43, a light source unit 44 that outputs the exposure light EL is provided.
  • the light source unit 44 includes a plasma generation unit 45 that generates plasma PL and a cylindrical condensing mirror 46.
  • the condensing mirror 46 condenses the exposure light EL emitted from the plasma PL.
  • the plasma generation unit 45 includes a nozzle 47 and a high-power laser 48. Examples of the high-power laser 48 include a YAG laser and an excimer laser using semiconductor laser excitation.
  • the nozzle 47 ejects high-density xenon gas (Xe) as an EUV light generating substance (target) at a high speed.
  • the cross-sectional shape at each position intersecting the optical axis of the exposure light EL generated from the plasma PL has an annular shape.
  • a reflective layer capable of reflecting the exposure light EL is formed on the inner peripheral surface of the condenser mirror 46.
  • the reflective layer of the condensing mirror 46 is composed of a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
  • Mo molybdenum
  • Si silicon
  • the support device 14 includes a substantially rectangular parallelepiped support base 51 (also referred to as “pedestal”) and a substantially rectangular parallelepiped auxiliary support base 52.
  • the support base 51 has a support surface 50 for supporting the exposure apparatus main body 15.
  • the auxiliary support base 52 is disposed on the + Y direction side of the support base 51.
  • An acceleration sensor 53 for detecting vibration generated in the support base 51 is provided on the support surface 50 having a rectangular shape in plan view. From the acceleration sensor 53, an acceleration signal corresponding to the acceleration level of the support surface 50 is output to the control device 100.
  • the control device 100 detects the acceleration of the support surface 50 based on the acceleration signal from the acceleration sensor 53 and differentiates the detection result to detect the vibration level of the support surface 50. Then, the control device 100 sets the vibration frequency of the vibration absorbing mechanism 27 so as not to transmit the vibration of the support surface 50 to the projection optical system 19 based on the vibration level of the support surface 50, and the vibration absorbing mechanism 27 at that vibration frequency. Drive.
  • placement units 55 each having a placement surface 54 on which the exposure apparatus main body 15 is placed are provided.
  • Each mounting portion 55 is formed of a material having low heat transfer efficiency (for example, low thermal expansion glass).
  • the support device 14 is provided with a cooling mechanism 56 for adjusting the temperature of each mounting portion 55 that is in direct contact with the exposure apparatus main body 15.
  • cooling channels 57 are formed so as to correspond to the mounting portions 55, respectively.
  • Each cooling flow path 57 is connected to a cooling mechanism 56 via a cooling pipe line 58.
  • a cooling fluid (for example, cooling water) is supplied from the cooling mechanism 56 to the cooling channels 57 via the cooling pipes 58.
  • Each mounting portion 55 is provided with a temperature sensor 59 for detecting the temperature thereof.
  • Each temperature sensor 59 outputs a temperature signal corresponding to the temperature of the mounting portion 55 to the cooling mechanism 56.
  • the cooling mechanism 56 detects the temperature of each placement unit 55 based on the temperature signal from each temperature sensor 59.
  • the cooling mechanism 56 calculates a temperature difference between the set temperature of the floor on which the exposure apparatus 11 is installed (that is, the temperature of the exposure apparatus main body 15) and the temperature of each placement unit 55, respectively.
  • the cooling mechanism 56 adjusts the temperature of the cooling fluid supplied to the cooling flow path 57 for each placement unit 55 so that the temperature difference approaches “0 (zero) ° C.”. Then, the cooling mechanism 56 supplies the adjusted cooling fluid to each cooling channel 57.
  • the height (that is, the thickness) of the support base 51 is such that the intermediate condensing point IF of the exposure light EL emitted from the condensing mirror 46 is near the entrance 60 of the first chamber 16. It is set to be located at. That is, the height of the support base 51 is set based on the distance between the generation position of the plasma PL, which is the emission point of the exposure light EL, and the intermediate condensing point IF.
  • a plurality of (two in this embodiment) first storage chambers 61 that open in the ⁇ Z direction and a plurality of first storage chambers 61 that extend in the + Z direction from each first storage chamber 61 are provided in the support base 51.
  • a first communication path 62 is formed.
  • the first communication path 62 communicates with the first chamber 16.
  • a turbo molecular pump 63 for depressurizing the inside of the first chamber 16 via the first communication passage 62 is accommodated in each first accommodation chamber 61.
  • the turbo molecular pump 63 is not brought into contact with the side wall of the first storage chamber 61, and the end on the ⁇ Z direction side is fixed to the floor 13 in the first storage chamber 61. Contained.
  • the turbo-molecular pump 63 includes a main body case 64 and a motor 65 disposed on the ⁇ Z direction side (that is, the floor 13 side) in the main body case 64.
  • the motor 65 has a rotation shaft 66 extending along the + Z direction.
  • the turbo molecular pump 63 is provided with a plurality of fixed blades 67 supported by the inner peripheral wall of the main body case 64 and a plurality of blades 68 supported by the rotating shaft 66.
  • each moving blade 68 rotates around the axis 69 of the rotating shaft 66 based on the driving of the motor 65, each moving blade 68 repels gas molecules flowing into the first storage chamber 61 from the first chamber 16. Ultimately, the gas molecules can be pushed out of the exposure apparatus 11 through an exhaust unit (not shown) by being applied to the fixed blade 67.
  • a vibration damping unit 70 that connects the turbo molecular pump 63 and the first chamber 16 and attenuates vibration generated by the turbo molecular pump 63 is provided.
  • the vibration damping unit 70 includes a stainless steel first bellows member 71 having a cylindrical shape.
  • the first bellows member 71 can expand and contract in the Z-axis direction.
  • the ⁇ Z direction end of the first bellows member 71 is fixed to the turbo molecular pump 63, and the + Z direction end of the first bellows member 71 is fixed to the first chamber 16.
  • a first protective portion 72 made of rubber is provided on the outer peripheral surface of each first bellows member 71.
  • the 1st protection part 72 protects the 1st bellows member 71 in the state which can be expanded-contracted in a Z-axis direction.
  • the turbo molecular pump 63 sucks the gas from the first chamber 16 into the main body case 64 through the exhaust port 16 ⁇ / b> A and the vibration damping unit 70, and then exhausts the gas to the outside of the exposure apparatus 11.
  • each moving blade 68 repels the gas molecule in order to apply the gas molecule to the fixed blade 67. Therefore, thermal energy generated when gas molecules are bounced is stored in each rotor blade 68, in particular, on the outer side in the radial direction around the axis 69 of each rotor blade 68. If there is no member between a portion where the thermal energy of the moving blade 68 is stored (a radially outer portion of the moving blade 68) and a member (for example, a reflection mirror) disposed in the first chamber 16. There is a possibility that the temperature of the reflection mirror is increased by the radiant heat from the moving blade 68.
  • a plurality of (three in FIG. 4) radiant heat absorbing members 73 having a plate shape are arranged in each first bellows member 71 along the Y-axis direction.
  • Each radiant heat absorbing member 73 is disposed such that the end on the + Z direction side is inclined to the ⁇ Y direction side (the right side in FIG. 4) with respect to the end on the ⁇ Z direction side.
  • the end on the + Z direction side of the radiant heat absorbing member 73 located at the center is located on the ⁇ Y direction side of the ⁇ Z direction side end of the radiant heat absorbing member 73 located on the ⁇ Y direction side.
  • the end portion on the ⁇ Z direction side of the radiant heat absorbing member 73 located at the center is located on the + Y direction side from the end portion on the + Z direction side of the radiant heat absorbing member 73 located on the most + Y direction side.
  • the height of the auxiliary support base 52 is substantially equal to the height of the support base 51 as shown in FIG.
  • a plurality of (two in the present embodiment) second storage chambers 75 that open on the ⁇ Z direction side of the auxiliary support base 52, and from the inside of each second storage chamber 75 to the ⁇ Y direction side.
  • An extended second communication path 76 is provided.
  • a substantially L-shaped third communication passage 77 is formed in the support base 51.
  • a communication member 78 that communicates the second communication path 76 and the third communication path 77 is provided between the auxiliary support base 52 and the support base 51.
  • Each third communication passage 77 communicates each second storage chamber 75 in the auxiliary support base 52 with the first chamber 16.
  • a communication portion 77 ⁇ / b> A that connects the third communication passage 77 and the first chamber 16 is provided at an end portion of each third communication passage 77 adjacent to the first chamber 16.
  • each turbo molecular pump 79 is stored in each second storage chamber 75.
  • the end of each turbo molecular pump 79 on the ⁇ Z direction side is fixed to the floor 13.
  • a radiant heat absorbing member for absorbing radiant heat from a moving blade (not shown) of the turbo molecular pump 79 may be disposed between the turbo molecular pump 79 and the second communication path 76 in each second storage chamber 75. Since the configuration of the turbo molecular pump 79 is the same as that of the turbo molecular pump 63, a specific description thereof is omitted.
  • the communication member 78 includes a stainless steel second bellows member 80 having a cylindrical shape.
  • the second bellows member 80 is extendable along the Y-axis direction.
  • the + Y direction end of the second bellows member 80 is fixed to the auxiliary support base 52, and the ⁇ Y direction end of the second bellows member 80 is fixed to the support base 51.
  • a rubber second protection part 81 is provided on the outer peripheral surface of each second bellows member 80.
  • the 2nd protection part 81 protects each 2nd bellows member 80 in the state which can be expanded-contracted in a Y-axis direction.
  • the turbo molecular pump 63 sucks the gas from the first chamber 16 through the exhaust port 16B, the third communication path 77, the communication member 78, and the second communication path 76, and the gas passes through an exhaust unit (not shown). Then, the exposure apparatus 11 is exhausted.
  • the support device 14 is provided with a cryopump 85 disposed on the + Z direction side of the light source device 12 and a cryopump support portion 86 that supports the cryopump 85.
  • An end of the cryopump support portion 86 on the ⁇ Z direction side is fixed to the support base 51.
  • a valve mechanism 87 is provided between the cryopump 85 and the first chamber 16 that opens when the inside of the first chamber 16 is decompressed by the cryopump 85. The valve mechanism 87 opens and closes based on a control command from the control device 100.
  • the operation of the exposure apparatus 11 will be described focusing on the driving of the support apparatus 14.
  • the turbo molecular pumps 63 and 79 are driven, the entire inside of the first chamber 16 is decompressed, and the inside of the optical path of the exposure light EL in the first chamber 16 is adjusted to a vacuum atmosphere. At this time, the turbo molecular pumps 63 and 79 generate vibrations based on their driving.
  • each turbo molecular pump 63 in the support base 51 on the ⁇ Z direction side is fixed to the floor 13. Therefore, the transmission of vibration from each turbo molecular pump 63 to the support base 51 is suppressed as much as possible. Further, the end of each turbo molecular pump 63 on the + Z direction side is connected to the first chamber 16 via the vibration damping unit 70. Therefore, the vibration from each turbo molecular pump 63 is almost absorbed by the expansion and contraction operation of the first bellows member 71 of each vibration damping unit 70. That is, vibration based on driving of each turbo molecular pump 63 is hardly transmitted to the exposure apparatus main body 15.
  • each turbo molecular pump 79 in the auxiliary support base 52 is also fixed to the floor 13. Therefore, the vibration from each turbo molecular pump 79 is prevented from being transmitted to the support base 51 and the auxiliary support base 52 as much as possible.
  • the auxiliary support base 52 is connected to the support base 51 via each communication member 78 provided for each turbo molecular pump 79. Therefore, even if the auxiliary support base 52 vibrates by driving the turbo molecular pump 79, the vibration is almost absorbed by the expansion and contraction operation of the second bellows member 80 of each communication member 78. That is, vibration at the auxiliary support base 52 is hardly transmitted to the support base 51.
  • the vibration absorbing mechanism 27 vibrates so as to cancel the vibration transmitted from the support base 51 to the exposure apparatus main body 15 according to the vibration level of the support base 51.
  • the vibration of the support base 51 is hardly transmitted to the projection optical system 19. Therefore, it is possible to suppress the occurrence of defects in the pattern formation of the wafer W due to the vibration transmitted from the support device 14 to the exposure apparatus main body 15.
  • the exposure apparatus main body 15 is supported by a support base 51 disposed below the exposure apparatus main body 15. Then, the optical path of the exposure light EL in the exposure apparatus main body 15 is depressurized by driving each turbo molecular pump 63 accommodated in the support base 51.
  • the turbo molecular pumps 63 are placed on the side of the exposure apparatus main body 15 where various pipes and various electric wirings are installed, that is, on the side walls of the first chamber 16 and the like. Unlike the arrangement, the size and number of turbo molecular pumps are almost unlimited.
  • the interior of the first chamber 16 can be quickly adjusted to a degree of vacuum that allows exposure processing.
  • a method is considered in which the turbo molecular pump is disposed apart from the first chamber 16 in place of the support base 51 and the turbo molecular pump and the first chamber 16 are connected via a long communication pipe. It is done. Even with such a method, the size and number of turbo molecular pumps that can be used are not limited. However, in this method, as the distance between the turbo molecular pump and the first chamber 16 increases, the pressure reduction efficiency in the first chamber 16 by the turbo molecular pump may decrease.
  • the turbo molecular pump 63 can be disposed immediately below the first chamber 16, so that the distance between the turbo molecular pump 63 and the first chamber 16 is not increased, and the first chamber 16 is formed by the turbo molecular pump 63.
  • the decompression efficiency can be kept high.
  • the degree of vacuum in the first chamber 16 can be further increased by disposing the cryopump 85 above the light source device 12.
  • the vibration generated based on the driving of the turbo molecular pump 63 is suitably damped by the expansion and contraction of the first bellows member 71 of the vibration damping unit 70 that connects the turbo molecular pump 63 and the first chamber 16. . Therefore, vibration generated from each turbo molecular pump 63 can be suppressed from being transmitted to the exposure apparatus main body 15, and as a result, a pattern image can be suitably projected onto the wafer W.
  • the inside of the first chamber 16 is also depressurized by the turbo molecular pump 79 in the auxiliary support base 52 arranged on the side of the support base 51. Therefore, the inside of the first chamber 16 can be decompressed more efficiently than when the inside of the first chamber 16 is decompressed only by the turbo molecular pump 63 in the support base 51.
  • each mounting portion 55 that is in direct contact with the first chamber 16 is adjusted to the same level as the temperature of the first chamber 16 by the cooling mechanism 56. Therefore, the movement of the heat energy between each placement unit 55 and the first chamber 16 is avoided, so that the temperature in the exposure apparatus main body 15 can be maintained at a desired temperature.
  • the magnitude and frequency of vibration transmitted to the exposure apparatus main body 15 via the support base 51 are detected based on the acceleration signal from the acceleration sensor 53, and the vibration from the support base 51 is absorbed by vibration. It can be absorbed by driving the mechanism 27. That is, the vibration from the support base 51 can be canceled by vibrating the vibration absorbing mechanism 27 with a phase opposite to the detected vibration. As a result, at least vibration of the projection optical system 19 is suppressed, and a pattern image can be suitably projected onto the wafer W.
  • cryopump 85 may be omitted from the exposure apparatus 11.
  • the acceleration sensor 53 and the vibration absorption mechanism 27 arranged on the support surface 50 are omitted. Also good.
  • a device having a function equivalent to that of the vibration absorbing mechanism 27 may be arranged in place of the mounting portion 55 installed on the support base 51. And it is desirable to vibrate these devices so as to cancel the vibration of the support base 51 detected or estimated based on the acceleration vibration output from the acceleration sensor 53. With this configuration, even if the support base 51 vibrates, it is possible to suppress the vibration of the support base 51 from being transmitted to the exposure apparatus main body 15. As a result, the pattern can be accurately formed on the wafer W in the exposure apparatus main body 15.
  • the temperature detection unit may detect the amount of heat generated from each turbo molecular pump 63 or estimate the amount of heat that can be generated. In this case, the cooling mechanism 56 is driven according to the amount of heat detected or estimated by the temperature detection unit.
  • the cooling mechanism 56 may be configured to cool the mounting portion 55 using a Peltier element. In the embodiment, the cooling mechanism 56 may be configured to supply the cooling gas into the cooling flow path 57.
  • the radiant heat absorbing member 73 may be omitted.
  • turbo molecular pumps 63 and 79 may be fixed to the support base 51 and the auxiliary support base 52 arranged on the floor 13. In the embodiment, an arbitrary number (for example, three) of turbo molecular pumps 79 may be provided in the auxiliary support base 52.
  • the communication member 78 may be configured not to have a vibration damping action. According to this configuration, even if the vibration generated from the turbo molecular pump 79 in the auxiliary support base 52 is transmitted to the support base 51, the vibration is suitably absorbed by the vibration absorbing mechanism 27 that supports the projection optical system 19. Is done.
  • the support device 14 may not include the auxiliary support base 52.
  • an arbitrary number (for example, four) of turbo molecular pumps 63 may be provided in the support base 51.
  • the turbo molecular pump 63 may be installed in the storage chamber 61 formed in the support base 51 through an opening / closing door (not shown) formed on the side surface of the support base 51.
  • the turbo molecular pump may be set in the storage chamber 61 formed in the support base 51 from the lower side of the floor 13.
  • an opening / closing door may be provided at a portion corresponding to the accommodation chamber 61, and the turbo molecular pump 63 may be set via the opening / closing door.
  • the turbo molecular pump 63 accommodated in the support base 51 may be omitted. According to this configuration, the pressure in the first chamber 16 is reduced by each turbo molecular pump 79 in the auxiliary support base 52.
  • the support device 14 may include a dry pump.
  • the dry pump is preferably arranged in the support base 51.
  • the vibration attenuating unit 70 may be able to vibrate with a phase opposite to the vibration generated from the turbo molecular pump 63 in the support base 51. In this case, it is desirable to provide a device for detecting or estimating the magnitude and frequency of vibration generated from the turbo molecular pump 63.
  • the light source unit 44 of the light source device 12 may be located on the side of the exposure apparatus main body 15. In this case, the exposure light EL is emitted from the light source device 12 along the Y-axis direction.
  • the exposure apparatus 11 may reduce the pressure only in the optical path of the exposure light EL in the exposure apparatus main body 15 and in the vicinity thereof, not in the entire first chamber 16.
  • the exposure apparatus 11 is for manufacturing a reticle or mask used not only in a micro device such as a semiconductor element but also in an optical exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, and an electron beam exposure apparatus.
  • an exposure apparatus that transfers a circuit pattern from a mother reticle to a glass substrate, a silicon wafer, or the like may be used.
  • the exposure apparatus 11 is used for manufacturing a display including a liquid crystal display element (LCD) and the like, and is used for manufacturing an exposure apparatus that transfers a device pattern onto a glass plate, a thin film magnetic head, and the like. It may be an exposure apparatus that transfers to a wafer or the like, and an exposure apparatus that is used to manufacture an image sensor such as a CCD.
  • LCD liquid crystal display element
  • the illumination optical system 17 may be mounted on a scanning stepper that moves the reticle R and the wafer W relative to each other, transfers the pattern of the reticle R onto the wafer W, and sequentially moves the wafer W stepwise.
  • the high-power laser 48 of the light source device 12 may be a CO 2 laser.
  • the light source device 12 may be a device having a discharge plasma light source.
  • the exposure apparatus 11 may be an exposure apparatus that uses EB (Electron Beam) as the exposure light EL.
  • the light source device 12 includes, for example, g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), F 2 laser (157 nm), Kr 2 laser (146 nm), Ar 2 laser (126 nm) Or the like.
  • the light source device 12 amplifies the infrared or visible single wavelength laser light oscillated from the DFB semiconductor laser or fiber laser, for example, with a fiber amplifier doped with erbium (or both erbium and ytterbium).
  • a light source capable of supplying harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the target is not limited to xenon, and for example, gaseous, solid, or liquid tin, or a compound containing tin may be used.
  • FIG. 6 is a flowchart showing a manufacturing process of a microdevice (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, etc.).
  • step S101 design step
  • a function / performance design of a micro device for example, a circuit design of a semiconductor device
  • a pattern for realizing the function is designed.
  • step S102 mask manufacturing step
  • a mask reticle R or the like
  • step S103 substrate manufacturing step
  • a substrate a wafer W when a silicon material is used
  • a material such as silicon, glass, or ceramics.
  • step S104 substrate processing step
  • step S105 device assembly step
  • step S105 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step S106 inspection step
  • inspections such as an operation confirmation test and a durability test of the microdevice manufactured in step S105 are performed. After these steps, the microdevice is completed and shipped.
  • FIG. 7 shows details of step S104 in the case of a semiconductor device.
  • step S111 oxidation step
  • step S112 CVD step
  • step S113 electrode formation step
  • step S114 ion implantation step
  • ions are implanted into the substrate. Steps S111 to S114 constitute a pretreatment process at each stage of the substrate processing, and are selected and executed according to necessary processes at each stage.
  • step S115 resist formation step
  • step S116 exposure step
  • step S116 exposure step
  • step S117 development step
  • step S118 etching step
  • step S119 resist removal step
  • the photosensitive material that has become unnecessary after the etching is removed. That is, in step S118 and step S119, the surface of the substrate is processed through the mask layer. By repeating these pre-process and post-process, multiple circuit patterns are formed on the substrate.

Abstract

An exposure apparatus (11) is provided with an exposure apparatus main body (15) and a supporting apparatus (14).  The exposure apparatus main body (15) has an illuminating optical system (17) which guides exposure light (EL) emitted from a light source device (12) to a reticle, and a projection optical system (19) which projects the image of a predetermined pattern on a wafer.  The supporting apparatus (14) is arranged below the exposure apparatus main body (15) and supports the exposure apparatus main body (15).  The supporting apparatus (14) is provided with a supporting table (51) which supports the exposure apparatus main body (15) from below.  In the supporting table (51), a turbo-molecular pump (63) which depressurizes inside the exposure apparatus main body (15) is stored.

Description

露光装置、支持装置及びデバイスの製造方法Exposure apparatus, support apparatus, and device manufacturing method
 本発明は、リソグラフィ処理を行う露光装置、及び露光装置を用いたデバイスの製造方法に関する。また、本発明は、リソグラフィ処理を行う露光装置本体を支持する支持装置に関する。 The present invention relates to an exposure apparatus that performs lithography processing and a device manufacturing method using the exposure apparatus. The present invention also relates to a support device that supports an exposure apparatus main body that performs lithography processing.
 一般に、半導体集積回路などのマイクロデバイスを製造するための露光装置は、照明光学系と投影光学系とを備えている。照明光学系は、所定のパターンが形成されたレチクルなどのマスクに露光光を照射する。投影光学系は、露光光が照射されたマスクのパターンの像を、感光性材料が塗布されたウエハやガラスプレートなどの基板に投影する。このような露光装置では、半導体集積回路の高集積化及びパターンの像の微細化のため、投影光学系の更なる高解像度化が望まれている。そのため、露光装置に用いる露光光の短波長化が進み、EUV(Extreme Ultraviolet )光やEB(Electron Beam )を露光光として用いる露光装置の開発が行われている(例えば、特許文献1参照)。 Generally, an exposure apparatus for manufacturing a micro device such as a semiconductor integrated circuit includes an illumination optical system and a projection optical system. The illumination optical system irradiates exposure light onto a mask such as a reticle on which a predetermined pattern is formed. The projection optical system projects an image of a mask pattern irradiated with exposure light onto a substrate such as a wafer or glass plate coated with a photosensitive material. In such an exposure apparatus, it is desired to further increase the resolution of the projection optical system in order to achieve high integration of semiconductor integrated circuits and miniaturization of pattern images. For this reason, the exposure light used in the exposure apparatus has been shortened in wavelength, and an exposure apparatus using EUV (Extreme Ultraviolet) light or EB (Electron Beam) as exposure light has been developed (for example, see Patent Document 1).
 こうした露光装置では、使用する露光光が非常に短波長である。そのため、露光装置本体は、真空雰囲気に設定される内部空間を有するチャンバを備えている。チャンバ内には、照明光学系、レチクルを保持するレチクルステージ、投影光学系及びウエハを保持するウエハステージが配置されている。 In such an exposure apparatus, the exposure light used has a very short wavelength. Therefore, the exposure apparatus main body includes a chamber having an internal space set in a vacuum atmosphere. An illumination optical system, a reticle stage that holds a reticle, a projection optical system, and a wafer stage that holds a wafer are disposed in the chamber.
特開平11-243052号公報Japanese Patent Laid-Open No. 11-243052
 ところで、EUV光やEBを露光光として用いる露光装置では、一般的に、露光光の光路内やチャンバ内を減圧するための真空排気装置が、チャンバ、即ち露光装置本体の側壁に設置されている。しかしながら、露光装置本体の側壁には、露光装置内の各種装置のための電気配線、及び各種光学素子のための冷却配管などが設けられている。そのため、電気配線及び冷却配管などの設置スペースが必要となることから、露光装置本体の側壁に設置する真空排気装置の大きさや数は制限されている。したがって、大型の真空排気装置や複数の真空排気装置を使用できないため、露光光の光路内やチャンバ内を所望する圧力にまで減圧するのにかなりの時間を要していた。 By the way, in an exposure apparatus using EUV light or EB as exposure light, a vacuum exhaust apparatus for reducing the pressure in the optical path of the exposure light or in the chamber is generally installed on the side wall of the chamber, that is, the exposure apparatus main body. . However, on the side wall of the exposure apparatus main body, electrical wiring for various apparatuses in the exposure apparatus, cooling piping for various optical elements, and the like are provided. For this reason, installation space such as electrical wiring and cooling piping is required, and therefore the size and number of vacuum exhaust devices installed on the side wall of the exposure apparatus main body are limited. Therefore, since a large evacuation apparatus or a plurality of evacuation apparatuses cannot be used, it takes a considerable time to reduce the pressure in the optical path of the exposure light or the chamber to a desired pressure.
 本発明の目的は、露光装置本体内における光の光路内を速やかに減圧することができる露光装置、支持装置及びデバイスの製造方法を提供することにある。 An object of the present invention is to provide an exposure apparatus, a support apparatus, and a device manufacturing method that can quickly depressurize the optical path of light in the exposure apparatus main body.
 上記の課題を解決するため、本発明は、実施形態に示す図1~図7に対応付けした以下の構成を採用している。
 上記の課題を解決するため、本発明の第一の態様によれば、光源部(44)から射出される光(EL)で第1面(23a)を照明可能な照明光学系(17)、及び所定のパターンの像を前記第1面(23a)とは異なる第2面(30a)上に投影可能な投影光学系(19)を有する露光装置本体(15)と、前記露光装置本体(15)を下方から支持する支持台(51)と、前記露光装置本体(15)の下方に配置され、且つ露光装置本体(15)内における前記光(EL)の光路内を減圧する真空排気部(63,79)とを備えた露光装置が提供される。
In order to solve the above-described problems, the present invention employs the following configuration corresponding to FIGS. 1 to 7 shown in the embodiment.
In order to solve the above problems, according to the first aspect of the present invention, an illumination optical system (17) capable of illuminating the first surface (23a) with light (EL) emitted from the light source unit (44), And an exposure apparatus body (15) having a projection optical system (19) capable of projecting an image of a predetermined pattern onto a second surface (30a) different from the first surface (23a), and the exposure apparatus body (15 ) From below and a vacuum evacuation section (below the exposure apparatus main body (15)) for reducing the pressure in the optical path of the light (EL) in the exposure apparatus main body (15). 63, 79) is provided.
 上記の構成によれば、露光装置本体は、露光装置本体の下方に配置される支持台により支持されている。露光装置本体内における光の光路内は、露光装置本体の下方に配置される真空排気部によって減圧される。これにより、各種配管や各種電気配線が設置される露光装置本体の側壁に真空排気部を配置する場合とは異なり、真空排気部の大きさや数が制限されることはない。したがって、露光装置本体内における光の光路内を速やかに減圧することができる。 According to the above configuration, the exposure apparatus main body is supported by the support base disposed below the exposure apparatus main body. The light path in the exposure apparatus main body is depressurized by a vacuum exhaust unit disposed below the exposure apparatus main body. Thus, unlike the case where the vacuum exhaust unit is arranged on the side wall of the exposure apparatus main body where various pipes and various electrical wirings are installed, the size and number of the vacuum exhaust units are not limited. Therefore, it is possible to quickly depressurize the light path in the exposure apparatus main body.
 上記の課題を解決するため、本発明の第二の態様によれば、大気圧よりも低く調整された内部空間を有する露光装置本体(15)を備えた露光装置(11)に搭載され、前記露光装置本体(15)を下方から支持する支持装置(14)において、前記露光装置本体(15)を支持する支持面(50)を有する支持台(51)と、前記露光装置本体(15)内を減圧する真空排気部(63)と、前記支持台(51)内に形成され、且つ前記露光装置本体(15)と前記真空排気部(63)とを連通する連通路(62)と、前記連通路(62)内に配置され、且つ前記真空排気部(63)の駆動に基づき発生する振動を減衰させる振動減衰部(70)とを備えた支持装置が提供される。 In order to solve the above-mentioned problem, according to a second aspect of the present invention, the exposure apparatus is mounted on an exposure apparatus (11) having an exposure apparatus body (15) having an internal space adjusted to be lower than atmospheric pressure, In a support device (14) for supporting the exposure apparatus main body (15) from below, a support base (51) having a support surface (50) for supporting the exposure apparatus main body (15), and in the exposure apparatus main body (15) An evacuation part (63) for reducing pressure, a communication passage (62) formed in the support (51) and communicating the exposure apparatus main body (15) and the evacuation part (63), A support device is provided that includes a vibration attenuating portion (70) disposed in the communication path (62) and attenuating vibration generated based on the driving of the evacuation portion (63).
 上記の構成によれば、露光装置本体は、露光装置本体の下方に配置される支持装置の支持台により支持されている。露光装置本体内は、支持装置が有する真空排気部によって減圧される。これにより、各種配管や各種電気配線が設置される露光装置本体の側壁に真空排気部を配置する場合とは異なり、真空排気部の大きさや数が制限されることはない。したがって、露光装置本体内を速やかに減圧することができる。 According to the above configuration, the exposure apparatus main body is supported by the support base of the support apparatus disposed below the exposure apparatus main body. The inside of the exposure apparatus main body is depressurized by a vacuum exhaust part of the support device. Thus, unlike the case where the vacuum exhaust unit is arranged on the side wall of the exposure apparatus main body where various pipes and various electrical wirings are installed, the size and number of the vacuum exhaust units are not limited. Therefore, the inside of the exposure apparatus main body can be quickly depressurized.
 なお、本発明をわかりやすく説明するために実施形態を示す図面の符号に対応づけて説明したが、本発明が実施形態に限定されるものではないことは言うまでもない。 In addition, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings showing the embodiments, but it goes without saying that the present invention is not limited to the embodiments.
本実施形態における露光装置を示す模式図。The schematic diagram which shows the exposure apparatus in this embodiment. 支持装置の内部構成を模式的に示す側断面図。The sectional side view which shows typically the internal structure of a support apparatus. 光源装置の構成を示す概略図。Schematic which shows the structure of a light source device. ターボ分子ポンプの構成を模式的に示す側断面図。The side sectional view showing typically the composition of a turbo molecular pump. 連通部材の構成を模式的に示す側断面図。The sectional side view which shows the structure of a communicating member typically. デバイスの製造工程を示すフローチャート。The flowchart which shows the manufacturing process of a device. 半導体デバイスの基板処理を説明するフローチャート。6 is a flowchart for explaining substrate processing of a semiconductor device.
 以下に、本発明を具体化した一実施形態について図1~図5に基づき説明する。
 図1に示すように、露光装置11は、波長が100nm程度以下の軟X線領域である極端紫外光、即ちEUV(Extreme Ultraviolet )光を露光光ELとして用いるEUV露光装置である。露光光ELは、光源装置12から射出される。露光装置11は、支持装置14、露光装置本体15、及び制御装置100を備えている。支持装置14は、露光装置11が設置されるフロアの床13上に固定される。露光装置本体15は、支持装置14の上方に配置される。制御装置100は、支持装置14及び露光装置本体15を制御する。露光装置本体15は、第1チャンバ16を備えている。第1チャンバ16の内部空間は、大気よりも低圧である真空雰囲気に設定される。第1チャンバ16内には、所定のパターンが形成された反射型のレチクルRと、表面にレジストなどの感光性材料が塗布されたウエハWとが設置される。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, the exposure apparatus 11 is an EUV exposure apparatus that uses extreme ultraviolet light, ie, EUV (Extreme Ultraviolet) light, which is a soft X-ray region having a wavelength of about 100 nm or less, as exposure light EL. The exposure light EL is emitted from the light source device 12. The exposure apparatus 11 includes a support device 14, an exposure apparatus main body 15, and a control apparatus 100. The support device 14 is fixed on the floor 13 of the floor on which the exposure device 11 is installed. The exposure apparatus main body 15 is disposed above the support apparatus 14. The control device 100 controls the support device 14 and the exposure apparatus main body 15. The exposure apparatus main body 15 includes a first chamber 16. The internal space of the first chamber 16 is set to a vacuum atmosphere having a lower pressure than the atmosphere. In the first chamber 16, a reflective reticle R on which a predetermined pattern is formed, and a wafer W having a surface coated with a photosensitive material such as a resist are installed.
 第1チャンバ16内には、光源装置12から露光光ELが入射される。光源装置12から射出された露光光ELは、第1チャンバ16内に配置される照明光学系17を介して、レチクルステージ18に保持されるレチクルRへと導かれる。そして、レチクルRで反射した露光光ELは、第1チャンバ16内に配置される投影光学系19を介して、ウエハステージ20に保持されるウエハWへと導かれる。 The exposure light EL is incident from the light source device 12 into the first chamber 16. The exposure light EL emitted from the light source device 12 is guided to the reticle R held on the reticle stage 18 via the illumination optical system 17 disposed in the first chamber 16. Then, the exposure light EL reflected by the reticle R is guided to the wafer W held on the wafer stage 20 via the projection optical system 19 arranged in the first chamber 16.
 照明光学系17は、第1チャンバ16と同様に、真空雰囲気に設定される内部空間を有する筐体21を備えている。筐体21内には、光源装置12から筐体21内に入射された露光光ELを反射可能な複数の図示しない反射ミラーが設けられている。露光光ELは、各反射ミラーによって順に反射されてから、後述する鏡筒25内に設置された折り返し用の反射ミラー22に入射される。そして、露光光ELは、反射ミラー22により反射されてから、レチクルステージ18に保持されるレチクルRへと導かれる。照明光学系17を構成する各反射ミラー(折り返し用の反射ミラー22も含む。)の反射面には、反射層がそれぞれ形成されている。反射層は、モリブデン(Mo)とシリコン(Si)を交互に積層した多層膜である。 The illumination optical system 17 includes a housing 21 having an internal space set in a vacuum atmosphere, like the first chamber 16. A plurality of reflecting mirrors (not shown) that can reflect the exposure light EL that has entered the casing 21 from the light source device 12 are provided in the casing 21. The exposure light EL is sequentially reflected by the respective reflecting mirrors, and then enters the folding reflecting mirror 22 installed in a lens barrel 25 described later. The exposure light EL is reflected by the reflecting mirror 22 and then guided to the reticle R held on the reticle stage 18. A reflection layer is formed on each reflection surface of each reflection mirror (including the reflection mirror 22 for turning back) that constitutes the illumination optical system 17. The reflective layer is a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
 レチクルステージ18は、投影光学系19の物体面側(図1に示す上方)に配置されている。レチクルステージ18は、静電チャック23、図示しないレチクルステージ駆動部、及び静電チャック23を支持する支持ステージ24を備えている。静電チャック23は、レチクルRを静電吸着する吸着面23aを有する。レチクルステージ駆動部は、レチクルRを、Y軸方向(図1における左右方向)に所定のストロークで移動させる。また、レチクルステージ駆動部は、レチクルRを、X軸方向(図1において紙面と直交する方向)及びθz方向(Z軸周りの回転方向)にも移動させる。レチクルRのパターン面Raに露光光ELが照明される場合、パターン面Raの一部には、X軸方向に延びる照明領域が形成される。 The reticle stage 18 is disposed on the object plane side of the projection optical system 19 (above shown in FIG. 1). The reticle stage 18 includes an electrostatic chuck 23, a reticle stage driving unit (not shown), and a support stage 24 that supports the electrostatic chuck 23. The electrostatic chuck 23 has an attracting surface 23 a that electrostatically attracts the reticle R. The reticle stage drive unit moves the reticle R with a predetermined stroke in the Y-axis direction (left-right direction in FIG. 1). The reticle stage drive unit also moves the reticle R in the X-axis direction (direction orthogonal to the paper surface in FIG. 1) and the θz direction (rotation direction around the Z-axis). When the exposure light EL is illuminated onto the pattern surface Ra of the reticle R, an illumination region extending in the X-axis direction is formed on a part of the pattern surface Ra.
 投影光学系19は、露光光ELでレチクルRのパターン面Raを照明することにより形成されたパターンの像を、所定の縮小倍率(例えば1/4倍)に縮小させる。投影光学系19は、第1チャンバ16と同様に、真空雰囲気に設定される内部空間を有する鏡筒25を備えている。鏡筒25のZ軸方向(図1及び図2における上下方向)における中間位置には、フランジ部26が設けられている。また、第1チャンバ16の内壁においてフランジ部26よりも少し-Z方向側(図1では下側)には、振動吸収機構27を支持する支持部材28が設けられている。鏡筒25は、フランジ部26を振動吸収機構27上に載置した状態で、第1チャンバ16により支持されている。振動吸収機構27は、制御装置100からの制御指令に基づき、鏡筒25に伝達される周期的な振動と逆位相で振動し、外部から鏡筒25に伝わる振動を吸収する。 The projection optical system 19 reduces the image of the pattern formed by illuminating the pattern surface Ra of the reticle R with the exposure light EL to a predetermined reduction magnification (for example, 1/4 times). Similar to the first chamber 16, the projection optical system 19 includes a lens barrel 25 having an internal space set in a vacuum atmosphere. A flange portion 26 is provided at an intermediate position of the lens barrel 25 in the Z-axis direction (vertical direction in FIGS. 1 and 2). A support member 28 that supports the vibration absorbing mechanism 27 is provided on the inner wall of the first chamber 16 slightly on the −Z direction side (lower side in FIG. 1) from the flange portion 26. The lens barrel 25 is supported by the first chamber 16 with the flange portion 26 placed on the vibration absorbing mechanism 27. Based on a control command from the control device 100, the vibration absorbing mechanism 27 vibrates with a phase opposite to the periodic vibration transmitted to the lens barrel 25 and absorbs vibration transmitted to the lens barrel 25 from the outside.
 鏡筒25内には、複数(例えば、6枚、図1では1枚のみ図示)の反射型のミラー29が収容されている。そして、レチクルRから導かれた露光光ELは、各ミラー29により順に反射されて、ウエハステージ20に保持されるウエハWへと導かれる。各ミラー29の反射面には、反射層がそれぞれ形成されている。反射層は、モリブデン(Mo)とシリコン(Si)を交互に積層した多層膜である。 A plurality of (for example, six, only one is shown in FIG. 1) reflective mirrors 29 are accommodated in the lens barrel 25. Then, the exposure light EL guided from the reticle R is sequentially reflected by each mirror 29 and guided to the wafer W held on the wafer stage 20. A reflective layer is formed on the reflective surface of each mirror 29. The reflective layer is a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked.
 ウエハステージ20は、静電チャック30と、図示しないウエハステージ駆動部とを備えている。静電チャック30は、ウエハWを静電吸着する吸着面30aを有する。ウエハステージ駆動部は、ウエハWを、Y軸方向に所定のストロークで移動させる。ウエハステージ駆動部は、ウエハWを、X軸方向及びZ軸方向にも移動させる。ウエハステージ20には、静電チャック30を保持する図示しないウエハホルダと、図示しないZレベリング機構とが組み込まれている。Zレベリング機構は、ウエハホルダのZ軸方向における位置及びX軸周り、Y軸周りの傾斜角を調整する。 The wafer stage 20 includes an electrostatic chuck 30 and a wafer stage driving unit (not shown). The electrostatic chuck 30 has an attracting surface 30 a that electrostatically attracts the wafer W. The wafer stage drive unit moves the wafer W with a predetermined stroke in the Y-axis direction. The wafer stage drive unit moves the wafer W also in the X-axis direction and the Z-axis direction. A wafer holder (not shown) that holds the electrostatic chuck 30 and a Z leveling mechanism (not shown) are incorporated in the wafer stage 20. The Z leveling mechanism adjusts the position of the wafer holder in the Z-axis direction and the tilt angles around the X-axis and the Y-axis.
 本実施形態において、露光装置本体15にてウエハWにパターンの像を投影する場合、レチクルRは、レチクルステージ駆動部によって、Y軸方向に所定のストローク毎に移動する。これにより、レチクルRにおける照明領域は、レチクルRのパターン面Raの-Y方向側から+Y方向側(図1の左側から右側)に沿って移動する。すなわち、レチクルRのパターンが、-Y方向側から+Y方向側に順にスキャンされる。また、ウエハWは、ウエハステージ駆動部の駆動によって、レチクルRのY軸方向に沿った移動に対して、投影光学系19の縮小倍率に応じた速度比で、-Y方向側から+Y方向側にレチクルRの動きと同期して移動する。その結果、ウエハWの一つのショット領域には、レチクルR及びウエハWの同期移動に伴って、レチクルR上のパターンを所定の縮小倍率に縮小したパターンが形成される。そして、一つのショット領域へのパターンの形成が終了した場合、ウエハWの他のショット領域に対するパターンの形成が連続して行われる。 In this embodiment, when a pattern image is projected onto the wafer W by the exposure apparatus main body 15, the reticle R is moved by the reticle stage drive unit at predetermined strokes in the Y-axis direction. Thereby, the illumination area on the reticle R moves from the −Y direction side of the pattern surface Ra of the reticle R along the + Y direction side (from the left side to the right side in FIG. 1). That is, the pattern of the reticle R is scanned sequentially from the −Y direction side to the + Y direction side. Further, the wafer W is driven by the wafer stage drive unit, and moves from the −Y direction side to the + Y direction side at a speed ratio corresponding to the reduction magnification of the projection optical system 19 with respect to the movement of the reticle R along the Y axis direction. Move in synchronization with the movement of the reticle R. As a result, in one shot area of the wafer W, a pattern obtained by reducing the pattern on the reticle R to a predetermined reduction ratio is formed in accordance with the synchronous movement of the reticle R and the wafer W. When the pattern formation on one shot area is completed, the pattern formation on the other shot areas of the wafer W is continuously performed.
 次に、光源装置12について図2及び図3に基づき説明する。
 光源装置12は、波長が「5~50nm(例えば、13.5nm)」となるEUV光を露光光ELとして斜め上方に位置する露光装置本体15内に射出する。具体的には、図2に示すように、光源装置12は、支持装置14の-Y方向側(図2では右側)に配置され、且つ床13上に配置されるベース部材40上に設けられている。ベース部材40には、床13に対して斜めに広がる光源支持面41が形成されている。光源支持面41上には、光源装置本体42が設けられている。光源装置本体42は、図3に示すように、真空雰囲気に設定される内部空間を有する第2チャンバ43を備えている。第2チャンバ43内には、露光光ELを出力する光源部44が設けられている。
Next, the light source device 12 will be described with reference to FIGS.
The light source device 12 emits EUV light having a wavelength of “5 to 50 nm (for example, 13.5 nm)” as exposure light EL into the exposure device main body 15 located obliquely above. Specifically, as shown in FIG. 2, the light source device 12 is provided on a base member 40 that is disposed on the −Y direction side (right side in FIG. 2) of the support device 14 and disposed on the floor 13. ing. The base member 40 is provided with a light source support surface 41 that extends obliquely with respect to the floor 13. On the light source support surface 41, a light source device main body 42 is provided. As shown in FIG. 3, the light source device main body 42 includes a second chamber 43 having an internal space set in a vacuum atmosphere. In the second chamber 43, a light source unit 44 that outputs the exposure light EL is provided.
 光源部44は、プラズマPLを発生させるプラズマ発生部45と、筒状の集光ミラー46とを備えている。集光ミラー46は、プラズマPLから放射される露光光ELを集光させる。プラズマ発生部45は、ノズル47、及び高出力レーザ48を備えている。高出力レーザ48として、例えば、半導体レーザ励起を利用したYAGレーザやエキシマレーザなどが挙げられる。ノズル47は、EUV光発生物質(ターゲット)として高密度のキセノンガス(Xe)を高速で噴出する。高出力レーザ48から射出されたレーザ光LRに、ノズル47から高速で噴出される高密度のキセノンガスを照射すると、プラズマPLが発生する。そして、EUV光が、プラズマPLから露光光ELとして放射される。露光光ELは、集光ミラー46の開口(図3の右側)から集光ミラー46内に入射される。 The light source unit 44 includes a plasma generation unit 45 that generates plasma PL and a cylindrical condensing mirror 46. The condensing mirror 46 condenses the exposure light EL emitted from the plasma PL. The plasma generation unit 45 includes a nozzle 47 and a high-power laser 48. Examples of the high-power laser 48 include a YAG laser and an excimer laser using semiconductor laser excitation. The nozzle 47 ejects high-density xenon gas (Xe) as an EUV light generating substance (target) at a high speed. When the laser beam LR emitted from the high-power laser 48 is irradiated with high-density xenon gas ejected from the nozzle 47 at a high speed, plasma PL is generated. Then, EUV light is emitted as exposure light EL from the plasma PL. The exposure light EL enters the condenser mirror 46 from the opening of the condenser mirror 46 (right side in FIG. 3).
 集光ミラー46では、プラズマPLから発生した露光光ELの光軸と交差する各位置での断面形状が円環状をなす。集光ミラー46の内周面には、露光光ELを反射可能な反射層が形成されている。集光ミラー46の反射層は、モリブデン(Mo)とシリコン(Si)を交互に積層した多層膜から構成されている。集光ミラー46で反射した露光光ELは、第1チャンバ16内であって、且つ照明光学系17に入射する前に一旦集光される。その後、露光光ELは、照明光学系17を構成する各反射ミラーのうち光源装置12に最も近い反射ミラーに入射される。集光ミラー46から射出された露光光ELが一旦集光する集光点のことを、「中間集光点IF」とする。 In the condensing mirror 46, the cross-sectional shape at each position intersecting the optical axis of the exposure light EL generated from the plasma PL has an annular shape. A reflective layer capable of reflecting the exposure light EL is formed on the inner peripheral surface of the condenser mirror 46. The reflective layer of the condensing mirror 46 is composed of a multilayer film in which molybdenum (Mo) and silicon (Si) are alternately stacked. The exposure light EL reflected by the condenser mirror 46 is once condensed in the first chamber 16 and before entering the illumination optical system 17. Thereafter, the exposure light EL is incident on a reflection mirror closest to the light source device 12 among the reflection mirrors constituting the illumination optical system 17. A condensing point on which the exposure light EL emitted from the condensing mirror 46 is once condensed is referred to as an “intermediate condensing point IF”.
 次に、支持装置14について図1及び図2に基づき説明する。
 図1及び図2に示すように、支持装置14は、略直方体状の支持台51(「ペデスタル」ともいう。)と、略直方体状の補助支持台52とを備えている。支持台51は、露光装置本体15を支持するための支持面50を有する。補助支持台52は、支持台51の+Y方向側に配置されている。支持台51の平面視矩形状をなす支持面50上には、支持台51で発生する振動を検出するための加速度センサ53が設けられている。加速度センサ53からは、支持面50の加速レベルに応じた加速度信号が制御装置100に出力される。制御装置100は、加速度センサ53からの加速度信号に基づき支持面50の加速度を検出し、その検出結果を微分して支持面50の振動レベルを検出する。そして、制御装置100は、支持面50の振動レベルに基づき、支持面50の振動を投影光学系19に伝達させないように振動吸収機構27の振動周波数を設定し、その振動周波数で振動吸収機構27を駆動させる。
Next, the support device 14 will be described with reference to FIGS. 1 and 2.
As shown in FIGS. 1 and 2, the support device 14 includes a substantially rectangular parallelepiped support base 51 (also referred to as “pedestal”) and a substantially rectangular parallelepiped auxiliary support base 52. The support base 51 has a support surface 50 for supporting the exposure apparatus main body 15. The auxiliary support base 52 is disposed on the + Y direction side of the support base 51. An acceleration sensor 53 for detecting vibration generated in the support base 51 is provided on the support surface 50 having a rectangular shape in plan view. From the acceleration sensor 53, an acceleration signal corresponding to the acceleration level of the support surface 50 is output to the control device 100. The control device 100 detects the acceleration of the support surface 50 based on the acceleration signal from the acceleration sensor 53 and differentiates the detection result to detect the vibration level of the support surface 50. Then, the control device 100 sets the vibration frequency of the vibration absorbing mechanism 27 so as not to transmit the vibration of the support surface 50 to the projection optical system 19 based on the vibration level of the support surface 50, and the vibration absorbing mechanism 27 at that vibration frequency. Drive.
 支持台51において支持面50の四隅には、露光装置本体15が載置される載置面54を有する載置部55がそれぞれ設けられている。各載置部55は、熱伝達効率の低い材料(例えば、低熱膨張ガラス)から形成されている。支持装置14には、図1に示すように、露光装置本体15に直接接触する各載置部55の温度を調整するための冷却機構56が設けられている。 At the four corners of the support surface 50 of the support base 51, placement units 55 each having a placement surface 54 on which the exposure apparatus main body 15 is placed are provided. Each mounting portion 55 is formed of a material having low heat transfer efficiency (for example, low thermal expansion glass). As shown in FIG. 1, the support device 14 is provided with a cooling mechanism 56 for adjusting the temperature of each mounting portion 55 that is in direct contact with the exposure apparatus main body 15.
 支持台51内には、各載置部55にそれぞれ対応するように冷却用流路57が形成されている。各冷却用流路57は、冷却用管路58を介して冷却機構56に接続されている。各冷却用流路57内には、冷却用管路58を介して、冷却機構56から冷却用流体(例えば、冷却水)がそれぞれ供給される。各載置部55には、それらの温度を検出するための温度センサ59がそれぞれ設けられている。各温度センサ59は、載置部55の温度に対応した温度信号を、冷却機構56にそれぞれ出力する。冷却機構56は、各温度センサ59からの温度信号に基づき、各載置部55の温度をそれぞれ検出する。冷却機構56は、露光装置11が設置されるフロアの設定温度(即ち、露光装置本体15の温度)と各載置部55の温度との温度差をそれぞれ算出する。冷却機構56は、温度差を「0(零)℃」に近づけるように、冷却用流路57に供給する冷却用流体の温度を、載置部55毎に調整する。そして、冷却機構56は、調整した冷却用流体を各冷却用流路57に供給する。 In the support base 51, cooling channels 57 are formed so as to correspond to the mounting portions 55, respectively. Each cooling flow path 57 is connected to a cooling mechanism 56 via a cooling pipe line 58. A cooling fluid (for example, cooling water) is supplied from the cooling mechanism 56 to the cooling channels 57 via the cooling pipes 58. Each mounting portion 55 is provided with a temperature sensor 59 for detecting the temperature thereof. Each temperature sensor 59 outputs a temperature signal corresponding to the temperature of the mounting portion 55 to the cooling mechanism 56. The cooling mechanism 56 detects the temperature of each placement unit 55 based on the temperature signal from each temperature sensor 59. The cooling mechanism 56 calculates a temperature difference between the set temperature of the floor on which the exposure apparatus 11 is installed (that is, the temperature of the exposure apparatus main body 15) and the temperature of each placement unit 55, respectively. The cooling mechanism 56 adjusts the temperature of the cooling fluid supplied to the cooling flow path 57 for each placement unit 55 so that the temperature difference approaches “0 (zero) ° C.”. Then, the cooling mechanism 56 supplies the adjusted cooling fluid to each cooling channel 57.
 支持台51の高さ(即ち、厚み)は、図2及び図3に示すように、集光ミラー46から射出される露光光ELの中間集光点IFを第1チャンバ16の入射口60近傍に位置させるように設定されている。すなわち、支持台51の高さは、露光光ELの発光点であるプラズマPLの発生位置と中間集光点IFとの距離に基づき設定されている。 As shown in FIGS. 2 and 3, the height (that is, the thickness) of the support base 51 is such that the intermediate condensing point IF of the exposure light EL emitted from the condensing mirror 46 is near the entrance 60 of the first chamber 16. It is set to be located at. That is, the height of the support base 51 is set based on the distance between the generation position of the plasma PL, which is the emission point of the exposure light EL, and the intermediate condensing point IF.
 支持台51内には、図2に示すように、-Z方向に開口する複数(本実施形態では2つ)の第1収容室61と、各第1収容室61から+Z方向に延びる複数の第1連通路62とが形成されている。第1連通路62は、第1チャンバ16と連通している。各第1収容室61内には、第1連通路62を介して第1チャンバ16内を減圧するためのターボ分子ポンプ63がそれぞれ収容されている。 As shown in FIG. 2, a plurality of (two in this embodiment) first storage chambers 61 that open in the −Z direction and a plurality of first storage chambers 61 that extend in the + Z direction from each first storage chamber 61 are provided in the support base 51. A first communication path 62 is formed. The first communication path 62 communicates with the first chamber 16. A turbo molecular pump 63 for depressurizing the inside of the first chamber 16 via the first communication passage 62 is accommodated in each first accommodation chamber 61.
 ターボ分子ポンプ63は、図4に示すように、第1収容室61の側壁に当接されずに、-Z方向側の端部を床13に固定した状態で、第1収容室61内に収容されている。ターボ分子ポンプ63は、本体ケース64と、本体ケース64内において-Z方向側(即ち、床13側)に配置されるモータ65とを備えている。モータ65は、+Z方向に沿って延びる回転軸66を有している。ターボ分子ポンプ63には、本体ケース64の内周壁に支持される複数の固定翼67と、回転軸66に支持される複数の動翼68とが設けられている。モータ65の駆動に基づき各動翼68が回転軸66の軸線69を中心に回転する場合、各動翼68は、第1チャンバ16内から第1収容室61内に流入した気体分子を弾いて固定翼67に当てて、最終的には、気体分子を、図示しない排気部を介して露光装置11外に押しやることができる。 As shown in FIG. 4, the turbo molecular pump 63 is not brought into contact with the side wall of the first storage chamber 61, and the end on the −Z direction side is fixed to the floor 13 in the first storage chamber 61. Contained. The turbo-molecular pump 63 includes a main body case 64 and a motor 65 disposed on the −Z direction side (that is, the floor 13 side) in the main body case 64. The motor 65 has a rotation shaft 66 extending along the + Z direction. The turbo molecular pump 63 is provided with a plurality of fixed blades 67 supported by the inner peripheral wall of the main body case 64 and a plurality of blades 68 supported by the rotating shaft 66. When each moving blade 68 rotates around the axis 69 of the rotating shaft 66 based on the driving of the motor 65, each moving blade 68 repels gas molecules flowing into the first storage chamber 61 from the first chamber 16. Ultimately, the gas molecules can be pushed out of the exposure apparatus 11 through an exhaust unit (not shown) by being applied to the fixed blade 67.
 第1連通路62内には、ターボ分子ポンプ63と第1チャンバ16とを連結し、且つターボ分子ポンプ63で発生する振動を減衰させる振動減衰部70が設けられている。振動減衰部70は、円筒形状をなすステンレス製の第1蛇腹部材71を備えている。第1蛇腹部材71は、Z軸方向に伸縮自在である。第1蛇腹部材71の-Z方向側の端部はターボ分子ポンプ63に固定され、第1蛇腹部材71の+Z方向側の端部は第1チャンバ16に固定されている。各第1蛇腹部材71の外周面上には、ゴム製の第1保護部72がそれぞれ設けられている。第1保護部72は、第1蛇腹部材71をZ軸方向に伸縮可能な状態で保護する。ターボ分子ポンプ63は、第1チャンバ16内から排気口16A及び振動減衰部70内を介して気体を本体ケース64内に吸引した後、その気体を露光装置11の外に排気させる。 In the first communication path 62, a vibration damping unit 70 that connects the turbo molecular pump 63 and the first chamber 16 and attenuates vibration generated by the turbo molecular pump 63 is provided. The vibration damping unit 70 includes a stainless steel first bellows member 71 having a cylindrical shape. The first bellows member 71 can expand and contract in the Z-axis direction. The −Z direction end of the first bellows member 71 is fixed to the turbo molecular pump 63, and the + Z direction end of the first bellows member 71 is fixed to the first chamber 16. On the outer peripheral surface of each first bellows member 71, a first protective portion 72 made of rubber is provided. The 1st protection part 72 protects the 1st bellows member 71 in the state which can be expanded-contracted in a Z-axis direction. The turbo molecular pump 63 sucks the gas from the first chamber 16 into the main body case 64 through the exhaust port 16 </ b> A and the vibration damping unit 70, and then exhausts the gas to the outside of the exposure apparatus 11.
 ターボ分子ポンプ63が駆動する際、各動翼68は、気体分子を固定翼67に当てるために気体分子を弾く。そのため、各動翼68、特に、各動翼68の軸線69を中心とした径方向の外側には、気体分子を弾いた際に発生する熱エネルギーがそれぞれ蓄えられる。仮に、動翼68の熱エネルギーが蓄えられる部分(動翼68の径方向の外側部)と第1チャンバ16内に配置される部材(例えば、反射ミラー)との間に部材が存在しなければ、動翼68からの輻射熱によって反射ミラーの温度が上昇するおそれがある。 When the turbo molecular pump 63 is driven, each moving blade 68 repels the gas molecule in order to apply the gas molecule to the fixed blade 67. Therefore, thermal energy generated when gas molecules are bounced is stored in each rotor blade 68, in particular, on the outer side in the radial direction around the axis 69 of each rotor blade 68. If there is no member between a portion where the thermal energy of the moving blade 68 is stored (a radially outer portion of the moving blade 68) and a member (for example, a reflection mirror) disposed in the first chamber 16. There is a possibility that the temperature of the reflection mirror is increased by the radiant heat from the moving blade 68.
 そこで、本実施形態では、各第1蛇腹部材71内に、板状をなす複数(図4では3枚)の輻射熱吸収部材73がY軸方向に沿って配置されている。各輻射熱吸収部材73は、+Z方向側の端部を-Z方向側の端部よりも-Y方向側(図4では右側)に傾斜させてそれぞれ配置されている。特に、中央に位置する輻射熱吸収部材73の+Z方向側の端部は、-Y方向側に位置する輻射熱吸収部材73の-Z方向側の端部よりも-Y方向側に位置している。また、中央に位置する輻射熱吸収部材73の-Z方向側の端部は、最も+Y方向側に位置する輻射熱吸収部材73の+Z方向側の端部よりも+Y方向側に位置している。 Therefore, in the present embodiment, a plurality of (three in FIG. 4) radiant heat absorbing members 73 having a plate shape are arranged in each first bellows member 71 along the Y-axis direction. Each radiant heat absorbing member 73 is disposed such that the end on the + Z direction side is inclined to the −Y direction side (the right side in FIG. 4) with respect to the end on the −Z direction side. In particular, the end on the + Z direction side of the radiant heat absorbing member 73 located at the center is located on the −Y direction side of the −Z direction side end of the radiant heat absorbing member 73 located on the −Y direction side. Further, the end portion on the −Z direction side of the radiant heat absorbing member 73 located at the center is located on the + Y direction side from the end portion on the + Z direction side of the radiant heat absorbing member 73 located on the most + Y direction side.
 補助支持台52の高さは、図2に示すように、支持台51の高さと略同等である。補助支持台52内には、補助支持台52の-Z方向側に開口する複数(本実施形態では2つ)の第2収容室75と、各第2収容室75内から-Y方向側に延びる第2連通路76とが設けられている。支持台51内には、略L字状の第3連通路77が形成されている。補助支持台52と支持台51との間には、第2連通路76と第3連通路77とを連通する連通部材78が設けられている。各第3連通路77は、補助支持台52内の各第2収容室75と第1チャンバ16とを連通する。各第3連通路77の第1チャンバ16に近接する端部には、第3連通路77と第1チャンバ16とを連通する連通部77Aがそれぞれ設けられている。 The height of the auxiliary support base 52 is substantially equal to the height of the support base 51 as shown in FIG. In the auxiliary support base 52, a plurality of (two in the present embodiment) second storage chambers 75 that open on the −Z direction side of the auxiliary support base 52, and from the inside of each second storage chamber 75 to the −Y direction side. An extended second communication path 76 is provided. A substantially L-shaped third communication passage 77 is formed in the support base 51. A communication member 78 that communicates the second communication path 76 and the third communication path 77 is provided between the auxiliary support base 52 and the support base 51. Each third communication passage 77 communicates each second storage chamber 75 in the auxiliary support base 52 with the first chamber 16. A communication portion 77 </ b> A that connects the third communication passage 77 and the first chamber 16 is provided at an end portion of each third communication passage 77 adjacent to the first chamber 16.
 各第2収容室75内には、ターボ分子ポンプ79がそれぞれ収容されている。各ターボ分子ポンプ79の-Z方向側の端部は床13にそれぞれ固定されている。各第2収容室75内においてターボ分子ポンプ79と第2連通路76との間に、ターボ分子ポンプ79の図示しない動翼からの輻射熱を吸収するための輻射熱吸収部材を配置してもよい。ターボ分子ポンプ79の構成は、ターボ分子ポンプ63と同等の構成であるため、その具体的な説明を省略する。 In each second storage chamber 75, a turbo molecular pump 79 is stored. The end of each turbo molecular pump 79 on the −Z direction side is fixed to the floor 13. A radiant heat absorbing member for absorbing radiant heat from a moving blade (not shown) of the turbo molecular pump 79 may be disposed between the turbo molecular pump 79 and the second communication path 76 in each second storage chamber 75. Since the configuration of the turbo molecular pump 79 is the same as that of the turbo molecular pump 63, a specific description thereof is omitted.
 連通部材78は、図5に示すように、円筒形状をなすステンレス製の第2蛇腹部材80を備えている。第2蛇腹部材80は、Y軸方向に沿って伸縮自在である。第2蛇腹部材80の+Y方向側の端部は補助支持台52に固定され、第2蛇腹部材80の-Y方向側の端部は支持台51に固定されている。各第2蛇腹部材80の外周面上には、ゴム製の第2保護部81がそれぞれ設けられている。第2保護部81は、各第2蛇腹部材80をY軸方向に伸縮可能な状態で保護する。ターボ分子ポンプ63は、第1チャンバ16内から排気口16B、第3連通路77、連通部材78内及び第2連通路76を介して気体を吸引し、その気体を、図示しない排気部を介して、露光装置11の外に排気させる。 As shown in FIG. 5, the communication member 78 includes a stainless steel second bellows member 80 having a cylindrical shape. The second bellows member 80 is extendable along the Y-axis direction. The + Y direction end of the second bellows member 80 is fixed to the auxiliary support base 52, and the −Y direction end of the second bellows member 80 is fixed to the support base 51. On the outer peripheral surface of each second bellows member 80, a rubber second protection part 81 is provided. The 2nd protection part 81 protects each 2nd bellows member 80 in the state which can be expanded-contracted in a Y-axis direction. The turbo molecular pump 63 sucks the gas from the first chamber 16 through the exhaust port 16B, the third communication path 77, the communication member 78, and the second communication path 76, and the gas passes through an exhaust unit (not shown). Then, the exposure apparatus 11 is exhausted.
 支持装置14には、図2に示すように、光源装置12の+Z方向側に配置されるクライオポンプ85と、クライオポンプ85を支持するクライオポンプ支持部86とが設けられている。クライオポンプ支持部86の-Z方向側の端部は支持台51に固定されている。また、クライオポンプ85と第1チャンバ16との間には、クライオポンプ85によって第1チャンバ16内を減圧する際に開く弁機構87が設けられている。弁機構87は、制御装置100からの制御指令に基づき開閉する。 2, the support device 14 is provided with a cryopump 85 disposed on the + Z direction side of the light source device 12 and a cryopump support portion 86 that supports the cryopump 85. An end of the cryopump support portion 86 on the −Z direction side is fixed to the support base 51. In addition, a valve mechanism 87 is provided between the cryopump 85 and the first chamber 16 that opens when the inside of the first chamber 16 is decompressed by the cryopump 85. The valve mechanism 87 opens and closes based on a control command from the control device 100.
 次に、上記の露光装置11の作用を、支持装置14の駆動を中心に説明する。
 各ターボ分子ポンプ63,79が駆動すると、第1チャンバ16内全体が減圧されて、第1チャンバ16内における露光光ELの光路内が真空雰囲気に調整される。この際、各ターボ分子ポンプ63,79からは、それらの駆動に基づく振動がそれぞれ発生する。
Next, the operation of the exposure apparatus 11 will be described focusing on the driving of the support apparatus 14.
When the turbo molecular pumps 63 and 79 are driven, the entire inside of the first chamber 16 is decompressed, and the inside of the optical path of the exposure light EL in the first chamber 16 is adjusted to a vacuum atmosphere. At this time, the turbo molecular pumps 63 and 79 generate vibrations based on their driving.
 しかしながら、支持台51内の各ターボ分子ポンプ63の-Z方向側の端部は床13に固定されている。そのため、各ターボ分子ポンプ63からの振動が支持台51に伝わることは、極力抑制される。また、各ターボ分子ポンプ63の+Z方向側の端部は、振動減衰部70を介して第1チャンバ16にそれぞれ接続されている。そのため、各ターボ分子ポンプ63からの振動は、各振動減衰部70の第1蛇腹部材71の伸縮動作によりほとんど吸収される。すなわち、各ターボ分子ポンプ63の駆動に基づく振動は露光装置本体15にほとんど伝達されない。 However, the end of each turbo molecular pump 63 in the support base 51 on the −Z direction side is fixed to the floor 13. Therefore, the transmission of vibration from each turbo molecular pump 63 to the support base 51 is suppressed as much as possible. Further, the end of each turbo molecular pump 63 on the + Z direction side is connected to the first chamber 16 via the vibration damping unit 70. Therefore, the vibration from each turbo molecular pump 63 is almost absorbed by the expansion and contraction operation of the first bellows member 71 of each vibration damping unit 70. That is, vibration based on driving of each turbo molecular pump 63 is hardly transmitted to the exposure apparatus main body 15.
 ターボ分子ポンプ63と同様に、補助支持台52内の各ターボ分子ポンプ79の-Z方向側の端部も床13に固定されている。そのため、各ターボ分子ポンプ79からの振動が支持台51や補助支持台52に伝わることは、極力抑制される。また、補助支持台52は、ターボ分子ポンプ79毎に設けられる各連通部材78を介して支持台51に接続されている。そのため、仮に、ターボ分子ポンプ79の駆動により補助支持台52が振動したとしても、その振動は、各連通部材78の第2蛇腹部材80の伸縮動作によりほとんど吸収される。すなわち、補助支持台52での振動は支持台51にほとんど伝達されない。 Similarly to the turbo molecular pump 63, the end on the −Z direction side of each turbo molecular pump 79 in the auxiliary support base 52 is also fixed to the floor 13. Therefore, the vibration from each turbo molecular pump 79 is prevented from being transmitted to the support base 51 and the auxiliary support base 52 as much as possible. The auxiliary support base 52 is connected to the support base 51 via each communication member 78 provided for each turbo molecular pump 79. Therefore, even if the auxiliary support base 52 vibrates by driving the turbo molecular pump 79, the vibration is almost absorbed by the expansion and contraction operation of the second bellows member 80 of each communication member 78. That is, vibration at the auxiliary support base 52 is hardly transmitted to the support base 51.
 仮に、支持台51が振動したとしても、その振動レベルは、加速度センサ53からの加速度信号に基づき検出される。そして、振動吸収機構27は、支持台51の振動レベルに応じて、支持台51から露光装置本体15に伝達される振動を相殺するように振動する。その結果、支持台51の振動は投影光学系19にほとんど伝達されない。したがって、支持装置14から露光装置本体15に振動が伝達してウエハWのパターン形成に不良が生じることを抑制できる。 Even if the support base 51 vibrates, the vibration level is detected based on the acceleration signal from the acceleration sensor 53. The vibration absorbing mechanism 27 vibrates so as to cancel the vibration transmitted from the support base 51 to the exposure apparatus main body 15 according to the vibration level of the support base 51. As a result, the vibration of the support base 51 is hardly transmitted to the projection optical system 19. Therefore, it is possible to suppress the occurrence of defects in the pattern formation of the wafer W due to the vibration transmitted from the support device 14 to the exposure apparatus main body 15.
 したがって、本実施形態では、以下に示す効果を得ることができる。
 (1)露光装置本体15は、露光装置本体15の下方に配置される支持台51に支持されている。そして、露光装置本体15内における露光光ELの光路内は、支持台51に収容される各ターボ分子ポンプ63の駆動によって減圧される。このように支持台51に各ターボ分子ポンプ63を収容することにより、各種配管や各種電気配線が設置される露光装置本体15の側方、即ち、第1チャンバ16の側壁などにターボ分子ポンプを配置する場合とは異なり、ターボ分子ポンプの大きさや数はほとんど制限されない。したがって、一つのターボ分子ポンプを露光装置本体15の側壁に設置し、そのポンプのみを用いて減圧する従来の構成に比して、露光装置本体15内における露光光ELの光路内を速やかに減圧することができる。
Therefore, in this embodiment, the following effects can be obtained.
(1) The exposure apparatus main body 15 is supported by a support base 51 disposed below the exposure apparatus main body 15. Then, the optical path of the exposure light EL in the exposure apparatus main body 15 is depressurized by driving each turbo molecular pump 63 accommodated in the support base 51. By accommodating the turbo molecular pumps 63 in the support base 51 in this way, the turbo molecular pumps are placed on the side of the exposure apparatus main body 15 where various pipes and various electric wirings are installed, that is, on the side walls of the first chamber 16 and the like. Unlike the arrangement, the size and number of turbo molecular pumps are almost unlimited. Therefore, compared with the conventional configuration in which one turbo molecular pump is installed on the side wall of the exposure apparatus main body 15 and the pressure is reduced using only that pump, the pressure in the optical path of the exposure light EL in the exposure apparatus main body 15 is quickly reduced. can do.
 (2)複数のターボ分子ポンプ63を用いて第1チャンバ16内を減圧することにより、第1チャンバ16内を露光処理が可能な真空度に速やかに調整できる。
 (3)なお、ターボ分子ポンプを、支持台51内に代えて、第1チャンバ16から離間して配置し、ターボ分子ポンプと第1チャンバ16とを長い連通管を介して接続する方法が考えられる。こうした方法によっても、使用できるターボ分子ポンプの大きさや数は制限されない。しかしながら、この方法では、ターボ分子ポンプと第1チャンバ16との距離が長くなるほど、ターボ分子ポンプによる第1チャンバ16内の減圧効率が低下してしまうおそれがある。この点、本実施形態では、ターボ分子ポンプ63を第1チャンバ16の直下に配置できるため、ターボ分子ポンプ63と第1チャンバ16との距離が長くならず、ターボ分子ポンプ63による第1チャンバ16内の減圧効率を高く維持できる。
(2) By depressurizing the interior of the first chamber 16 using the plurality of turbo molecular pumps 63, the interior of the first chamber 16 can be quickly adjusted to a degree of vacuum that allows exposure processing.
(3) A method is considered in which the turbo molecular pump is disposed apart from the first chamber 16 in place of the support base 51 and the turbo molecular pump and the first chamber 16 are connected via a long communication pipe. It is done. Even with such a method, the size and number of turbo molecular pumps that can be used are not limited. However, in this method, as the distance between the turbo molecular pump and the first chamber 16 increases, the pressure reduction efficiency in the first chamber 16 by the turbo molecular pump may decrease. In this regard, in the present embodiment, the turbo molecular pump 63 can be disposed immediately below the first chamber 16, so that the distance between the turbo molecular pump 63 and the first chamber 16 is not increased, and the first chamber 16 is formed by the turbo molecular pump 63. The decompression efficiency can be kept high.
 (4)光源装置12が露光装置本体15よりも下方に配置されるため、露光装置本体15の側方で、且つ光源装置12の上方のスペースを有効に活用できる。例えば、光源装置12の上方にクライオポンプ85を配置することにより、第1チャンバ16内の真空度をより高くすることができる。 (4) Since the light source device 12 is disposed below the exposure device main body 15, the space on the side of the exposure device main body 15 and above the light source device 12 can be used effectively. For example, the degree of vacuum in the first chamber 16 can be further increased by disposing the cryopump 85 above the light source device 12.
 (5)ターボ分子ポンプ63の駆動に基づき発生する振動は、ターボ分子ポンプ63と第1チャンバ16とを連結する振動減衰部70の第1蛇腹部材71が伸縮することにより、好適に減衰される。したがって、各ターボ分子ポンプ63から発生する振動が露光装置本体15に伝達されることを抑制でき、結果として、パターンの像をウエハWに対し好適に投影することができる。 (5) The vibration generated based on the driving of the turbo molecular pump 63 is suitably damped by the expansion and contraction of the first bellows member 71 of the vibration damping unit 70 that connects the turbo molecular pump 63 and the first chamber 16. . Therefore, vibration generated from each turbo molecular pump 63 can be suppressed from being transmitted to the exposure apparatus main body 15, and as a result, a pattern image can be suitably projected onto the wafer W.
 (6)支持台51の側方に配置された補助支持台52内のターボ分子ポンプ79によっても、第1チャンバ16内は減圧される。そのため、支持台51内のターボ分子ポンプ63だけで第1チャンバ16内を減圧する場合に比して、第1チャンバ16内をより効率良く減圧することができる。 (6) The inside of the first chamber 16 is also depressurized by the turbo molecular pump 79 in the auxiliary support base 52 arranged on the side of the support base 51. Therefore, the inside of the first chamber 16 can be decompressed more efficiently than when the inside of the first chamber 16 is decompressed only by the turbo molecular pump 63 in the support base 51.
 (7)ターボ分子ポンプ79の駆動によって補助支持台52が振動したとしても、その振動は、補助支持台52と支持台51とを連結する各連通部材78の第2蛇腹部材80が伸縮動作することにより、好適に減衰される。その結果、ターボ分子ポンプ79から発生する振動が露光装置本体15に伝達されることを抑制できる。したがって、パターンの像をウエハWに対し好適に投影することができる。 (7) Even if the auxiliary support base 52 vibrates by driving the turbo molecular pump 79, the vibration causes the second bellows member 80 of each communication member 78 that connects the auxiliary support base 52 and the support base 51 to expand and contract. Therefore, it is preferably attenuated. As a result, vibration generated from the turbo molecular pump 79 can be prevented from being transmitted to the exposure apparatus main body 15. Therefore, a pattern image can be suitably projected onto the wafer W.
 (8)支持台51内のターボ分子ポンプ63が駆動すると、ターボ分子ポンプ63の動翼68に熱エネルギーが蓄えられる。こうした熱エネルギーは、複数の輻射熱吸収部材73によって吸収される。そのため、動翼68が放出する輻射熱が露光装置本体15内の部材(例えば、反射ミラー)に伝達されることを抑制でき、結果として、反射ミラーなどの熱変形を好適に抑制できる。したがって、パターンの像をウェハWに対し投影するときに反射ミラーの熱変形に起因して投影不良が発生することを抑制できる。 (8) When the turbo molecular pump 63 in the support base 51 is driven, thermal energy is stored in the moving blade 68 of the turbo molecular pump 63. Such thermal energy is absorbed by the plurality of radiant heat absorbing members 73. Therefore, it is possible to suppress the radiant heat emitted from the moving blade 68 from being transmitted to a member (for example, a reflection mirror) in the exposure apparatus main body 15, and as a result, it is possible to suitably suppress thermal deformation of the reflection mirror and the like. Therefore, when a pattern image is projected onto the wafer W, it is possible to suppress the occurrence of poor projection due to thermal deformation of the reflection mirror.
 (9)第1チャンバ16に直接接触する各載置部55の温度は、冷却機構56によって、第1チャンバ16の温度と同程度に調整される。そのため、各載置部55及び第1チャンバ16間での熱エネルギーの移動が回避されることから、露光装置本体15内の温度を所望する温度に維持することができる。 (9) The temperature of each mounting portion 55 that is in direct contact with the first chamber 16 is adjusted to the same level as the temperature of the first chamber 16 by the cooling mechanism 56. Therefore, the movement of the heat energy between each placement unit 55 and the first chamber 16 is avoided, so that the temperature in the exposure apparatus main body 15 can be maintained at a desired temperature.
 (10)ターボ分子ポンプ63の駆動に基づき発生する僅かな振動であっても、露光装置本体15に伝達される可能性がある。そこで、本実施形態では、支持台51を介して露光装置本体15に伝達される振動の大きさや周波数を、加速度センサ53からの加速度信号に基づき検出し、支持台51からの振動を、振動吸収機構27の駆動によって吸収することができる。すなわち、検出した振動と逆の位相で振動吸収機構27を振動させることにより、支持台51からの振動を相殺することができる。その結果、少なくとも投影光学系19の振動が抑制されて、パターンの像をウエハWに対して好適に投影することができる。 (10) Even a slight vibration generated based on the driving of the turbo molecular pump 63 may be transmitted to the exposure apparatus main body 15. Therefore, in the present embodiment, the magnitude and frequency of vibration transmitted to the exposure apparatus main body 15 via the support base 51 are detected based on the acceleration signal from the acceleration sensor 53, and the vibration from the support base 51 is absorbed by vibration. It can be absorbed by driving the mechanism 27. That is, the vibration from the support base 51 can be canceled by vibrating the vibration absorbing mechanism 27 with a phase opposite to the detected vibration. As a result, at least vibration of the projection optical system 19 is suppressed, and a pattern image can be suitably projected onto the wafer W.
 なお、上記実施形態は以下のように変更してもよい。
 ・実施形態において、露光装置11からクライオポンプ85を省略してもよい。
 ・実施形態において、各ターボ分子ポンプ63から発生する振動が支持台51に伝達されないことが確認される場合には、支持面50上に配置した加速度センサ53や、振動吸収機構27を省略してもよい。
In addition, you may change the said embodiment as follows.
In the embodiment, the cryopump 85 may be omitted from the exposure apparatus 11.
In the embodiment, when it is confirmed that the vibration generated from each turbo molecular pump 63 is not transmitted to the support base 51, the acceleration sensor 53 and the vibration absorption mechanism 27 arranged on the support surface 50 are omitted. Also good.
 ・実施形態において、支持台51上に設置された載置部55に代えて、振動吸収機構27と同等の機能を有する装置を配置してもよい。そして、これら各装置を、加速度センサ53から出力される加速度振動に基づき検出、若しくは推定される支持台51の振動を相殺するように振動させることが望ましい。この構成にすると、支持台51が振動したとしても、露光装置本体15に支持台51の振動が伝達されることを抑制できる。その結果、露光装置本体15内でウエハWにパターンを正確に形成することができる。 In the embodiment, a device having a function equivalent to that of the vibration absorbing mechanism 27 may be arranged in place of the mounting portion 55 installed on the support base 51. And it is desirable to vibrate these devices so as to cancel the vibration of the support base 51 detected or estimated based on the acceleration vibration output from the acceleration sensor 53. With this configuration, even if the support base 51 vibrates, it is possible to suppress the vibration of the support base 51 from being transmitted to the exposure apparatus main body 15. As a result, the pattern can be accurately formed on the wafer W in the exposure apparatus main body 15.
 ・実施形態において、温度検出部は、各ターボ分子ポンプ63から発生した熱量を検出、又は発生し得る熱量を推定するようにしてもよい。この場合、冷却機構56は、温度検出部によって検出又は推定された熱量に応じて駆動される。 In the embodiment, the temperature detection unit may detect the amount of heat generated from each turbo molecular pump 63 or estimate the amount of heat that can be generated. In this case, the cooling mechanism 56 is driven according to the amount of heat detected or estimated by the temperature detection unit.
 ・実施形態において、冷却機構56は、ペルチェ素子を用いて載置部55を冷却する構成であってもよい。
 ・実施形態において、冷却機構56は、冷却用流路57内に冷却用ガスを供給する構成であってもよい。
In the embodiment, the cooling mechanism 56 may be configured to cool the mounting portion 55 using a Peltier element.
In the embodiment, the cooling mechanism 56 may be configured to supply the cooling gas into the cooling flow path 57.
 ・実施形態において、支持台51内のターボ分子ポンプ63の動翼68からの輻射熱が露光装置本体15に影響を与えないと確認できた場合には、輻射熱吸収部材73を省略してもよい。 In the embodiment, when it is confirmed that the radiant heat from the moving blade 68 of the turbo molecular pump 63 in the support base 51 does not affect the exposure apparatus main body 15, the radiant heat absorbing member 73 may be omitted.
 ・実施形態において、ターボ分子ポンプ63,79を、床13上に配置される支持台51や補助支持台52に固定してもよい。
 ・実施形態において、補助支持台52内に、任意の数(例えば3つ)のターボ分子ポンプ79を設けてもよい。
In the embodiment, the turbo molecular pumps 63 and 79 may be fixed to the support base 51 and the auxiliary support base 52 arranged on the floor 13.
In the embodiment, an arbitrary number (for example, three) of turbo molecular pumps 79 may be provided in the auxiliary support base 52.
 ・実施形態において、連通部材78は、振動減衰作用を有しない構成であってもよい。この構成によれば、補助支持台52内のターボ分子ポンプ79から発生した振動が支持台51に伝達されたとしても、その振動は、投影光学系19を支持する振動吸収機構27によって好適に吸収される。 In the embodiment, the communication member 78 may be configured not to have a vibration damping action. According to this configuration, even if the vibration generated from the turbo molecular pump 79 in the auxiliary support base 52 is transmitted to the support base 51, the vibration is suitably absorbed by the vibration absorbing mechanism 27 that supports the projection optical system 19. Is done.
 ・実施形態において、支持装置14は、補助支持台52を備えていなくてもよい。
 ・実施形態において、支持台51内に、任意の数(例えば4つ)のターボ分子ポンプ63を設けてもよい。
In the embodiment, the support device 14 may not include the auxiliary support base 52.
In the embodiment, an arbitrary number (for example, four) of turbo molecular pumps 63 may be provided in the support base 51.
 ・実施形態において、支持台51内に形成された収容室61へのターボ分子ポンプ63の設置は、支持台51の側面に形成された不図示の開閉扉を介して行ってもよい。
 ・実施形態において、支持台51内に形成された収容室61へのターボ分子ポンプの設定は、床13の下側から行ってもよい。この場合、床13において、収容室61に対応する部分に開閉扉を設け、この開閉扉を介してターボ分子ポンプ63を設定すればよい。
In the embodiment, the turbo molecular pump 63 may be installed in the storage chamber 61 formed in the support base 51 through an opening / closing door (not shown) formed on the side surface of the support base 51.
In the embodiment, the turbo molecular pump may be set in the storage chamber 61 formed in the support base 51 from the lower side of the floor 13. In this case, on the floor 13, an opening / closing door may be provided at a portion corresponding to the accommodation chamber 61, and the turbo molecular pump 63 may be set via the opening / closing door.
 ・実施形態において、支持台51内に収容されたターボ分子ポンプ63を省略してもよい。この構成によれば、第1チャンバ16内は、補助支持台52内の各ターボ分子ポンプ79によって減圧される。 In the embodiment, the turbo molecular pump 63 accommodated in the support base 51 may be omitted. According to this configuration, the pressure in the first chamber 16 is reduced by each turbo molecular pump 79 in the auxiliary support base 52.
 ・実施形態において、支持装置14は、ドライポンプを備えてもよい。ドライポンプは、支持台51内に配置することが望ましい。
 ・実施形態において、振動減衰部70は、支持台51内のターボ分子ポンプ63から発生する振動の逆位相で振動可能であってもよい。この場合、ターボ分子ポンプ63から発生する振動の大きさや周波数を検出又は推定する装置を設けることが望ましい。
In the embodiment, the support device 14 may include a dry pump. The dry pump is preferably arranged in the support base 51.
In the embodiment, the vibration attenuating unit 70 may be able to vibrate with a phase opposite to the vibration generated from the turbo molecular pump 63 in the support base 51. In this case, it is desirable to provide a device for detecting or estimating the magnitude and frequency of vibration generated from the turbo molecular pump 63.
 ・実施形態において、光源装置12の光源部44は、露光装置本体15の側方に位置していてもよい。この場合、光源装置12からは、Y軸方向に沿って露光光ELが射出される。 In the embodiment, the light source unit 44 of the light source device 12 may be located on the side of the exposure apparatus main body 15. In this case, the exposure light EL is emitted from the light source device 12 along the Y-axis direction.
 ・実施形態において、露光装置11では、第1チャンバ16内全体ではなく、露光装置本体15内における露光光ELの光路及びその近傍のみを減圧するようにしてもよい。
 ・実施形態において、露光装置11は、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクルまたはマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハなどへ回路パターンを転写する露光装置であってもよい。また、露光装置11は、液晶表示素子(LCD)などを含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッド等の製造に用いられて、デバイスパターンをセラミックウエハ等へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置などであってもよい。
In the embodiment, the exposure apparatus 11 may reduce the pressure only in the optical path of the exposure light EL in the exposure apparatus main body 15 and in the vicinity thereof, not in the entire first chamber 16.
In the embodiment, the exposure apparatus 11 is for manufacturing a reticle or mask used not only in a micro device such as a semiconductor element but also in an optical exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, and an electron beam exposure apparatus. In addition, an exposure apparatus that transfers a circuit pattern from a mother reticle to a glass substrate, a silicon wafer, or the like may be used. The exposure apparatus 11 is used for manufacturing a display including a liquid crystal display element (LCD) and the like, and is used for manufacturing an exposure apparatus that transfers a device pattern onto a glass plate, a thin film magnetic head, and the like. It may be an exposure apparatus that transfers to a wafer or the like, and an exposure apparatus that is used to manufacture an image sensor such as a CCD.
 ・実施形態において、照明光学系17を、レチクルRとウエハWとを相対移動させてレチクルRのパターンをウエハWに転写し、ウエハWを順次ステップ移動させるスキャニング・ステッパに搭載してもよい。 In the embodiment, the illumination optical system 17 may be mounted on a scanning stepper that moves the reticle R and the wafer W relative to each other, transfers the pattern of the reticle R onto the wafer W, and sequentially moves the wafer W stepwise.
 ・実施形態において、光源装置12の高出力レーザ48は、COレーザであってもよい。
 ・実施形態において、光源装置12は、放電型プラズマ光源を有する装置であってもよい。
In the embodiment, the high-power laser 48 of the light source device 12 may be a CO 2 laser.
In the embodiment, the light source device 12 may be a device having a discharge plasma light source.
 ・実施形態において、露光装置11は、EB(Electron Beam )を露光光ELとして用いる露光装置であってもよい。
 ・実施形態において、光源装置12は、例えば、g線(436nm)、i線(365nm)、KrFエキシマレーザ(248nm)、Fレーザ(157nm)、Krレーザ(146nm)、Arレーザ(126nm)等を供給可能な光源であってもよい。また、光源装置12は、DFB半導体レーザまたはファイバレーザから発振される赤外域、または可視域の単一波長レーザ光を、例えばエルビウム(またはエルビウムとイッテルビウムの双方)がドープされたファイバアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を供給可能な光源であってもよい。
In the embodiment, the exposure apparatus 11 may be an exposure apparatus that uses EB (Electron Beam) as the exposure light EL.
In the embodiment, the light source device 12 includes, for example, g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), F 2 laser (157 nm), Kr 2 laser (146 nm), Ar 2 laser (126 nm) Or the like. The light source device 12 amplifies the infrared or visible single wavelength laser light oscillated from the DFB semiconductor laser or fiber laser, for example, with a fiber amplifier doped with erbium (or both erbium and ytterbium). Alternatively, a light source capable of supplying harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
 ・実施形態において、ターゲットは、キセノンに限定されずに、例えば、気体状、固体状又は液体状の錫、或いは、錫を含む化合物などを用いてもよい。
 次に、本発明の実施形態の露光装置11によるデバイスの製造方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図6は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造工程を示すフローチャートである。
In the embodiment, the target is not limited to xenon, and for example, gaseous, solid, or liquid tin, or a compound containing tin may be used.
Next, an embodiment of a microdevice manufacturing method using the device manufacturing method by the exposure apparatus 11 of the embodiment of the present invention in the lithography process will be described. FIG. 6 is a flowchart showing a manufacturing process of a microdevice (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, etc.).
 まず、ステップS101(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターンを設計する。引き続き、ステップS102(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクルRなど)を製作する。一方、ステップS103(基板製造ステップ)において、シリコン、ガラス、セラミックス等の材料を用いて基板(シリコン材料を用いた場合にはウエハWとなる。)を製造する。 First, in step S101 (design step), a function / performance design of a micro device (for example, a circuit design of a semiconductor device) is performed, and a pattern for realizing the function is designed. Subsequently, in step S102 (mask manufacturing step), a mask (reticle R or the like) on which the designed circuit pattern is formed is manufactured. On the other hand, in step S103 (substrate manufacturing step), a substrate (a wafer W when a silicon material is used) is manufactured using a material such as silicon, glass, or ceramics.
 次に、ステップS104(基板処理ステップ)において、ステップS101~ステップS104で用意したマスクと基板を使用して、後述するように、リソグラフィ技術等によって基板上に実際の回路等を形成する。次いで、ステップS105(デバイス組立ステップ)において、ステップS104で処理された基板を用いてデバイスを組み立てる。このステップS105には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS106(検査ステップ)において、ステップS105で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、出荷される。 Next, in step S104 (substrate processing step), using the mask and substrate prepared in steps S101 to S104, an actual circuit or the like is formed on the substrate by a lithography technique or the like as will be described later. Next, in step S105 (device assembly step), a device is assembled using the substrate processed in step S104. Step S105 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary. Finally, in step S106 (inspection step), inspections such as an operation confirmation test and a durability test of the microdevice manufactured in step S105 are performed. After these steps, the microdevice is completed and shipped.
 図7は、半導体デバイスの場合におけるステップS104の詳細を示す。
 ステップS111(酸化ステップ)おいて、基板の表面を酸化させる。ステップS112(CVDステップ)において、基板表面に絶縁膜を形成する。ステップS113(電極形成ステップ)において、基板上に電極を蒸着によって形成する。ステップS114(イオン打込みステップ)において、基板にイオンを打ち込む。ステップS111~ステップS114は、基板処理の各段階の前処理工程を構成し、各段階において必要な処理に応じて選択されて実行される。
FIG. 7 shows details of step S104 in the case of a semiconductor device.
In step S111 (oxidation step), the surface of the substrate is oxidized. In step S112 (CVD step), an insulating film is formed on the substrate surface. In step S113 (electrode formation step), an electrode is formed on the substrate by vapor deposition. In step S114 (ion implantation step), ions are implanted into the substrate. Steps S111 to S114 constitute a pretreatment process at each stage of the substrate processing, and are selected and executed according to necessary processes at each stage.
 基板プロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。後処理工程では、まず、ステップS115(レジスト形成ステップ)において、基板に感光性材料を塗布する。引き続き、ステップS116(露光ステップ)において、リソグラフィシステム(露光装置11)によってマスクの回路パターンを基板に転写する。次に、ステップS117(現像ステップ)において、ステップS116にて露光された基板を現像して、基板の表面に回路パターンからなるマスク層を形成する。さらに続いて、ステップS118(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS119(レジスト除去ステップ)において、エッチングが済んで不要となった感光性材料を取り除く。すなわち、ステップS118及びステップS119において、マスク層を介して基板の表面を加工する。これらの前処理工程と後処理工程とを繰り返すことによって、基板上に多重に回路パターンが形成される。 At each stage of the substrate process, when the above-described pretreatment process is completed, the posttreatment process is executed as follows. In the post-processing step, first, in step S115 (resist formation step), a photosensitive material is applied to the substrate. Subsequently, in step S116 (exposure step), the circuit pattern of the mask is transferred to the substrate by the lithography system (exposure apparatus 11). Next, in step S117 (development step), the substrate exposed in step S116 is developed to form a mask layer made of a circuit pattern on the surface of the substrate. Subsequently, in step S118 (etching step), the exposed member other than the portion where the resist remains is removed by etching. In step S119 (resist removal step), the photosensitive material that has become unnecessary after the etching is removed. That is, in step S118 and step S119, the surface of the substrate is processed through the mask layer. By repeating these pre-process and post-process, multiple circuit patterns are formed on the substrate.

Claims (22)

  1. 光源部から射出される光で第1面を照明可能な照明光学系、及び所定のパターンの像を前記第1面とは異なる第2面上に投影可能な投影光学系を有する露光装置本体と、
     前記露光装置本体を下方から支持する支持台と、
     前記露光装置本体の下方に配置され、且つ露光装置本体内における前記光の光路内を減圧するための真空排気部と
     を備えた露光装置。
    An exposure optical system having an illumination optical system capable of illuminating the first surface with light emitted from the light source unit, and a projection optical system capable of projecting an image of a predetermined pattern onto a second surface different from the first surface; ,
    A support base for supporting the exposure apparatus main body from below;
    An exposure apparatus comprising: a vacuum exhaust unit disposed under the exposure apparatus main body and depressurizing an optical path of the light in the exposure apparatus main body.
  2. 前記支持台は、前記真空排気部と前記露光装置本体内とを連通する連通路を有する請求項1に記載の露光装置。 The exposure apparatus according to claim 1, wherein the support base has a communication path that communicates the vacuum exhaust section and the inside of the exposure apparatus main body.
  3. 前記光源部は、前記光を中間集光点に集光させる集光光学系を備えている請求項1又は請求項2に記載の露光装置。 The exposure apparatus according to claim 1, wherein the light source unit includes a condensing optical system that condenses the light at an intermediate condensing point.
  4. 前記光源部は、前記支持台の側方に配置され、前記集光光学系は、前記光を前記光源部の斜め上方に位置する前記露光装置本体に向けて射出するように配置されている請求項3に記載の露光装置。 The light source unit is disposed on a side of the support base, and the condensing optical system is disposed so as to emit the light toward the exposure apparatus body located obliquely above the light source unit. Item 4. The exposure apparatus according to Item 3.
  5. 前記支持台の高さは、前記光源部における光の発光点と前記中間集光点との距離に基づき設定されている請求項3又は請求項4に記載の露光装置。 The exposure apparatus according to claim 3, wherein the height of the support base is set based on a distance between a light emission point of the light source unit and the intermediate condensing point.
  6. 前記支持台の高さは、前記集光光学系の配置に基づき設定されている請求項3又は請求項4に記載の露光装置。 The exposure apparatus according to claim 3, wherein a height of the support base is set based on an arrangement of the condensing optical system.
  7. 前記真空排気部は、前記支持台内に収容され、前記連通路内には、前記真空排気部の駆動に基づき発生する振動を減衰させる振動減衰部が設けられている請求項2に記載の露光装置。 The exposure according to claim 2, wherein the vacuum evacuation unit is accommodated in the support base, and a vibration attenuating unit for attenuating vibration generated based on driving of the evacuation unit is provided in the communication path. apparatus.
  8. 前記真空排気部は、前記振動減衰部を介して前記露光装置本体に接続されている請求項7に記載の露光装置。 The exposure apparatus according to claim 7, wherein the vacuum exhaust unit is connected to the exposure apparatus main body via the vibration damping unit.
  9. 前記支持台は、前記真空排気部を収容する複数の収容室を有し、前記各収容室内には、前記真空排気部がそれぞれ収容されている請求項1~請求項8のうち何れか一項に記載の露光装置。 9. The support table includes a plurality of storage chambers that store the vacuum exhaust unit, and the vacuum exhaust units are stored in the storage chambers, respectively. The exposure apparatus described in 1.
  10. 前記支持台の側方に配置され、且つ前記真空排気部を収容する収容室を有する補助支持台をさらに備え、
     前記補助支持台と前記支持台との間には、前記補助支持台の収容室と前記支持台の連通路とを連通する連通部材が設けられ、前記連通部材は、前記真空排気部の駆動に基づき発生する振動を減衰させる請求項2に記載の露光装置。
    An auxiliary support base disposed on the side of the support base and having a storage chamber for storing the evacuation unit;
    A communication member is provided between the auxiliary support base and the support base to connect the storage chamber of the auxiliary support base and the communication path of the support base, and the communication member is used to drive the vacuum exhaust unit. The exposure apparatus according to claim 2, wherein the generated vibration is attenuated.
  11. 前記補助支持台内には、複数の前記収容室が形成され、前記各収容室内には、前記真空排気部がそれぞれ収容されている請求項10に記載の露光装置。 The exposure apparatus according to claim 10, wherein a plurality of the storage chambers are formed in the auxiliary support base, and the vacuum evacuation unit is stored in each of the storage chambers.
  12. 前記真空排気部は、ターボ分子ポンプを有する請求項2~請求項11のうち何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 2 to 11, wherein the vacuum exhaust unit includes a turbo molecular pump.
  13. 前記真空排気部は、所定の軸線を中心に回転する動翼を備え、前記支持台の連通路内には、前記動翼から放出される輻射熱を吸収する輻射熱吸収部材が設けられている請求項12に記載の露光装置。 The evacuation unit includes a moving blade that rotates about a predetermined axis, and a radiant heat absorbing member that absorbs radiant heat emitted from the moving blade is provided in a communication path of the support base. 12. The exposure apparatus according to 12.
  14. 前記支持台には、前記露光装置本体が載置される載置面を有する載置部が設けられている請求項1~請求項13のうち何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 13, wherein the support base is provided with a mounting portion having a mounting surface on which the exposure apparatus main body is mounted.
  15. 前記載置部を冷却する冷却部をさらに備える請求項14に記載の露光装置。 The exposure apparatus according to claim 14, further comprising a cooling unit that cools the mounting unit.
  16. 前記冷却部は、前記支持台内に配置され、且つ冷却用流体が流動可能な冷却用流路を備えている請求項15に記載の露光装置。 The exposure apparatus according to claim 15, wherein the cooling unit includes a cooling channel that is disposed in the support base and through which a cooling fluid can flow.
  17. 前記真空排気部の発熱量を検出するための温度検出部をさらに備え、
     前記冷却部は、前記温度検出部によって検出される温度に基づき駆動する請求項15又は請求項16に記載の露光装置。
    A temperature detection unit for detecting a heat generation amount of the vacuum exhaust unit;
    The exposure apparatus according to claim 15, wherein the cooling unit is driven based on a temperature detected by the temperature detection unit.
  18. 前記支持台の振動レベルを検出するための振動検出部と、
     前記支持台から前記露光装置本体に伝達される振動を吸収する振動吸収部と、をさらに備え、
     前記振動吸収部は、前記振動検出部によって検出される振動レベルに基づき、前記支持台から伝達される振動を相殺するように駆動される請求項2~請求項17のうち何れか一項に記載の露光装置。
    A vibration detector for detecting a vibration level of the support;
    A vibration absorbing portion that absorbs vibration transmitted from the support to the exposure apparatus main body,
    The vibration absorbing unit is driven to cancel the vibration transmitted from the support base based on a vibration level detected by the vibration detecting unit. Exposure equipment.
  19. 前記光は、EUV光である請求項1~請求項18のうち何れか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 18, wherein the light is EUV light.
  20. リソグラフィ工程を含むデバイスの製造方法において、
     前記リソグラフィ工程は、請求項1~請求項19のうち何れか一項に記載の露光装置を用いることを特徴とするデバイスの製造方法。
    In a device manufacturing method including a lithography process,
    The device manufacturing method using the exposure apparatus according to any one of claims 1 to 19, in the lithography process.
  21. 光源部から射出される光で第1面を照明可能な照明光学系及び所定のパターンの像を前記第1面とは異なる第2面上に投影可能な投影光学系を有する露光装置本体を支持する支持装置において、
     前記露光装置本体が載置される載置面を有する支持台と、
     前記露光装置本体内を減圧する真空排気部と、
     前記支持台内に形成され、且つ前記露光装置本体と前記真空排気部とを連通する連通路と、
     前記連通路内に配置され、且つ前記真空排気部の駆動に基づき発生する振動を減衰させる振動減衰部と
     を備えた支持装置。
    Supports an exposure apparatus body having an illumination optical system capable of illuminating the first surface with light emitted from the light source unit and a projection optical system capable of projecting an image of a predetermined pattern onto a second surface different from the first surface. In the supporting device to
    A support base having a mounting surface on which the exposure apparatus main body is mounted;
    A vacuum exhaust unit for reducing the pressure in the exposure apparatus body;
    A communication path formed in the support base and communicating the exposure apparatus main body and the vacuum exhaust unit;
    And a vibration attenuating portion that is disposed in the communication path and attenuates vibrations generated based on driving of the evacuation portion.
  22. 光源部から射出される光で第1面を照明可能な照明光学系及び所定のパターンの像を前記第1面とは異なる第2面上に投影可能な投影光学系を有する露光装置本体を支持する支持台において、
     前記露光装置本体内を減圧するための真空排気部を収容する収容空間と、前記収容空間と前記露光装置本体とを連通する連通路とが形成されたことを特徴とする支持台。
    Supports an exposure apparatus body having an illumination optical system capable of illuminating the first surface with light emitted from the light source unit and a projection optical system capable of projecting an image of a predetermined pattern onto a second surface different from the first surface. In the support stand to
    2. A support base comprising: a housing space for housing a vacuum exhaust portion for decompressing the inside of the exposure apparatus main body; and a communication path for communicating the housing space and the exposure apparatus main body.
PCT/JP2009/067033 2008-09-30 2009-09-30 Exposure apparatus, supporting apparatus, and device manufacturing method WO2010038780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008254898 2008-09-30
JP2008-254898 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038780A1 true WO2010038780A1 (en) 2010-04-08

Family

ID=42073539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067033 WO2010038780A1 (en) 2008-09-30 2009-09-30 Exposure apparatus, supporting apparatus, and device manufacturing method

Country Status (1)

Country Link
WO (1) WO2010038780A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192556A (en) * 1992-01-22 1993-08-03 Toshiba Mach Co Ltd Vacuum device and use thereof
JP2005268265A (en) * 2004-03-16 2005-09-29 Nikon Corp Collimator optical system and illumination optical system
JP2007123600A (en) * 2005-10-28 2007-05-17 Canon Inc Exposure apparatus
JP2007294673A (en) * 2006-04-25 2007-11-08 Nikon Corp Exposure device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192556A (en) * 1992-01-22 1993-08-03 Toshiba Mach Co Ltd Vacuum device and use thereof
JP2005268265A (en) * 2004-03-16 2005-09-29 Nikon Corp Collimator optical system and illumination optical system
JP2007123600A (en) * 2005-10-28 2007-05-17 Canon Inc Exposure apparatus
JP2007294673A (en) * 2006-04-25 2007-11-08 Nikon Corp Exposure device

Similar Documents

Publication Publication Date Title
JP5141979B2 (en) Stage apparatus and exposure apparatus
US8614786B2 (en) Robot for in-vacuum use
US7288859B2 (en) Wafer stage operable in a vacuum environment
JP4370924B2 (en) Vacuum apparatus, operating method of vacuum apparatus, exposure apparatus, and operating method of exposure apparatus
US7126664B2 (en) Lithographic apparatus and a device manufacturing method
JP2010529687A (en) Contamination prevention system, lithographic apparatus, radiation source, and device manufacturing method
US20090190117A1 (en) Exposure apparatus, manufacturing method and supporting method thereof
JP3727222B2 (en) Insulation mount for use with vacuum chambers and use in lithographic projection equipment
JP2009004647A (en) Vacuum container, evaluation method and euv lithography
JP2008147280A (en) Exposure apparatus
US11204558B2 (en) Particle suppression systems and methods
WO2010038780A1 (en) Exposure apparatus, supporting apparatus, and device manufacturing method
WO2003054936A1 (en) Gas purging method and exposure system, and device production method
JP2010129687A (en) Vacuum apparatus, light source apparatus, exposure apparatus, and method of manufacturing device
JP2007518261A (en) Lithographic apparatus and device manufacturing method
US11442369B2 (en) Object stage bearing for lithographic apparatus
JP2010087256A (en) Differential exhaust apparatus, light source unit, exposure apparatus, and method of manufacturing device
JP2011040540A (en) Method for maintenance of substrate processing apparatus, substrate processing apparatus, and device manufacturing method
JP2011029511A (en) Optical system, exposure device and method of manufacturing device
JP4908807B2 (en) Processing apparatus, exposure apparatus, and device manufacturing method
JP2010141264A (en) Vacuum device, light source device, exposure device, and device manufacturing method
JP2010192675A (en) Light source device, exposure device, and method for manufacturing device
JP2008108772A (en) Aligner and support structure thereof
JP2011233816A (en) Reflective optical element, optical unit, optical apparatus, and device manufacturing method
JP2010087364A (en) Exposure device, light source apparatus, leakage detecting method and manufacturing method of device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP