WO2003054936A1 - Gas purging method and exposure system, and device production method - Google Patents

Gas purging method and exposure system, and device production method Download PDF

Info

Publication number
WO2003054936A1
WO2003054936A1 PCT/JP2002/013425 JP0213425W WO03054936A1 WO 2003054936 A1 WO2003054936 A1 WO 2003054936A1 JP 0213425 W JP0213425 W JP 0213425W WO 03054936 A1 WO03054936 A1 WO 03054936A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exposure apparatus
space
clearance
shielding member
Prior art date
Application number
PCT/JP2002/013425
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2002366929A priority Critical patent/AU2002366929A1/en
Priority to JP2003555564A priority patent/JPWO2003054936A1/en
Publication of WO2003054936A1 publication Critical patent/WO2003054936A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Definitions

  • the present invention relates to a gas purging method, an exposure apparatus, and a device manufacturing method, and more particularly, to a gas purging method and a gas purging method for purging a space between an object disposed on an optical path of light having a predetermined wavelength and an optical apparatus. And a device manufacturing method using the exposure apparatus.
  • the exposure wavelength has been shifted to shorter wavelengths in order to realize high resolution in response to miniaturization of integrated circuits.
  • the wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of 1193 nm of the ArF excimer laser is entering the practical stage.
  • further F 2 laser and the wavelength 1 5 7 nm short wavelength, the A r 2 laser having a wavelength of 1 2 6 nm, projection using a light source emitting light in a wavelength band so-called vacuum ultraviolet region Exposure apparatuses have also been proposed.
  • Such vacuum ultraviolet light having a wavelength of 180 nm or less is generated by oxygen and water vapor in the atmosphere. Receive severe absorption. For this reason, in an exposure apparatus that uses vacuum ultraviolet light as exposure light, gas in the space hardly absorbs the exposure light because light-absorbing substances such as oxygen and water vapor are excluded from the space on the optical path of the exposure light. It is necessary to perform gas replacement (gas purging) with a rare gas such as nitrogen or helium. For example, in an exposure system that uses an F 2 laser with an oscillation wavelength of 157 nm as a light source, it is said that the residual oxygen concentration must be kept below 1 ppm over most of the optical path from the laser to the wafer. .
  • high resolution can be realized not only by shortening the exposure wavelength but also by increasing the numerical aperture (N.A.) of the optical system.
  • N.A. numerical aperture
  • A the degree of the aberration of the projection optical system in addition to increasing the size of the projection optical system.
  • wavefront aberration measurement using light interference is performed, the amount of residual aberration is measured with an accuracy of about 1100 of the exposure wavelength, and the projection optical system is measured based on the measured value. The system is being adjusted.
  • a relative scan of the reticle and wafer is performed during exposure while maintaining the imaging relationship.
  • a scanning projection exposure apparatus for example, a step-and-scan scanning projection exposure apparatus (ie, a so-called scanning stepper) has become the mainstream in recent years.
  • the concentration of residual oxygen and water vapor in the space near the reticle also needs to be suppressed to about 1 ppm or less.
  • a method of realizing this a method of covering the entire reticle stage holding the reticle with a large airtight shielding container (reticle stage chamber) and purging the entire inside (including the reticle stage and the reticle) with gas is also conceivable. Only However, when such a shielding container is used, the exposure apparatus becomes larger and heavier, and the installation area (footprint) per exposure apparatus in a clean room of a semiconductor factory becomes larger, and equipment costs (or equipment costs) increase.
  • the productivity of the semiconductor device is reduced due to an increase in running cost.
  • access to the vicinity of the reticle becomes difficult, and workability during maintenance of the reticle stage and the like decreases, so that the time required for maintenance increases, and in this regard, the productivity of semiconductor elements also decreases.
  • a scanning projection exposure apparatus has a large reticle stage because it is necessary to scan the reticle at high speed during exposure, and the shielding container (reticle stage chamber) that covers the entire large reticle stage is becoming larger. I will.
  • gas purging of the space near the reticle is not only a problem for the projection exposure apparatus, but also for an inspection optical apparatus for measuring aberration of a projection optical system mounted on the projection exposure apparatus.
  • a first object of the present invention is to provide a large and heavy airtight space for efficient gas replacement of a space between an object arranged on an optical path of light and an optical device.
  • An object of the present invention is to provide a gas purging method which can be realized without using a mold shielding container.
  • a second object of the present invention is to provide an exposure apparatus capable of improving exposure accuracy while suppressing an increase in the size and weight of the apparatus.
  • a third object of the present invention is to provide a device manufacturing method capable of improving the productivity of a highly integrated device. Disclosure of the invention
  • a gas purging method for gas purging a space between an object disposed on an optical path of light having a predetermined wavelength and an optical device, the method comprising: at least holding the object and the object; Between a specific object that is one of the holding members Arranging a shielding member for shielding a space between the optical device and the object from outside air in a state in which a predetermined first clearance is formed; specifying that the absorption characteristic for the light is lower than that of the absorbing gas Supplying a gas to a space inside the shielding member through an air supply opening formed in the shielding member.
  • the absorptive gas is a general term for a gas having a large absorption characteristic with respect to the light having the predetermined wavelength (light used in an optical device).
  • the light is a vacuum having a wavelength of 120 nm to 180 nm.
  • a gas containing a light-absorbing substance such as oxygen, water vapor, or a hydrocarbon that strongly absorbs the vacuum ultraviolet light is applicable.
  • the term “absorbable gas” is used in this sense. Since general air (atmosphere) also contains a large amount of oxygen and water vapor, it should be treated as an absorbent gas. Therefore, the absorbing gas differs depending on the wavelength (predetermined wavelength) of the light.
  • the shielding member is disposed in a state where a predetermined first clearance is formed between at least the object and a specific object that is one of the holding members that hold the object.
  • a predetermined first clearance is formed between at least the object and a specific object that is one of the holding members that hold the object.
  • the method may further include a step of exhausting gas in a space inside the shielding member to the outside through an exhaust opening formed in the shielding member.
  • the first clearance may be about 3 mm or less.
  • a predetermined gas is supplied into the first clearance via an air supply port formed on an end face of the shielding member facing the specific object, and the gas in the first clearance is supplied to the end face.
  • the method may further include a step of exhausting the space to the outside through an exhaust port formed outside the air supply port.
  • the shielding member may reduce transmission of vibration to the optical device.
  • the shielding member may be arranged in a state where a predetermined second clearance is formed between the shielding member and the optical device.
  • the second clearance can be about 3 mm or less.
  • a predetermined gas is supplied into the second clearance via an air supply port formed on an end face of the shielding member facing the optical device, and the gas in the second clearance is supplied to the end face.
  • the method may further include a step of exhausting the space to the outside through an exhaust port formed outside the air supply port.
  • a gas purging method for purging a space including a light receiving surface of a photodetector used in an optical device having an optical system irradiated with light of a predetermined wavelength, One end is open and the end face around the opening of the holding member, in which the photodetector is accommodated with the light receiving surface facing the opening, is formed inside the optical device. Bonding to a part of the component through a sealing member to shield a space including a light receiving surface of the photodetector from outside air; and removing a specific gas having a lower light absorption characteristic than an absorptive gas. Supplying gas to the space through an air supply opening formed in one of the component part and the holding member, and exhausting gas in the space into an exhaust gas formed in one of the component part and the holding member.
  • a second gas purging method which comprises the steps of:
  • an end surface around the opening of the holding member that has one surface opened and accommodates the photodetector inside with the light receiving surface facing the opening is part of the component of the optical device. It couples via a seal member and shields the space including the light receiving surface of the photodetector from the outside air. For this reason, the space including the light receiving surface of the photodetector formed by the components of the optical device and the holding member is a space with good airtightness.
  • the specific gas (low-absorbing gas) having a lower absorption characteristic with respect to light incident on the optical device and incident on the light receiving element via the optical system of the optical device than the absorbing gas is used as the component and the holding member.
  • a gas is supplied to the space through an air supply opening formed in any of the members, and the gas in the space is exhausted to the outside through an exhaust opening formed in any of the component parts and the holding member. I do.
  • the gas inside the space between the optical device and the light receiving surface of the photodetector is replaced with the specific gas, and light of a predetermined wavelength entering the space via the optical device is emitted from the photodetector.
  • the light receiving surface it is hardly absorbed in the space. Therefore, it is possible to accurately detect the light amount of the photodetector, and when, for example, measuring the optical characteristics of an optical device based on the result of the light amount detection, the measurement accuracy can be improved. It is possible.
  • the second gas purging method of the present invention may further include a step of cooling the holding member.
  • the cooling of the holding member can be performed by connecting a Peltier element to the surface of the holding member on the side opposite to the photodetector.
  • the method may further include a step of cooling a side of the Peltier element opposite to the holding member.
  • a light transmissive member is arranged on a side of the component to which the holding member of the optical device is coupled, opposite to the holding member, and a light receiving surface of the photodetector is disposed.
  • the method may further include a step of partitioning the containing space into a plurality of spaces.
  • an exposure apparatus for transferring a pattern formed on a mask onto a substrate, comprising: an illumination optical system for illuminating the mask with light of a predetermined wavelength; the mask and the mask The illumination optics of the mask, wherein the illumination optics of the mask is disposed between a specific object, which is one of the mask holding members, and the illumination optical system, and at least a predetermined first clearance is formed between the specific object and the specific object.
  • a first shielding member for shielding at least a first space including a region corresponding to the pattern region of the mask from the outside air on a system side; and absorbing the light through an air supply opening formed in the first shielding member.
  • a first gas supply system for supplying a specific gas having a characteristic lower than that of the absorbent gas to the first space.
  • the first shielding member disposed with a predetermined first clearance formed between at least the specific object between the specific object, which is one of the mask and the mask holding member, and the illumination optical system. Accordingly, the first space including at least a region corresponding to the pattern region of the mask on the illumination optical system side of the mask is shielded from the outside air. Then, the specific gas (low-absorbing gas) having a lower absorption characteristic with respect to light of a predetermined wavelength (exposure light) than the absorbing gas is supplied by the first gas supply system through the air supply opening formed in the first shielding member. It is supplied to the first space. As a result, the gas in the first space Replaced with a specific gas.
  • the first space is large and heavily sealed using only a small first shielding member that can cover the first space between the illumination optical system and the mask or the mask holding member. (Mask stage chamber) enables gas replacement with almost the same efficiency as in the case of using (mask stage chamber). Therefore, it is possible to suppress an increase in the size and weight of the device.
  • a projection optical system for projecting light emitted from the mask onto the substrate; and a projection optical system disposed between the specific object and the projection optical system to reduce transmission of vibration to the projection optical system.
  • a second shielding member for shielding at least a second space including a pattern region of the mask from the outside on the projection optical system side of the mask from the outside; and an air supply opening formed in the second shielding member.
  • a second gas supply system that supplies the specific gas to the second space through the second gas supply system.
  • the second shielding member can be disposed with at least a predetermined second clearance formed between the second shielding member and the specific object.
  • the second shielding member is formed on the first shielding member A first gas exhaust system for exhausting the gas in the first space to the outside through the provided exhaust opening; and a gas in the second space via an exhaust opening formed in the second shielding member. And a second gas exhaust system for exhausting the gas to the outside.
  • At least one of the first and second clearances may be about 3 mm or less.
  • a predetermined gas is supplied into the first clearance from an air supply port formed on an end face of the first shielding member facing the specific object, and the gas in the first clearance is supplied to the end face.
  • the air supply port for the first space And a differential exhaust mechanism that exhausts the air to the outside through an exhaust port formed outside the air conditioner.
  • the first exposure apparatus of the present invention when at least one of the first and second clearances is about 3 mm or less, an air supply formed on an end face of the second shielding member facing the specific object.
  • a predetermined gas is supplied from the port toward the specific object, and the gas in the second clearance is supplied to the second space on the end face via an exhaust port formed outside the supply port.
  • a differential exhaust mechanism that exhausts to the outside can be further provided.
  • the first shielding member when a second shielding member is provided in a state where a predetermined second clearance is formed between the first shielding member and at least the specific object, the first shielding member An adjusting mechanism that is provided at an end of the specific object on the specific object side, and that is capable of adjusting the first clearance over the entire circumference of the first shielding member; and an adjusting mechanism that is provided at an end of the second shielding member on the specific object side. And an adjusting mechanism capable of adjusting the second clearance over the entire circumference of the second shielding member.
  • the first exposure apparatus in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A predetermined third clearance may be formed between the second shielding member and the projection optical system.
  • the third clearance can be about 3 mm or less.
  • the first exposure apparatus of the present invention further includes a second shielding member in addition to the first shielding member, wherein a third clearance is formed between the second shielding member and the projection optical system.
  • a predetermined gas is supplied into the third clearance from an air supply port formed on an end face of the shielding member facing the projection optical system, and the gas in the third clearance is supplied to the second space on the end face. Formed outside the air supply port It is possible to further include a differential exhaust mechanism that exhausts the air to the outside through the exhaust port.
  • the first exposure apparatus in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, An end surface of the first shielding member facing the specific object and an end surface of the second shielding member facing the specific object are both flat surfaces, and the surfaces of the specific object facing the respective end surfaces are both flat surfaces. It can be.
  • the first exposure apparatus in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A substrate holding member for holding the substrate; a drive device for driving the mask holding member in a predetermined scanning direction; a driving device for synchronously moving the mask holding member and the substrate holding member in a predetermined scanning direction; And at least a part of the driving source may be arranged outside the first space and the second space.
  • a length of the first shielding member in the scanning direction is at least. It is determined based on the approach distance in which the mask holding member moves in an acceleration area and a deceleration area before and after the synchronous movement in which the exposure is performed, and a length of the mask pattern area in the scanning direction. It can be.
  • the first exposure apparatus in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A third space that is disposed between the substrate and the projection optical system and shields a third space on the projection optical system side of the substrate from outside air in a state where at least a predetermined third clearance is formed between the substrate and the projection optical system.
  • 3 shielding members; and the third shielding portion And a third gas supply system that supplies the specific gas to the third space via an air supply opening formed in the material.
  • a gas exhaust system that exhausts the gas in the third space to the outside through an exhaust opening formed in the third shielding member may be further provided.
  • the third shielding member forms a predetermined fourth clearance with the projection optical system. It can be arranged with.
  • an exhaust mechanism for exhausting the gas in the fourth clearance to the outside through an exhaust port formed on an end face of the third shielding member facing the projection optical system is further provided. be able to.
  • the exhaust mechanism can exhaust the gas in the third space to the outside via the fourth clearance.
  • the third gas supply system may supply the specific gas to the third space via the fourth clearance.
  • a predetermined gas is supplied from an air supply port formed on an end surface of the third shielding member facing the substrate. Is supplied into the third clearance, and the gas in the third clearance is exhausted to the outside of the third space on the end face through an exhaust port formed outside the air supply port.
  • a dynamic exhaust mechanism may be further provided.
  • a predetermined second clearance may be formed between the first shielding member and the illumination optical system.
  • the second clearance can be about 3 mm or less.
  • a predetermined second clearance is provided between the first shielding member and the illumination optical system. Is formed, a predetermined gas is supplied into the second clearance from an air supply port formed on an end face of the first shielding member facing the illumination optical system, and the inside of the second clearance is
  • the air conditioner may further include a differential exhaust mechanism that exhausts the gas to the outside through an exhaust port formed outside the air supply port with respect to the first space on the end face.
  • the first exposure apparatus is disposed between the substrate and the projection optical system, and at least a predetermined second clearance is formed between the substrate and the projection optical system.
  • a second shielding member that shields the second space from the outside air; and a second gas supply system that supplies the specific gas to the second space via an air supply opening formed in the second shielding member. Further provisions may be made.
  • a gas exhaust system that exhausts gas in the second space to the outside via an exhaust opening formed in the second shielding member may be further provided.
  • the second shielding member is arranged in a state where a predetermined second clearance is formed between the second shielding member and the substrate, and is provided via an air supply opening formed in the second shielding member.
  • a second gas supply system that supplies the specific gas to the second space
  • the second shielding member is arranged in a state where a predetermined third clearance is formed between the second shielding member and the projection optical system. can do.
  • an exhaust mechanism for exhausting gas in the third clearance to the outside through an exhaust port formed on an end face of the second shielding member facing the projection optical system is further provided. be able to.
  • the exhaust mechanism may exhaust the gas in the second space to the outside via the third clearance.
  • the second gas supply system may supply the specific gas to the second space via the third clearance.
  • the second space on the projection optical system side of the substrate is provided.
  • a second shielding member for shielding the space from outside air is also provided, a predetermined gas is supplied into the second clearance from an air supply port formed on an end surface of the second shielding member facing the substrate, A differential exhaust mechanism for exhausting the gas in the second clearance to the outside through the exhaust port formed outside the air supply port with respect to the second space on the end face may be further provided.
  • the second exposure member when a second shielding member that shields the second space of the substrate on the projection optical system side from the outside air is provided, the second exposure member is provided at an end of the second shielding member on the substrate side.
  • an adjusting mechanism capable of adjusting the second clearance over the entire circumference of the second shielding member may be further provided.
  • the first exposure apparatus of the present invention further includes: a substrate holding member for holding the substrate; and a driving device for synchronously moving the mask holding member and the substrate holding member in a predetermined scanning direction. be able to.
  • the length of the first shielding member in the scanning direction is at least a running distance by which the mask holding member moves between an acceleration region and a deceleration region before and after the synchronous movement in which the exposure is performed. And the length of the pattern area of the mask in the scanning direction.
  • the length of the first shielding member in the scanning direction is further determined based on the length of the illumination region in which the mask is illuminated by the light in the scanning direction. Can be.
  • an exposure apparatus for transferring a pattern of a mask illuminated with exposure light onto a substrate via a projection optical system comprising: A second exposure apparatus that is disposed without contacting the substrate and the projection optical system, and that includes a shielding member that shields a space including an optical path of the exposure light between the substrate and the projection optical system from outside air. It is.
  • the shielding member a small shielding member that can cover a predetermined space including the optical path of exposure light between the substrate and the projection optical system is used.
  • the gas in the space is replaced with, for example, a low-absorbent gas
  • the space is almost as efficient as when a large and heavy airtight shielding container (substrate stage chamber) is used. Good gas replacement is possible. This makes it possible to remove the absorptive gas that absorbs the exposure light from the space including the optical path of the exposure light between the substrate and the projection optical system, and the light emitted from the projection optical system hardly remains in that space.
  • the light is irradiated onto the substrate without being absorbed, a decrease in the transmittance of the exposure light can be suppressed. Further, the transmission of the vibration on the substrate side to the projection optical system via the shielding member is prevented. Therefore, it is possible to improve the exposure accuracy while suppressing an increase in the size and weight of the apparatus.
  • a space shielded by the shielding member is formed by sucking and exhausting a gas in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member. Can be shielded from the outside air.
  • a specific gas whose absorption characteristic with respect to the exposure light is lower than that of the absorptive gas is set in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member.
  • a specific gas whose absorption characteristic with respect to the exposure light is lower than that of the absorptive gas is set in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a gas pipe of the apparatus of FIG.
  • FIG. 3A is a perspective view showing the vicinity of reticle stage RST
  • FIG. 3A is a schematic sectional view showing reticle stage RS #.
  • FIG. 4 is a plan view showing reticle stage R S ⁇ .
  • Fig. 5 (a) is a cross-sectional view showing the portion where the lower end face of the illumination system side gas purge skirt and the reticle stage are located close to each other. It is a figure which expands and shows a part.
  • FIG. 6A is a cross-sectional view showing a portion where the upper end surface of the projection system-side gas purge unit and the reticle stage are arranged close to each other.
  • FIG. 6B is a diagram showing the projection system-side gas purge skirt and the projection optical system arranged in close proximity It is sectional drawing which shows the part which was done.
  • FIG. 7A is a cross-sectional view showing the vicinity of a wafer gas purge skirt
  • FIG. 7B is a plan view of the wafer gas purge skirt as viewed from above (+ Z side).
  • FIG. 8 is a diagram for explaining a configuration of a differential exhaust mechanism in a case where an illumination system-side gas purge skirt is provided so that a clearance is formed between the illumination unit and the illumination system-side gas purge skirt.
  • FIG. 9 is a diagram for explaining a gas purging method according to a modification.
  • FIG. 10 is a cross-sectional view showing an inspection unit forming a part of the inspection optical device according to the second embodiment of the present invention, together with a projection optical system and a shielding mechanism.
  • FIG. 11A is a cross-sectional view showing the vicinity of the lower end of an optical system support housing according to a third embodiment of the present invention
  • FIG. 11B is a perspective view showing a ceramic package on which a CCD is mounted. is there.
  • FIG. 12 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
  • FIG. 13 is a flowchart showing the details of step 304 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment.
  • the exposure apparatus 100 irradiates an exposure illumination light EL as an energy beam onto a reticle R as a mask, and scans the reticle R and a wafer W as a substrate in a predetermined scanning direction (here, FIG. A step of transferring the pattern of the reticle R to a plurality of shot areas on the wafer W via the projection optical system PL by synchronously moving in the Y-axis direction which is a direction orthogonal to the paper surface. That is, it is a so-called scanning stepper.
  • the exposure apparatus 100 includes a light source (not shown) and an illumination unit ILU as an optical device (illumination optical system), and illuminates the reticle R with illumination light for exposure (hereinafter, referred to as “exposure light”) EL.
  • Illumination system reticle stage RST as a mask holding member for holding reticle R, projection optical system for projecting exposure light EL emitted from reticle R onto wafer W, and ⁇ as a substrate holding member for holding wafer W It is equipped with a wafer stage WST, their control system, and a support base BD that supports each component.
  • the support base BD includes a plurality of (for example, three or four) legs provided on the floor surface F of the clean room via a plurality of (for example, three or four) first vibration isolation units 43.
  • a first base 34 having a lens barrel base plate (also referred to as a main frame) 34 B supported substantially horizontally by 34 A and the legs 34 A, and a top plate of the first base 34
  • the plurality of support members 21 provided on the upper surface of the lens barrel base plate 34 B and extending in the Z-axis direction (vertical direction) and the plurality of support members 21 support the upper surface so that the upper surface is substantially horizontal.
  • a second pedestal 32 having a reticle stage base 27.
  • a flat wafer stage base whose upper surface is set to a high degree of flatness through a plurality of second vibration isolation units 41 below the barrel base plate 34B of the first base 34.
  • BS is located above floor F.
  • the light source used here is a vacuum ultraviolet light having a wavelength of about 120 nm to about 180 nm.
  • Light source emitting light belonging to frequency for example, the output wavelength 1 5 7 nm of fluorine laser (F 2 laser) is used.
  • the light source is connected to one end of an illumination system housing 2 constituting an illumination unit ILU via a light transmission optical system (not shown) partially including an optical axis adjustment optical system called a beam matching unit.
  • the illumination system housing 2 actually has a substantially L-shape as a whole extending a predetermined distance toward the far side of the paper of FIG. 1 and extending downward therefrom.
  • the light source is actually installed in a low-clean service room separate from the clean room where the exposure unit including the illumination unit ILU and the projection optical system PL is installed, or in a utility space under the floor of the clean room. It has been.
  • other vacuum ultraviolet light sources such as a krypton dimer laser (Kr2 laser) with an output wavelength of 146 nm and an argon dimer laser (Ar2 laser) with an output wavelength of 126 nm are used as the light source.
  • Kr2 laser krypton dimer laser
  • Ar2 laser argon dimer laser
  • An ArF excimer laser having an output wavelength of 193 nm, a KrF excimer laser having an output wavelength of 248 nm, or the like may be used.
  • the illumination unit ILU includes an illumination system housing 2 for isolating the interior from the exterior, an illumination uniformity optical system including an optical integrator arranged in a predetermined positional relationship inside the illumination system housing 2, a relay lens, a variable ND filter, a reticle blind, And an illumination optical system including an optical path bending mirror and the like (both not shown).
  • an optical integrator a fly-eye lens, a rod integrator (internal reflection type integrator), a diffractive optical element, or the like is used.
  • the lighting unit of the present embodiment has the same configuration as that disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 6-349701 and US Patent Nos. 5,534,970 corresponding thereto. Has become. To the extent permitted by the national laws of the designated country or selected elected country of this international application, the disclosures in the above US patents will be incorporated by reference into this description.
  • a slot on the reticle R on which a circuit pattern, etc. is formed
  • a slit-shaped illumination area (a slit-shaped area elongated in the X-axis direction defined by the reticle blind) is illuminated by the exposure light EL with almost uniform illuminance.
  • a flat light transmitting window member 20 is provided near the reticle R side end in the illumination system housing 2.
  • the light transmission window member 20 has a function of transmitting the exposure light EL from the illumination unit ILU and maintaining the interior of the illumination system housing 2 in an airtight state.
  • the light-transmitting window member 20 is not limited to a flat plate-shaped member, and any one of the lenses constituting the illumination unit ILU may be air-tightly fixed to the illumination system housing 2 so that the lens can be made to have the above-described light transmission window member.
  • the member 20 may be used instead.
  • the material of the member that transmits the exposure light EL such as the lens, the illuminance equalizing optical system, and the light transmission window member 20 is made of a transmittance for vacuum ultraviolet light. It is desirable to use fluorite, for example, which has a high density. However, it is also possible to use a fluorine-doped quartz (a so-called modified quartz) in which a hydroxyl group is excluded to about 10 ppm or less and fluorine is contained at about 1%. Further, not limited to fluorine-doped quartz, it is also possible to use ordinary quartz, quartz having only a small number of hydroxyl groups, and quartz added with hydrogen.
  • a partition is provided at the boundary between the light transmission optical system and the illumination unit ILU. Windows may be provided.
  • a partition window may be substituted by an arbitrary optical member installed in the light transmission optical system or the illumination unit ILU, and the light transmission optical system and the illumination unit ILU may be separated into a plurality of airtight spaces. It is good.
  • the reticle stage RST has a rectangular shape in a plan view (as viewed from above), and floats above a reticle stage base 27 that forms the second frame 32 via a gas static pressure bearing (not shown). Have been.
  • FIG. 3B which is an enlarged cross-sectional view near the reticle R in FIG. 1, a rectangular stepped opening 53 is formed in plan view (as viewed from above), and the inner edge of the stepped opening 53 is formed.
  • a plurality of adjacent vacuum suction portions 53a are provided.
  • the reticle R is suction-held by a vacuum suction mechanism (vacuum chuck) (not shown) provided in each of the plurality of vacuum suction sections 53a.
  • a rectangular frame-shaped pellicle frame 57 and a pellicle 56 adhered to the lower surface of the pellicle frame 57 are provided.
  • the pellicle 56 prevents dust and the like from adhering to the pattern surface.
  • movers 25a and 2 of the Y-axis linear motors 24A and 24B as driving devices are respectively provided.
  • the 6b is extended at a predetermined length in the Y-axis direction.
  • These stators 26a, 26b are fixed to the floor F separately from the support base BD, and are supported by motor support members 31a, 31b, respectively, which are arranged with the vertical direction as the longitudinal direction. I have.
  • the movers 25a and 25b are driven in the Y-axis direction by the electromagnetic force generated between the movers 25a and 25b, respectively, so that the reticle stage RST is moved to the reticle stage base.
  • 27 is driven at a predetermined stroke in the Y-axis direction.
  • the reticle stage RST is configured to be capable of minute driving (including rotation) in the XY plane by slightly varying the thrust generated by the Y-axis linear motors 24A and 24B.
  • the stators 26a and 26b of the Y-axis linear motors 24A and 24B are supported above the floor F via the motor support members 31a and 31b, and the vibration generated in the stator is
  • the configuration in which the motor is released to the floor via the motor support members 31a and 31b has been described.
  • the present invention is not limited to this.
  • the stators 26a and 26b and the reticle stage base 27 may be levitated and supported on the respective support members via a gas static pressure bearing or the like. In this way, the reticle stay
  • the stators 26a and 26b are driven in accordance with the reaction force at the time of driving the RST, and the momentum of the system including the reticle stage RST and the stator is preserved. Vibration is prevented.
  • in this case since the center of gravity does not move, so-called offset load is prevented.
  • the reticle stage base 27 When the stator is connected to the reticle stage base 27, the reticle stage base 27 can be moved relative to the support member in the same manner as described above. Thus, the vibration of the reticle stage base 27 can be effectively suppressed. As a result, it is possible to reduce the influence on the projection optical system P of the reaction force caused by driving the reticle stage R ST in the Y-axis direction.
  • a reticle Y moving mirror 37 Y consisting of a plane mirror extending in the X-axis direction is fixed to the reticle stage RST at one Y-side end of the upper surface thereof.
  • the measuring beam from the reticle Y interferometer 30 provided on the reticle stage base 27 is irradiated perpendicularly to 37 Y.
  • a reticle X movable mirror 37 X composed of a plane mirror extending in the Y-axis direction is fixed near one X-side end of the upper surface of reticle stage RST, and a reticle (not shown) is attached to movable mirror 37 X.
  • the measurement beam from the X interferometer is irradiated vertically.
  • reticle Y interferometer 30 and reticle X interferometer always detect the position of reticle stage RST in the Y-axis direction and X-axis direction with a resolution of, for example, 0.5 to 1 nm. Has become.
  • the end surface of reticle stage RST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of the above-described moving mirror).
  • at least one corner cube type mirror (for example, a retro reflector) may be used instead of the movable mirror 37 Y used for detecting the position of the reticle stage RST in the scanning direction (the Y-axis direction in the present embodiment).
  • one of the reticle Y interferometer 30 and the reticle X interferometer for example, the reticle Y interferometer 30 is a two-axis interferometer having two measurement axes, and the measured value of the reticle Y interferometer 30 Based on the reticle stage RS In addition to the Y position, rotation in the 0 ° direction can be measured.
  • the position information (or speed information) of the reticle stage RS measured by the reticle X interferometer and reticle ⁇ interferometer 30 ⁇ , that is, the position information (or speed information) of reticle R is supplied to a controller (not shown). Is done.
  • the controller basically controls the ⁇ -axis linear motors ⁇ and ⁇ so that the position information (or speed information) output from those reticle interferometers matches the control target value.
  • a first shielding mechanism 101 is provided between the illumination unit ILU and the reticle stage RST, that is, above the reticle stage RS ⁇ , and the reticle stage RS ⁇ and the projection optical system PL are connected to each other.
  • a second shielding mechanism 102 is provided below the reticle stage RS #. The configuration and the like of these shielding mechanisms will be described later in detail.
  • the projection optical system PL an optical system including a lens made of a fluoride crystal such as fluorite and lithium fluoride and a reflecting mirror is sealed with a lens barrel 19.
  • a refraction system with a double-sided telecentricity and a projection magnification j8 of, for example, 14 or 15 is used. Therefore, as described above, when the reticle R is illuminated by the exposure light EL from the illumination unit ILU, the pattern on the reticle R in the illumination area portion is shot on the wafer W by the projection optical system P. A reduced image (partial image) of the pattern portion that is reduced and projected on a part of the region and illuminated with the exposure light EL is formed.
  • the projection optical system PL is inserted into a circular opening (as viewed from above) formed in the center of the barrel base 34 B with its optical axis direction as the Z-axis direction. It is fixed to the lens barrel base plate 34B via a flange FLG provided slightly below the center of the lens barrel.
  • the projection optical system PL is not limited to the refractive system, and any of a catadioptric system and a reflective system can be used.
  • the wafer stage WST is lifted by, for example, a magnetic levitation type or a static pressure of a pressurized gas.
  • a wafer drive system (not shown) as a drive device including a gas floating linear motor or the like is configured to be freely driven in the XY plane along the upper surface of the wafer stage base BS and in a non-contact manner. .
  • Wafer stage WST is actually freely driven in the XY plane of the (0 including Z Rotation) is an XY stage which is mounted on the XY stage, and includes a substrate table or the like for holding a wafer W I have.
  • a wafer holder (not shown) is provided on the substrate table, and the wafer W is held by the wafer holder, for example, by vacuum suction.
  • the substrate table is minutely driven in a Z-axis direction and a tilt direction with respect to the XY plane by a drive system (not shown).
  • the wafer stage WST actually includes a plurality of stages and tables, but in the following, the wafer stage WST is rotated around the X, Y, z, and X axes by the wafer drive system. It is assumed that ⁇ ⁇ ⁇ is a single stage that can be driven in six degrees of freedom in the directions of 0 y and 0 z, which are rotations around the X and Y axes.
  • the position information of the wafer stage WST is obtained by a wafer laser interferometer (hereinafter, referred to as a “wafer interferometer”) 20 via a movable mirror 16 provided on the upper surface of the wafer stage WST. It is always measured with resolution.
  • a wafer laser interferometer hereinafter, referred to as a “wafer interferometer”
  • the moving mirror is provided with an X moving mirror having a reflecting surface orthogonal to the X axis and a Y moving mirror having a reflecting surface orthogonal to the Y axis.
  • An X laser interferometer for measuring the directional position and a Y laser interferometer for measuring the Y direction position are provided.
  • these are representatively shown as a moving mirror 16 and a wafer interferometer 20. I have.
  • the end surface of wafer stage WST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of movable mirror 16).
  • the X laser interferometer and the Y laser interferometer are multi-axis interferometers having a plurality of measurement axes, and in addition to the X and Y positions of the wafer stage WST, the rotation (the rotation around the Z axis). 0 z rotation), pitching (0 X rotation which is rotation around the X axis), rolling (Y The rotation around the axis (0 y rotation)) can also be measured. Therefore, in the following description, it is assumed that the laser interferometer 26 measures the position of the wafer stage WST in the directions of five degrees of freedom of X, Y, 0z, 0y, and ⁇ .
  • the multi-axis interferometer irradiates a laser beam onto a reflection surface installed on a gantry (not shown) on which the projection optical system PL is mounted via a reflection surface installed on the wafer stage WST at an angle of 45 °.
  • relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL may be detected.
  • the position information (or speed information) of the wafer stage WST from the wafer interferometer 20 described above is sent to a control device (not shown), and the control device performs processing based on the position information (or speed information) of the wafer stage WS.
  • the wafer stage WST is driven via the drive system.
  • a third shielding mechanism 103 is provided between the wafer stage WST and the projection optical system PL.
  • the configuration and the like of the third shielding mechanism 103 will be described later in detail.
  • the control system is mainly configured by a control device (not shown).
  • the control device includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random-access memory), and the like.
  • CPU central processing unit
  • ROM read only memory
  • RAM random-access memory
  • V R V in the + Y direction (or one Y direction) via the reticle stage RST.
  • Reticle interferometer, and wafer interferometer 20 to control the position and speed of reticle stage RST and wafer stage WS Y via Y-axis linear motors 24A and 24B and wafer drive system, respectively I do.
  • control device controls the position of the wafer stage WST via the wafer drive system based on the measurement values of the reticle interferometer and the wafer interferometer 20.
  • the first shielding mechanism 101 is configured such that one surface (the lower surface in FIG. 1) having an XY cross section provided above the reticle R and having a rectangular frame shape is entirely formed.
  • An illumination system side gas purge skirt 22 as a shielding member composed of a rectangular parallelepiped member having a small thickness as a whole and having an opening at the center of the other surface (the upper surface in FIG. 1). ing.
  • the illumination system side gas purge skirt 22 is arranged between a specific object, which is one of a reticle R and a reticle stage RST holding the reticle R, and the illumination unit ILU, and is provided at least between the specific object and the specific unit. With the above clearance formed, the space including at least the area corresponding to the pattern area of the reticle R on the illumination unit ILU side of the reticle R is shielded from the outside air.
  • the illumination system side gas purge skirt 22 has an upper end surface 22 a fixed to a reticle side end (lower end) of the illumination system housing 2 of the illumination unit ILU, and a lower end surface 22 b formed on the upper surface of the reticle stage RST. (Lighting unit ILU side surface). That is, gas purges on the lighting system side A predetermined clearance is formed between the lower end surface 22b of the cart 22 and the upper surface of the reticle stage RST. In this case, a substantially airtight space IM is formed between the illumination system side gas purge skirt 22, the illumination unit ILU, and the reticle stage RST.
  • the reticle stage RST may generate vertical vibrations due to scanning, so in order to avoid contact between the reticle stage RST and the gas purge scar 22 on the illumination system side even when vertical vibrations occur. It is necessary to provide a certain interval.
  • the interval varies depending on the configuration of each mechanism, but from the viewpoint of airtightness, the above clearance is preferably at most 3 mm or less.
  • a drive mechanism is provided between the illumination-system-side gas purge skirt 22 and the reticle stage RST. By driving the lever to expand and contract and tilt by the driving mechanism, the clearance can be adjusted so as to be substantially uniform over the entire circumference of the illumination system side gas purge skirt 22.
  • FIG. 4 shows a plan view of the reticle stage RST.
  • the illumination system side gas purge skirt 22 has a rectangular frame shape long in the Y-axis direction.
  • the reason why the illumination system side gas purge skirt 22 is set long in the Y-axis direction is as follows. That is, in the present embodiment, the reticle R (reticle stage RST) is scanned (scanned) in the Y-axis direction. However, to prevent contamination of the reticle R, the reticle stage RST is set to Y Even when scanning is performed in the axial direction, the stepped opening 53 accommodating the reticle R must always be accommodated in the illumination system side gas purge scar 22.
  • the reticle R and the stepped opening 53 may protrude from the illumination-side gas purge skirt 22. A large gap is created, and the airtightness of the space IM cannot be maintained.
  • the space IM is a space on the optical path from the light source to the wafer W, it is necessary to secure a certain degree of airtightness in order to efficiently perform gas purging described later. It is necessary to prevent such a situation from occurring.
  • the length SY is, specifically, the length of the pattern area of the reticle R in the Y-axis direction, the length of the illumination area for illuminating the reticle R in the Y-axis direction (a so-called slit width), and the approach accompanying scanning.
  • the sum of the distance (the sum of the pre-scan distance and the overscan distance that the reticle stage RST moves in the acceleration area and deceleration area before and after the synchronous movement in which the exposure is performed, ie, the so-called pre-scan distance and over-scan distance) is added.
  • the Y-axis length SY inside the illumination system side gas purge skirt 22 should be about 250 mm or more. There is a need.
  • the length SX in the X-axis direction of the gas purge skirt 22 on the illumination system side since the reticle stage RST is not driven in the X-axis direction as much as the Y-axis direction, the size of the reticle R (or the stepped opening 53) is large. It is sufficient to provide some margin in the space. For example, if the reticle R is 6 inches square (15 Omm square), the length SX should be set to about 18 Omm or more.
  • the total length of the reticle stage RST in the Y-axis direction (length RYi shown in FIG. 4) is the length SY in the Y-axis direction inside the illumination system side gas purge cartridge 22 and the side wall of the illumination system side gas purge skirt 22.
  • the total length in the Y-axis direction R Yi of the reticle stage RST must be equal to or greater than the total length of the reticle stage RST. Must be at least 60 Omm.
  • the surface shape of the reticle stage RST needs to be flat at least in the Y-axis direction. is there.
  • the surface shape of the reticle stage RST is not necessarily required to be flat in the X-axis direction, and may have a step or a curve. In such a case, the gas purge force on the illumination system side is required. It is necessary to machine the lower end surface 22b of the reticle stage RS into almost the same shape as the surface shape of the reticle stage RS, which is very complicated from the viewpoint of workability. Therefore, it is desirable that the surface shape of reticle stage RST in the X-axis direction is also flat.
  • all the members included in the space IM for example, the reticle R and other members arranged around the reticle do not protrude above the upper surface of the reticle stage RST. (See Fig. 3B).
  • the first shielding mechanism 101 has, in addition to the above-described illumination system side gas purge skirt 22, a piping system and a differential exhaust mechanism for efficiently performing gas replacement in the space IM. Will be described later in detail.
  • the second shielding mechanism 102 was held below the reticle stage RST via a plurality of barge-square holding mechanisms 29 provided on a barrel base 34B.
  • a projection system side gas purge skirt 28 as a shielding member is provided.
  • the upper end surface 28a of the gas purge skirt 28 on the projection system side is close to the lower surface of the reticle stage RST (the surface on the projection optical system PL side) without contact.
  • the lower end surface 28 b is disposed in close proximity to the upper end surface of the barrel 19 of the projection optical system PL without touching it.
  • the projection system side gas purge skirt 28, the reticle stage RST, the reticle R, and the projection optical system PL form a substantially airtight space MP.
  • the clearance is as narrow as possible.However, vertical oscillations occur due to the movement of the reticle stage RST in the scanning direction. In this case, it is necessary to avoid contact between the reticle stage RST and the gas purge skirt 28 on the projection system side.
  • the clearance is preferably set to 3 mm or less in the same manner as described above.
  • a bellows and a drive mechanism for extending and contracting and tilting the bellows are provided at the upper end of the projection system side gas purge skirt 28, and the upper end surface 28a of the projection system side gas purge skirt 28 is provided.
  • the clearance may be set uniformly over the entire circumference.
  • the shape and size of the upper end of the gas purge skirt 28 on the projection system side are the same as the lower end of the gas purge skirt 22 on the illumination system side (that is, the inside has a length in the Y-axis direction S ⁇ and a length in the X-axis direction SX). (Plan view rectangular frame). The reason for adopting such a shape and size is the same as in the case of the gas purge skirt 22 on the illumination system side, so that the description thereof will be omitted.
  • the pellicle 56 and all other structures around the reticle are controlled so that the reticle stage RST and the reticle R do not contact the projection system side gas purge skirt 28 as the reticle stage RST is driven. Reticle stay It is necessary to adopt a configuration that does not protrude below the RST (see Figure 3B).
  • the shape of the lower end face 28 b of the projection system side gas purge skirt 28 is a circular frame. This is because the lens barrel 19 of the projection optical system PL has a cylindrical shape, and the shape of the upper end surface is a circular frame. Therefore, from the viewpoint of the airtightness of the space MP, the projection system side gas purge skirt 28 This is because it is preferable that the lower end surface 28 b has the same shape as the upper end surface of the lens barrel 19 of the projection optical system PL.
  • the projection optical system PL Since the projection optical system PL is fixed to the first frame 34, the projection system side gas purge skirt 28 and the projection optical system PL are air-tightly joined (fixed) via a sealing member such as an O-ring. It is also possible to do However, if the projection system side gas purge force 28 vibrates due to driving of the reticle stage RST, etc., and the vibration is transmitted to the projection optical system PL, there is a possibility that the imaging characteristics may be degraded. However, as in the present embodiment, it is preferable to provide a predetermined interval (clearance) and arrange them close to each other. This clearance is also preferably set to 3 mm or less as before.
  • the reticle R needs to be replaced with another reticle as appropriate, so that the reticle R can be replaced while maintaining the airtightness of the space IM and the space MP. It is necessary to adopt a reticle exchange mechanism.
  • a reticle transport window (not shown) that can be opened and closed is provided on a part of the side wall of the gas purge skirt 22 on the illumination system side, and a reticle loader (not shown) is provided through the reticle transport window.
  • Reticle R can be carried out of space IM and a new reticle can be carried into space IM to replace the reticle, or the reticle stage can be moved in the Y-axis direction of RS reticle. Even if the entire reticle R moves outside the illumination system side gas purge skirt 22 and projection system side gas purge skirt 28 in the Y-axis direction, the illumination system side gas purge skirt 22 and projection system side gas purge Force 2 8 reticle stage RST The reticle provided outside the illumination system side gas purge skirt 22 with the entire reticle R coming out of the illumination system side gas purge skirt 22 and the projection system side gas purge skirt 28 It is also possible to adopt a configuration in which reticle exchange is performed using a loader.
  • the illumination system-side gas purge cartridge 22 and the projection system-side gas purge cartridge 2 are used even when the reticle is replaced.
  • the reticle stage Make sure that the + Y side end of the RST does not exceed the + Y side wall of the illumination system side gas purge skirt 22 and the projection system side gas purge skirt 28), and the length of the reticle stage RST in the Y axis direction (specifically, It is necessary to set the length RY 2 ) of the + Y side sufficiently longer than the reticle R shown in FIG.
  • the illumination system side gas purge skirt 22 includes a first air supply pipe 60, a first exhaust pipe 61, a second air supply pipe 72, and a second exhaust pipe 73-4. Different types of piping are connected.
  • FIG. 5A is a cross-sectional view of a portion where the lower end surface 2 2 b of the illumination system side gas package skirt 22 and the reticle stage RST are disposed in close proximity, and FIG. 5B shows the illumination system side. A part of the surface (lower end surface 22b) of the gas purge skirt 22 near the reticle stage RST is shown in an enlarged manner.
  • FIG. 5A corresponds to a cross section taken along line AA of FIG. 5B.
  • the first air supply pipe 60 has a through-hole mosquito as a supply opening formed from the outside to the inside of the side wall of the illumination-system-side gas purge plate 22. 1 is connected from the outside of the illumination system side gas purge skirt 22 via a connector 75. An air supply nozzle 76 is provided on the opposite side of the through hole 2 51 from the first air supply pipe 60.
  • the first exhaust pipe 61 is, like the first air supply pipe 60, an exhaust gas (not shown) formed to communicate from the outside to the inside of the side wall of the illumination system side gas purge skirt 22.
  • the illumination system side gas purge skirt 22 is connected to the through hole as an opening through the connector via a connector.
  • the gas in the space IM is replaced with a low-absorbing gas in order to avoid the absorption of exposure light by an absorbing gas such as oxygen or water vapor.
  • an absorbing gas such as oxygen or water vapor.
  • the first gas supply pipe 60 and the first exhaust pipe 61 are used to pass the space IM inside the space IM with a specific gas having a characteristic of little absorption of light in the vacuum ultraviolet region, for example, nitrogen, and helium, It is filled with a rare gas such as argon, neon, or krypton, or a mixed gas thereof (hereinafter referred to as “low-absorbing gas J” as appropriate).
  • the other end of the first air supply pipe 60 is connected to one end of a gas supply device 50, and the other end of the first exhaust pipe 61 is connected to a gas recovery device (not shown). It is connected.
  • the first air supply pipe 60 and the first exhaust pipe 61 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply valve and the exhaust valve, and
  • a control device (not shown) opens and closes the air supply valve and the exhaust valve, and
  • the space IM is filled with a low-absorbing gas, and the concentration of the absorbing gas in the interior IM is reduced to several ppm or less. I have. Note that the low-absorbent gas may always flow in the space IM.
  • one end of the second air supply pipe 72 is connected to an air supply pipe 16 having an L-shaped cross section formed inside the side wall of the gas purge skirt 22 on the lighting system side. Connected through 5.
  • the other end of the air supply line 16 7 to which one end of the second air supply pipe 7 2 is connected is used for air supply as an air supply port formed on the lower end surface 2 2 b of the illumination system side gas purge skirt 22. It is in a state of communicating with the annular groove 67.
  • the width of the air supply annular groove 67 is set to, for example, about 1 to 3 mm, and the depth is set to, for example, about 1 to 3 mm.
  • one end of the second exhaust pipe 73 is connected via a connector 66 to an exhaust pipe 16 having an L-shaped cross section formed inside the side wall of the illumination system side gas purge skirt 22.
  • the exhaust pipe line 168 to which one end of the second exhaust pipe 73 is connected is provided with the annular groove for air supply 6 7 with respect to the space IM of the lower end face 22 b of the illumination-side gas purge skirt 22. It is in a state where it communicates with an annular exhaust groove 68 as an exhaust port formed on the outside of the container.
  • the width of the exhaust annular groove 68 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm, similarly to the annular groove for air supply 67.
  • the interval between the annular grooves 67 and 68 can be set to about 5 to 20 mm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the illumination system side gas purge scar 22.
  • the other end of the second supply pipe 72 is connected to a low-absorbent gas supply device 80, and the other end of the second exhaust pipe 73 is connected to a vacuum pump 79. It is connected to the. Then, a control device (not shown) appropriately controls the operation and stop of the pump and the vacuum pump 79 built in the supply device 80, as shown in FIG.
  • the low-absorbing gas (pressurized gas) supplied via the air supply line 2 and the supply line 16 7 flows from the annular groove 6 7 to the lower end surface 2 2 b of the illumination system side gas purge skirt 2 2 and the upper surface of the reticle stage RST.
  • the gas inside the clearance D 1 is exhausted to the outside via the annular four groove 68, the exhaust pipe line 168, and the second exhaust pipe 73. That is, the gas flow including the second air supply pipe 72 and the second exhaust pipe 73 mainly flows from the second air supply pipe 72 to the air supply pipe line 16 7 ⁇ the annular groove for air supply 6 7 ⁇ the clearance D 1 —Exhaust annular groove 6 8—Exhaust pipe line 1 68 ⁇ Second exhaust pipe 73, with clearance D1 extending from the inside (ie, space IM side) of illumination system side gas purge scart 22 An oncoming gas flow is formed.
  • a plurality of (for example, three) supply and exhaust pipes are formed in the annular grooves 67 and 68, and the second supply pipe and the second exhaust pipe are formed in these pipes.
  • the pipes are connected to each other, but in Fig. 2 etc., for convenience of explanation and illustration, it is assumed that the second air supply pipe and the second exhaust pipe are connected to the illumination system side gas purge skirt 22 respectively. Is shown.
  • annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
  • the gas supplied to the clearance via the second air supply pipe 72 is not limited to the low-absorbing gas described above.
  • the gas exhausted from the clearance is larger than the gas supplied to the clearance, and the gas is supplied to the clearance. If the gas supplied from the annular groove 67 does not enter the space IM, a gas other than the low-absorbent gas such as pressurized air may be used.
  • the projection system side gas purge skirt 28 includes a first air supply pipe 77, a first exhaust pipe 78, a second air supply pipe 81, 83, and a second exhaust pipe 82. , 84 are respectively connected.
  • FIG. 6A is a cross-sectional view showing a portion where the upper end surface 28 a of the projection system side gas purge cartridge 28 and the reticle stage RST are arranged in close proximity, and FIG. The gas purge cartridge 28 and the lens barrel 19 of the projection optical system PL are placed close to each other.
  • the cross section is shown in the cross section.
  • the first air supply pipe 77 has a through hole 25 as a supply opening formed in the side wall of the projection system side gas purge plate 28 so as to communicate from the outside to the inside. Is connected from the outside of the projection system side gas purge skirt 28 via a connector 86. An air supply nozzle 87 is provided on the opposite side of the through hole 252 from the first air supply pipe 77.
  • the first exhaust pipe 78 has a through hole formed in the side wall of the projection system side gas purge skirt 28 from the outside to the inside, similarly to the first air supply pipe 77.
  • the connection is made from the outside of the projection system side gas purge skirt 28 via a connector.
  • the gas in the space MP is also replaced with a low-absorbing gas in order to avoid absorption of the exposure light by an absorbing gas such as oxygen and water vapor.
  • an absorbing gas such as oxygen and water vapor.
  • the space MP is filled with the low-absorbent gas by using the first air supply pipe 77 and the first exhaust pipe 78.
  • the other end of the first air supply pipe 77 is connected to a gas supply device 50, and the other end of the first exhaust pipe 78 is connected to a gas recovery device (not shown).
  • the first air supply pipe 77 and the first exhaust pipe 78 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply valve and the exhaust valve, and
  • a control device (not shown) opens and closes the air supply valve and the exhaust valve, and
  • the space MP is filled with a low-absorbing gas, and the concentration of the absorbing gas in the space MP becomes several ppm or less. ing. It should be noted that a low-absorbent gas may always flow in the space MP.
  • one end of the second air supply pipe 8 1 is connected to an air supply pipe 16 9 having an L-shaped cross section formed inside the side wall of the projection system side gas purge skirt 28. Connected via 8.
  • One end of this second air supply pipe 81 is connected
  • the supplied air supply channel 169 is in communication with an air supply annular H groove 170 as an air supply port formed on the upper end surface 28 a of the projection system side gas purge skirt 28.
  • the annular groove 170 for air supply is set to have a width of, for example, about 1 to 3 mm and a depth of, for example, about 1 to 3 mm.
  • one end of the second exhaust pipe 82 is connected via a connector 89 to an exhaust pipe 17 having an L-shaped cross section formed inside the side wall of the gas purge skirt 28 on the projection system side.
  • the exhaust pipe line 171 to which one end of the second exhaust pipe 82 is connected, has an annular groove for air supply 170 with respect to the space MP of the upper end surface 28a of the projection system side gas purge skirt 28. It is in a state where it communicates with an exhaust annular concave groove 112 serving as an exhaust port formed outside of the air conditioner.
  • the width of the exhaust annular groove 172 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm. ing.
  • the interval between the annular concave grooves 170 and 172 can be set to about 5 to 2 Omm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the projection system side gas purge skirt 28.
  • the other end of the second air supply pipe 81 is connected to the aforementioned supply device 80 as shown in FIG. 2, and the other end of the second exhaust pipe 82 is connected to the vacuum pump 79.
  • a control device (not shown) controls the operation and stop of the pump and the vacuum pump 79 incorporated in the supply device 80 as appropriate, as shown in FIG.
  • the pressurized gas supplied via the air supply line 169 flows from the annular groove 170 to the clearance between the upper end surface 28 a of the projection system side gas purge cartridge 28 and the lower surface of the reticle stage RST.
  • the gas is supplied to D2, and the gas inside the clearance D2 is exhausted to the outside via the annular groove 172, the exhaust pipe 171, and the second exhaust pipe 82.
  • the flow of the gas including the second air supply pipe 81 and the second exhaust pipe 82 mainly depends on the second air supply pipe 81 ⁇ the air supply line 169 ⁇ the annular groove for air supply 170 ⁇ the clearance D 2 ⁇ Exhaust annular groove 1 7 2 ⁇ Exhaust line 1 7 1 ⁇ Second exhaust line 8 2
  • a gas flow is formed from the inside of the projection system side gas purge skirt 28 (that is, the space MP side) to the outside.
  • a part of the low-absorbent gas supplied from the annular groove 170 for air supply enters the space MP via the clearance D2.
  • part of the gas outside the projection system side gas purge scar 28 enters the clearance D 2.
  • this gas is exhausted to the outside via the exhaust annular groove 172.
  • one end of the second air supply pipe 83 is connected to an air supply pipe 17 3 having an L-shaped cross section formed inside the side wall of the projection system side gas purge skirt 28. Connected via 0.
  • An air supply pipe line 17 3 to which one end of the second air supply pipe 83 is connected is provided with an air supply annular concave groove 1 as an air supply port formed on the lower end surface 28 b of the projection system side gas purge skirt 28. It is in a state of communication with 74.
  • the width of the annular groove for air supply 174 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm.
  • one end of the second exhaust pipe 84 is connected via a connector 91 to an exhaust pipe 175 having an L-shaped cross section formed inside the side wall of the gas purge skirt 28 on the projection system side.
  • the exhaust pipe line 17 5 to which one end of the second exhaust pipe 84 is connected is provided with an annular groove for air supply 1 f 4 in the space MP of the lower end surface 28 b of the projection system side gas purge skirt 28. It is in a state of communicating with an exhaust circular concave groove 176 as an exhaust port formed on the outside.
  • the annular groove for exhaust 176 is set to have a width of, for example, about 1 to 3 mm and a depth of, for example, about 1 to 3 mm, similarly to the annular groove for air supply 174. ing. Further, the interval between the annular H-grooves 174 and 176 can be set to about 5 to 2 Omm. In addition, from the viewpoint of airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the projection system side gas purge skirt 28 as in the above.
  • the other end of the second air supply pipe 83 is connected to the aforementioned supply device.
  • the other end of the second exhaust pipe 84 is connected to a vacuum pump 79.
  • a control device (not shown) controls the operation and stop of the pump and vacuum pump 79 built in the supply device 80 as appropriate, as shown in FIG. And the pressurized gas supplied through the air supply line 1 7 3
  • gas is supplied to the clearance D 3 between the lower end surface 28 b of the projection system-side gas purge unit 28 and the lower surface of the reticle stage RST, and the gas inside the clearance D 3 is formed into an annular groove 1 7 6
  • the air is exhausted to the outside via the exhaust pipe 17 5 and the second exhaust pipe 84. That is, the flow of the gas including the second air supply pipe 83 and the second exhaust pipe 84 mainly depends on the second air supply pipe 83 ⁇ the air supply pipe 1 73 ⁇ the annular groove for air supply 1 74 ⁇ the clearance.
  • the gas flow from the outside to the inside of the space MP is formed, so that the inflow of oxygen and water vapor outside the projection system side gas purge skirt 28 into the space MP can be blocked. It is extremely effective in improving the purge performance in the space MP (that is, the performance of reducing oxygen concentration and water vapor concentration).
  • a plurality of (for example, three) supply and exhaust pipes are formed in each of the annular concave grooves 170, 172, 174, 176 in a communicating state.
  • the second air supply pipe and the second exhaust pipe are connected to these conduits, respectively.
  • the second air supply pipe and the second exhaust pipe are Carts 2 and 2 are shown as being connected two each.
  • annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
  • the upper end of the projection optical system PL (closer to the reticle R)
  • the holding mechanism H1 of the lens L1 shown in Fig. 6B located on the side must have sufficient airtightness to prevent both gases from entering.
  • the third shielding mechanism 103 is disposed between the projection optical system PL and the wafer W on the wafer stage WST, and is disposed on the lower surface of the lens barrel base 34 B. It is configured to include a wafer gas purge skirt 36 as a shielding member suspended and supported by a plurality of suspension support members 92 whose ends are fixed.
  • the upper end surface 36 a of the wafer gas purge skirt 36 is disposed in close proximity without contacting the lower end surface of the lens barrel 19 of the projection optical system PL, and the lower end surface 36 b of the wafer gas purge skirt 36 is also placed on the wafer. It is arranged close without contacting W. As can be seen from FIG.
  • the gas purge skirt 36 has a substantially columnar shape, and a truncated cone-shaped hollow portion 36c communicates from the upper end surface to the lower end surface at the center. Therefore, a substantially airtight space PW is formed between the wafer gas purge skirt 36, the projection optical system P, and the wafer W.
  • FIG. 7A shows a cross-sectional view of the vicinity of the wafer gas purge skirt 36
  • FIG. 7B shows a view of the wafer gas purge skirt 36 viewed from above (+ Z side).
  • the figure on the left half of the center line in FIG. 7A corresponds to the cross-sectional view taken along the line BB of FIG. 7B
  • the right half of the center line in FIG. 7 corresponds to a cross-sectional view taken along the line CC in FIG. 7B.
  • the projection optical system PL barrel 19 (Clearance) D4 between the wafer gas skirt 36 and the wafer gas skirt 36 and the clearance D5 between the wafer gas skirt 36 and the wafer W are preferably as small as possible.
  • the wafer stage WST may generate vertical vibration due to movement in the scanning direction and the non-scanning direction orthogonal thereto. Therefore, it is necessary to keep a certain distance between the wafer W and the wafer gas purge skirt 36 in order to avoid contact between the wafer W and the wafer gas purge skirt 36 even when vertical vibration occurs.
  • the clearance D5 is preferably at most 3 mm from the viewpoint of airtightness.
  • the first gas supply pipe 1 1 1, the first gas exhaust pipe 1 1 2, the second gas supply pipe 1 1 3, and the second gas exhaust pipe 1 1 4 are connected to the wafer gas purge skirt 36.
  • three second air supply pipes 113 are provided for the wafer gas purge skirt 36 (second air supply pipes 113 A to 113 P). C) are connected, and three second exhaust pipes 114 are connected to the wafer gas purge skirt 36 (second exhaust pipes 114 A to 114 C). For convenience of illustration, only one of each is shown.
  • the first air supply pipe 1 1 1 has a through hole 2 5 as an air supply opening formed from the outside to the inside of the wafer gas skirt 36. 3 is connected from the outside of the wafer gas purge skirt 36 via a connector. An air supply nozzle 115 is provided on the opposite side of the through-hole 253 from the first air supply pipe 111.
  • the first exhaust pipe 1 1 2 is disposed at a position substantially symmetrical to the first air supply pipe 1 1 1 with the wafer gas purge skirt 36 interposed therebetween, and is located outside the wafer gas purge skirt 36.
  • the through hole 254 formed in communication with the inside from the outside is connected from outside the wafer gas purge skirt 36 via a connector.
  • the gas in the space PW is also replaced with a low absorption gas in order to avoid the absorption of the exposure light by the absorption gas such as oxygen and water vapor.
  • the space PW is filled with the low-absorbent gas by using the first air supply pipe 111 and the first exhaust pipe 112.
  • the other end of the first air supply pipe 111 is connected to one end of a gas supply device 50, and the other end of the first exhaust pipe 112 is a gas not shown. Connected to collection device.
  • the first air supply pipe 1 1 1 and the first exhaust pipe 1 1 2 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply and exhaust valves.
  • the space PW is filled with a low-absorbent gas by appropriately controlling the operation and stop of the pump incorporated in the gas supply device 50, and the concentration of the absorptive gas in the space PW is several ppm or less. It has become. It should be noted that the low-absorbent gas may always flow in the space PW.
  • the second air supply pipes 113A to 113C are substantially c-shaped and formed at substantially equal intervals in the wafer gas purge skirt 36.
  • the two air supply lines 123 A to 123 C are connected via connectors from outside the wafer gas purge skirt 36.
  • Each of the second air supply pipes 1 2 3 A to 1 2 3 C is provided with an annular groove for air supply as an air supply port formed on the upper end surface 36 a of the wafer gas purges force 36.
  • the gas supply skirt 36 communicates with the gas supply annular groove 1 19 as a gas supply port formed in the lower end surface 36 b of the wafer gas purge skirt 36.
  • the second exhaust pipes 114A to 114C are substantially T-shaped formed in the vicinity of the second air supply pipes 123A to 123C in the wafer gas purge skirt 36.
  • Second exhaust line 1 2 4 A to 1 2 4 C Are connected via a connector.
  • Each of the second exhaust pipes 124A to 124C is for exhaust formed outside the air supply annular groove 117 with respect to the space PW of the upper end surface 36a of the wafer gas purge skirt 36.
  • the annular concave groove 1 18 and the exhaust annular concave groove 1 20 as an exhaust port formed outside the air supply annular groove 1 19 with respect to the space PW of the lower end surface 36 b of the wafer gas purge skirt 36. It is in a state of communication with.
  • each of the air supply annular groove 1 17, 1 19 and the exhaust annular groove 1 18, 120 has a width of, for example, about 1 to 3 mm and a depth of, for example, 1 to 3. It is set to about mm.
  • the interval between the annular grooves 1 17 and 1 18 and the interval between the annular grooves 1 19 and 1 20 can both be set to about 5 to 2 Omm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the wafer gas purge skirt 36.
  • the second air supply pipes 113A to 113C (hereinafter, also appropriately referred to as “second air supply pipes 113") are connected to the wafer gas purge skirt 36 and the supply device 80, respectively.
  • the second exhaust pipes 114A to 114C (hereinafter, also appropriately referred to as “second exhaust pipe 114") connect the wafer gas purge skirt 36 and the vacuum pump 79.
  • the control device (not shown) controls the operation and stop of the pump and the vacuum pump 79 built in the supply device 80 as appropriate, thereby connecting the second air supply pipe 113 and the air supply pipe 123 as described above.
  • the pressurized gas supplied via the annular concave grooves 1 17 and 1 19 respectively provides a clearance D 4 between the upper end surface 36 a of the wafer gas purge skirt 36 and the lower surface of the projection optical system PL, and a wafer gas purge scan.
  • the gas in the clearances D 4 and D 5 is supplied to the clearances D 4 and D 5, respectively, and is supplied to the clearances D 5 and D 5 between the lower end surface 36 b of the wafer 36 and the wafer W.
  • the air is exhausted to the outside via the second exhaust pipe 114 in sequence.
  • the flow of the gas including the second air supply pipe 113 and the second exhaust pipe 114 is mainly the second air supply pipe 113 ⁇ the air supply line 123A to 123C ⁇ the annular groove for air supply.
  • 1 1 7 Also 1 1 9) —Clearance D 4 (or D5) ⁇ Circumferential groove for exhaust 1 1 8 (or 1 20) —Exhaust line 1 24A to 1 24 ⁇ ⁇ Second exhaust pipe 1 14 and clearance D4 , D5, a gas flow from the inside of the wafer gas purge skirt 36 (that is, the space PW side) to the outside is formed.
  • the outside of the wafer gas purge skirt 36 with respect to the space PW is formed.
  • the flow of oxygen and water vapor can be blocked, and this is extremely effective in improving the purging performance (ie, the performance of reducing the oxygen concentration and water vapor concentration) in the space PW.
  • annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
  • the type of purge gas in the barrel 19 of the projection optical system PL is different from the type of purge gas in the space PW, the type is located at the lower end of the projection optical system PL (the side closer to the wafer W).
  • the holding mechanism H2 of the lens L2 shown in FIG. 7A needs to be sufficiently airtight so that both gases are not mixed.
  • the wafer gas skirt 36 and the projection optical system PL may be hermetically joined (fixed) via a sealing member such as an O-ring. It is possible. However, the wafer gas purge scar 36 is vibrated by driving the wafer stage WST, etc., and the vibration is generated by the projection optical system. When there is a possibility that the light may be transmitted to the PL to deteriorate the imaging characteristics, it is preferable to arrange them closely at predetermined intervals as in the present embodiment.
  • the illumination system housing 2 is connected to the regas supply device 50 by an air supply pipe 10 as shown in FIG. 2, and connected to a gas recovery device (not shown) by an exhaust pipe 11. It has been.
  • the lens barrel 19 is connected to a regas supply device 50 by an air supply pipe 30 and connected to a gas recovery device (not shown) by an exhaust pipe 31.
  • Each of the air supply pipes 10 and 30 is provided with an air supply valve (not shown), and each of the exhaust pipes 11 and 31 is provided with an exhaust valve (not shown).
  • a control device (not shown) controls the opening and closing of each air supply valve and each exhaust valve, and the operation and stop of the pump built in the gas supply device 50 as appropriate, so that the inside of the illumination system housing 2 and the projection optical system are controlled.
  • the PL tube 19 is filled with low-absorbing gas, and the concentration of the absorbing gas inside is controlled to a concentration of several ppm or less. It should be noted that a low-absorbent gas may always flow inside these spaces.
  • the case where the low-absorbent gas supplied from the gas supply device 50 into each space is exhausted to the gas recovery device after use is not limited thereto.
  • the pipe may be connected to the gas supply device 50, and the used gas may be returned to the gas supply device 50.
  • a storage tank for low-absorbent gas, a pump, a gas purification device, etc. are built in the gas supply device 50.
  • the gas purification device built in the gas supply device 50 regenerates the low-absorbency gas whose purity has decreased through the interior of each space to the specified purity again.
  • a HEPA filter or ULPA A filter tie that includes an air filter that removes dust (particles) from a filter and a chemical filter that removes absorptive gases such as oxygen, water vapor, and hydrocarbon-based gases described above.
  • the storage tank inside the gas supply device 50 is connected to an external low-absorbent gas supply source via a valve having a flow rate control function, so that the insufficient low-absorbent gas can be appropriately supplemented. It is desirable to do.
  • the control device controls the opening and closing of the air supply valve and the exhaust valve, and the operation and stop of the pump incorporated in the gas supply device 50 as appropriate, so that each space is filled with the low-absorbent gas.
  • concentration of the absorbent gas in the illumination system housing 2 can be suppressed to a concentration of several ppm or less.
  • the gas supply device 50 may be divided into nine rooms of a first room to a ninth room according to each of the spaces. In this case, the type of the low-absorbent gas in each room may be different.
  • the light path inside the light transmission optical system is also filled with the low-absorbent gas similarly to the illumination system housing 2.
  • the gas supply device 50, the first air supply pipe 60, the air supply valve (not shown), the low-absorbing gas ( A gas supply system that supplies gas (specific gas) is configured.
  • a gas exhaust system that exhausts the gas in the space IM to the outside is configured by a gas recovery device (not shown), the first exhaust pipe 61, and an exhaust valve (not shown).
  • the gas recovery system (not shown), the first exhaust pipe 78, and an exhaust valve (not shown) constitute a gas exhaust system that exhausts the gas in the space MP to the outside. Furthermore, the space inside the wafer-side gas purge skirt 36 is provided by the gas supply device 50, the first air supply pipe 111, and an air supply valve (not shown). A gas supply system that supplies gas (specific gas) to the PW is configured. The gas in the space PW is externalized by a gas recovery device (not shown), the first exhaust pipe 1 12 and an exhaust valve (not shown). A gas exhaust system for exhausting air is configured.
  • the supply device 80, vacuum pump 79, second air supply line 167, second exhaust line 168, second air supply line 72, and second exhaust line 73 provide a pressurized gas (low absorption) in the clearance D1.
  • a differential exhaust mechanism that exhausts the gas in the clearance D1 to the outside.
  • the pressurized gas is supplied into the clearance D2 by the supply device 80, the vacuum pump 79, the second supply line 169, the second exhaust line 171, the second supply line 81, and the second exhaust line 82.
  • a differential exhaust mechanism is configured to supply and exhaust the gas in the clearance D2 to the outside.
  • pressurized gas is supplied into the clearance D3 by the supply device 80, the vacuum pump 79, the second supply line 173, the second exhaust line 175, the second supply line 83, and the second exhaust line 84.
  • a differential exhaust mechanism that exhausts the gas in the clearance D3 to the outside is configured.
  • Exhaust pipes 114A to 114C constitute a differential exhaust mechanism that supplies pressurized gas into clearances D4 and D5, respectively, and exhausts gas in clearances D4 and D5 to the outside. .
  • the illumination system side gas purge skirt 22 constituting the first shielding mechanism 101 is provided with the reticle stage RS Since the clearance D1 is formed in a state where it is formed between the reticle R and the illumination unit, the clearance D1 is set to an appropriate dimension so that the reticle R disposed on the optical path of the exposure light EL is illuminated.
  • the space between the ILU and the IM can be shielded from the outside air in a somewhat airtight state. Then, in the space IM, the absorption characteristic of the exposure light EL through the first air supply pipe 60 connected to the illumination system side gas purge skirt 22 is changed to the absorption gas described above.
  • the gas in the space IM between the reticle R and the lighting unit ILU can be efficiently replaced with a low-absorbing gas, whereby the absorbing gas can be purged from the space IM. .
  • the low-absorbent gas is supplied into the clearance D 1 through an air supply annular groove 67 formed on the lower end surface 22 b of the illumination system side gas purge skirt 22 on the reticle R side, and The gas in the clearance D1 is exhausted to the outside through the exhaust annular groove 68 formed outside the air supply annular groove 67 in the space IM of the lower end face 22b.
  • the projection system side gas purge skirt 28 forming the second shielding mechanism 102 is disposed in a state where a clearance D2 is formed between the projection system side gas purge skirt 28 and the reticle stage RST, the clearance D2 is appropriately dimensioned.
  • the space MP between the reticle R arranged on the optical path of the exposure light EL and the projection optical system PL can be shielded from the outside air in a somewhat airtight state.
  • a low-absorbing gas is supplied via a first air supply pipe 77 connected to the projection system-side gas purge cartridge 28, and the first MP connected to the projection system-side gas purge cartridge 28.
  • the air is exhausted through the exhaust pipe 78.
  • gas replacement in the space on the optical path of the exposure light EL from the illumination unit ILU to the projection optical system P can be performed with high accuracy without using a large and heavy airtight reticle stage chamber. It is possible to remove the absorbent gas from the space.
  • the illumination system side gas purge skirt 22 Since the sparged skirt 28 can be small enough to cover the space between the reticle stage RST and the illumination unit ILU or the projection optical system PL, the size and weight of the device can be reduced.
  • the clearances D 1 and D 2 are formed between the reticle stage RST and the reticle stage RST as described above, the space on one surface side and the other surface side of the pattern area of the reticle R can be reduced. Despite shielding the reticle stage from outside air, reticle stage RST can be easily accessed from outside.
  • the gas supply annular groove 170 formed on the surface (top end surface 28 a) facing the reticle R is low.
  • the absorbent gas is supplied toward the reticle R (reticle stage RST), and the gas in the clearance D2 is formed outside the air supply annular groove 170 with respect to the space MP on the upper end surface 28a. Since the air is exhausted to the outside through the exhaust annular groove 17 2, the airtightness of the space MP is substantially improved, and more accurate gas replacement is possible.
  • the projection system side gas purge skirt 28 since a predetermined clearance D3 is formed between the projection optical system PL and the projection system side gas purge skirt 28, the projection system side gas purge skirt 28 generates vibration due to the driving of the reticle stage RST. However, it is possible to prevent the vibration from being transmitted to the projection optical system PL. Even if the clearance D 3 is formed in this way, in the present embodiment, since the gas flow from the inside to the outside of the space MP is formed in the clearance D 3 as in the clearances D 1 and D 2, The airtightness is hardly reduced.
  • the wafer gas purge scar 36 constituting the third shielding mechanism 103 forms a predetermined clearance D4 with the projection optical system PL, and the wafer gas purge scar 36 with the wafer W.
  • the predetermined clearance D5 formed it is arranged between the projection optical system PL and the wafer W, and the space inside the wafer gas purge skirt 36 is also subjected to gas replacement in the same manner as the above spaces.
  • the low-absorbent gas is supplied into the clearance D4 from the air supply annular groove 1 17 formed on the surface (the upper end surface 36a) facing the projection optical system PL.
  • the gas in the clearance D4 is exhausted to the outside through the exhaust annular groove 118 formed outside the air supply annular groove 117 on the upper end surface 36a.
  • a low-absorbent gas is supplied into the clearance D5 from the air supply annular groove 1 19 formed on the surface (lower end surface 36b) facing the wafer W, and the gas in the clearance D5 is lowered.
  • the air is exhausted to the outside through the exhaust annular groove 120 formed outside the air supply annular groove 119 on the end face 36b. For this reason, the airtightness of the space PW is substantially improved, and more accurate gas replacement is possible.
  • gas replacement in the space on the optical path of the exposure light EL from the projection optical system PL to the wafer W can be performed with high accuracy without using a large and heavy airtight wafer stage chamber. Absorbable gas can be eliminated.
  • the wafer gas purge skirt 36 a small one that can cover the space between the wafer W and the projection optical system PL can be used, so that an increase in the size and weight of the apparatus can be suppressed. it can.
  • the transmittance of the exposure light EL can be maintained at a high level and the exposure can be performed with high accuracy. Can be performed over a long period of time.
  • the surface of the gas purge skirt 22 on the illumination system side facing the reticle stage RST (lower end surface 22b) and the surface of the gas purge skirt 28 on the projection system side facing the reticle stage RST (upper end surface 28a) are both flat.
  • the upper and lower surfaces of the reticle stage RST are both flat, so that even when the clearances D 1 and D 2 are sufficiently narrow, when the reticle stage RST is moved, each package skirt 22 , 28 do not contact reticle stage RST. Therefore, while maintaining high airtightness of space IM and MP, reticle stage RST This makes it possible to make a large movement, easily replace the reticle after the movement, or easily perform maintenance of the reticle stage RST.
  • the projection optical system PL ⁇ Reticle R can be shielded from the generation of dust and heat generated by the scanning of the reticle stage RST, and the stability of the exposure equipment and the adhesion of dust to the reticle (contamination) ) Can be prevented.
  • the present invention is not limited to this. Since the space between the projection optical system P and the wafer W is usually short, the respective ends of the gas supply pipe and the gas exhaust pipe are located in this space, and the space is provided via the gas supply pipe. By sending the low-absorbing gas into the space and exhausting the gas containing the absorptive gas in the space to the outside through a gas exhaust pipe, the absorbing optical system PL It is possible to exclude from the space on the optical path between and Jeha W. Therefore, such a technique may be combined with the gas purging method of the present invention applied to the reticle side.
  • the annular groove for air supply 117 can be omitted between the wafer gas purge skirt 36 and the projection optical system PL. That is, between the wafer gas purge skirt 36 and the projection optical system PL, the gas in the clearance D4 by the annular groove for exhaustion 118, or the external gas and space PW through the clearance D4. May be configured to suck and exhaust the gas.
  • an exhaust ring is provided between the wafer gas purge skirt 36 and the projection optical system PL. The inflow of oxygen and water vapor outside the wafer gas purge skirt 36 into the space PW can be blocked only by providing the concave grooves 118.
  • the clearance D6 can be provided between the illumination system side gas purge skirt 22 and the lower end surface of the housing 2 of the illumination unit ILU.
  • the air supply annular groove 370 as the air supply port and the exhaust annular groove 372 as the exhaust port are used as in the past.
  • the supply device 80, vacuum pump 79, second air supply line 369, second exhaust line 371, second air supply line 383, and second exhaust line 384 allow clearance D
  • a differential exhaust mechanism that supplies pressurized gas (low-absorbent gas) into the clearance D6 and exhausts the gas in the clearance D6 to the outside is configured in the inside of the clearance D6.
  • FIG. 9 shows a partial cross section of a state near a reticle stage in a stepper type exposure apparatus suitable for applying the gas purging method of the present invention.
  • the reticle stage is fixed near a stage main body 130 having a flat plate shape and a rectangular opening 130 a formed in the center of the stage main body 130.
  • a plurality of (for example, four) reticle holders 132 are provided.
  • Each of the reticle holding portions 13 2 has a concave portion 13 4 formed on the upper surface thereof, and a suction conduit 13 5 formed in communication with the concave portion 13 4.
  • Reticle R is suction-held by suction pipe 1 36 connected to reticle holding section 1 32.
  • a first shielding mechanism 101 ′ similar to the above embodiment is provided.
  • the first shielding mechanism 101 includes an illumination-system-side gas purge skirt 22', and the illumination-system-side gas purge skirt 22 'has the same structure as the first shielding mechanism 101 described above.
  • a first supply pipe 60 ′, a first exhaust pipe 61 ′, a plurality of second supply pipes 72 ′, and a plurality of second exhaust pipes 73 ′ are connected.
  • the first supply pipe 60 ′ is connected to a gas supply device 50, and the first exhaust pipe 61, is connected to a gas recovery device (not shown).
  • the low-absorbing gas is supplied into the generally airtight space IM 'formed by the cart 22', the lighting unit I LU and the reticle R, and the gas in the space IM 'is supplied from the first exhaust pipe 61'. Since the gas is discharged, the space IM 'is replaced with a low-absorbent gas.
  • the second air supply pipe 72 'and the second exhaust pipe 73' are connected to a supply device 80 and a vacuum pump 79, respectively, and from the second air supply pipe 72 ', the illumination system side gas skirt 22' and the reticle R are connected.
  • the pressurized gas is supplied to the clearance D 1 ′ during this time, and the gas in the clearance D 1 ′ is exhausted from the second exhaust pipe 73 ′ by the suction force of the vacuum pump. An outward gas flow is formed from the space IM '.
  • a second shielding mechanism 102 is provided on the lower surface side of the reticle R, that is, between the reticle R and the projection optical system PL.
  • the second shielding mechanism 102 includes a projection-system-side gas purge skirt 28 '.
  • the projection-system-side gas purge skirt 28' includes a first air supply pipe 77 'and a first An exhaust pipe 78 ', a plurality of second air supply pipes 8 1', and a plurality of second exhaust pipes 82 'are connected.
  • the first air supply pipe 77 'and the first exhaust pipe 78' are connected to a gas supply device 50 and a gas recovery device (not shown), respectively.
  • the low-absorbent gas is supplied from the first air supply pipe 77 'into the substantially hermetically sealed space MP' formed by the projection system side gas purge skirt 28 ', the reticle R, and the projection optical system PL.
  • the gas in the space MP ' is discharged from the first exhaust pipe 78', so that the gas in the space MP 'is replaced by the low-absorbent gas.
  • the second air supply pipe 81 'and the second exhaust pipe 82' are connected to a supply device 80 and a vacuum pump 79, respectively, as in the above embodiment. From the second air supply pipe 81 ', a clearance D2' between the projection system side gas purge skirt 28 'and the reticle R, and a clearance D3 between the projection system side gas purge skirt 28' and the projection optical system PL. , A low-absorbent gas is supplied to the second exhaust pipe 82, and the gas of the clearance D 2 ′ and the clearance D 3 ′ is exhausted from the second exhaust pipe 82.
  • the reticle is not scanned during the exposure operation (that is, a large operation like a scanning stepper is not performed). Therefore, the gas purge scars constituting the first and second shielding mechanisms are as described above. It can be arranged closer to the reticle R than in the embodiment. That is, the substantially hermetically sealed space I ⁇ ', MP' formed by each gas purge scar and the like can be a more airtight purge space than the spaces IM, MP of the above embodiment. Therefore, the absorption of the exposure light EL is further suppressed as compared with the above embodiment, and it is possible to realize highly accurate exposure.
  • the reticle exchange method can be easily realized by, for example, sliding the reticle R in the direction perpendicular to the plane of FIG.
  • the exhaust in the space (IM, MP, PW (or IM ', MP')) is performed via the first exhaust pipe connected to each purge scar.
  • the present invention is not limited to this, and a configuration in which air is exhausted to the outside through gaps in each space can be adopted.
  • a straight-tube type lens barrel as shown in FIG. 1 is employed as the projection optical system P.
  • a catadioptric projection optical system is employed.
  • the shape of the projection optical system has a bent portion and a protruding portion, but even in such a case, a gas purge skirt is provided on the reticle-side end surface or the wafer-side end surface of the projection optical system.
  • a predetermined clearance is formed between the end of the projection system side gas purge skirt 28 and the upper end surface of the lens barrel 19 of the projection optical system PL.
  • the end of the side gas purge skirt 28 is configured to face the side of the barrel 19 of the projection optical system PL, and the side of the barrel 19 of the projection optical system PL is configured.
  • a predetermined clearance may be formed between the surface and the surface.
  • the projection optical system PL may be connected with a film-like connecting member.
  • a film-shaped member in which generation of a light-absorbing substance is reduced is formed by applying a highly stretchable protective film made of polyethylene via an adhesive to the outer surface of a film-like material made of, for example, ethylene vinyl alcohol resin (EVOH resin). It can be formed by coating a stabilizing film made of aluminum on the inner surface of the film material by vapor deposition or the like.
  • EVOH resin for example, KURARAY Co., Ltd. “Product name EVAL” can be used.
  • gas purge method of the present invention can be applied not only to a projection exposure apparatus but also to an inspection optical apparatus used for inspection of a projection optical system mounted on the projection exposure apparatus.
  • This embodiment of the inspection optical device is a second embodiment described next.
  • the second embodiment relates to a case where the space in which the inspection optical system is arranged, which is unique to the inspection optical device that inspects the projection optical system PL, is gas-purged by the gas purging method of the present invention.
  • FIG. 10 is a cross-sectional view of the inspection unit 200 constituting the inspection optical device, together with the projection optical system PL and the wafer gas purge skirt 103.
  • the gas on the reticle side (above the projection optical system PL) of the inspection optical device is not shown.
  • the sparging method is the same as in the case of the above-mentioned stepper, and the wafer gas purge skirt 103 provided below the projection optical system PL is the same as in the first embodiment. Description is omitted.
  • the inspection section 200 constituting the inspection optical device has a cylindrical shape (a cylindrical shape with a bottom) with one end (lower end) closed and the other surface (upper surface) opened. )
  • the inspection optical system 160 as a system, the image sensor 164 as a photodetector disposed below the inspection optical system 160, and the optical system support housing OB are driven in the X-axis direction.
  • the lens 16 1 of the inspection optical system 16 0 is held near the upper end of the optical system support housing OB via the lens holder 2 10, and the lens 16 1 and the lens holder Due to 210, the space below the lens 161 in the optical system support housing OB is airtight.
  • this space is referred to as “space O C J”.
  • the optical system support housing OB serving as the optical path of the vacuum ultraviolet light is used.
  • the interior (the interior of the space OC) must be replaced with a low-absorbing gas such as nitrogen or a rare gas.
  • a through hole 255 as an air supply opening is formed in the optical system support housing OB from the outside to the inside, and the outside of the through hole 255 is supplied through a connector 152. Trachea 1 5 1 is connected.
  • An air supply nozzle 153 is provided inside the through hole 255.
  • a low-absorbent gas is supplied from a gas supply device through the air supply pipes 151 and the like.
  • the optical system support housing OB is formed with a through hole 256 as an exhaust opening different from the through hole 255, and an exhaust pipe 1 is provided outside the through hole 255 via a connector 155. 56 is connected.
  • the gas in the space OC is exhausted to the outside of the optical system support housing OB through the exhaust pipe 156 and the like. In this way, the gas in the space OC is replaced by the low-absorbent gas.
  • the X-axis linear motor MX includes a mover 212 connected to the optical system support housing OB and a stator 214 whose longitudinal direction is in the X-axis direction.
  • the mover 212 is driven in the X-axis direction along the stator 214, whereby the optical system support housing OB is slid in the X-axis direction.
  • the Y-axis linear motor MY includes a mover 216 fixed below the stator 214 of the X-axis linear motor MX, and a stator 218 having a longitudinal direction in the Y-axis direction. I have.
  • the mover 216 is driven in the Y-axis direction along the stator 218, whereby the optical system support housing OB is slid in the Y-axis direction together with the X-axis linear motor MY.
  • the optical system supporting housing OB including the inspection optical system 160 and the image sensor 164 is movable in a two-dimensional plane.
  • the flat plate 150 has, for example, a rectangular shape in plan view (when viewed from above), and has a circular opening 150a formed in the center thereof.
  • the flat plate 150 will be described later in detail.
  • an image formed by the projection optical system PL is transferred onto lenses 161 to 163 constituting the inspection optical system 160 onto an imaging element 164 such as a CCD.
  • the optical system support housing OB can be moved two-dimensionally by the linear motors MX and MY, all the image light fluxes from each measurement point in the field of view of the projection optical system PL are taken. It can receive light and can measure aberrations at each measurement point in the field of view.
  • the flat plate 150 transmits the image light flux from each measurement point in the field of view of the projection optical system.
  • the lower end surface of the wafer gas purge skirt 36 does not protrude from the flat plate 150. have. That is, by providing the flat plate 150, a substantially airtight space PO is formed between the projection optical system PL, the wafer gas purge skirt 36, and the inspection unit 200, as in the above embodiment. However, in this space PO, the airtight state is always maintained even when the inspection unit 200 moves in the two-dimensional direction for the inspection.
  • CCD When CCD is used as the imaging device 164 provided in the optical system support housing OB, it is generally mounted in a ceramic package, and a cover glass is provided on the front surface thereof.
  • a cover glass suitable for vacuum ultraviolet light in terms of transmittance, and if fluorite / fluorine-added quartz is attached to the power glass, the cover glass and the light-receiving surface of the CCD There is a problem that gas replacement in the space between the two becomes difficult. This point is improved in the following third embodiment.
  • FIGS. 11A and 11B a third embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
  • the same reference numerals are used for the same or equivalent components as those in the above-described second embodiment, and the description thereof will be simplified or omitted.
  • the configuration of the optical system support housing of the second embodiment, the arrangement method of the imaging device (CCD) 164 as a photodetector, and the light transmitting window member 2 above the CCD are described. It is characterized by the provision of 87.
  • an optical system support housing OB ′ including a first partial housing OBa and a second partial housing OBb is used.
  • a groove 231 is formed, and a light transmitting window member made of fluorite or fluorine-doped quartz is formed in the groove 231.
  • 287 is sandwiched between the upper and lower sides by the partial housings OBa and OBb.
  • the light transmitting window member 287 is point-contacted by three projections 290 each slightly protruding from both end surfaces of the first partial housing OBa and the second partial housing OBb. Is held.
  • the reason that the light transmitting window member 287 is held (pinched) at three points at each of the upper and lower points in this manner is that the light transmitting window member 287 is firmly fixed so that the upper and lower spaces are completely airtight. Then, any stress deformation occurs in the light transmitting window member 287, and the same kind of low-absorbing gas is supplied to the upper and lower spaces partitioned by the light transmitting window member 287. In this case, it is desirable to pinch at each of these three points.
  • an inspection optical system 160 is provided above the second partial housing O BB as in the second embodiment.
  • a ceramic package 270 as a holding member is hermetically bonded to the lower end surface of the first partial housing OBa via an O-ring 381 with a CCD 164 mounted thereon, and has an approximately S-shaped cross section. It is fixed to the lower end face of the first partial housing OBa via a stopper 279 and a screw 280 in a shape of a circle.
  • the ceramic package 270 is made of a box-shaped member having a concave portion 270b formed in the center of the upper surface, and the upper end surface 270a has a high flatness. Is set.
  • a cover glass is provided on the front surface (upper surface), but in the present embodiment, no cover glass is provided.
  • the lower part of the CCD 164 of the ceramic package 270 is used to draw out the electrical wiring 271 from the electric circuit such as the charge transfer control circuit of the CCD 164, as shown in Fig. 11A.
  • the wiring holes 165 are formed. By forming the wiring hole 165 in this way, the electric wiring 271 is drawn out from the wiring hole 165.
  • a belch:!: Element 272 and a heat dissipation device 274 are provided on the lower surface side of the ceramic package 270.
  • the Peltier element 272 has a function of cooling the ceramic package 270 by supplying a predetermined current through a current wiring connected to the Peltier element 272.
  • the heat dissipation device 274 is provided on the surface of the Peltier element 272 opposite to the ceramic package 270.
  • the radiator 274 has, for example, a liquid pipe 275 provided therein, and cools the Peltier element 272 by flowing a cooling liquid from the liquid supply device (not shown) to the liquid pipe 275.
  • a cooling liquid from the liquid supply device (not shown) to the liquid pipe 275.
  • another device for example, a cooling fan or the like
  • another device for example, a cooling fan or the like
  • the reason for providing the Peltier element 272 and the heat dissipation device 274 in this way is as follows: (1) Regarding the Peltier element 272, when the CCD 164 detects weak light, the SZN ratio (signal Z noise ratio) is improved. This is because it is desirable to cool the CCD 164 because of the necessity of (2) For the heat dissipation device 274, the opposite side of the Peltier element 272 from the CCD (the lower surface in FIG. This is because the temperature of the Peltier element 272 becomes high when it is cooled, so that it is necessary to cool the lower surface side of the Peltier element 272 so that the temperature does not rise much more than the ambient temperature (for example, 23 ° C.).
  • the gas near the CCD 164 cooled by the Peltier element 272 becomes a lens disposed above the CCD 164 due to convection or the like and the gas near the lens. Cooling may make the optical performance unstable. Therefore, the light transmission window member 287 is provided as described above. In this case, the space between the light transmitting window member 287 and the CCD 164 also needs to be replaced with a low-absorbing gas so that the vacuum ultraviolet light can be transmitted well without being absorbed. . Therefore, in the present embodiment, as in the past, one end of the air supply pipe 281 is formed as a through-hole 257 as an air supply opening formed from the outside to the inside of the first partial housing OBa.
  • the air supply nozzle 285 is provided on the opposite side of the through-hole 257 from the air supply pipe 281.
  • a low absorptive gas is formed from the gas supply device (not shown) through the air supply pipe 281 and the like by the light transmitting window member 287, the first partial housing OBa, and the ceramic package 270.
  • the space is supplied to the GC.
  • a through hole 2 58 as an exhaust opening formed from the outside to the inside of the first partial housing OB a is connected to the exhaust pipe 28 through a connector 28 4. 2 is connected.
  • the gas in the space GC is exhausted to the outside through the through holes 258, the exhaust pipe 282, and the like. As a result, the gas in the space GC is replaced with the low-absorbing gas.
  • the light-transmitting window member 284 is used to prevent the gas around the cooled CCD 164 from being transmitted to the optical system located above. It is preferable to provide a large number of light transmitting window members similar to those in FIG.
  • the opening of one side of the ceramic package 270 in which the CCD 164 is accommodated with the light receiving surface facing the opening is provided.
  • the peripheral end surface 270a is connected to the first partial housing OBa via a sealing member (O-ring) 381 to shield the space GC including the light receiving surface of the CCD 164 from outside air. . Therefore, the space GC formed by the first partial housing OBa and the ceramic package 270 is a space with good airtightness.
  • a specific gas (low-absorbing gas) having a lower absorption characteristic for light incident on the light receiving element in the space GC than the absorbing gas is supplied to the air supply pipe connected to the first partial housing OBa.
  • the gas in the space GC is exhausted to the outside via an exhaust pipe connected to the first partial housing OBa.
  • This allows spatial GC to be accurate with low-absorbing gas Since the light is well replaced, the light is hardly absorbed before the light is received by the light receiving surface of the CCD 164. Therefore, it is possible to detect the light quantity of the CCD 164 with high accuracy, and when, for example, measuring the optical characteristics of the projection optical system PL based on the result of the light quantity detection, it is necessary to improve the measurement precision. Becomes possible.
  • the air supply pipe 281 and the exhaust pipe 282 for gas replacement in the space GC are connected to the first partial housing OBa.
  • the present invention is not limited to this.
  • An opening may be formed in the package 270, and the air supply pipe 281 and the exhaust pipe 282 may be connected to the opening.
  • the optical system supporting housing is formed of two partial housings of the first partial housing OBa and the second partial housing OBb.
  • the optical system supporting housing OB ′ is used, but the present invention is not limited to this. If the light transmission window member 287 does not need to be provided, only the second partial housing OBb is used, and the ceramic package is used. 270 may be fixed directly to the second partial housing OBb.
  • the light source of the exposure apparatus of the above embodiment, F 2 laser light source, A r F excimer laser light source is not limited like the K r F excimer laser light source, e.g., an infrared region, which is oscillated from the D FB semiconductor laser or fiber laser Or single-wavelength laser light in the visible region is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and then converted to ultraviolet light using a nonlinear optical crystal. May be used.
  • the magnification of the projection optical system is not limited to a reduction system, and may be any of an equal magnification and an enlargement system.
  • the illumination unit and projection optical system consisting of a plurality of lenses are incorporated into the main body of the exposure apparatus, optical adjustment is performed, and the wafer stage (or reticle stage in the case of the scan type) consisting of many mechanical parts is exposed. Attach to the equipment body, connect wiring and piping, and assemble each partition that composes the reticle chamber and wafer chamber.
  • the present invention relates to the exposure apparatus 100 and the like according to the above-described embodiment by connecting the piping system of the system, connecting each part to the control system of the system, and further performing overall adjustment (electrical adjustment, operation confirmation, etc.).
  • An exposure apparatus can be manufactured. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled. ⁇ Device manufacturing method ⁇
  • FIG. 12 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • a device function / performance design for example, a circuit design of a semiconductor device, etc.
  • a pattern for realizing the function is performed.
  • step 302 mask manufacturing step
  • step 303 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 304 wafer processing step
  • step 304 wafer processing step
  • step 304 device assembling step
  • step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step 360 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 305 are performed. After these steps, the device is completed and shipped.
  • FIG. 13 shows the detailed flow of step 304 above for a semiconductor device.
  • An example is shown.
  • step 31 oxidation step
  • step 312 CVD step
  • step 313 electrode formation step
  • step 3 14 ion implantation step
  • ions are implanted into the wafer.
  • steps 311 to 3114 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
  • the post-processing step is executed as follows.
  • step 315 resist forming step
  • step 316 exposure step
  • step 317 development step
  • Step 318 etching step
  • step 319 resist removing step
  • the exposure apparatus of the first embodiment is used in the exposure step (step 316), so that the exposure light transmittance can be maintained well over a long period of time.
  • the reticle pattern can be transferred onto the wafer with high precision.
  • the productivity of highly integrated devices can be improved.
  • Industrial applicability As described above, the gas purging method of the present invention is suitable for gas replacement of a space between an optical device and an object arranged on the optical path of light. Further, the exposure apparatus of the present invention is suitable for improving the exposure accuracy while suppressing an increase in the size and weight of the apparatus. Further, the device manufacturing method of the present invention is suitable for producing a highly integrated device.

Abstract

When gas-purging a space between a specific object (RST or R) disposed on the optical path of light (EL) having a specified wavelength and an optical device (ILU), a shielding member (22) for shielding from outside air a space (IM) between the optical device and the specific object is disposed with a specified clearance kept formed with respect to the specific object, and a specific gas lower in absorption characteristics with respect to the light than an absorbing gas is supplied to the space (IM) via an air supply pipe (60) connected to the shielding member. An inner gas in the space (IM) is exhausted to the outside via an exhaust pipe (61) connected to the shielding member. Accordingly, the use of a small shielding member capable covering a space between an optical device and a specific object enables gas substituting almost as accurate as when a large, heavy air-tight shielding vessel is used.

Description

明 細 書  Specification
ガスパージ方法及び露光装置、 並びにデバイス製造方法 技術分野 Gas purge method, exposure apparatus, and device manufacturing method
本発明はガスパージ方法及び露光装置、 並びにデバイス製造方法に係り、 更 に詳しくは、 所定波長の光の光路上に配置された物体と光学装置との間の空間 をガスパージするガスパージ方法及び該ガスパージ方法の実施に好適な露光装 置、 並びに該露光装置を用いるデバイス製造方法に関する。 背景技術  The present invention relates to a gas purging method, an exposure apparatus, and a device manufacturing method, and more particularly, to a gas purging method and a gas purging method for purging a space between an object disposed on an optical path of light having a predetermined wavelength and an optical apparatus. And a device manufacturing method using the exposure apparatus. Background art
従来より、半導体素子 (集積回路)、液晶表示素子等の電子デバイスを製造す るためのリソグラフイエ程では、 電子デバイスの微細パターンを基板上に形成 する種々の露光装置が用いられている。 近年では、 特に生産性の面から、 形成 すべきパターンを 4〜 5倍程度に比例拡大して形成したフォトマスク(マスク) 又はレチクル (以下、 「レチクル」 と総称する) のパターンを、 投影光学系を介 してウェハ等の被露光基板 (以下、 「ウェハ」 と呼ぶ) 上に縮小転写する縮小投 影露光装置が、 主として用いられている。  2. Description of the Related Art Conventionally, in a lithographic process for manufacturing electronic devices such as semiconductor devices (integrated circuits) and liquid crystal display devices, various exposure apparatuses for forming fine patterns of electronic devices on a substrate have been used. In recent years, especially from the viewpoint of productivity, the pattern of a photomask (mask) or reticle (hereinafter collectively referred to as “reticle”) formed by enlarging the pattern to be formed by about 4 to 5 times is projected onto a projection optical system. A reduction projection exposure apparatus that performs reduction transfer onto a substrate to be exposed such as a wafer (hereinafter, referred to as a “wafer”) through a system is mainly used.
この種の投影露光装置では、 集積回路の微細化に対応して高解像度を実現す るため、 その露光波長をより短波長側にシフトしてきた。 現在、 その波長は K r Fエキシマレーザの 2 4 8 n mが主流となっているが、 より短波長の A r F エキシマレーザの 1 9 3 n mも実用化段階に入りつつある。そして、最近では、 更に短波長の波長 1 5 7 n mの F 2 レーザや、 波長 1 2 6 n mの A r 2 レーザ 等の、 いわゆる真空紫外域と呼ばれる波長帯の光を発する光源を使用する投影 露光装置の提案も行なわれている。 In this type of projection exposure apparatus, the exposure wavelength has been shifted to shorter wavelengths in order to realize high resolution in response to miniaturization of integrated circuits. At present, the wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of 1193 nm of the ArF excimer laser is entering the practical stage. Then, recently, further F 2 laser and the wavelength 1 5 7 nm short wavelength, the A r 2 laser having a wavelength of 1 2 6 nm, projection using a light source emitting light in a wavelength band so-called vacuum ultraviolet region Exposure apparatuses have also been proposed.
かかる波長 1 8 0 n m以下の真空紫外光は、 大気中の酸素や水蒸気によって 激しい吸収を受ける。 このため、 真空紫外光を露光光として使用する露光装置 では、露光光の光路上の空間から酸素や水蒸気などの吸光物質を排除するため、 その空間内の気体を、 露光光を殆ど吸収しない、 窒素やヘリウムなどの希ガス でガス置換 (ガスパージ) する必要がある。 例えば、 発振波長 1 5 7 n mの F 2 レーザを光源とする露光装置では、 レーザからウェハに至るまでの光路の大 部分で、 残存酸素濃度を 1 p p m以下に抑える必要があると言われている。 また、高解像度化は、露光波長の短波長化のみならず、光学系の大開口数(N . A . )化によっても実現可能であることから、最近では光学系のよリ一層の大 N . A . 化の開発もなされている。 しかるに、 高解像度の実現のためには、 投影光 学系の大 N . A .化に加えて投影光学系の収差の低減が必要である。このため、 投影光学系の製造工程では、 光の干渉を利用した波面収差計測を行ない、 残存 収差量を露光波長の 1 1 0 0 0程度の精度で計測し、 その計測値に基づいて 投影光学系の調整を行つている。 Such vacuum ultraviolet light having a wavelength of 180 nm or less is generated by oxygen and water vapor in the atmosphere. Receive severe absorption. For this reason, in an exposure apparatus that uses vacuum ultraviolet light as exposure light, gas in the space hardly absorbs the exposure light because light-absorbing substances such as oxygen and water vapor are excluded from the space on the optical path of the exposure light. It is necessary to perform gas replacement (gas purging) with a rare gas such as nitrogen or helium. For example, in an exposure system that uses an F 2 laser with an oscillation wavelength of 157 nm as a light source, it is said that the residual oxygen concentration must be kept below 1 ppm over most of the optical path from the laser to the wafer. . In addition, high resolution can be realized not only by shortening the exposure wavelength but also by increasing the numerical aperture (N.A.) of the optical system. The development of A. However, in order to achieve high resolution, it is necessary to reduce the aberration of the projection optical system in addition to increasing the size of the projection optical system. For this reason, in the manufacturing process of the projection optical system, wavefront aberration measurement using light interference is performed, the amount of residual aberration is measured with an accuracy of about 1100 of the exposure wavelength, and the projection optical system is measured based on the measured value. The system is being adjusted.
このような大 N . A . 化や低収差化は、 視野が小さい光学系ほど実現が容易 である。 但し、 露光装置としては、 視野 (露光フィールド) が大きいほど、 処 理能力 (スループット) が向上する。 そこで、 小視野ではあるが大 N . A . の 投影光学系を用いて、 かつ実質的に大きな露光フィールドを得るために、 露光 中に、 レチクルとウェハをその結像関係を維持したまま相対走査する例えば走 査型投影露光装置、 例えばステップ "アンド スキャン方式の走査型投影露光 装置 (すなわちいわゆるスキャニング■ステツパなど) が最近の主流となって いる。  Such an increase in NA and reduction in aberrations are easier to achieve in an optical system with a smaller field of view. However, as for the exposure apparatus, the processing capability (throughput) is improved as the field of view (exposure field) is larger. Therefore, in order to obtain a substantially large exposure field using a projection optical system with a small field of view but a large N.A., a relative scan of the reticle and wafer is performed during exposure while maintaining the imaging relationship. For example, a scanning projection exposure apparatus, for example, a step-and-scan scanning projection exposure apparatus (ie, a so-called scanning stepper) has become the mainstream in recent years.
ところで、 上述の真空紫外光を光源とする露光装置においては、 レチクル近 傍の空間の残存酸素及び水蒸気濃度も、 1 p p m程度以下に抑える必要がある。 これを実現する方法として、 レチクルを保持するレチクルステージ全体を大き な気密型の遮蔽容器 (レチクルステージチャンバ) で覆い、 その内部 (レチク ルステージ, レチクルを含む) 全体をガスパージする方法も考えられる。 しか しながら、このような遮蔽容器を採用すると、露光装置が大型化及び重量化し、 半導体工場のクリーンルーム内における、 露光装置 1台あたりの設置面積 (フ ットプリント) がより大きくなリ、 設備コスト (あるいはランニング■コス卜) の増大により結果的に半導体素子の生産性が低下してしまう。 また、 レチクル 近傍へのアクセスが困難となり、 レチクルステージなどのメン亍ナンス時の作 業性が低下してメンテナンスに要する時間が増大し、 この点においても半導体 素子の生産性が低下してしまう。 Incidentally, in the above-described exposure apparatus using vacuum ultraviolet light as a light source, the concentration of residual oxygen and water vapor in the space near the reticle also needs to be suppressed to about 1 ppm or less. As a method of realizing this, a method of covering the entire reticle stage holding the reticle with a large airtight shielding container (reticle stage chamber) and purging the entire inside (including the reticle stage and the reticle) with gas is also conceivable. Only However, when such a shielding container is used, the exposure apparatus becomes larger and heavier, and the installation area (footprint) per exposure apparatus in a clean room of a semiconductor factory becomes larger, and equipment costs (or equipment costs) increase. As a result, the productivity of the semiconductor device is reduced due to an increase in running cost. In addition, access to the vicinity of the reticle becomes difficult, and workability during maintenance of the reticle stage and the like decreases, so that the time required for maintenance increases, and in this regard, the productivity of semiconductor elements also decreases.
特に走査型投影露光装置は、 露光中にレチクルを高速に走査する必要から大 型のレチクルステージを備えておリ、 この大型のレチクルステージ全体を覆う 遮蔽容器 (レチクルステージチャンバ) は一層大型化してしまう。  In particular, a scanning projection exposure apparatus has a large reticle stage because it is necessary to scan the reticle at high speed during exposure, and the shielding container (reticle stage chamber) that covers the entire large reticle stage is becoming larger. I will.
なお、 レチクル近傍の空間のガスパージは、 投影露光装置のみの問題ではな く、 投影露光装置に搭載する投影光学系の収差を計測するための検査光学装置 などでも問題となる。  In addition, gas purging of the space near the reticle is not only a problem for the projection exposure apparatus, but also for an inspection optical apparatus for measuring aberration of a projection optical system mounted on the projection exposure apparatus.
本発明は、 かかる事情の下になされたものであり、 その第 1の目的は、 光の 光路上に配置された物体と光学装置との間の空間の効率的なガス置換を大型で 重い気密型の遮蔽容器を用いることなく実現するガスパージ方法を提供するこ とにある。  The present invention has been made under such circumstances, and a first object of the present invention is to provide a large and heavy airtight space for efficient gas replacement of a space between an object arranged on an optical path of light and an optical device. An object of the present invention is to provide a gas purging method which can be realized without using a mold shielding container.
本発明の第 2の目的は、 装置の大型化、 重量化を抑制しつつ露光精度を向上 することが可能な露光装置を提供することにある。  A second object of the present invention is to provide an exposure apparatus capable of improving exposure accuracy while suppressing an increase in the size and weight of the apparatus.
本発明の第 3の目的は、 高集積度のデバイスの生産性を向上させることがで きるデバイス製造方法を提供することにある。 発明の開示  A third object of the present invention is to provide a device manufacturing method capable of improving the productivity of a highly integrated device. Disclosure of the invention
本発明は、 第 1の観点からすると、 所定波長の光の光路上に配置された物体 と光学装置との間の空間をガスパージするガスパージ方法であって、 少なくと も前記物体及び該物体を保持する保持部材のいずれかである特定物体との間に 所定の第 1クリアランスが形成される状態で、 前記光学装置と前記物体との間 の空間を外気から遮蔽する遮蔽部材を配置する工程と ;前記光に対する吸収特 性が吸収性ガスよリ低い特定ガスを、 前記遮蔽部材に形成された給気用開口を 介して前記遮蔽部材内部の空間に供給する工程と ; を含む第 1のガスパージ方 法である。 According to a first aspect of the present invention, there is provided a gas purging method for gas purging a space between an object disposed on an optical path of light having a predetermined wavelength and an optical device, the method comprising: at least holding the object and the object; Between a specific object that is one of the holding members Arranging a shielding member for shielding a space between the optical device and the object from outside air in a state in which a predetermined first clearance is formed; specifying that the absorption characteristic for the light is lower than that of the absorbing gas Supplying a gas to a space inside the shielding member through an air supply opening formed in the shielding member.
ここで、 吸収性ガスとは、 前記所定波長の光 (光学装置で用いる光) に対す る吸収特性が大きいガスの総称であり、 例えば、 光が波長 1 2 0 n m〜 1 8 0 n mの真空紫外光である場合、その真空紫外光を激しく吸収する酸素、水蒸気、 炭化水素などの吸光物質を含むガスが該当する。 本明細書では、 かかる意味で 「吸収性ガス」 なる用語を用いるものとする。 なお、 一般的な空気 (大気) も 酸素と水蒸気を大量に含むので、 吸収性ガスとして扱うこととする。 従って、 吸収性ガスは、 上記の光の波長 (所定波長) に応じて異なることになる。 これによれば、 遮蔽部材は、 少なくとも前記物体及び該物体を保持する保持 部材のいずれかである特定物体との間に所定の第 1クリアランスが形成される 状態で配置されるので、 その第 1クリアランスを適宜な寸法に設定することに より、 所定波長の光の光路上に配置された物体と光学装置との間の遮蔽部材内 部の空間をある程度気密な状態で外気から遮蔽することができる。 そして、 そ の遮蔽部材内部の空間に遮蔽部材に形成された給気用開口を介して前記光に対 する吸収特性が吸収性ガスより低い特定ガス (以下、 適宜 「低吸収性ガス」 と も記述する) が供給される。 これにより、 物体と光学装置との間の光路上の空 間、 すなわち遮蔽部材内部の空間の気体を低吸収性ガスに置換することが可能 となる。 これにより、 空間内から前記吸収性ガスを追放 (パージ) することが できる。 従って、 光の光路上に配置された物体と光学装置との間の空間の高精 度なガス置換を大型で重い気密型の遮蔽容器を用いることなく実現することが 可能となる。 換言すれば、 本発明によれば、 光学装置と物体との間の空間を覆 うことができる小型の遮蔽部材を用いるだけで、 大型で重い気密型の遮蔽容器 を用いた場合とほぼ同程度の高精度なガス置換が可能となる。 Here, the absorptive gas is a general term for a gas having a large absorption characteristic with respect to the light having the predetermined wavelength (light used in an optical device). For example, the light is a vacuum having a wavelength of 120 nm to 180 nm. In the case of ultraviolet light, a gas containing a light-absorbing substance such as oxygen, water vapor, or a hydrocarbon that strongly absorbs the vacuum ultraviolet light is applicable. In this specification, the term “absorbable gas” is used in this sense. Since general air (atmosphere) also contains a large amount of oxygen and water vapor, it should be treated as an absorbent gas. Therefore, the absorbing gas differs depending on the wavelength (predetermined wavelength) of the light. According to this, the shielding member is disposed in a state where a predetermined first clearance is formed between at least the object and a specific object that is one of the holding members that hold the object. By setting the clearance to an appropriate size, the space inside the shielding member between the object disposed on the optical path of the light of the predetermined wavelength and the optical device can be shielded from outside air in a somewhat airtight state. . Then, a specific gas (hereinafter, referred to as “low-absorbing gas” as appropriate) having a lower absorption characteristic with respect to the light than the absorbing gas through an air supply opening formed in the shielding member in the space inside the shielding member. Described) is supplied. This makes it possible to replace the gas in the space on the optical path between the object and the optical device, that is, the gas in the space inside the shielding member, with a low-absorbing gas. Thereby, the absorbent gas can be expelled (purged) from the space. Therefore, it is possible to achieve high-precision gas replacement of the space between the optical device and the object disposed on the optical path of the light without using a large and heavy airtight shielding container. In other words, according to the present invention, a large and heavy airtight shielding container is used only by using a small shielding member capable of covering the space between the optical device and the object. Gas replacement with almost the same high accuracy as that in the case of using is possible.
この場合において、 前記遮蔽部材内部の空間内のガスを前記遮 部材に形成 された排気用開口を介して外部に排気する工程を更に含むこととすることがで さる。  In this case, the method may further include a step of exhausting gas in a space inside the shielding member to the outside through an exhaust opening formed in the shielding member.
本発明の第 1のガスパージ方法では、 前記第 1クリアランスは、 約 3 m m以 下であることとすることができる。  In the first gas purging method of the present invention, the first clearance may be about 3 mm or less.
この場合において、 前記遮蔽部材の前記特定物体に対向する端面に形成され た給気口を介して所定の気体を前記第 1クリアランス内に供給するとともに、 前記第 1クリアランス内の気体を前記端面の前記空間に対して前記給気口の外 側に形成された排気口を介して外部に排気する工程を更に含むこととすること ができる。  In this case, a predetermined gas is supplied into the first clearance via an air supply port formed on an end face of the shielding member facing the specific object, and the gas in the first clearance is supplied to the end face. The method may further include a step of exhausting the space to the outside through an exhaust port formed outside the air supply port.
本発明の第 1のガスパージ方法では、 前記遮蔽部材は、 前記光学装置に対す る振動の伝達を低減することとすることができる。  In the first gas purging method of the present invention, the shielding member may reduce transmission of vibration to the optical device.
この場合において、 前記遮蔽部材は、 前記光学装置との間に、 所定の第 2ク リアランスを形成した状態で配置されていることとすることができる。  In this case, the shielding member may be arranged in a state where a predetermined second clearance is formed between the shielding member and the optical device.
この場合において、 前記第 2クリアランスは、 約 3 m m以下であることとす ることができる。  In this case, the second clearance can be about 3 mm or less.
この場合において、 前記遮蔽部材の前記光学装置に対向する端面に形成され た給気口を介して所定の気体を前記第 2クリアランス内に供給するとともに、 前記第 2クリアランス内の気体を前記端面の前記空間に対して前記給気口の外 側に形成された排気口を介して外部に排気する工程を更に含むこととすること ができる。  In this case, a predetermined gas is supplied into the second clearance via an air supply port formed on an end face of the shielding member facing the optical device, and the gas in the second clearance is supplied to the end face. The method may further include a step of exhausting the space to the outside through an exhaust port formed outside the air supply port.
本発明は、 第 2の観点からすると、 所定波長の光が照射される光学系を有す る光学装置に用いられる光検出器の受光面を含む空間をガスパージするガスパ ージ方法であって、 一方の面が開口し内部に前記光検出器をその受光面を前記 開口に向けて収容した保持部材の前記開口の周囲の端面を、 前記光学装置の構 成部品の一部に、 シール部材を介して結合し、 前記光検出器の受光面を含む空 間を外気から遮蔽する工程と ;前記光に対する吸収特性が吸収性ガスに比べて 低い特定ガスを、 前記構成部品及び前記保持部材のいずれかに形成された給気 用開口を介して前記空間に供給し、 該空間内のガスを前記構成部品及び前記保 持部材のいずれかに形成された排気用開口を介して外部に排気する工程と ; を 含む第 2のガスパージ方法である。 According to a second aspect of the present invention, there is provided a gas purging method for purging a space including a light receiving surface of a photodetector used in an optical device having an optical system irradiated with light of a predetermined wavelength, One end is open and the end face around the opening of the holding member, in which the photodetector is accommodated with the light receiving surface facing the opening, is formed inside the optical device. Bonding to a part of the component through a sealing member to shield a space including a light receiving surface of the photodetector from outside air; and removing a specific gas having a lower light absorption characteristic than an absorptive gas. Supplying gas to the space through an air supply opening formed in one of the component part and the holding member, and exhausting gas in the space into an exhaust gas formed in one of the component part and the holding member. A second gas purging method, which comprises the steps of:
これによれば、 一方の面が開口し内部に光検出器をその受光面を前記開口に 向けて収容した保持部材の前記開口の周囲の端面を、 前記光学装置の構成部品 の一部に、 シール部材を介して結合し、 前記光検出器の受光面を含む空間を外 気から遮蔽する。 このため、 光学装置の構成部品と保持部材とで形成される光 検出器の受光面を含む空間が、 気密性の良い空間となる。 そして、 光学装置に 照射され、 該光学装置の光学系を介して受光素子に入射する光に対する吸収特 性が吸収性ガスに比べて低い特定ガス (低吸収性ガス) を、 前記構成部品及び 保持部材のいずれかに形成された給気用開口を介して前記空間に供給し、 該空 間内のガスを前記構成部品及び保持部材のいずれかに形成された排気用開口を 介して外部に排気する。 これにより、 光学装置から光検出器の受光面までの間 の空間内部の気体が、 特定ガスで置換され、 光学装置を介して前記空間内に入 射する所定波長の光が、 光検出器の受光面にて受光されるまでの間に、 空間内 部で吸収されることは殆どなくなる。 従って、 光検出器の光量検出を精度良く 行うことが可能となり、 この光量検出の結果に基づいて、 例えば光学装置の光 学特性の計測などを行う場合には、 その計測精度を向上させることが可能とな る。  According to this, an end surface around the opening of the holding member that has one surface opened and accommodates the photodetector inside with the light receiving surface facing the opening is part of the component of the optical device. It couples via a seal member and shields the space including the light receiving surface of the photodetector from the outside air. For this reason, the space including the light receiving surface of the photodetector formed by the components of the optical device and the holding member is a space with good airtightness. The specific gas (low-absorbing gas) having a lower absorption characteristic with respect to light incident on the optical device and incident on the light receiving element via the optical system of the optical device than the absorbing gas is used as the component and the holding member. A gas is supplied to the space through an air supply opening formed in any of the members, and the gas in the space is exhausted to the outside through an exhaust opening formed in any of the component parts and the holding member. I do. As a result, the gas inside the space between the optical device and the light receiving surface of the photodetector is replaced with the specific gas, and light of a predetermined wavelength entering the space via the optical device is emitted from the photodetector. Until the light is received by the light receiving surface, it is hardly absorbed in the space. Therefore, it is possible to accurately detect the light amount of the photodetector, and when, for example, measuring the optical characteristics of an optical device based on the result of the light amount detection, the measurement accuracy can be improved. It is possible.
この場合において、 前記保持部材の前記光検出器が載置される部分に予め貫 通孔を形成する工程と ;前記光検出器の裏面側から前記貫通孔を介して前記光 検出器からの電気配線を外部に取り出す工程と ;を更に含むこととすることが できる。 本発明の第 2のガスパージ方法では、 前記保持部材を冷却する工程を更に含 むこととすることができる。 In this case, a step of forming a through hole in advance in a portion of the holding member where the photodetector is mounted; and an electric power from the photodetector through the through hole from the back side of the photodetector. And taking out the wiring to the outside. The second gas purging method of the present invention may further include a step of cooling the holding member.
この場合において、 前記保持部材の冷却は、 前記保持部材の前記光検出器と は反対側の面にペルチェ素子を接続して行うこととすることができる。  In this case, the cooling of the holding member can be performed by connecting a Peltier element to the surface of the holding member on the side opposite to the photodetector.
この場合において、 前記ペルチェ素子の前記保持部材とは反対側を冷却する 工程を更に含むこととすることができる。  In this case, the method may further include a step of cooling a side of the Peltier element opposite to the holding member.
本発明の第 2のガスパージ方法では、 前記光学装置の前記保持部材が結合さ れる前記構成部品の前記保持部材とは反対側に光透過性部材を配置して、 前記 光検出器の受光面を含む空間を複数の空間に仕切る工程を更に含むこととする ことができる。  In the second gas purging method of the present invention, a light transmissive member is arranged on a side of the component to which the holding member of the optical device is coupled, opposite to the holding member, and a light receiving surface of the photodetector is disposed. The method may further include a step of partitioning the containing space into a plurality of spaces.
本発明は、 第 3の観点からすると、 マスクに形成されたパターンを基板上に 転写する露光装置であって、 所定波長の光により前記マスクを照明する照明光 学系と ;前記マスク及び該マスクを保持するマスク保持部材のいずれかである 特定物体と前記照明光学系との間に配置され、 少なくとも前記特定物体との間 に所定の第 1クリアランスを形成した状態で、 前記マスクの前記照明光学系側 の少なくとも前記マスクのパターン領域に対応する領域を含む第 1空間を外気 から遮蔽する第 1遮蔽部材と ;前記第 1遮蔽部材に形成された給気用開口を介 して前記光に対する吸収特性が吸収性ガスよリ低い特定ガスを前記第 1空間に 供給する第 1ガス供給系と ; を備える第 1の露光装置である。  According to a third aspect of the present invention, there is provided an exposure apparatus for transferring a pattern formed on a mask onto a substrate, comprising: an illumination optical system for illuminating the mask with light of a predetermined wavelength; the mask and the mask The illumination optics of the mask, wherein the illumination optics of the mask is disposed between a specific object, which is one of the mask holding members, and the illumination optical system, and at least a predetermined first clearance is formed between the specific object and the specific object. A first shielding member for shielding at least a first space including a region corresponding to the pattern region of the mask from the outside air on a system side; and absorbing the light through an air supply opening formed in the first shielding member. And a first gas supply system for supplying a specific gas having a characteristic lower than that of the absorbent gas to the first space.
これによれば、 マスク及びマスク保持部材のいずれかである特定物体と照明 光学系との間に少なくとも特定物体との間に所定の第 1クリアランスを形成し た状態で配置された第 1遮蔽部材によリ、 マスクの照明光学系側の少なくとも マスクのパターン領域に対応する領域を含む第 1空間が外気から遮蔽される。 そして、 第 1ガス供給系により、 第 1遮蔽部材に形成された給気用開口を介し て所定波長の光(露光光)に対する吸収特性が吸収性ガスより低い特定ガス(低 吸収性ガス) が前記第 1空間に供給される。 これにより、 第 1空間内の気体が 特定ガスに置換される。 従って、 第 1空間内から露光光を吸収する吸収性ガス を排除することができ、 照明光学系から照射される光が、 第 1空間内で殆ど吸 収されることなくマスクを照明するので、 露光光の透過率の低下を抑制し、 高 精度な露光を実現することが可能となる。 この場合、 照明光学系とマスク又は マスク保持部材との間の第 1空間を覆うことができる小型の第 1遮蔽部材を用 いるだけで、 上記の第 1空間を大型で重い気密型の遮蔽容器 (マスクステージ チャンバ) を用いた場合とほぼ同程度の効率の良いガス置換が可能となる。 従 つて、 装置の大型化、 重量化を抑制することが可能となる。 According to this, the first shielding member disposed with a predetermined first clearance formed between at least the specific object between the specific object, which is one of the mask and the mask holding member, and the illumination optical system. Accordingly, the first space including at least a region corresponding to the pattern region of the mask on the illumination optical system side of the mask is shielded from the outside air. Then, the specific gas (low-absorbing gas) having a lower absorption characteristic with respect to light of a predetermined wavelength (exposure light) than the absorbing gas is supplied by the first gas supply system through the air supply opening formed in the first shielding member. It is supplied to the first space. As a result, the gas in the first space Replaced with a specific gas. Accordingly, it is possible to eliminate the absorbing gas that absorbs the exposure light from the first space, and the light emitted from the illumination optical system illuminates the mask without being absorbed in the first space. It is possible to suppress a decrease in the transmittance of the exposure light and realize highly accurate exposure. In this case, the first space is large and heavily sealed using only a small first shielding member that can cover the first space between the illumination optical system and the mask or the mask holding member. (Mask stage chamber) enables gas replacement with almost the same efficiency as in the case of using (mask stage chamber). Therefore, it is possible to suppress an increase in the size and weight of the device.
この場合において、 前記マスクから射出される光を前記基板上に投射する投 影光学系と ;前記特定物体と前記投影光学系との間に配置され、 前記投影光学 系に対する振動の伝達を低減した状態で、 前記マスクの前記投影光学系側の少 なくとも前記マスクのパターン領域を含む第 2空間を外気から遮蔽する第 2遮 蔽部材と ;前記第 2遮蔽部材に形成された給気用開口を介して前記特定ガスを 前記第 2空間に供給する第 2ガス供給系と ; を更に備えることとすることがで ぎる。  In this case, a projection optical system for projecting light emitted from the mask onto the substrate; and a projection optical system disposed between the specific object and the projection optical system to reduce transmission of vibration to the projection optical system. A second shielding member for shielding at least a second space including a pattern region of the mask from the outside on the projection optical system side of the mask from the outside; and an air supply opening formed in the second shielding member. And a second gas supply system that supplies the specific gas to the second space through the second gas supply system.
この場合において、前記第 2遮蔽部材は、少なくとも前記特定物体との間に、 所定の第 2クリアランスを形成した状態で配置されることとすることができる この場合において、 前記第 1遮蔽部材に形成された排気用開口を介して前記 第 1空間内のガスを外部に排気する第 1ガス排気系と ;前記第 2遮蔽部材に形 成された排気用開口を介して前記第 2空間内のガスを外部に排気する第 2ガス 排気系と ; を更に備えることとすることができる。  In this case, the second shielding member can be disposed with at least a predetermined second clearance formed between the second shielding member and the specific object. In this case, the second shielding member is formed on the first shielding member A first gas exhaust system for exhausting the gas in the first space to the outside through the provided exhaust opening; and a gas in the second space via an exhaust opening formed in the second shielding member. And a second gas exhaust system for exhausting the gas to the outside.
本発明の第 1の露光装置では、 前記第 1及び第 2クリァランスの少なくとも 一方は、 約 3 m m以下であることとすることができる。  In the first exposure apparatus of the present invention, at least one of the first and second clearances may be about 3 mm or less.
この場合において、 前記第 1遮蔽部材の前記特定物体に対向する端面に形成 された給気口から所定の気体を前記第 1クリアランス内に供給するとともに、 前記第 1クリァランス内の気体を前記端面の前記第 1空間に対して前記給気口 の外側に形成された排気口を介して外部に排気する差動排気機構を更に備える こととすることができる。 In this case, a predetermined gas is supplied into the first clearance from an air supply port formed on an end face of the first shielding member facing the specific object, and the gas in the first clearance is supplied to the end face. The air supply port for the first space And a differential exhaust mechanism that exhausts the air to the outside through an exhaust port formed outside the air conditioner.
本発明の第 1の露光装置では、 前記第 1及び第 2クリアランスの少なくとも 一方が、 約 3 m m以下である場合、 前記第 2遮蔽部材の前記特定物体に対向す る端面に形成された給気口から所定の気体を前記特定物体に向けて供給すると ともに、 前記第 2クリアランス内の気体を前記端面の前記第 2空間に対して前 記給気口の外側に形成された排気口を介して外部に排気する差動排気機構を更 に備えることとすることができる。  In the first exposure apparatus of the present invention, when at least one of the first and second clearances is about 3 mm or less, an air supply formed on an end face of the second shielding member facing the specific object. A predetermined gas is supplied from the port toward the specific object, and the gas in the second clearance is supplied to the second space on the end face via an exhaust port formed outside the supply port. A differential exhaust mechanism that exhausts to the outside can be further provided.
本発明の第 1の露光装置では、 第 1遮蔽部材及び少なくとも前記特定物体と の間に、 所定の第 2クリアランスを形成した状態で配置される第 2遮蔽部材を 備える場合、 前記第 1遮蔽部材の前記特定物体側の端部に設けられ、 前記第 1 クリアランスを前記第 1遮蔽部材の全周に渡って調整可能な調整機構と ;前記 第 2遮蔽部材の前記特定物体側の端部に設けられ、 前記第 2クリアランスを前 記第 2遮蔽部材の全周に渡って調整可能な調整機構と ;の少なくとも一方を更 に備えることとすることができる。  In the first exposure apparatus of the present invention, when a second shielding member is provided in a state where a predetermined second clearance is formed between the first shielding member and at least the specific object, the first shielding member An adjusting mechanism that is provided at an end of the specific object on the specific object side, and that is capable of adjusting the first clearance over the entire circumference of the first shielding member; and an adjusting mechanism that is provided at an end of the second shielding member on the specific object side. And an adjusting mechanism capable of adjusting the second clearance over the entire circumference of the second shielding member.
本発明の第 1の露光装置では、 第 1遮蔽部材に加えて少なくとも前記特定物 体との間に、 所定の第 2クリアランスを形成した状態で配置される第 2遮蔽部 材をも備える場合、 前記第 2遮蔽部材と前記投影光学系との間には、 所定の第 3クリアランスが形成されていることとすることができる。  In the first exposure apparatus of the present invention, in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A predetermined third clearance may be formed between the second shielding member and the projection optical system.
この場合において、 前記第 3クリアランスは、 約 3 m m以下であることとす ることができる。  In this case, the third clearance can be about 3 mm or less.
本発明の第 1の露光装置では、 第 1遮蔽部材に加えて第 2遮蔽部材を備え、 該第 2遮蔽部材と投影光学系との間に第 3クリアランスが形成されている場合, 前記第 2遮蔽部材の前記投影光学系に対向する端面に形成された給気口から所 定の気体を前記第 3クリアランス内に供給するとともに、 前記第 3クリアラン ス内の気体を前記端面の前記第 2空間に対して前記給気口の外側に形成された 排気口を介して外部に排気する差動排気機構を更に備えることとすることがで さる。 The first exposure apparatus of the present invention further includes a second shielding member in addition to the first shielding member, wherein a third clearance is formed between the second shielding member and the projection optical system. A predetermined gas is supplied into the third clearance from an air supply port formed on an end face of the shielding member facing the projection optical system, and the gas in the third clearance is supplied to the second space on the end face. Formed outside the air supply port It is possible to further include a differential exhaust mechanism that exhausts the air to the outside through the exhaust port.
本発明の第 1の露光装置では、 第 1遮蔽部材に加えて少なくとも前記特定物 体との間に、 所定の第 2クリアランスを形成した状態で配置される第 2遮蔽部 材をも備える場合、 前記第 1遮蔽部材の前記特定物体に対向する端面及び前記 第 2遮蔽部材の前記特定物体に対向する端面はともに平面であり、 これらの端 面にそれぞれ対向する前記特定物体の面はともに平面であることとすることが できる。  In the first exposure apparatus of the present invention, in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, An end surface of the first shielding member facing the specific object and an end surface of the second shielding member facing the specific object are both flat surfaces, and the surfaces of the specific object facing the respective end surfaces are both flat surfaces. It can be.
本発明の第 1の露光装置では、 第 1遮蔽部材に加えて少なくとも前記特定物 体との間に、 所定の第 2クリアランスを形成した状態で配置される第 2遮蔽部 材をも備える場合、 前記基板を保持する基板保持部材と ;前記マスク保持部材 を所定の走査方向に駆動する駆動源を含み、 前記マスク保持部材と前記基板保 持部材とを所定の走査方向に同期移動する駆動装置と ; を更に備え、 前記駆動 源の少なくとも一部が、 前記第 1空間及び前記第 2空間の外部に配置されるこ ととすることができる。  In the first exposure apparatus of the present invention, in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A substrate holding member for holding the substrate; a drive device for driving the mask holding member in a predetermined scanning direction; a driving device for synchronously moving the mask holding member and the substrate holding member in a predetermined scanning direction; And at least a part of the driving source may be arranged outside the first space and the second space.
本発明の第 1の露光装置では、 マスク保持部材と基板保持部材とを所定の走 査方向に同期移動する駆動装置を備える場合、 前記第 1遮蔽部材の前記走査方 向に関する長さは、 少なくとも、 前記露光が行われる前記同期移動時の前後の 加速域と減速域とで前記マスク保持部材が移動する助走距離と、 前記マスクの パターン領域の前記走査方向の長さとに基づいて決定されることとすることが できる。  In the first exposure apparatus of the present invention, when a driving device that synchronously moves the mask holding member and the substrate holding member in a predetermined scanning direction is provided, a length of the first shielding member in the scanning direction is at least. It is determined based on the approach distance in which the mask holding member moves in an acceleration area and a deceleration area before and after the synchronous movement in which the exposure is performed, and a length of the mask pattern area in the scanning direction. It can be.
本発明の第 1の露光装置では、 第 1遮蔽部材に加えて少なくとも前記特定物 体との間に、 所定の第 2クリアランスを形成した状態で配置される第 2遮蔽部 材をも備える場合、 前記基板と前記投影光学系との間に配置され、 少なくとも 前記基板との間に所定の第 3クリアランスを形成した状態で、 前記基板の前記 投影光学系側の第 3空間を外気から遮蔽する第 3遮蔽部材と ;前記第 3遮蔽部 材に形成された給気用開口を介して前記特定ガスを前記第 3空間に供給する第 3ガス供給系と ; を更に備えることとすることができる。 In the first exposure apparatus of the present invention, in the case where the first exposure apparatus further includes a second shielding member disposed in a state where a predetermined second clearance is formed between at least the specific object and the first shielding member, A third space that is disposed between the substrate and the projection optical system and shields a third space on the projection optical system side of the substrate from outside air in a state where at least a predetermined third clearance is formed between the substrate and the projection optical system. 3 shielding members; and the third shielding portion And a third gas supply system that supplies the specific gas to the third space via an air supply opening formed in the material.
この場合において、 前記第 3遮蔽部材に形成された排気用開口を介して前記 第 3空間のガスを外部に排気するガス排気系を更に備えることとすることがで さる。  In this case, a gas exhaust system that exhausts the gas in the third space to the outside through an exhaust opening formed in the third shielding member may be further provided.
本発明の第 1の露光装置では、 第 1、 第 2及び第 3遮蔽部材を備える場合、 前記第 3遮蔽部材は、 前記投影光学系との間に、 所定の第 4クリアランスを形 成した状態で配置されることとすることができる。  In the first exposure apparatus of the present invention, when the first, second, and third shielding members are provided, the third shielding member forms a predetermined fourth clearance with the projection optical system. It can be arranged with.
この場合において、 前記第 3遮蔽部材の前記投影光学系に対向する端面に形 成された排気口を介して、 前記第 4クリアランス内の気体を外部に排気する排 気機構を更に備えることとすることができる。  In this case, an exhaust mechanism for exhausting the gas in the fourth clearance to the outside through an exhaust port formed on an end face of the third shielding member facing the projection optical system is further provided. be able to.
この場合において、 前記排気機構は、 前記第 3空間内のガスを前記第 4クリ ァランスを介して外部に排気することとすることができる。  In this case, the exhaust mechanism can exhaust the gas in the third space to the outside via the fourth clearance.
この場合において、 前記第 3ガス供給系は、 前記第 4クリアランスを介して 前記特定ガスを前記第 3空間に供給することとすることができる。  In this case, the third gas supply system may supply the specific gas to the third space via the fourth clearance.
本発明の第 1の露光装置では、 前述した第 1、 第 2及び第 3遮蔽部材を備え る場合、 前記第 3遮蔽部材の前記基板に対向する端面に形成された給気口から 所定の気体を前記第 3クリアランス内に供給するとともに、 前記第 3クリアラ ンス内の気体を前記端面の前記第 3空間に対して前記給気口の外側に形成され た排気口を介して外部に排気する差動排気機構を更に備えることとすることが できる。  In the first exposure apparatus of the present invention, when the above-described first, second, and third shielding members are provided, a predetermined gas is supplied from an air supply port formed on an end surface of the third shielding member facing the substrate. Is supplied into the third clearance, and the gas in the third clearance is exhausted to the outside of the third space on the end face through an exhaust port formed outside the air supply port. A dynamic exhaust mechanism may be further provided.
本発明の第 1の露光装置では、 前記第 1遮蔽部材と前記照明光学系との間に は、 所定の第 2クリアランスが形成されていることとすることができる。 この場合において、 前記第 2クリアランスは、 約 3 m m以下であることとす ることができる。  In the first exposure apparatus of the present invention, a predetermined second clearance may be formed between the first shielding member and the illumination optical system. In this case, the second clearance can be about 3 mm or less.
本発明では、 第 1遮蔽部材と照明光学系との間に、 所定の第 2クリアランス が形成されている場合、 前記第 1遮蔽部材の前記照明光学系に対向する端面に 形成された給気口から所定の気体を前記第 2クリアランス内に供給するととも に、 前記第 2クリアランス内の気体を前記端面の前記第 1空間に対して前記給 気口の外側に形成された排気口を介して外部に排気する差動排気機構を更に備 えることとすることができる。 In the present invention, a predetermined second clearance is provided between the first shielding member and the illumination optical system. Is formed, a predetermined gas is supplied into the second clearance from an air supply port formed on an end face of the first shielding member facing the illumination optical system, and the inside of the second clearance is The air conditioner may further include a differential exhaust mechanism that exhausts the gas to the outside through an exhaust port formed outside the air supply port with respect to the first space on the end face.
本発明の第 1の露光装置では、前記基板と前記投影光学系との間に配置され、 少なくとも前記基板との間に所定の第 2クリアランスを形成した状態で、 前記 基板の前記投影光学系側の第 2空間を外気から遮蔽する第 2遮蔽部材と ;前記 第 2遮蔽部材に形成された給気用開口を介して前記特定ガスを前記第 2空間に 供給する第 2ガス供給系と ; を更に備えることとすることができる。  In the first exposure apparatus of the present invention, the first exposure apparatus is disposed between the substrate and the projection optical system, and at least a predetermined second clearance is formed between the substrate and the projection optical system. A second shielding member that shields the second space from the outside air; and a second gas supply system that supplies the specific gas to the second space via an air supply opening formed in the second shielding member. Further provisions may be made.
この場合において、 前記第 2遮蔽部材に形成された排気用開口を介して前記 第 2空間内のガスを外部に排気するガス排気系を更に備えることとすることが できる。  In this case, a gas exhaust system that exhausts gas in the second space to the outside via an exhaust opening formed in the second shielding member may be further provided.
本発明の第 1の露光装置では、 第 2遮蔽部材が、 前記基板との間に所定の第 2クリアランスを形成した状態で配置され、 第 2遮蔽部材に形成された給気用 開口を介して特定ガスを第 2空間に供給する第 2ガス供給系を備える場合、 前 記第 2遮蔽部材は、 前記投影光学系との間に、 所定の第 3クリアランスを形成 した状態で配置されることとすることができる。  In the first exposure apparatus of the present invention, the second shielding member is arranged in a state where a predetermined second clearance is formed between the second shielding member and the substrate, and is provided via an air supply opening formed in the second shielding member. When a second gas supply system that supplies the specific gas to the second space is provided, the second shielding member is arranged in a state where a predetermined third clearance is formed between the second shielding member and the projection optical system. can do.
この場合において、 前記第 2遮蔽部材の前記投影光学系に対向する端面に形 成された排気口を介して、 前記第 3クリアランス内の気体を外部に排気する排 気機構を更に備えることとすることができる。  In this case, an exhaust mechanism for exhausting gas in the third clearance to the outside through an exhaust port formed on an end face of the second shielding member facing the projection optical system is further provided. be able to.
この場合において、 前記排気機構は、 前記第 2空間内のガスを前記第 3クリ ァランスを介して外部に排気することとすることができる。  In this case, the exhaust mechanism may exhaust the gas in the second space to the outside via the third clearance.
この場合において、 前記第 2ガス供給系は、 前記第 3クリアランスを介して 前記特定ガスを前記第 2空間に供給することとすることができる。  In this case, the second gas supply system may supply the specific gas to the second space via the third clearance.
本発明の露光装置では、 第 1遮蔽部材に加えて基板の投影光学系側の第 2空 間を外気から遮蔽する第 2遮蔽部材をも備える場合、 前記第 2遮蔽部材の前記 基板に対向する端面に形成された給気口から所定の気体を前記第 2クリアラン ス内に供給するとともに、 前記第 2クリアランス内の気体を前記端面の前記第 2空間に対して前記給気口の外側に形成された排気口を介して外部に排気する 差動排気機構を更に備えることとすることができる。 In the exposure apparatus of the present invention, in addition to the first shielding member, the second space on the projection optical system side of the substrate is provided. When a second shielding member for shielding the space from outside air is also provided, a predetermined gas is supplied into the second clearance from an air supply port formed on an end surface of the second shielding member facing the substrate, A differential exhaust mechanism for exhausting the gas in the second clearance to the outside through the exhaust port formed outside the air supply port with respect to the second space on the end face may be further provided. .
本発明の第 1の露光装置では、 前記基板の前記投影光学系側の第 2空間を外 気から遮蔽する第 2遮蔽部材を備える場合、 前記第 2遮蔽部材の前記基板側の 端部に設けられ、 前記第 2クリアランスを前記第 2遮蔽部材の全周に渡って調 整可能な調整機構を更に備えることとすることができる。  In the first exposure apparatus of the present invention, when a second shielding member that shields the second space of the substrate on the projection optical system side from the outside air is provided, the second exposure member is provided at an end of the second shielding member on the substrate side. In addition, an adjusting mechanism capable of adjusting the second clearance over the entire circumference of the second shielding member may be further provided.
本発明の第 1の露光装置では、 前記基板を保持する基板保持部材と ;前記マ スク保持部材と前記基板保持部材とを所定の走査方向に同期移動する駆動装置 と ; を更に備えることとすることができる。  The first exposure apparatus of the present invention further includes: a substrate holding member for holding the substrate; and a driving device for synchronously moving the mask holding member and the substrate holding member in a predetermined scanning direction. be able to.
この場合において、 前記第 1遮蔽部材の前記走査方向に関する長さは、 少な くとも、 前記露光が行われる前記同期移動時の前後の加速域と減速域とで前記 マスク保持部材が移動する助走距離と、 前記マスクのパターン領域の前記走査 方向の長さとに基づいて決定されることとすることができる。  In this case, the length of the first shielding member in the scanning direction is at least a running distance by which the mask holding member moves between an acceleration region and a deceleration region before and after the synchronous movement in which the exposure is performed. And the length of the pattern area of the mask in the scanning direction.
この場合において、 前記第 1遮蔽部材の前記走査方向に関する長さは、 さら に、 前記光により前記マスクが照明される照明領域の前記走査方向の長さに基 づいて決定されることとすることができる。  In this case, the length of the first shielding member in the scanning direction is further determined based on the length of the illumination region in which the mask is illuminated by the light in the scanning direction. Can be.
本発明は、第 4の観点からすると、露光光で照明されたマスクのパターンを、 投影光学系を介して基板上に転写する露光装置であって、 前記基板と前記投影 光学系との間に、 前記基板と前記投影光学系とに接触することなく配置され、 前記基板と前記投影光学系との間における前記露光光の光路を含む空間を外気 から遮蔽する遮蔽部材を備える第 2の露光装置である。  According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern of a mask illuminated with exposure light onto a substrate via a projection optical system, comprising: A second exposure apparatus that is disposed without contacting the substrate and the projection optical system, and that includes a shielding member that shields a space including an optical path of the exposure light between the substrate and the projection optical system from outside air. It is.
これによれば、 遮蔽部材として、 基板と投影光学系との間における露光光の 光路を含む所定の空間を覆うことができる程度の小型の遮蔽部材を用いること ができ、 その空間内の気体を例えば低吸収性ガスで置換する場合には、 前記空 間を大型で重い気密型の遮蔽容器 (基板ステージチャンバ) を用いた場合とほ ぼ同程度の効率の良いガス置換が可能となる。 これにより、 基板と投影光学系 との間における露光光の光路を含む空間から露光光を吸収する吸収性ガスを排 除することができ、 投影光学系から射出された光がその空間内で殆ど吸収され ることなく基板に照射されるので、 露光光の透過率の低下を抑制することがで きる。 また、 基板側の振動が遮蔽部材を介して投影光学系に伝達されるのが防 止されている。 従って、 装置の大型化、 重量化を抑制しつつ露光精度を向上す ることが可能となる。 According to this, as the shielding member, a small shielding member that can cover a predetermined space including the optical path of exposure light between the substrate and the projection optical system is used. When the gas in the space is replaced with, for example, a low-absorbent gas, the space is almost as efficient as when a large and heavy airtight shielding container (substrate stage chamber) is used. Good gas replacement is possible. This makes it possible to remove the absorptive gas that absorbs the exposure light from the space including the optical path of the exposure light between the substrate and the projection optical system, and the light emitted from the projection optical system hardly remains in that space. Since the light is irradiated onto the substrate without being absorbed, a decrease in the transmittance of the exposure light can be suppressed. Further, the transmission of the vibration on the substrate side to the projection optical system via the shielding member is prevented. Therefore, it is possible to improve the exposure accuracy while suppressing an increase in the size and weight of the apparatus.
この場合において、 前記基板と前記遮蔽部材との間、 あるいは前記投影光学 系と前記遮蔽部材との間に形成されるクリアランス内のガスを吸引排気するこ とによって、 前記遮蔽部材で遮蔽された空間を前記外気から遮蔽することとす ることができる。  In this case, a space shielded by the shielding member is formed by sucking and exhausting a gas in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member. Can be shielded from the outside air.
この場合において、 前記基板と前記遮蔽部材との間、 あるいは前記投影光学 系と前記遮蔽部材との間に形成されるクリアランス内に、 前記露光光に対する 吸収特性が吸収性ガスよリ低い特定ガスを供給することとすることができる。 また、 リソグラフイエ程において、 本発明の露光装置を用いて露光を行うこ とにより、 基板上にパターンを精度良く形成することができ、 これにより、 よ リ高集積度のマイクロデバイスを歩留まり良く製造することができる。従って、 本発明は更に別の観点からすると、 本発明の露光装置を用いるデバイス製造方 法であるとも言える。 図面の簡単な説明  In this case, a specific gas whose absorption characteristic with respect to the exposure light is lower than that of the absorptive gas is set in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member. Can be supplied. Further, in the lithographic process, by performing exposure using the exposure apparatus of the present invention, a pattern can be formed on a substrate with high accuracy, thereby manufacturing a highly integrated microdevice with a high yield. can do. Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using the exposure apparatus of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る露光装置の構成を概略的に示す図で める。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus according to a first embodiment of the present invention.
図 2は、 図 1の装置のガス配管を模式的に示す図である。 図 3 Aは、 レチクルステージ R S T近傍を示す斜視図、 図 3 Βは、 レチクル ステージ R S Τを示す概略断面図である。 FIG. 2 is a diagram schematically showing a gas pipe of the apparatus of FIG. FIG. 3A is a perspective view showing the vicinity of reticle stage RST, and FIG. 3A is a schematic sectional view showing reticle stage RS #.
図 4は、 レチクルステージ R S Τを示す平面図である。  FIG. 4 is a plan view showing reticle stage R S Τ.
図 5 Αは、 照明系側ガスパージスカー卜の下端面とレチクルステージとが近 接配置された部分を示す断面図、 図 5 Bは、 照明系側ガスパージスカートのレ チクルステージに近接した面の一部を拡大して示す図である。  Fig. 5 (a) is a cross-sectional view showing the portion where the lower end face of the illumination system side gas purge skirt and the reticle stage are located close to each other. It is a figure which expands and shows a part.
図 6 Aは、 投影系側ガスパージス力一卜の上端面とレチクルステージとが近 接配置された部分を示す断面図、 図 6 Bは、 投影系側ガスパージスカートと投 影光学系とが近接配置された部分を示す断面図である。  FIG. 6A is a cross-sectional view showing a portion where the upper end surface of the projection system-side gas purge unit and the reticle stage are arranged close to each other. FIG. 6B is a diagram showing the projection system-side gas purge skirt and the projection optical system arranged in close proximity It is sectional drawing which shows the part which was done.
図 7 Aは、 ウェハガスパージスカートの近傍を示す断面図、 図 7 Bは、 ゥェ ハガスパージスカートを上側 (+ Z側) から見た平面図である。  FIG. 7A is a cross-sectional view showing the vicinity of a wafer gas purge skirt, and FIG. 7B is a plan view of the wafer gas purge skirt as viewed from above (+ Z side).
図 8は、 照明ュニッ卜と照明系側ガスパージスカートの間にクリアランスが 形成されるように照明系側ガスパージスカートを設けた場合の差動排気機構の 構成を説明するための図である。  FIG. 8 is a diagram for explaining a configuration of a differential exhaust mechanism in a case where an illumination system-side gas purge skirt is provided so that a clearance is formed between the illumination unit and the illumination system-side gas purge skirt.
図 9は、 変形例に係るガスパージ方法を説明するための図である。  FIG. 9 is a diagram for explaining a gas purging method according to a modification.
図 1 0は、 本発明の第 2の実施形態に係る検査光学装置の一部を成す検査部 を、 投影光学系及び遮蔽機構とともに示す断面図である。  FIG. 10 is a cross-sectional view showing an inspection unit forming a part of the inspection optical device according to the second embodiment of the present invention, together with a projection optical system and a shielding mechanism.
図 1 1 Aは、 本発明の第 3の実施形態に係る光学系支持筐体の下端部近傍を 示す断面図であり、 図 1 1 Bは、 C C Dが搭載されたセラミックパッケージを 示す斜視図である。  FIG. 11A is a cross-sectional view showing the vicinity of the lower end of an optical system support housing according to a third embodiment of the present invention, and FIG. 11B is a perspective view showing a ceramic package on which a CCD is mounted. is there.
図 1 2は、 本発明に係るデバイス製造方法の実施形態を説明するためのフロ 一チヤ一トである。  FIG. 12 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
図 1 3は、 図 1 2のステップ 3 0 4の詳細を示すフローチャートである。 発明を実施するための最良の形態  FIG. 13 is a flowchart showing the details of step 304 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
《第 1の実施形態》 以下、 本発明の第 1の実施形態について図 1〜図 7 Bに基づいて説明する。 図 1には、 本第 1の実施形態に係る露光装置 1 0 0の構成が概略的に示され ている。 この露光装置 1 0 0は、 エネルギビームとしての露光用照明光 E Lを マスクとしてのレチクル Rに照射して、 該レチクル Rと基板としてのウェハ W とを所定の走査方向 (ここでは、 図 1における紙面直交方向である Y軸方向と する) に同期移動してレチクル Rのパターンを投影光学系 P Lを介してウェハ W上複数のショット領域に転写するステップ 'アンド 'スキャン方式の投影露 光装置、 すなわちいわゆるスキャニング■ステツパである。 << 1st Embodiment >> Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 7B. FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment. The exposure apparatus 100 irradiates an exposure illumination light EL as an energy beam onto a reticle R as a mask, and scans the reticle R and a wafer W as a substrate in a predetermined scanning direction (here, FIG. A step of transferring the pattern of the reticle R to a plurality of shot areas on the wafer W via the projection optical system PL by synchronously moving in the Y-axis direction which is a direction orthogonal to the paper surface. That is, it is a so-called scanning stepper.
この露光装置 1 0 0は、 不図示の光源及び光学装置 (照明光学系) としての 照明ュニット I L Uを含み、 露光用照明光 (以下、 「露光光」 と呼ぶ) E Lによ リレチクル Rを照明する照明系、 レチクル Rを保持するマスク保持部材として のレチクルステージ R S T、 レチクル Rから射出される露光光 E Lをウェハ W 上に投射する投影光学系 Ρし、 ウェハ Wを保持する基板保持部材としてのゥェ ハステージ W S T、 及びこれらの制御系、 並びに構成各部を支持する支持架台 B D等を備えている。  The exposure apparatus 100 includes a light source (not shown) and an illumination unit ILU as an optical device (illumination optical system), and illuminates the reticle R with illumination light for exposure (hereinafter, referred to as “exposure light”) EL. Illumination system, reticle stage RST as a mask holding member for holding reticle R, projection optical system for projecting exposure light EL emitted from reticle R onto wafer W, and ゥ as a substrate holding member for holding wafer W It is equipped with a wafer stage WST, their control system, and a support base BD that supports each component.
前記支持架台 B Dは、 クリーンルームの床面 F上に複数 (例えば 3個又は 4 個) の第 1の防振ユニット 4 3を介して設けられた複数本 (例えば 3本又は 4 本) の脚部 3 4 Aと該脚部 3 4 Aによりほぼ水平に支持された鏡筒定盤 (メイ ンフレームとも呼ばれる) 3 4 Bとを有する第 1架台 3 4と、 該第 1架台 3 4 の天板を構成する鏡筒定盤 3 4 B上面に設けられ Z軸方向 (上下方向) に延び る複数の支持部材 2 1 と該複数の支持部材 2 1によりその上面がほぼ水平とな るように支持されたレチクルステージ定盤 2 7とを有する第 2架台 3 2とを備 えている。 第 1架台 3 4の鏡筒定盤 3 4 Bの下方には、 複数の第 2の防振ュニ ット 4 1を介して上面の平坦度が高く設定された平板状のウェハステージベー ス B Sが床面 Fの上方に配設されている。  The support base BD includes a plurality of (for example, three or four) legs provided on the floor surface F of the clean room via a plurality of (for example, three or four) first vibration isolation units 43. A first base 34 having a lens barrel base plate (also referred to as a main frame) 34 B supported substantially horizontally by 34 A and the legs 34 A, and a top plate of the first base 34 The plurality of support members 21 provided on the upper surface of the lens barrel base plate 34 B and extending in the Z-axis direction (vertical direction) and the plurality of support members 21 support the upper surface so that the upper surface is substantially horizontal. And a second pedestal 32 having a reticle stage base 27. A flat wafer stage base whose upper surface is set to a high degree of flatness through a plurality of second vibration isolation units 41 below the barrel base plate 34B of the first base 34. BS is located above floor F.
前記光源としては、 ここでは、 波長約 1 2 0 门 ~約1 8 0 n mの真空紫外 域に属する光を発する光源、 例えば出力波長 1 5 7 n mのフッ素レーザ (F 2 レーザ) が用いられている。 光源は、 ビームマッチングユニットと呼ばれる光 軸調整用の光学系を一部に含む不図示の送光光学系を介して照明ュニット I L Uを構成する照明系ハウジング 2の一端に接続されている。 照明系ハウジング 2は、 実際には、 図 1の紙面奥側に所定距離伸び、 そこから下方に伸びる全体 としてほぼ L字状の形状を有している。 The light source used here is a vacuum ultraviolet light having a wavelength of about 120 nm to about 180 nm. Light source emitting light belonging to frequency, for example, the output wavelength 1 5 7 nm of fluorine laser (F 2 laser) is used. The light source is connected to one end of an illumination system housing 2 constituting an illumination unit ILU via a light transmission optical system (not shown) partially including an optical axis adjustment optical system called a beam matching unit. The illumination system housing 2 actually has a substantially L-shape as a whole extending a predetermined distance toward the far side of the paper of FIG. 1 and extending downward therefrom.
前記光源は、 実際には、 照明ュニット I L U及び投影光学系 P L等を含む露 光装置本体が設置されるクリーンルームとは別のクリーン度の低いサービスル ーム、 あるいはクリーンルーム床下のユーティリテイスペースなどに設置され ている。 なお、 光源として、 出力波長 1 4 6 n mのクリプトンダイマーレ一ザ ( K r 2 レーザ)、 出力波長 1 2 6 n mのアルゴンダイマ一レーザ (A r 2 レー ザ) などの他の真空紫外光源を用いても良く、 あるいは、 出力波長 1 9 3 n m の A r Fエキシマレーザ、 出力波長 2 4 8 n mの K r Fエキシマレーザ等を用 いても良い。  The light source is actually installed in a low-clean service room separate from the clean room where the exposure unit including the illumination unit ILU and the projection optical system PL is installed, or in a utility space under the floor of the clean room. It has been. In addition, other vacuum ultraviolet light sources such as a krypton dimer laser (Kr2 laser) with an output wavelength of 146 nm and an argon dimer laser (Ar2 laser) with an output wavelength of 126 nm are used as the light source. An ArF excimer laser having an output wavelength of 193 nm, a KrF excimer laser having an output wavelength of 248 nm, or the like may be used.
前記照明ュニット I L Uは、内部を外部から隔離する照明系ハウジング 2と、 その内部に所定の位置関係で配置されたオプティカルインテグレータを含む照 度均一化光学系、 リレーレンズ、 可変 N Dフィルタ、 レチクルブラインド、 及 び光路折り曲げ用のミラー等 (いずれも不図示) から成る照明光学系とを含ん で構成されている。 なお、 オプティカルインテグレータとしては、 フライアイ レンズ、 ロッドインテグレータ (内面反射型インテグレータ)、 あるいは回折光 学素子などが用いられる。 本実施形態の照明ユニットは、 例えば特開平 6— 3 4 9 7 0 1号公報及びこれに対応する米国特許第 5 , 5 3 4 , 9 7 0号などに 開示されるものと同様の構成となっている。 本国際出願で指定した指定国又は 選択した選択国の国内法令が許す限りにおいて、 上記米国特許における開示を 援用して本明細書の記載の一部とする。  The illumination unit ILU includes an illumination system housing 2 for isolating the interior from the exterior, an illumination uniformity optical system including an optical integrator arranged in a predetermined positional relationship inside the illumination system housing 2, a relay lens, a variable ND filter, a reticle blind, And an illumination optical system including an optical path bending mirror and the like (both not shown). As the optical integrator, a fly-eye lens, a rod integrator (internal reflection type integrator), a diffractive optical element, or the like is used. The lighting unit of the present embodiment has the same configuration as that disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 6-349701 and US Patent Nos. 5,534,970 corresponding thereto. Has become. To the extent permitted by the national laws of the designated country or selected elected country of this international application, the disclosures in the above US patents will be incorporated by reference into this description.
照明ュニット I L Uでは、 回路パターン等が形成されたレチクル R上のスリ ット状の照明領域 (前記レチクルブラインドで規定される X軸方向に細長く伸 びるスリツト状の領域) を露光光 E Lによりほぼ均一な照度で照明する。 In the lighting unit ILU, a slot on the reticle R on which a circuit pattern, etc. is formed A slit-shaped illumination area (a slit-shaped area elongated in the X-axis direction defined by the reticle blind) is illuminated by the exposure light EL with almost uniform illuminance.
なお、 照明系ハウジング 2内のレチクル R側端部近傍には、 図 1に示される ように、 平板状の光透過窓部材 2 0が配設されている。 この光透過窓部材 2 0 は、 照明ユニット I L Uからの露光光 E Lを透過するとともに、 照明系ハウジ ング 2内を気密状態に維持する機能を有している。 なお、 光透過窓部材 2 0と しては平板状のものに限らず、 照明ュニット I L Uを構成するいずれかのレン ズを照明系ハウジング 2に気密に固定することで、 そのレンズを上記光透部材 2 0の代わりにしても良い。  In addition, as shown in FIG. 1, a flat light transmitting window member 20 is provided near the reticle R side end in the illumination system housing 2. The light transmission window member 20 has a function of transmitting the exposure light EL from the illumination unit ILU and maintaining the interior of the illumination system housing 2 in an airtight state. The light-transmitting window member 20 is not limited to a flat plate-shaped member, and any one of the lenses constituting the illumination unit ILU may be air-tightly fixed to the illumination system housing 2 so that the lens can be made to have the above-described light transmission window member. The member 20 may be used instead.
なお、 上記照明ュニッ卜 I L Uを構成する光学部材のうち、 レンズや照度均 一化光学系、 光透過窓部材 2 0といった露光光 E Lを透過する部材の材料とし ては、 真空紫外光に対する透過率の高い例えばホタル石を使用することが望ま しし、。但し、部分的には、水酸基を 1 0 p p m以下程度に排除し、フッ素を 1 % 程度含有させたフッ素ドープ石英 (いわゆるモディファイド石英) を用いるこ ともできる。 また、 フッ素ドープ石英に限られず、 通常の石英や単に水酸基の 少ない石英、 さらに水素を添加した石英を使用することも可能である。 また、 フッ化マグネシウム、 フッ化リチウムなどのフッ化物結晶を使用しても良い。 なお、 前記送光光学系や照明ュニット I L U内のメンテナンス時に外部から 浸入する大気が、メンテナンス対象の空間以外に広がらないようにするために、 送光光学系と照明ユニット I L Uの境界部分に、 仕切り窓を設けることとして も良い。 また、 このような仕切り窓を、 送光光学系や照明ユニット I L U内に 設置される任意の光学部材で代用し、 送光光学系と照明ュニッ卜 I L U内を複 数の気密空間に分離することとしても良い。  Among the optical members constituting the above-mentioned illumination unit ILU, the material of the member that transmits the exposure light EL such as the lens, the illuminance equalizing optical system, and the light transmission window member 20 is made of a transmittance for vacuum ultraviolet light. It is desirable to use fluorite, for example, which has a high density. However, it is also possible to use a fluorine-doped quartz (a so-called modified quartz) in which a hydroxyl group is excluded to about 10 ppm or less and fluorine is contained at about 1%. Further, not limited to fluorine-doped quartz, it is also possible to use ordinary quartz, quartz having only a small number of hydroxyl groups, and quartz added with hydrogen. Further, fluoride crystals such as magnesium fluoride and lithium fluoride may be used. In order to prevent the air entering from outside during the maintenance of the light transmission optical system and the illumination unit ILU from spreading outside the space to be maintained, a partition is provided at the boundary between the light transmission optical system and the illumination unit ILU. Windows may be provided. In addition, such a partition window may be substituted by an arbitrary optical member installed in the light transmission optical system or the illumination unit ILU, and the light transmission optical system and the illumination unit ILU may be separated into a plurality of airtight spaces. It is good.
前記レチクルステージ R S Tは、平面視(上方から見て)矩形の形状を有し、 第 2架台 3 2を構成するレチクルステージ定盤 2 7上方に、 不図示の気体静圧 軸受けを介して浮上支持されている。 レチクルステージ R S Tの中央部には、 図 1のレチクル R近傍の拡大断面図である図 3 Bから分かるように、平面視(上 方から見て) 矩形の段付き開口 53が形成されており、 該段付き開口 53の内 縁部近傍の複数箇所には一段高い真空吸着部 53 aが設けられている。 これら の複数の真空吸着部 53 aのそれぞれに設けられた不図示の真空吸着機構 (バ キュームチャック) によってレチクル Rが吸着保持されている。 このレチクル Rのパターン面 (下面) には、 矩形枠状のペリクルフレーム 57及び該ぺリク ルフレーム 57の下面に貼り付けられたペリクル 56が設けられている。 ペリ クル 56によりパターン面に対する塵等の付着が防止されるようになっている。 レチクルステージ RS Tの X軸方向両端部には、 図 1に示されるように、 駆 動装置としての Y軸リニアモータ 24 A, 24 Bそれぞれの可動子 25 a , 2The reticle stage RST has a rectangular shape in a plan view (as viewed from above), and floats above a reticle stage base 27 that forms the second frame 32 via a gas static pressure bearing (not shown). Have been. At the center of the reticle stage RST, As can be seen from FIG. 3B, which is an enlarged cross-sectional view near the reticle R in FIG. 1, a rectangular stepped opening 53 is formed in plan view (as viewed from above), and the inner edge of the stepped opening 53 is formed. A plurality of adjacent vacuum suction portions 53a are provided. The reticle R is suction-held by a vacuum suction mechanism (vacuum chuck) (not shown) provided in each of the plurality of vacuum suction sections 53a. On the pattern surface (lower surface) of the reticle R, a rectangular frame-shaped pellicle frame 57 and a pellicle 56 adhered to the lower surface of the pellicle frame 57 are provided. The pellicle 56 prevents dust and the like from adhering to the pattern surface. As shown in Fig. 1, at the two ends of the reticle stage RST in the X-axis direction, movers 25a and 2 of the Y-axis linear motors 24A and 24B as driving devices are respectively provided.
5 bが設けられている。 Y軸リニアモータ 24 A, 24Bの固定子 26 a, 25b is provided. Y-axis linear motor 24 A, 24B stator 26 a, 2
6 bは、 Y軸方向に所定長さで延設されている。 これらの固定子 26 a, 26 bは、 前記支持架台 BDとは別に床面 Fに固定され、 上下方向を長手方向とし て配置されたモータ支持部材 3 1 a, 3 1 bによってそれぞれ支持されている。 この場合、 可動子 25 a, 25 bは、 固定子 26 a, 26 bとの間にそれぞれ 生じる電磁力により、 Y軸方向に駆動され、 これによリレチクルステージ RS Tが、レチクルステージ定盤 27上を Y軸方向に所定ストロークで駆動される。 なお、 レチクルステージ RS Tは、 Y軸リニアモータ 24 A, 24 Bの発生推 力をわずかに異ならせることにより、 XY面内で微小駆動 (回転を含む) 可能 に構成されている。 6b is extended at a predetermined length in the Y-axis direction. These stators 26a, 26b are fixed to the floor F separately from the support base BD, and are supported by motor support members 31a, 31b, respectively, which are arranged with the vertical direction as the longitudinal direction. I have. In this case, the movers 25a and 25b are driven in the Y-axis direction by the electromagnetic force generated between the movers 25a and 25b, respectively, so that the reticle stage RST is moved to the reticle stage base. 27 is driven at a predetermined stroke in the Y-axis direction. The reticle stage RST is configured to be capable of minute driving (including rotation) in the XY plane by slightly varying the thrust generated by the Y-axis linear motors 24A and 24B.
なお、 上記では、 Y軸リニアモータ 24 A, 24Bの固定子 26 a, 26 b はモータ支持部材 31 a, 3 1 bを介して床面 F上方にて支持され、 固定子に 生じた振動をモータ支持部材 31 a, 31 bを介して床面側に逃がす構成につ いて説明した。 しかし、 これに限らず、 例えば、 固定子 26 a, 26 b、 及び レチクルステージ定盤 27をそれぞれの支持部材に対して気体静圧軸受けなど を介して浮上支持することとしても良い。 このようにすると、 レチクルステー ジ R S Tの駆動の際の反力に応じて固定子 2 6 a , 2 6 bが駆動され、 レチク ルステージ R S T、 固定子を含む系の運動量が保存され、 上記反力に起因する 固定子の振動が防止される。 また、 この場合、 重心の移動も生じないので、 い わゆる偏荷重の発生も防止される。 In the above description, the stators 26a and 26b of the Y-axis linear motors 24A and 24B are supported above the floor F via the motor support members 31a and 31b, and the vibration generated in the stator is The configuration in which the motor is released to the floor via the motor support members 31a and 31b has been described. However, the present invention is not limited to this. For example, the stators 26a and 26b and the reticle stage base 27 may be levitated and supported on the respective support members via a gas static pressure bearing or the like. In this way, the reticle stay The stators 26a and 26b are driven in accordance with the reaction force at the time of driving the RST, and the momentum of the system including the reticle stage RST and the stator is preserved. Vibration is prevented. In addition, in this case, since the center of gravity does not move, so-called offset load is prevented.
また、 固定子がレチクルステージ定盤 2 7上に接続されている場合には、 レ チクルステージ定盤 2 7を前述と同様に支持部材に対して相対移動可能な構成 とすることにより、 同様にしてレチクルステージ定盤 2 7の振動を効果的に抑 制することができる。 これにより、 レチクルステージ R S Tの Y軸方向への駆 動に伴う反力が投影光学系 Pしに与える影響を軽減することができる。  When the stator is connected to the reticle stage base 27, the reticle stage base 27 can be moved relative to the support member in the same manner as described above. Thus, the vibration of the reticle stage base 27 can be effectively suppressed. As a result, it is possible to reduce the influence on the projection optical system P of the reaction force caused by driving the reticle stage R ST in the Y-axis direction.
前記レチクルステージ R S Tには、 図 3 Aに示されるように、 その上面の一 Y側端部には、 X軸方向に延びる平面ミラーから成るレチクル Y移動鏡 3 7 Y が固定され、 該移動鏡 3 7 Yに対して、 レチクルステージ定盤 2 7上に設けら れたレチクル Y干渉計 3 0からの測長ビームが垂直に照射されている。 また、 レチクルステージ R S Tの上面の一 X側端部近傍に、 Y軸方向に延びる平面ミ ラーから成るレチクル X移動鏡 3 7 Xが固定され、 該移動鏡 3 7 Xに対して不 図示のレチクル X干渉計からの測長ビームが垂直に照射されている。  As shown in FIG. 3A, a reticle Y moving mirror 37 Y consisting of a plane mirror extending in the X-axis direction is fixed to the reticle stage RST at one Y-side end of the upper surface thereof. The measuring beam from the reticle Y interferometer 30 provided on the reticle stage base 27 is irradiated perpendicularly to 37 Y. A reticle X movable mirror 37 X composed of a plane mirror extending in the Y-axis direction is fixed near one X-side end of the upper surface of reticle stage RST, and a reticle (not shown) is attached to movable mirror 37 X. The measurement beam from the X interferometer is irradiated vertically.
これらのレチクル Y干渉計 3 0、 レチクル X干渉計によってレチクルステー ジ R S Tの Y軸方向の位置、 X軸方向の位置が、 例えば 0 . 5〜 1 n m程度の 分解能でそれぞれ常時検出されるようになっている。  These reticle Y interferometer 30 and reticle X interferometer always detect the position of reticle stage RST in the Y-axis direction and X-axis direction with a resolution of, for example, 0.5 to 1 nm. Has become.
なお、 例えば、 レチクルステージ R S Tの端面を鏡面加工して反射面 (前述 の移動鏡の反射面に相当) を形成しても良い。 また、 レチクルステージ R S T の走査方向 (本実施形態では Y軸方向) の位置検出に用いられる移動鏡 3 7 Y の代わりに、 少なくとも 1つのコーナーキューブ型ミラー (例えば、 レトロリ フレクタ) を用いても良い。 ここで、 レチクル Y干渉計 3 0とレチクル X干渉 計の一方、 例えばレチクル Y干渉計 3 0は、 測長軸を 2軸有する 2軸干渉計で あり、 このレチクル Y干渉計 3 0の計測値に基づきレチクルステージ R S丁の Y位置に加え、 0 ζ方向の回転も計測できるようになつている。 In addition, for example, the end surface of reticle stage RST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of the above-described moving mirror). Also, at least one corner cube type mirror (for example, a retro reflector) may be used instead of the movable mirror 37 Y used for detecting the position of the reticle stage RST in the scanning direction (the Y-axis direction in the present embodiment). . Here, one of the reticle Y interferometer 30 and the reticle X interferometer, for example, the reticle Y interferometer 30 is a two-axis interferometer having two measurement axes, and the measured value of the reticle Y interferometer 30 Based on the reticle stage RS In addition to the Y position, rotation in the 0 ° direction can be measured.
上記のレチクル X干渉計, レチクル Υ干渉計 3 0によって計測されるレチク ルステージ R S Τの位置情報(又は速度情報)、すなわちレチクル Rの位置情報 (又は速度情報) は不図示の制御装置に供給される。 制御装置は、 基本的には それらのレチクル干渉計から出力される位置情報 (又は速度情報) が制御目標 値と一致するように Υ軸リニアモータ 2 4 Α、 2 4 Βを制御している。  The position information (or speed information) of the reticle stage RS measured by the reticle X interferometer and reticle {interferometer 30}, that is, the position information (or speed information) of reticle R is supplied to a controller (not shown). Is done. The controller basically controls the Υ-axis linear motors Α and Β so that the position information (or speed information) output from those reticle interferometers matches the control target value.
図 1に戻り、 照明ユニット I L Uとレチクルステージ R S Tとの間、 すなわ ちレチクルステージ R S Τの上方には、 第 1遮蔽機構 1 0 1が設けられ、 レチ クルステージ R S Τと投影光学系 P Lとの間、 すなわちレチクルステージ R S Τの下方には第 2遮蔽機構 1 0 2が設けられている。 これら遮蔽機構の構成等 については後に詳述する。  Returning to FIG. 1, a first shielding mechanism 101 is provided between the illumination unit ILU and the reticle stage RST, that is, above the reticle stage RSΤ, and the reticle stage RSΤ and the projection optical system PL are connected to each other. , Ie, below the reticle stage RS #, a second shielding mechanism 102 is provided. The configuration and the like of these shielding mechanisms will be described later in detail.
前記投影光学系 P Lは、 ホタル石、 フッ化リチウム等のフッ化物結晶か 成 るレンズや反射鏡からなる光学系を、 鏡筒 1 9で密閉したものである。 投影光 学系 P Lとしては、 ここでは、 一例として両側テレセントリックで投影倍率 j8 が例えば 1 4あるいは 1 5の屈折系が用いられているものとする。 このた め、 前述の如く、 照明ュニット I L Uからの露光光 E Lによリレチクル Rが照 明されると、 その照明領域部分のレチクル R上のパターンが投影光学系 Pしに よりウェハ W上のショット領域の一部に縮小投影され、 前記露光光 E Lで照明 されたパターン部分の縮小像 (部分像) が形成される。  In the projection optical system PL, an optical system including a lens made of a fluoride crystal such as fluorite and lithium fluoride and a reflecting mirror is sealed with a lens barrel 19. Here, as an example of the projection optical system PL, it is assumed that a refraction system with a double-sided telecentricity and a projection magnification j8 of, for example, 14 or 15 is used. Therefore, as described above, when the reticle R is illuminated by the exposure light EL from the illumination unit ILU, the pattern on the reticle R in the illumination area portion is shot on the wafer W by the projection optical system P. A reduced image (partial image) of the pattern portion that is reduced and projected on a part of the region and illuminated with the exposure light EL is formed.
前記投影光学系 P Lは、 その光軸方向を Z軸方向として鏡筒定盤 3 4 Bの中 央に形成された平面視 (上方から見て) 円形の開口内に挿入され、 その高さ方 向の中央やや下側に設けられたフランジ F L Gを介して鏡筒定盤 3 4 Bに固定 されている。  The projection optical system PL is inserted into a circular opening (as viewed from above) formed in the center of the barrel base 34 B with its optical axis direction as the Z-axis direction. It is fixed to the lens barrel base plate 34B via a flange FLG provided slightly below the center of the lens barrel.
なお、 投影光学系 P Lとしては、 屈折系に限らず、 反射屈折系、 反射系のい ずれをも用いることができる。  The projection optical system PL is not limited to the refractive system, and any of a catadioptric system and a reflective system can be used.
前記ウェハステージ WS Tは、 例えば磁気浮上型や加圧気体の静圧によリ浮 上する気体浮上型のリニアモータ等から成る駆動装置としての不図示のウェハ 駆動系によって前記ウェハステージベース B Sの上面に沿ってかつ非接触で X Y面内で自在に駆動されるようになっている。 The wafer stage WST is lifted by, for example, a magnetic levitation type or a static pressure of a pressurized gas. A wafer drive system (not shown) as a drive device including a gas floating linear motor or the like is configured to be freely driven in the XY plane along the upper surface of the wafer stage base BS and in a non-contact manner. .
ウェハステージ W S Tは、 実際には、 上記の X Y面内で自在に駆動 (0 Z回 転を含む) される X Yステージ、 この X Yステージ上に搭載され、 ウェハ Wを 保持する基板テーブル等を備えている。 基板テーブル上に不図示のウェハホル ダが設けられ、 該ウェハホルダによってウェハ Wが例えば真空吸着によリ保持 されている。 基板テーブルは、 不図示の駆動系により、 Z軸方向及び X Y面に 対する傾斜方向に微小駆動される。 このように、 ウェハステージ W S Tは、 実 際には、 複数のステージ、 テーブルを含んで構成されるが、 以下では、 ウェハ ステージ W S Tは、 ウェハ駆動系によって X、 Y、 z、 X軸回りの回転である Θ X , Y軸回りの回転である 0 y、 及び 0 z方向の 6自由度方向に駆動可能な 単一のステージであるものとして説明する。 Wafer stage WST is actually freely driven in the XY plane of the (0 including Z Rotation) is an XY stage which is mounted on the XY stage, and includes a substrate table or the like for holding a wafer W I have. A wafer holder (not shown) is provided on the substrate table, and the wafer W is held by the wafer holder, for example, by vacuum suction. The substrate table is minutely driven in a Z-axis direction and a tilt direction with respect to the XY plane by a drive system (not shown). As described above, the wafer stage WST actually includes a plurality of stages and tables, but in the following, the wafer stage WST is rotated around the X, Y, z, and X axes by the wafer drive system. It is assumed that と し て is a single stage that can be driven in six degrees of freedom in the directions of 0 y and 0 z, which are rotations around the X and Y axes.
ウェハステージ WS Tの位置情報は、 ウェハステージ W S T上面に設けられ た移動鏡 1 6を介してウェハレーザ干渉計 (以下、 「ウェハ干渉計」 という) 2 0によって、 例えば 0 . 5〜 1 n m程度の分解能で常時計測されるようになつ ている。  The position information of the wafer stage WST is obtained by a wafer laser interferometer (hereinafter, referred to as a “wafer interferometer”) 20 via a movable mirror 16 provided on the upper surface of the wafer stage WST. It is always measured with resolution.
なお、 実際には、 移動鏡は X軸に直交する反射面を有する X移動鏡と、 Y軸 に直交する反射面を有する Y移動鏡とが設けられ、 これに対応してレーザ干渉 計も X方向位置計測用の Xレーザ干渉計と Y方向位置計測用の Yレーザ干渉計 とが設けられているが、 図 1ではこれらが代表して移動鏡 1 6、 ウェハ干渉計 2 0として図示されている。 なお、 例えば、 ウェハステージ W S Tの端面を鏡 面加工して反射面 (移動鏡 1 6の反射面に相当) を形成しても良い。 また、 X レーザ干渉計及び Yレーザ干渉計は測長軸を複数有する多軸干渉計であり、 ゥ ェハステージ WS Tの X、 Y位置の他、 回転 (ョ一イング (Z軸回りの回転で ある 0 z回転)、 ピッチング(X軸回りの回転である 0 X回転)、 ローリング(Y 軸回りの回転である 0 y回転)) も計測可能となっている。従って、 以下の説明 ではレーザ干渉計 26によって、ウェハステージ WS Tの X、 Y、 0 z、 0 y、 θ χの 5自由度方向の位置が計測されるものとする。また、多軸干渉計は 45° 傾いてウェハステージ WSTに設置される反射面を介して、 投影光学系 P Lが 載置される架台 (不図示) に設置される反射面にレーザビームを照射し、 投影 光学系 P Lの光軸方向 (Z軸方向) に関する相対位置情報を検出するようにし ても良い。 In practice, the moving mirror is provided with an X moving mirror having a reflecting surface orthogonal to the X axis and a Y moving mirror having a reflecting surface orthogonal to the Y axis. An X laser interferometer for measuring the directional position and a Y laser interferometer for measuring the Y direction position are provided. In FIG. 1, these are representatively shown as a moving mirror 16 and a wafer interferometer 20. I have. Note that, for example, the end surface of wafer stage WST may be mirror-finished to form a reflection surface (corresponding to the reflection surface of movable mirror 16). In addition, the X laser interferometer and the Y laser interferometer are multi-axis interferometers having a plurality of measurement axes, and in addition to the X and Y positions of the wafer stage WST, the rotation (the rotation around the Z axis). 0 z rotation), pitching (0 X rotation which is rotation around the X axis), rolling (Y The rotation around the axis (0 y rotation)) can also be measured. Therefore, in the following description, it is assumed that the laser interferometer 26 measures the position of the wafer stage WST in the directions of five degrees of freedom of X, Y, 0z, 0y, and θχ. In addition, the multi-axis interferometer irradiates a laser beam onto a reflection surface installed on a gantry (not shown) on which the projection optical system PL is mounted via a reflection surface installed on the wafer stage WST at an angle of 45 °. Alternatively, relative position information about the optical axis direction (Z-axis direction) of the projection optical system PL may be detected.
上述したウェハ干渉計 20からのウェハステージ WS Tの位置情報 (又は速 度情報) は不図示の制御装置に送られ、 制御装置ではウェハステージ WS丁の 位置情報 (又は速度情報) に基づいてウェハ駆動系を介してウェハステージ W S Tを駆動する。  The position information (or speed information) of the wafer stage WST from the wafer interferometer 20 described above is sent to a control device (not shown), and the control device performs processing based on the position information (or speed information) of the wafer stage WS. The wafer stage WST is driven via the drive system.
ウェハステージ WSTと投影光学系 P Lとの間には、 第 3遮蔽機構 1 03が 設けられている。 この第 3遮蔽機構 1 03の構成等については後に詳述する。 制御系は、 不図示の制御装置によって主に構成される。 制御装置は、 CPU (中央演算処理装置)、 ROM (リード■オンリ ■メモリ)、 RAM (ランダム - アクセス 'メモリ) 等から成るいわゆるマイクロコンピュータ (又はワークス テーシヨン) を含んで構成され、 上述した各種制御動作を行う他、 露光動作が 的確に行われるように、 例えばレチクル Rとウェハ Wの同期走査、 ウェハ の ステッピング等を制御する。  A third shielding mechanism 103 is provided between the wafer stage WST and the projection optical system PL. The configuration and the like of the third shielding mechanism 103 will be described later in detail. The control system is mainly configured by a control device (not shown). The control device includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random-access memory), and the like. In addition to performing the operation, for example, synchronous scanning of the reticle R and the wafer W, stepping of the wafer, and the like are controlled so that the exposure operation is properly performed.
具体的には、 制御装置は、 例えば走査露光時には、 レチクル Rがレチクルス テージ RS Tを介して + Y方向 (又は一 Y方向) に速度 VR=Vで走査される のに同期して、 ウェハステージ WS Tを介してウェハ Wが露光領域に対して一 Y方向 (又は +Y方向) に速度 Vw = j8 ■ V (j8はレチクル Rからウェハ Wに 対する投影倍率) で走査されるように、 レチクル干渉計、 ウェハ干渉計 20の 計測値に基づいて Y軸リニアモータ 24 A, 24B、 ウェハ駆動系を介してレ チクルステージ RS T、 ウェハステージ WS Τの位置及び速度をそれぞれ制御 する。 Specifically, for example, at the time of scanning exposure, the control device controls the wafer in synchronization with the reticle R being scanned at a speed V R = V in the + Y direction (or one Y direction) via the reticle stage RST. Through the stage WST, the wafer W is scanned in one Y direction (or + Y direction) with respect to the exposure area at a speed V w = j8 V (j8 is the projection magnification from the reticle R to the wafer W). , Reticle interferometer, and wafer interferometer 20 to control the position and speed of reticle stage RST and wafer stage WS Y via Y-axis linear motors 24A and 24B and wafer drive system, respectively I do.
また、 ステッピングの際には、 制御装置では、 レチクル干渉計及びウェハ干 渉計 2 0の計測値に基づいてウェハ駆動系を介してウェハステージ WS Tの位 置を制御する。  Further, at the time of stepping, the control device controls the position of the wafer stage WST via the wafer drive system based on the measurement values of the reticle interferometer and the wafer interferometer 20.
ところで、 真空紫外域の波長の光を露光光とする場合には、 その光路から酸 素、 水蒸気、 炭化水素系のガス等の、 かかる波長帯域の光に対し強い吸収特性 を有するガス (以下、 適宜 「吸収性ガス」 と呼ぶ) を排除する必要がある。 こ のため、 本実施形態では、 光源からウェハ Wに至る光路上の全ての空間内部の 吸収性ガスを極力排除する工夫がなされている。 これについては、 後に詳述す る。  By the way, when light having a wavelength in the vacuum ultraviolet region is used as exposure light, a gas having a strong absorption characteristic for light in such a wavelength band, such as oxygen, water vapor, or a hydrocarbon-based gas (hereinafter, referred to as “light”). (Referred to as “absorptive gas” as appropriate). For this reason, in the present embodiment, a device is devised to eliminate as much as possible the absorbent gas in the entire space on the optical path from the light source to the wafer W. This will be described in detail later.
次に、 前述の第 1〜第 3遮蔽機構 (1 0 1 , 1 0 2 , 1 0 3 ) について説明 する。  Next, the above-described first to third shielding mechanisms (101, 102, 103) will be described.
前記第 1遮蔽機構 1 0 1は、 図 1及び図 3 Aに示されるように、 レチクル R の上方に設けられた X Y断面が矩形枠状の一方の面 (図 1における下面) が全 面に渡って開口し、 他方の面 (図 1における上面) の中央部が開口した全体と して厚さの薄い直方体状の部材から成る遮蔽部材としての照明系側ガスパージ スカート 2 2を含んで構成されている。 この照明系側ガスパージスカート 2 2 は、 レチクル R及び該レチクル Rを保持するレチクルステージ R S Tのいずれ かである特定物体と照明ュニット I L Uとの間に配置され、 少なくとも前記特 定物体との間に所定のクリアランスを形成した状態で、 レチクル Rの照明ュニ ッ ト I L U側の少なくともレチクル Rのパターン領域に対応する領域を含む空 間を外気から遮蔽する。  As shown in FIGS. 1 and 3A, the first shielding mechanism 101 is configured such that one surface (the lower surface in FIG. 1) having an XY cross section provided above the reticle R and having a rectangular frame shape is entirely formed. An illumination system side gas purge skirt 22 as a shielding member composed of a rectangular parallelepiped member having a small thickness as a whole and having an opening at the center of the other surface (the upper surface in FIG. 1). ing. The illumination system side gas purge skirt 22 is arranged between a specific object, which is one of a reticle R and a reticle stage RST holding the reticle R, and the illumination unit ILU, and is provided at least between the specific object and the specific unit. With the above clearance formed, the space including at least the area corresponding to the pattern area of the reticle R on the illumination unit ILU side of the reticle R is shielded from the outside air.
照明系側ガスパージスカート 2 2は、 その上端面 2 2 aが照明ユニット I L Uの照明系ハウジング 2のレチクル側端部 (下端部) に固定され、 その下端面 2 2 bは、 レチクルステージ R S Tの上面 (照明ユニット I L U側の面) に、 接触することなく近接して配置されている。 すなわち、 照明系側ガスパージス カート 2 2の下端面 2 2 bとレチクルステージ R S Tの上面との間には、 所定 のクリアランスが形成されている。 この場合、 照明系側ガスパージスカート 2 2と照明ュニット I L Uとレチクルステージ R S Tとの間には、 概ね気密状態 の空間 I Mが形成されている。 The illumination system side gas purge skirt 22 has an upper end surface 22 a fixed to a reticle side end (lower end) of the illumination system housing 2 of the illumination unit ILU, and a lower end surface 22 b formed on the upper surface of the reticle stage RST. (Lighting unit ILU side surface). That is, gas purges on the lighting system side A predetermined clearance is formed between the lower end surface 22b of the cart 22 and the upper surface of the reticle stage RST. In this case, a substantially airtight space IM is formed between the illumination system side gas purge skirt 22, the illumination unit ILU, and the reticle stage RST.
この空間 I Mにおいて、 高い気密性を確保するためには、 前述のクリアラン スは狭ければ狭いほど好ましい。 但し、 レチクルステージ R S Tには、 走査に 伴う上下振動が発生するおそれがあるので、 上下振動が生じた場合にもレチク ルステージ R S Tと照明系側ガスパージスカー卜 2 2との接触を回避するため には、 ある程度の間隔を設けることが必要となる。 その間隔は、 各機構の構成 によっても異なるが、 気密性の観点からは、 上記クリアランスは、 最大でも 3 m m以下であることが好ましい。  In this space IM, in order to ensure high airtightness, the narrower the clearance is, the better. However, the reticle stage RST may generate vertical vibrations due to scanning, so in order to avoid contact between the reticle stage RST and the gas purge scar 22 on the illumination system side even when vertical vibrations occur. It is necessary to provide a certain interval. The interval varies depending on the configuration of each mechanism, but from the viewpoint of airtightness, the above clearance is preferably at most 3 mm or less.
なお、 照明系側ガスパージスカート 2 2とレチクルステージ R S Tとの間に 配置され、 照明系側ガスパージスカート 2 2の下端部に、 例えば伸縮自在のべ ローズを伸縮駆動及びチル卜駆動する駆動機構を設け、 該駆動機構によリベロ ーズを伸縮及びチルト駆動することにより、 クリアランスを照明系側ガスパー ジスカート 2 2の全周に渡ってほぼ均一になるように調整することも可能であ る。  A drive mechanism is provided between the illumination-system-side gas purge skirt 22 and the reticle stage RST. By driving the lever to expand and contract and tilt by the driving mechanism, the clearance can be adjusted so as to be substantially uniform over the entire circumference of the illumination system side gas purge skirt 22.
図 4には、 レチクルステージ R S Tの平面図が示されている。 この図 4に示 されるように、 照明系側ガスパージスカート 2 2は、 Y軸方向に長い矩形枠状 となっている。 このように照明系側ガスパージスカート 2 2を Y軸方向を長く 設定しているのは、 以下の理由による。 すなわち、 本実施形態においては、 レ チクル R (レチクルステージ R S T ) は Y軸方向へ走査 (スキャン) されるよ うになつているが、 レチクル Rの汚染の防止のためには、 レチクルステージ R S Tが Y軸方向に走査された場合であっても、 レチクル Rが収容された段付き 開口 5 3が常に照明系側ガスパージスカー卜 2 2の内部に収まっている必要が ある。 一方、 Y軸方向長さ (図 4に示される長さ S Y ) が十分でないと、 走査 に伴ってレチクル Rと段付き開口 53が、 照明系側ガスパージスカート 22か らはみ出す可能性があり、 はみ出した場合には、 照明系側ガスパージスカート 22の下端面 22 bとレチクル Rとの間に大きな隙間ができ、 空間 I Mの気密 性が維持されなくなってしまう。 しカヽし、 空間 I Mは、 光源からウェハ Wに至 る光路上の空間であるから、 後述するガスパージを効率良く行うためには、 あ る程度以上の気密性を確保する必要があるので、 このような事態が生じないよ うにする必要がある。 FIG. 4 shows a plan view of the reticle stage RST. As shown in FIG. 4, the illumination system side gas purge skirt 22 has a rectangular frame shape long in the Y-axis direction. The reason why the illumination system side gas purge skirt 22 is set long in the Y-axis direction is as follows. That is, in the present embodiment, the reticle R (reticle stage RST) is scanned (scanned) in the Y-axis direction. However, to prevent contamination of the reticle R, the reticle stage RST is set to Y Even when scanning is performed in the axial direction, the stepped opening 53 accommodating the reticle R must always be accommodated in the illumination system side gas purge scar 22. On the other hand, if the length in the Y-axis direction (length SY shown in Fig. 4) is not sufficient, As a result, the reticle R and the stepped opening 53 may protrude from the illumination-side gas purge skirt 22. A large gap is created, and the airtightness of the space IM cannot be maintained. However, since the space IM is a space on the optical path from the light source to the wafer W, it is necessary to secure a certain degree of airtightness in order to efficiently perform gas purging described later. It is necessary to prevent such a situation from occurring.
上記の長さ SYは、 具体的には、 レチクル Rのパターン領域の Y軸方向長さ と、 レチクル Rを照明する照明領域の Y軸方向の長さ (いわゆるスリット幅) と、 走査に伴う助走距離 (露光が行われる同期移動時の前後の加速域と減速域 とでレチクルステージ RS Tが移動する助走距離、 すなわちいわゆるプリスキ ヤン距離とオーバースキャン距離との和) を加えた長さとの合計により決定さ れ、 具体的には、 レチクル Rが 6インチ角 (1 5 Omm角) サイズである場合 には、 照明系側ガスパージスカート 22内部の Y軸方向長さ SYは、 250m m程度以上とする必要がある。  The length SY is, specifically, the length of the pattern area of the reticle R in the Y-axis direction, the length of the illumination area for illuminating the reticle R in the Y-axis direction (a so-called slit width), and the approach accompanying scanning. The sum of the distance (the sum of the pre-scan distance and the overscan distance that the reticle stage RST moves in the acceleration area and deceleration area before and after the synchronous movement in which the exposure is performed, ie, the so-called pre-scan distance and over-scan distance) is added. Specifically, when the reticle R is a 6-inch square (15 Omm square) size, the Y-axis length SY inside the illumination system side gas purge skirt 22 should be about 250 mm or more. There is a need.
一方、 照明系側ガスパージスカート 22の X軸方向長さ SXについては、 レ チクルステージ RS Tは X軸方向には Y軸方向ほど大きくは駆動されないので、 レチクル R (又は段付き開口 53) の大きさに多少のマージンを設けておけば 良く、例えばレチクル Rが 6インチ角(1 5 Omm角)サイズである場合には、 長さ SXは 1 8 Omm程度以上に設定しておけば良い。  On the other hand, regarding the length SX in the X-axis direction of the gas purge skirt 22 on the illumination system side, since the reticle stage RST is not driven in the X-axis direction as much as the Y-axis direction, the size of the reticle R (or the stepped opening 53) is large. It is sufficient to provide some margin in the space. For example, if the reticle R is 6 inches square (15 Omm square), the length SX should be set to about 18 Omm or more.
なお、 空間 I Mの気密性確保のためには、 レチクルステージ RS Tが Y軸方 向に走査しても、 レチクルステージ RS Tを、 照明系側ガスパージスカート 2 2が覆い続ける程度の大きさが必要となる。 このため、 レチクルステージ RS Tの Y軸方向の全長 (図 4に示される長さ RYi) は、 照明系側ガスパージス カート 22の内側の Y軸方向長さ S Yと、 照明系側ガスパージスカート 22の 側壁の厚さの 2倍と、 レチクルステージ RS Tの Y方向走査長を加算した長さ の総和以上の長さである必要があり、 具体的には、 例えば、 レチクル Rが 6ィ ンチ角 (1 50mm角) サイズである場合には、 レチクルステージ R S Tの Y 軸方向の全長 R Yiを 60 Omm以上としておく必要がある。 In order to ensure the airtightness of the space IM, it is necessary that the reticle stage RST be large enough to keep the illumination system side gas purge skirt 22 covered even if the reticle stage RST scans in the Y-axis direction. Becomes For this reason, the total length of the reticle stage RST in the Y-axis direction (length RYi shown in FIG. 4) is the length SY in the Y-axis direction inside the illumination system side gas purge cartridge 22 and the side wall of the illumination system side gas purge skirt 22. Of the reticle stage R ST in the Y direction Of the reticle stage RST, the total length in the Y-axis direction R Yi of the reticle stage RST must be equal to or greater than the total length of the reticle stage RST. Must be at least 60 Omm.
また、 レチクルステージ RS Tの走査による、 レチクルステージ RS Tと照 明系側ガスパージスカート 22との接触を回避するためには、 レチクルステー ジ R S Tの表面形状は少なくとも Y軸方向に関してフラットである必要がある。 この条件を数式で表わすと、 レチクルステージ RS Tの表面の Z位置の Y方向 位置に対する関数 Z= f (Y) が Yに関して一定である必要がある。  Also, in order to avoid contact between the reticle stage RST and the illumination system side gas purge skirt 22 due to the scanning of the reticle stage RST, the surface shape of the reticle stage RST needs to be flat at least in the Y-axis direction. is there. When this condition is expressed by a mathematical expression, it is necessary that the function Z = f (Y) with respect to the position of the Z position on the surface of the reticle stage RST in the Y direction is constant with respect to Y.
—方、 レチクルステージ RS Tの表面形状は、 X軸方向に関しては必ずしも 平面である必要がなく、 段差や湾曲があっても構わないが、 その場合には、 照 明系側ガスパージス力一ト 22の下端面 22 bを、 レチクルステージ RS丁の 表面形状とほぼ同じ形状に加工する必要があり、 加工性の観点からは非常に複 雑となってしまう。 従って、 レチクルステージ RS Tの X軸方向の表面形状に ついても、 平面であることが望ましい。  On the other hand, the surface shape of the reticle stage RST is not necessarily required to be flat in the X-axis direction, and may have a step or a curve. In such a case, the gas purge force on the illumination system side is required. It is necessary to machine the lower end surface 22b of the reticle stage RS into almost the same shape as the surface shape of the reticle stage RS, which is very complicated from the viewpoint of workability. Therefore, it is desirable that the surface shape of reticle stage RST in the X-axis direction is also flat.
なお、 この場合には、 空間 I M内に含まれる部材、 例えばレチクル Rやその 他のレチクル周辺に配置される部材の全てが、 レチクルステージ RS Tの上面 よりも上側にはみ出さないような構造 (図 3 B参照) を採用しておく必要があ る。  In this case, in such a structure, all the members included in the space IM, for example, the reticle R and other members arranged around the reticle do not protrude above the upper surface of the reticle stage RST. (See Fig. 3B).
前記第 1遮蔽機構 1 01は、上述の照明系側ガスパージスカート 22の他に、 空間 I M内のガス置換を効率良く行うための配管系や差動排気機構なども有し ているが、 これらについては後に詳述する。  The first shielding mechanism 101 has, in addition to the above-described illumination system side gas purge skirt 22, a piping system and a differential exhaust mechanism for efficiently performing gas replacement in the space IM. Will be described later in detail.
前記第 2遮蔽機構 1 02は、 図 1に示されるように、 鏡筒定盤 34B上に設 けられた複数のバージスカー卜保持機構 29を介して、 レチクルステージ RS Tの下方にて保持された遮蔽部材としての投影系側ガスパージスカート 28を 備えている。 投影系側ガスパージスカート 28は、 その上端面 28 aが、 レチ クルステージ RSTの下面 (投影光学系 P L側の面) に接触することなく近接 して配置され、 その下端面 2 8 bは投影光学系 P Lの鏡筒 1 9の上端面に、 接 触することなく近接して配置されている。 すなわち、 投影系側ガスパージス力 -ト 2 8の上端面 2 8 aとレチクルステージ R S T下面との間、 投影系側ガス パージスカート 2 8の下端面 2 8 bと投影光学系 P Lとの間には、 それぞれク リアランスが形成されている。 As shown in FIG. 1, the second shielding mechanism 102 was held below the reticle stage RST via a plurality of barge-square holding mechanisms 29 provided on a barrel base 34B. A projection system side gas purge skirt 28 as a shielding member is provided. The upper end surface 28a of the gas purge skirt 28 on the projection system side is close to the lower surface of the reticle stage RST (the surface on the projection optical system PL side) without contact. The lower end surface 28 b is disposed in close proximity to the upper end surface of the barrel 19 of the projection optical system PL without touching it. That is, between the upper end surface 28 a of the projection system side gas purge port 28 and the lower surface of the reticle stage RST, and between the lower end surface 28 b of the projection system side gas purge skirt 28 and the projection optical system PL. Clearance is formed respectively.
この場合、 投影系側ガスパージスカート 2 8、 レチクルステージ R S T、 レ チクル R、 及び投影光学系 P Lにより、 概ね気密状態の空間 M Pが形成されて いる。  In this case, the projection system side gas purge skirt 28, the reticle stage RST, the reticle R, and the projection optical system PL form a substantially airtight space MP.
ここで、 上記クリアランスは、 前述の照明ユニット I L Uとレチクルステー ジ R S Tとの間のクリアランスと同様に、 狭ければ狭い程好ましいが、 レチク ルステージ R S Tの走査方向への移動に伴う上下振動が生じた場合にもレチク ルステージ R S Tと投影系側ガスパージスカート 2 8の接触を回避する必要が あるので、 その間隔をある程度開けることとしている。 この場合のクリアラン スとしては、 上記と同様に 3 m m以下に設定することが好ましい。 この場合に も、 投影系側ガスパージスカート 2 8の上端部などにベローズ及ぴ該べローズ を伸縮駆動及びチル卜駆動する駆動機構を設け、 投影系側ガスパージスカート 2 8の上端面 2 8 aの全周に渡ってクリアランスを均一に設定することとして も良い。  Here, as with the clearance between the illumination unit ILU and the reticle stage RST, it is preferable that the clearance is as narrow as possible.However, vertical oscillations occur due to the movement of the reticle stage RST in the scanning direction. In this case, it is necessary to avoid contact between the reticle stage RST and the gas purge skirt 28 on the projection system side. In this case, the clearance is preferably set to 3 mm or less in the same manner as described above. Also in this case, a bellows and a drive mechanism for extending and contracting and tilting the bellows are provided at the upper end of the projection system side gas purge skirt 28, and the upper end surface 28a of the projection system side gas purge skirt 28 is provided. The clearance may be set uniformly over the entire circumference.
投影系側ガスパージスカート 2 8の上端部の形状、 大きさ等は上記照明系側 ガスパージスカート 2 2の下端部と同様 (すなわち内部が Y軸方向長さ S丫、 X軸方向長さ S Xである平面視矩形枠状)に設定されている。このような形状、 大きさを採用した理由は、 照明系側ガスパージスカート 2 2の場合と同様であ るので、 その説明は省略するものとする。  The shape and size of the upper end of the gas purge skirt 28 on the projection system side are the same as the lower end of the gas purge skirt 22 on the illumination system side (that is, the inside has a length in the Y-axis direction S 丫 and a length in the X-axis direction SX). (Plan view rectangular frame). The reason for adopting such a shape and size is the same as in the case of the gas purge skirt 22 on the illumination system side, so that the description thereof will be omitted.
なお、 この場合、 レチクルステージ R S Tの駆動に伴って、 レチクルステー ジ R S T及びレチクル Rが投影系側ガスパージスカート 2 8に接触しないよう に、 ペリクル 5 6や、 その他のレチクル周辺の構造物の全てがレチクルステー ジ R S Tよりも下側にはみ出さないような構成 (図 3 B参照) を採用する必要 がある。 Note that, in this case, the pellicle 56 and all other structures around the reticle are controlled so that the reticle stage RST and the reticle R do not contact the projection system side gas purge skirt 28 as the reticle stage RST is driven. Reticle stay It is necessary to adopt a configuration that does not protrude below the RST (see Figure 3B).
一方、 投影系側ガスパージスカート 2 8の下端面 2 8 bの形状は円形枠状と されている。 これは投影光学系 P Lの鏡筒 1 9が円筒形状を有し、 その上端面 の形状が円形枠状であるので、 空間 M Pの気密性の観点からは、 投影系側ガス パージスカート 2 8の下端面 2 8 bを、 投影光学系 P Lの鏡筒 1 9の上端面と 同一形状とするのが好ましいからである。  On the other hand, the shape of the lower end face 28 b of the projection system side gas purge skirt 28 is a circular frame. This is because the lens barrel 19 of the projection optical system PL has a cylindrical shape, and the shape of the upper end surface is a circular frame. Therefore, from the viewpoint of the airtightness of the space MP, the projection system side gas purge skirt 28 This is because it is preferable that the lower end surface 28 b has the same shape as the upper end surface of the lens barrel 19 of the projection optical system PL.
なお、 投影光学系 P Lは第 1架台 3 4に固定されているので、 投影系側ガス パージスカート 2 8と投影光学系 P Lとは、 Oリング等のシール部材を介して 気密的に接合 (固定) することも可能である。 但し、 投影系側ガスパージス力 —ト 2 8がレチクルステージ R S Tの駆動等によリ振動し、 その振動が投影光 学系 P Lに伝達して、 結像特性を劣化されるおそれがある場合には、 本実施形 態のように所定の間隔 (クリアランス) を開けて、 近接して配置したほうが好 ましい。 このクリアランスも、 これまでと同様に、 3 m m以下に設定すること が好ましい。  Since the projection optical system PL is fixed to the first frame 34, the projection system side gas purge skirt 28 and the projection optical system PL are air-tightly joined (fixed) via a sealing member such as an O-ring. It is also possible to do However, if the projection system side gas purge force 28 vibrates due to driving of the reticle stage RST, etc., and the vibration is transmitted to the projection optical system PL, there is a possibility that the imaging characteristics may be degraded. However, as in the present embodiment, it is preferable to provide a predetermined interval (clearance) and arrange them close to each other. This clearance is also preferably set to 3 mm or less as before.
ところで、 露光装置 1 0 0においては、 レチクル Rを、 適宜、 他のレチクル と交換する必要があるので、 空間 I M、 空間 M Pの気密性を維持したまま、 レ チクル Rを交換することが可能なレチクルの交換機構を採用する必要がある。 これを実現するためには、 例えば、 照明系側ガスパージスカート 2 2の側壁 の一部に、 開閉可能なレチクル搬送窓 (不図示) を設け、 このレチクル搬送窓 を介して、 不図示のレチクルローダによって、 レチクル Rを空間 I M外部に搬 出し、 新たなレチクルを空間 I M内に搬入することで、 レチクル交換を行う構 成を採用しても良いし、 あるいは、 レチクルステージ R S丁の Y軸方向への走 査ストロークを、 レチクル R全体が、 照明系側ガスパージスカー卜 2 2及び投 影系側ガスパージスカート 2 8の Y軸方向外側に出ても、 照明系側ガスパージ スカート 2 2及び投影系側ガスパージス力一ト 2 8がレチクルステージ R S T を覆い続けるほど大きく取っておき、 照明系側ガスパージスカート 2 2及び投 影系側ガスパージスカー卜 2 8からレチクル R全体が出た状態で、 照明系側ガ スパージスカート 2 2の外側に設けられたレチクルローダを用いて、 レチクル 交換を行うような構成とすることもできる。 By the way, in the exposure apparatus 100, the reticle R needs to be replaced with another reticle as appropriate, so that the reticle R can be replaced while maintaining the airtightness of the space IM and the space MP. It is necessary to adopt a reticle exchange mechanism. To achieve this, for example, a reticle transport window (not shown) that can be opened and closed is provided on a part of the side wall of the gas purge skirt 22 on the illumination system side, and a reticle loader (not shown) is provided through the reticle transport window. Reticle R can be carried out of space IM and a new reticle can be carried into space IM to replace the reticle, or the reticle stage can be moved in the Y-axis direction of RS reticle. Even if the entire reticle R moves outside the illumination system side gas purge skirt 22 and projection system side gas purge skirt 28 in the Y-axis direction, the illumination system side gas purge skirt 22 and projection system side gas purge Force 2 8 reticle stage RST The reticle provided outside the illumination system side gas purge skirt 22 with the entire reticle R coming out of the illumination system side gas purge skirt 22 and the projection system side gas purge skirt 28 It is also possible to adopt a configuration in which reticle exchange is performed using a loader.
なお、 この場合、 レチクル交換時のレチクルステージ R S Tの移動方向を、 —Y方向に設定した場合には、 レチクル交換の際にも照明系側ガスパージス力 ート 2 2及び投影系側ガスパージスカー卜 2 8とレチクルステージ R S Tとの 間の気密性が保たれるように (すなわち、 レチクル R全体が照明系側ガスパー ジスカート 2 2及び投影系側ガスパージスカート 2 8の外側に出た場合にも、 レチクルステージ R S Tの + Y側端部が照明系側ガスパージスカート 2 2及び 投影系側ガスパージスカート 2 8の + Y側の側壁を越えないように)、レチクル ステージ R S Tの Y軸方向の長さ (具体的には図 4に示されるレチクル Rより も + Y側の長さ R Y2 ) を十分に長く設定しておく必要がある。 In this case, if the moving direction of the reticle stage RST at the time of reticle replacement is set to the —Y direction, the illumination system-side gas purge cartridge 22 and the projection system-side gas purge cartridge 2 are used even when the reticle is replaced. So that the airtightness between the reticle stage RST and the reticle stage RST is maintained (that is, even if the entire reticle R comes out of the illumination system side gas purge skirt 22 and the projection system side gas purge skirt 28), the reticle stage Make sure that the + Y side end of the RST does not exceed the + Y side wall of the illumination system side gas purge skirt 22 and the projection system side gas purge skirt 28), and the length of the reticle stage RST in the Y axis direction (specifically, It is necessary to set the length RY 2 ) of the + Y side sufficiently longer than the reticle R shown in FIG.
ところで、 照明系側ガスパージスカート 2 2には、 図 2に示されるように、 第 1給気管 6 0、 第 1排気管 6 1、 及び第 2給気管 7 2、 第 2排気管 7 3の 4 種類の配管が接続されている。  By the way, as shown in FIG. 2, the illumination system side gas purge skirt 22 includes a first air supply pipe 60, a first exhaust pipe 61, a second air supply pipe 72, and a second exhaust pipe 73-4. Different types of piping are connected.
図 5 Αには、 照明系側ガスパ一ジスカート 2 2の下端面 2 2 bとレチクルス テージ R S Tとが近接配置された部分が断面図にて示されており、図 5 Bには、 照明系側ガスパージスカート 2 2のレチクルステージ R S Tに近接した面 (下 端面 2 2 b ) の一部が拡大して示されている。 なお、 図 5 Aは、 図 5 Bの A— A線断面に相当する。  FIG. 5A is a cross-sectional view of a portion where the lower end surface 2 2 b of the illumination system side gas package skirt 22 and the reticle stage RST are disposed in close proximity, and FIG. 5B shows the illumination system side. A part of the surface (lower end surface 22b) of the gas purge skirt 22 near the reticle stage RST is shown in an enlarged manner. FIG. 5A corresponds to a cross section taken along line AA of FIG. 5B.
前記第 1給気管 6 0は、 図 5 Aに示されるように、 照明系側ガスパージス力 ート 2 2の側壁の外側から内側に連通して形成された供給用開口としての貫通 孑し 2 5 1に対して、 コネクタ 7 5を介して照明系側ガスパージスカート 2 2の 外側から接続されている。 貫通孔 2 5 1の第 1給気管 6 0とは反対側には給気 ノズル 7 6が設けられている。 前記第 1排気管 6 1は、 不図示ではあるが、 上記第 1給気管 6 0と同様に、 照明系側ガスパージスカート 2 2の側壁に外側から内側に連通して形成された 不図示の排気用開口としての貫通孔に対して、 コネクタを介して照明系側ガス パージスカート 2 2の外側から接続されている。 As shown in FIG. 5A, the first air supply pipe 60 has a through-hole mosquito as a supply opening formed from the outside to the inside of the side wall of the illumination-system-side gas purge plate 22. 1 is connected from the outside of the illumination system side gas purge skirt 22 via a connector 75. An air supply nozzle 76 is provided on the opposite side of the through hole 2 51 from the first air supply pipe 60. Although not shown, the first exhaust pipe 61 is, like the first air supply pipe 60, an exhaust gas (not shown) formed to communicate from the outside to the inside of the side wall of the illumination system side gas purge skirt 22. The illumination system side gas purge skirt 22 is connected to the through hole as an opening through the connector via a connector.
本実施形態のように、真空紫外域の露光波長を使用する露光装置では、酸素、 水蒸気等の吸収性ガスによる露光光の吸収を避けるために、 空間 I M内の気体 は低吸収性ガスで置換する必要がある。 このため、 本実施形態では、 第 1給気 管 6 0及び第 1排気管 6 1を用いて空間 I M内を真空紫外域の光に対する吸収 が少ない特性を有する特定ガス、 例えば窒素、 及びヘリウム、 アルゴン、 ネオ ン、 クリプトンなどの希ガス、 又はそれらの混合ガス (以下、 適宜 「低吸収性 ガス J と呼ぶ) で満たすこととしている。  In an exposure apparatus using an exposure wavelength in the vacuum ultraviolet region as in the present embodiment, the gas in the space IM is replaced with a low-absorbing gas in order to avoid the absorption of exposure light by an absorbing gas such as oxygen or water vapor. There is a need to. For this reason, in the present embodiment, the first gas supply pipe 60 and the first exhaust pipe 61 are used to pass the space IM inside the space IM with a specific gas having a characteristic of little absorption of light in the vacuum ultraviolet region, for example, nitrogen, and helium, It is filled with a rare gas such as argon, neon, or krypton, or a mixed gas thereof (hereinafter referred to as “low-absorbing gas J” as appropriate).
すなわち、 前記第 1給気管 6 0の他端は、 図 2に示されるように、 ガス供給 装置 5 0の一端に接続され、 第 1排気管 6 1の他端は不図示のガス回収装置に 接続されている。 第 1給気管 6 0、 第 1排気管 6 1には、 それぞれ不図示の給 気弁、 及び排気弁が設けられており、 不図示の制御装置が、 給気弁、 排気弁の 開閉、 及びガス供給装置 5 0に内蔵されたポンプの作動、 停止を適宜制御する ことにより、 空間 I M内に低吸収性ガスが充填され、 その内部の吸収性ガスの 濃度は数 p p m以下の濃度となっている。 なお、 空間 I M内に低吸収性ガスを 常時フローすることとしても良い。  That is, as shown in FIG. 2, the other end of the first air supply pipe 60 is connected to one end of a gas supply device 50, and the other end of the first exhaust pipe 61 is connected to a gas recovery device (not shown). It is connected. The first air supply pipe 60 and the first exhaust pipe 61 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply valve and the exhaust valve, and By appropriately controlling the operation and stop of the pump incorporated in the gas supply device 50, the space IM is filled with a low-absorbing gas, and the concentration of the absorbing gas in the interior IM is reduced to several ppm or less. I have. Note that the low-absorbent gas may always flow in the space IM.
前記第 2給気管 7 2の一端は、 図 5 Aに示されるように、 照明系側ガスパー ジスカート 2 2の側壁内部に形成された断面 L字状の給気管路 1 6 7に対して コネクタ 6 5を介して接続されている。 この第 2給気管 7 2の一端が接続され た給気管路 1 6 7の他端側は、 照明系側ガスパージスカート 2 2の下端面 2 2 bに形成された給気口としての給気用環状凹溝 6 7に連通した状態となってい る。 この場合において、 給気用環状凹溝 6 7は、 その幅が例えば 1〜3 m m程 度、 その深さが例えば 1〜 3 m m程度に設定されている。 また、 第 2排気管 7 3の一端は、 照明系側ガスパージスカート 2 2の側壁内 部に形成された断面 L字状の排気管路 1 6 8に対してコネクタ 6 6を介して接 続されている。 この第 2排気管 7 3の一端が接続された排気管路 1 6 8は、 照 明系側ガスパージスカート 2 2の下端面 2 2 bの空間 I Mに対して前記給気用 環状凹溝 6 7の外側に形成された排気口としての排気用環状凹溝 6 8に連通し た状態となっている。 この場合において、 排気用環状凹溝 6 8は、 給気用環状 凹溝 6 7と同様、 その幅が例えば 1〜 3 m m程度、 その深さが例えば 1〜 3 m m程度に設定されている。 また、 環状凹溝 6 7 , 6 8間の間隔は、 5〜2 0 m m程度に設定することができる。 なお、 気密性確保の点からは、 その間隔を照 明系側ガスパージスカー卜 2 2の側壁の厚さに応じて、 可能な限リ広く設定し ておくことが好ましい。 As shown in FIG. 5A, one end of the second air supply pipe 72 is connected to an air supply pipe 16 having an L-shaped cross section formed inside the side wall of the gas purge skirt 22 on the lighting system side. Connected through 5. The other end of the air supply line 16 7 to which one end of the second air supply pipe 7 2 is connected is used for air supply as an air supply port formed on the lower end surface 2 2 b of the illumination system side gas purge skirt 22. It is in a state of communicating with the annular groove 67. In this case, the width of the air supply annular groove 67 is set to, for example, about 1 to 3 mm, and the depth is set to, for example, about 1 to 3 mm. In addition, one end of the second exhaust pipe 73 is connected via a connector 66 to an exhaust pipe 16 having an L-shaped cross section formed inside the side wall of the illumination system side gas purge skirt 22. ing. The exhaust pipe line 168 to which one end of the second exhaust pipe 73 is connected is provided with the annular groove for air supply 6 7 with respect to the space IM of the lower end face 22 b of the illumination-side gas purge skirt 22. It is in a state where it communicates with an annular exhaust groove 68 as an exhaust port formed on the outside of the container. In this case, the width of the exhaust annular groove 68 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm, similarly to the annular groove for air supply 67. The interval between the annular grooves 67 and 68 can be set to about 5 to 20 mm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the illumination system side gas purge scar 22.
ここで、 第 2給気管 7 2の他端は、 図 2に示されるように、 低吸収性ガスの 供給装置 8 0に接続され、 第 2排気管 7 3の他端は、 真空ポンプ 7 9に接続さ れている。 そして、 不図示の制御装置が、 供給装置 8 0に内蔵されたポンプ及 び真空ポンプ 7 9の作動、 停止を適宜制御することにより、 図 5 Aに示される ように、'第 2給気管 7 2及び給気管路 1 6 7を介して供給された低吸収性ガス (加圧気体) が、 環状凹溝 6 7から照明系側ガスパージスカート 2 2の下端面 2 2 bとレチクルステージ R S Tの上面との間のクリアランス D 1に供給され、 そのクリアランス D 1内部のガスが環状四溝 6 8、 排気管路 1 6 8、 及び第 2 排気管 7 3を介しての外部に排気される。 すなわち、 第 2給気管 7 2及び第 2 排気管 7 3を含む気体の流れは、 主に第 2給気管 7 2—給気管路 1 6 7→給気 用環状凹溝 6 7→クリアランス D 1—排気用環状凹溝 6 8—排気管路 1 6 8→ 第 2排気管 7 3となり、 クリアランス D 1中には、 照明系側ガスパージスカー ト 2 2の内側 (すなわち空間 I M側) から外側に向かう気体の流れが形成され る。 これにより、 照明系側ガスパージスカート 2 2の内側 (空間 I M ) に対す る、 外側からの酸素や水蒸気の流入を、 上記気体の流れによって遮断すること ができ、 空間 I M内のパージ性能 (すなわち、 酸素濃度, 水蒸気濃度の低減性 能) 向上に極めて効果がある。 Here, as shown in FIG. 2, the other end of the second supply pipe 72 is connected to a low-absorbent gas supply device 80, and the other end of the second exhaust pipe 73 is connected to a vacuum pump 79. It is connected to the. Then, a control device (not shown) appropriately controls the operation and stop of the pump and the vacuum pump 79 built in the supply device 80, as shown in FIG. The low-absorbing gas (pressurized gas) supplied via the air supply line 2 and the supply line 16 7 flows from the annular groove 6 7 to the lower end surface 2 2 b of the illumination system side gas purge skirt 2 2 and the upper surface of the reticle stage RST. The gas inside the clearance D 1 is exhausted to the outside via the annular four groove 68, the exhaust pipe line 168, and the second exhaust pipe 73. That is, the gas flow including the second air supply pipe 72 and the second exhaust pipe 73 mainly flows from the second air supply pipe 72 to the air supply pipe line 16 7 → the annular groove for air supply 6 7 → the clearance D 1 —Exhaust annular groove 6 8—Exhaust pipe line 1 68 → Second exhaust pipe 73, with clearance D1 extending from the inside (ie, space IM side) of illumination system side gas purge scart 22 An oncoming gas flow is formed. Thus, the inflow of oxygen and water vapor from the outside to the inside (space IM) of the gas purge skirt 22 on the lighting system side is blocked by the flow of the gas. This is extremely effective in improving the purge performance in the space IM (ie, the ability to reduce the oxygen and water vapor concentrations).
この場合、 給気用環状凹溝 6 7から供給される低吸収性ガスの一部は、 クリ ァランス D 1を介して空間 I Mに浸入する。 また、 排気用環状凹溝 6 8を介し てクリアランス D 1内の気体が外部に排気されているので、 照明系側ガスパー ジスカート 2 2の外部の気体の一部がクリアランス D 1に浸入しても、 この気 体は排気用環状凹溝 6 8を介して外部に排気される。  In this case, a part of the low-absorbent gas supplied from the supply groove 65 enters the space IM via the clearance D1. In addition, since the gas in the clearance D1 is exhausted to the outside through the exhaust annular groove 68, even if a part of the gas outside the illumination system side gas purge skirt 22 enters the clearance D1. However, this gas is exhausted to the outside through the exhaust annular groove 68.
なお、 実際には、 環状凹溝 6 7 , 6 8には複数 (例えば 3つ) の給気管路及 び排気管路が形成されており、 これら管路に、 第 2給気管及び第 2排気管がそ れぞれ接続されているが、 図 2等では説明及び図示の便宜上、 第 2給気管及び 第 2排気管は照明系側ガスパージスカート 2 2にそれぞれ 1本ずつ接続されて いるものとして示している。  Actually, a plurality of (for example, three) supply and exhaust pipes are formed in the annular grooves 67 and 68, and the second supply pipe and the second exhaust pipe are formed in these pipes. The pipes are connected to each other, but in Fig. 2 etc., for convenience of explanation and illustration, it is assumed that the second air supply pipe and the second exhaust pipe are connected to the illumination system side gas purge skirt 22 respectively. Is shown.
なお、 環状凹溝としては上記のように 2つの凹溝を形成する場合に限らず、 2つの溝をさらに複数組み合わせ、 4重又は 6重…の溝を形成することも可能 である。  Note that the annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
なお、 第 2給気管 7 2を介してクリアランスに供給される気体としては、 上 記低吸収性ガスに限らず、 例えばクリアランスからのガス排気量が、 クリアラ ンスに対するガス供給量よりも大きく、 給気用環状凹溝 6 7から供給されるガ スが空間 I M内に浸入しない場合には、 加圧空気など低吸収性ガス以外のガス を用いることとしても良い。  The gas supplied to the clearance via the second air supply pipe 72 is not limited to the low-absorbing gas described above. For example, the gas exhausted from the clearance is larger than the gas supplied to the clearance, and the gas is supplied to the clearance. If the gas supplied from the annular groove 67 does not enter the space IM, a gas other than the low-absorbent gas such as pressurized air may be used.
前記投影系側ガスパージスカート 2 8には、 図 2に示されるように、 第 1給 気管 7 7、 第 1排気管 7 8、 第 2給気管 8 1, 8 3、 及び第 2排気管 8 2 , 8 4がそれぞれ接続されている。  As shown in FIG. 2, the projection system side gas purge skirt 28 includes a first air supply pipe 77, a first exhaust pipe 78, a second air supply pipe 81, 83, and a second exhaust pipe 82. , 84 are respectively connected.
図 6 Aには、 投影系側ガスパージスカー卜 2 8の上端面 2 8 aとレチクルス テージ R S Tとが近接配置された部分が断面図にて示されており、図 6 Bには、 投影系側ガスパージスカー卜 2 8と投影光学系 P Lの鏡筒 1 9とが近接配置さ れた部分が断面図に示されている。 FIG. 6A is a cross-sectional view showing a portion where the upper end surface 28 a of the projection system side gas purge cartridge 28 and the reticle stage RST are arranged in close proximity, and FIG. The gas purge cartridge 28 and the lens barrel 19 of the projection optical system PL are placed close to each other. The cross section is shown in the cross section.
前記第 1給気管 7 7は、 図 6 Aに示されるように、 投影系側ガスパージス力 ート 2 8の側壁に外側から内側に連通して形成された供給用開口としての貫通 孔 2 5 2に対して、 コネクタ 8 6を介して投影系側ガスパージスカート 2 8の 外側から接続されている。 また、 貫通孔 2 5 2の第 1給気管 7 7とは反対側に は、 給気ノズル 8 7が設けられている。  As shown in FIG. 6A, the first air supply pipe 77 has a through hole 25 as a supply opening formed in the side wall of the projection system side gas purge plate 28 so as to communicate from the outside to the inside. Is connected from the outside of the projection system side gas purge skirt 28 via a connector 86. An air supply nozzle 87 is provided on the opposite side of the through hole 252 from the first air supply pipe 77.
前記第 1排気管 7 8は、 不図示ではあるが、 上記第 1給気管 7 7と同様に、 投影系側ガスパージスカート 2 8の側壁に外側から内側に連通して形成された 貫通孔に対して、 コネクタを介して投影系側ガスパージスカート 2 8の外側か ら接続されている。  Although not shown, the first exhaust pipe 78 has a through hole formed in the side wall of the projection system side gas purge skirt 28 from the outside to the inside, similarly to the first air supply pipe 77. The connection is made from the outside of the projection system side gas purge skirt 28 via a connector.
本実施形態のように、真空紫外域の露光波長を使用する露光装置では、酸素、 水蒸気等の吸収性ガスによる露光光の吸収を避けるために、 空間 M P内の気体 も低吸収性ガスで置換する必要がある。 このため、 本実施形態では、 第 1給気 管 7 7及び第 1排気管 7 8を用いて空間 M P内を前記低吸収性ガスで満たすこ ととしている。  In the exposure apparatus that uses the exposure wavelength in the vacuum ultraviolet region as in this embodiment, the gas in the space MP is also replaced with a low-absorbing gas in order to avoid absorption of the exposure light by an absorbing gas such as oxygen and water vapor. There is a need to. For this reason, in the present embodiment, the space MP is filled with the low-absorbent gas by using the first air supply pipe 77 and the first exhaust pipe 78.
すなわち、 前記第 1給気管 7 7の他端は、 図 2に示されるように、 ガス供給 装置 5 0に接続され、 第 1排気管 7 8の他端は不図示のガス回収装置に接続さ れている。 第 1給気管 7 7、 第 1排気管 7 8には、 それぞれ不図示の給気弁、 及び排気弁が設けられており、 不図示の制御装置が、 給気弁、 排気弁の開閉、 及びガス供給装置 5 0に内蔵されたポンプの作動、 停止を適宜制御することに より、 空間 M P内に低吸収性ガスが充填され、 その内部の吸収性ガスの濃度は 数 p p m以下の濃度となっている。 なお、 空間 M P内に低吸収性ガスを常時フ ローすることとしても良い。  That is, as shown in FIG. 2, the other end of the first air supply pipe 77 is connected to a gas supply device 50, and the other end of the first exhaust pipe 78 is connected to a gas recovery device (not shown). Have been. The first air supply pipe 77 and the first exhaust pipe 78 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply valve and the exhaust valve, and By appropriately controlling the operation and stop of the pump built in the gas supply device 50, the space MP is filled with a low-absorbing gas, and the concentration of the absorbing gas in the space MP becomes several ppm or less. ing. It should be noted that a low-absorbent gas may always flow in the space MP.
前記第 2給気管 8 1の一端は、 図 6 Aに示されるように、 投影系側ガスパー ジスカート 2 8の側壁内部に形成された断面 L字状の給気管路 1 6 9に対して コネクタ 8 8を介して接続されている。 この第 2給気管 8 1の一端が接続され た給気管路 1 6 9は、 投影系側ガスパージスカート 2 8の上端面 2 8 aに形成 された給気口としての給気用環状 H溝 1 7 0に連通した状態となっている。 こ の場合において、 給気用環状凹溝 1 7 0は、 その幅が例えば 1〜3 m m程度、 その深さが例えば 1〜3 m m程度に設定されている。 As shown in FIG. 6A, one end of the second air supply pipe 8 1 is connected to an air supply pipe 16 9 having an L-shaped cross section formed inside the side wall of the projection system side gas purge skirt 28. Connected via 8. One end of this second air supply pipe 81 is connected The supplied air supply channel 169 is in communication with an air supply annular H groove 170 as an air supply port formed on the upper end surface 28 a of the projection system side gas purge skirt 28. In this case, the annular groove 170 for air supply is set to have a width of, for example, about 1 to 3 mm and a depth of, for example, about 1 to 3 mm.
また、 第 2排気管 8 2の一端は、 投影系側ガスパージスカート 2 8の側壁内 部に形成された断面 L字状の排気管路 1 7 1に対してコネクタ 8 9を介して接 続されている。 この第 2排気管 8 2の一端が接続された排気管路 1 7 1は、 投 影系側ガスパージスカート 2 8の上端面 2 8 aの空間 M Pに対して給気用環状 凹溝 1 7 0の外側に形成された排気口としての排気用環状凹溝 1 1 2に連通し た状態となっている。 この場合において、 排気用環状凹溝 1 7 2は、 給気用環 状凹溝 1 7 0と同様、 その幅が例えば 1 〜3 m m程度、 その深さが例えば 1〜 3 m m程度に設定されている。 また、 環状凹溝 1 7 0, 1 7 2間の間隔は、 5 〜2 O m m程度に設定することができる。 なお、 気密性確保の点からは、 その 間隔を投影系側ガスパージスカート 2 8の側壁の厚さに応じて、 可能な限リ広 く設定しておくことが好ましい。  In addition, one end of the second exhaust pipe 82 is connected via a connector 89 to an exhaust pipe 17 having an L-shaped cross section formed inside the side wall of the gas purge skirt 28 on the projection system side. ing. The exhaust pipe line 171, to which one end of the second exhaust pipe 82 is connected, has an annular groove for air supply 170 with respect to the space MP of the upper end surface 28a of the projection system side gas purge skirt 28. It is in a state where it communicates with an exhaust annular concave groove 112 serving as an exhaust port formed outside of the air conditioner. In this case, as in the case of the air supply annular groove 170, the width of the exhaust annular groove 172 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm. ing. The interval between the annular concave grooves 170 and 172 can be set to about 5 to 2 Omm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the projection system side gas purge skirt 28.
ここで、 第 2給気管 8 1の他端は、 図 2に示されるように、 前述の供給装置 8 0に接続され、第 2排気管 8 2の他端は、真空ポンプ 7 9に接続されている。 そして、 不図示の制御装置が、 供給装置 8 0に内蔵されたポンプ及び真空ボン プ 7 9の作動、 停止を適宜制御することにより、 図 6 Aに示されるように、 第 2給気管 8 1及び給気管路 1 6 9を介して供給された加圧気体が、 環状凹溝 1 7 0から投影系側ガスパージスカー卜 2 8の上端面 2 8 aとレチクルステージ R S Tの下面との間のクリアランス D 2に供給され、 そのクリアランス D 2内 部のガスが環状凹溝 1 7 2、 排気管路 1 7 1、 及び第 2排気管 8 2を介して外 部に排気される。 すなわち、 第 2給気管 8 1及び第 2排気管 8 2を含む気体の 流れは、 主に第 2給気管 8 1→給気管路 1 6 9 ~給気用環状凹溝 1 7 0→クリ ァランス D 2→排気用環状凹溝 1 7 2→排気管路 1 7 1→第 2排気管 8 2とな リ、 クリアランス D 2中には、 投影系側ガスパージスカート 2 8の内側 (すな わち空間 M P側) から外側に向かう気体の流れが形成されることになる。 この場合、 給気用環状凹溝 1 7 0から供給される低吸収性ガスの一部は、 ク リアランス D 2を介して空間 M Pに浸入する。 また、 排気用環状凹溝 1 7 2を 介してクリアランス D 2内の気体が外部に排気されているので、 投影系側ガス パージスカー卜 2 8の外部の気体の一部がクリアランス D 2に浸入しても、 こ の気体は排気用環状凹溝 1 7 2を介して外部に排気される。 Here, the other end of the second air supply pipe 81 is connected to the aforementioned supply device 80 as shown in FIG. 2, and the other end of the second exhaust pipe 82 is connected to the vacuum pump 79. ing. A control device (not shown) controls the operation and stop of the pump and the vacuum pump 79 incorporated in the supply device 80 as appropriate, as shown in FIG. And the pressurized gas supplied via the air supply line 169 flows from the annular groove 170 to the clearance between the upper end surface 28 a of the projection system side gas purge cartridge 28 and the lower surface of the reticle stage RST. The gas is supplied to D2, and the gas inside the clearance D2 is exhausted to the outside via the annular groove 172, the exhaust pipe 171, and the second exhaust pipe 82. That is, the flow of the gas including the second air supply pipe 81 and the second exhaust pipe 82 mainly depends on the second air supply pipe 81 → the air supply line 169 ~ the annular groove for air supply 170 → the clearance D 2 → Exhaust annular groove 1 7 2 → Exhaust line 1 7 1 → Second exhaust line 8 2 In the clearance D2, a gas flow is formed from the inside of the projection system side gas purge skirt 28 (that is, the space MP side) to the outside. In this case, a part of the low-absorbent gas supplied from the annular groove 170 for air supply enters the space MP via the clearance D2. Also, since the gas in the clearance D 2 is exhausted to the outside through the exhaust annular groove 17 2, part of the gas outside the projection system side gas purge scar 28 enters the clearance D 2. However, this gas is exhausted to the outside via the exhaust annular groove 172.
前記第 2給気管 8 3の一端は、 図 6 Bに示されるように、 投影系側ガスパー ジスカート 2 8の側壁内部に形成された断面 L字状の給気管路 1 7 3に対して コネクタ 9 0を介して接続されている。 この第 2給気管 8 3の一端が接続され た給気管路 1 7 3は、 投影系側ガスパージスカート 2 8の下端面 2 8 bに形成 された給気口としての給気用環状凹溝 1 7 4に連通した状態となっている。 こ の場合において、 給気用環状凹溝 1 7 4は、 その幅が例えば 1 〜3 mm程度、 その深さが例えば 1 ~ 3 m m程度に設定されている。  As shown in FIG. 6B, one end of the second air supply pipe 83 is connected to an air supply pipe 17 3 having an L-shaped cross section formed inside the side wall of the projection system side gas purge skirt 28. Connected via 0. An air supply pipe line 17 3 to which one end of the second air supply pipe 83 is connected is provided with an air supply annular concave groove 1 as an air supply port formed on the lower end surface 28 b of the projection system side gas purge skirt 28. It is in a state of communication with 74. In this case, the width of the annular groove for air supply 174 is set to, for example, about 1 to 3 mm, and the depth thereof is set to, for example, about 1 to 3 mm.
また、 第 2排気管 8 4の一端は、 投影系側ガスパージスカート 2 8の側壁内 部に形成された断面 L字状の排気管路 1 7 5に対してコネクタ 9 1を介して接 続されている。 この第 2排気管 8 4の一端が接続された排気管路 1 7 5は、 投 影系側ガスパージスカート 2 8の下端面 2 8 bの空間 M Pに対して給気用環状 凹溝 1 フ 4の外側に形成された排気口としての排気用環状凹溝 1 7 6に連通し た状態となっている。 この場合において、 排気用環状凹溝 1 7 6は、 給気用環 状凹溝 1 7 4と同様、 その幅が例えば 1〜 3 m m程度、 その深さが例えば 1〜 3 m m程度に設定されている。 また、 環状 H溝 1 7 4 , 1 7 6間の間隔は、 5 〜2 O m m程度に設定することができる。 なお、 気密性確保の点からは、 上記 と同様、 その間隔を投影系側ガスパージスカート 2 8の側壁の厚さに応じて、 可能な限リ広く設定しておくことが好ましい。  Further, one end of the second exhaust pipe 84 is connected via a connector 91 to an exhaust pipe 175 having an L-shaped cross section formed inside the side wall of the gas purge skirt 28 on the projection system side. ing. The exhaust pipe line 17 5 to which one end of the second exhaust pipe 84 is connected is provided with an annular groove for air supply 1 f 4 in the space MP of the lower end surface 28 b of the projection system side gas purge skirt 28. It is in a state of communicating with an exhaust circular concave groove 176 as an exhaust port formed on the outside. In this case, the annular groove for exhaust 176 is set to have a width of, for example, about 1 to 3 mm and a depth of, for example, about 1 to 3 mm, similarly to the annular groove for air supply 174. ing. Further, the interval between the annular H-grooves 174 and 176 can be set to about 5 to 2 Omm. In addition, from the viewpoint of airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the projection system side gas purge skirt 28 as in the above.
ここで、 第 2給気管 8 3の他端は、 図 2に示されるように、 前述の供給装置 8 0に接続され、第 2排気管 8 4の他端は、真空ポンプ 7 9に接続されている。 そして、 不図示の制御装置が、 供給装置 8 0に内蔵されたポンプ及び真空ボン プ 7 9の作動、 停止を適宜制御することにより、 図 6 Bに示されるように、 第 2給気管 8 3及び給気管路 1 7 3を介して供給された加圧気体が、 環状凹溝 1Here, as shown in FIG. 2, the other end of the second air supply pipe 83 is connected to the aforementioned supply device. The other end of the second exhaust pipe 84 is connected to a vacuum pump 79. Then, a control device (not shown) controls the operation and stop of the pump and vacuum pump 79 built in the supply device 80 as appropriate, as shown in FIG. And the pressurized gas supplied through the air supply line 1 7 3
7 4から投影系側ガスパージス力一ト 2 8の下端面 2 8 bとレチクルステージ R S Tの下面との間のクリアランス D 3に供給され、 そのクリアランス D 3内 部のガスが環状凹溝 1 7 6、 排気管路 1 7 5、 及び第 2排気管 8 4を介して外 部に排気される。 すなわち、 第 2給気管 8 3及び第 2排気管 8 4を含む気体の 流れは、 主に第 2給気管 8 3→給気管路 1 7 3→給気用環状凹溝 1 7 4→クリ ァランス D 3→排気用環状凹溝 1 7 6→排気管路 1 7 5—第 2排気管 8 4とな リ、 クリアランス D 3中には、 投影系側ガスパージスカート 2 8の内側 (すな わち空間 M P側) から外側に向かうガスの流れが形成されることになる。 このように、 投影系側ガスパ一ジスカート 2 8の上端面 2 8 a及び下端面 2From 7 4, gas is supplied to the clearance D 3 between the lower end surface 28 b of the projection system-side gas purge unit 28 and the lower surface of the reticle stage RST, and the gas inside the clearance D 3 is formed into an annular groove 1 7 6 The air is exhausted to the outside via the exhaust pipe 17 5 and the second exhaust pipe 84. That is, the flow of the gas including the second air supply pipe 83 and the second exhaust pipe 84 mainly depends on the second air supply pipe 83 → the air supply pipe 1 73 → the annular groove for air supply 1 74 → the clearance. D 3 → Exhaust annular groove 1 7 6 → Exhaust line 1 7 5—Second exhaust pipe 84 4 Inside the clearance D 3, the inside of the projection system side gas purge skirt 28 (that is, A gas flow from the space (MP side) to the outside is formed. Thus, the upper end surface 28 a and the lower end surface 2
8 bの両方において、 空間 M Pの外側から内側へのガスの流れが形成されてい ることから、 空間 M Pに対する投影系側ガスパージスカート 2 8の外側の酸素 や水蒸気の流入を遮断することができ、 空間 M P内のパージ性能 (すなわち、 酸素濃度, 水蒸気濃度の低減性能) 向上に極めて効果がある。 8b, the gas flow from the outside to the inside of the space MP is formed, so that the inflow of oxygen and water vapor outside the projection system side gas purge skirt 28 into the space MP can be blocked. It is extremely effective in improving the purge performance in the space MP (that is, the performance of reducing oxygen concentration and water vapor concentration).
この場合、 給気用環状凹溝 1 7 4から供給される低吸収性ガスの一部は、 ク リアランス D 3を介して空間 M Pに浸入する。 また、 排気用環状凹溝 1 7 6を 介してクリアランス D 3内の気体が外部に排気されているので、 投影系側ガス パージスカート 2 8の外部の気体の一部がクリアランス D 3に浸入しても、 こ の気体は排気用環状凹溝 1 7 6を介して外部に排気される。  In this case, a part of the low-absorbent gas supplied from the annular groove for air supply 174 enters the space MP via the clearance D3. In addition, since the gas in the clearance D3 is exhausted to the outside through the annular groove for exhaust 176, a part of the gas outside the projection system side gas purge skirt 28 enters the clearance D3. However, this gas is exhausted to the outside via the exhaust annular groove 176.
なお、 実際には、 環状凹溝 1 7 0 , 1 7 2 , 1 7 4 , 1 7 6にはそれぞれ複 数 (例えば 3つ) の給気管路及ぴ排気管路が連通状態で形成されており、 これ ら管路に、 第 2給気管及び第 2排気管がそれぞれ接続されているが、 図 2等で は説明及び図示の便宜上、 第 2給気管及び第 2排気管は投影系側ガスパージス カート 2 2にそれぞれ 2本ずつ接続されているものとして示している。 Actually, a plurality of (for example, three) supply and exhaust pipes are formed in each of the annular concave grooves 170, 172, 174, 176 in a communicating state. The second air supply pipe and the second exhaust pipe are connected to these conduits, respectively.However, in FIG. 2 and the like, for convenience of explanation and illustration, the second air supply pipe and the second exhaust pipe are Carts 2 and 2 are shown as being connected two each.
なお、 環状凹溝としては上記のように 2つの凹溝を形成する場合に限らず、 2つの溝をさらに複数組み合わせ、 4重又は 6重…の溝を形成することも可能 である。  Note that the annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
なお、 説明が前後するが、 投影光学系 P Lの鏡筒 1 9内のパージガスの種類 と、 空間 M P内のパージガスの種類が異なる場合には、 投影光学系 P Lのうち の上端 (レチクル Rに近い側) に位置する図 6 Bに示されるレンズ L 1の保持 機構 H 1には、 十分な気密性を持たせ、 両ガスが混入しないようにしておく必 要がある。  It should be noted that if the type of purge gas in the barrel 19 of the projection optical system PL is different from the type of purge gas in the space MP, the upper end of the projection optical system PL (closer to the reticle R) The holding mechanism H1 of the lens L1 shown in Fig. 6B located on the side must have sufficient airtightness to prevent both gases from entering.
前記第 3遮蔽機構 1 0 3は、 図 1に示されるように、 投影光学系 P Lとゥェ ハステージ W S T上のウェハ Wとの間に配置され、 鏡筒定盤 3 4 Bの下面に一 端が固定された複数の吊り下げ支持部材 9 2によって吊り下げ支持された遮蔽 部材としてのウェハガスパージスカート 3 6を含んで構成されている。 ウェハ ガスパージスカート 3 6の上端面 3 6 aは投影光学系 P Lの鏡筒 1 9の下端面 と接触することなく近接して配置され、 また、 ウェハガスパージスカート 3 6 の下端面 3 6 bもウェハ Wと接触することなく近接して配置されている。 ゥェ ハガスパージスカート 3 6は、 図 1から分かるように、 概略円柱状の形状を有 し、 その中央部に円錐台状の中空部 3 6 cが上側端面から下側端面まで連通し た状態で形成されているため、 ウェハガスパージスカート 3 6と投影光学系 P しとウェハ Wとの間には、 概ね気密状態の空間 P Wが形成されている。  As shown in FIG. 1, the third shielding mechanism 103 is disposed between the projection optical system PL and the wafer W on the wafer stage WST, and is disposed on the lower surface of the lens barrel base 34 B. It is configured to include a wafer gas purge skirt 36 as a shielding member suspended and supported by a plurality of suspension support members 92 whose ends are fixed. The upper end surface 36 a of the wafer gas purge skirt 36 is disposed in close proximity without contacting the lower end surface of the lens barrel 19 of the projection optical system PL, and the lower end surface 36 b of the wafer gas purge skirt 36 is also placed on the wafer. It is arranged close without contacting W. As can be seen from FIG. 1, the gas purge skirt 36 has a substantially columnar shape, and a truncated cone-shaped hollow portion 36c communicates from the upper end surface to the lower end surface at the center. Therefore, a substantially airtight space PW is formed between the wafer gas purge skirt 36, the projection optical system P, and the wafer W.
図 7 Aには、 ウェハガスパージスカート 3 6の近傍の断面図が示され、 図 7 Bには、 ウェハガスパージスカート 3 6を上側 (+ Z側) から見た図が示され ている。 なお、 図 7 Aの中心線 (投影光学系 P Lの光軸 A X ) よりも左半分の 図は、図 7 Bの B— B線断面図に相当し、図 7 Aの中心線よりも右半分の図は、 図 7 Bの C—C線断面図に相当する。  FIG. 7A shows a cross-sectional view of the vicinity of the wafer gas purge skirt 36, and FIG. 7B shows a view of the wafer gas purge skirt 36 viewed from above (+ Z side). Note that the figure on the left half of the center line in FIG. 7A (the optical axis AX of the projection optical system PL) corresponds to the cross-sectional view taken along the line BB of FIG. 7B, and the right half of the center line in FIG. The drawing in FIG. 7 corresponds to a cross-sectional view taken along the line CC in FIG. 7B.
空間 P Wにおいて、 気密性を確保するためには、 投影光学系 P Lの鏡筒 1 9 とウェハガスパ一ジスカート 3 6との間の間隔 (クリアランス) D 4、 及びゥ ェハガスパ一ジスカート 3 6とウェハ Wとの間の間隔 (クリアランス) D 5は 狭ければ狭いほど好ましい。 ただし、 ウェハガスパージスカート 3 6とウェハ Wとの間のクリアランス D 5については、 ウェハステージ W S Tには、 走査方 向及びこれに直交する非走査方向への移動に伴う上下振動が発生する恐れがあ るので、 上下振動が生じた場合にもウェハ Wとウェハガスパージスカート 3 6 の接触を回避するために、 ある程度の間隔を保っておく必要がある。 その間隔 は、 各機構の構成によって異なるが、 クリアランス D 5は気密性の観点からは 最大でも 3 m m以下であることが好ましい。 In the space PW, in order to ensure airtightness, the projection optical system PL barrel 19 (Clearance) D4 between the wafer gas skirt 36 and the wafer gas skirt 36 and the clearance D5 between the wafer gas skirt 36 and the wafer W are preferably as small as possible. However, with regard to the clearance D5 between the wafer gas purge skirt 36 and the wafer W, the wafer stage WST may generate vertical vibration due to movement in the scanning direction and the non-scanning direction orthogonal thereto. Therefore, it is necessary to keep a certain distance between the wafer W and the wafer gas purge skirt 36 in order to avoid contact between the wafer W and the wafer gas purge skirt 36 even when vertical vibration occurs. Although the interval varies depending on the configuration of each mechanism, the clearance D5 is preferably at most 3 mm from the viewpoint of airtightness.
なお、 ウェハガスパージスカート 3 6の下端部にベローズ及び該べローズを 伸縮駆動及びチル卜駆動する駆動機構を設け、 クリアランス D 5を全周に渡つ て均一に調整可能に設定することも可能である。  It is also possible to provide a bellows at the lower end of the wafer gas purge skirt 36 and a drive mechanism for expanding and contracting and tilting the bellows so that the clearance D5 can be adjusted uniformly over the entire circumference. is there.
ウェハガスパージスカート 3 6には、 図 2に示されるように、 第 1給気管 1 1 1、 第 1排気管 1 1 2、 第 2給気管 1 1 3、 及び第 2排気管 1 1 4が接続さ れている。 ここで実際には、 図 7 A , 図 7 Bに示されるように第 2給気管 1 1 3は、 ウェハガスパージスカート 3 6に対して 3本 (第 2給気管 1 1 3 A〜 1 1 3 C ) 接続されており、 第 2排気管 1 1 4は、 ウェハガスパージスカート 3 6に対して 3本 (第 2排気管 1 1 4 A〜 1 1 4 C ) 接続されているが、 図 2で は図示の便宜上、 各 1本のみ図示している。  As shown in FIG. 2, the first gas supply pipe 1 1 1, the first gas exhaust pipe 1 1 2, the second gas supply pipe 1 1 3, and the second gas exhaust pipe 1 1 4 are connected to the wafer gas purge skirt 36. Has been done. Here, actually, as shown in FIGS. 7A and 7B, three second air supply pipes 113 are provided for the wafer gas purge skirt 36 (second air supply pipes 113 A to 113 P). C) are connected, and three second exhaust pipes 114 are connected to the wafer gas purge skirt 36 (second exhaust pipes 114 A to 114 C). For convenience of illustration, only one of each is shown.
前記第 1給気管 1 1 1は、 図 7 A , 図 7 Bに示されるように、 ウェハガスパ 一ジスカート 3 6の外側から内側に連通して形成された給気用開口としての貫 通孔 2 5 3に対して、 コネクタを介してウェハガスパージスカート 3 6の外側 から接続されている。 貫通孔 2 5 3の第 1給気管 1 1 1とは反対側には、 給気 ノズル 1 1 5が設けられている。  As shown in FIGS. 7A and 7B, the first air supply pipe 1 1 1 has a through hole 2 5 as an air supply opening formed from the outside to the inside of the wafer gas skirt 36. 3 is connected from the outside of the wafer gas purge skirt 36 via a connector. An air supply nozzle 115 is provided on the opposite side of the through-hole 253 from the first air supply pipe 111.
前記第 1排気管 1 1 2は、 ウェハガスパージスカート 3 6を挟んで第 1給気 管 1 1 1 とほぼ対称な位置に配置され、 ウェハガスパージスカート 3 6の外側 から内側に連通して形成された貫通孔 2 5 4に対して、 コネクタを介してゥェ ハガスパージスカート 3 6の外側から接続されている。 The first exhaust pipe 1 1 2 is disposed at a position substantially symmetrical to the first air supply pipe 1 1 1 with the wafer gas purge skirt 36 interposed therebetween, and is located outside the wafer gas purge skirt 36. The through hole 254 formed in communication with the inside from the outside is connected from outside the wafer gas purge skirt 36 via a connector.
本実施形態のように、真空紫外域の露光波長を使用する露光装置では、酸素、 水蒸気等の吸収性ガスによる露光光の吸収を避けるために、 空間 P W内の気体 も低吸収性ガスで置換する必要がある。 このため、 本実施形態では、 上記第 1 給気管 1 1 1及び第 1排気管 1 1 2を用いて空間 P W内を前記低吸収性ガスで 満たすこととしている。  In the exposure apparatus using the exposure wavelength in the vacuum ultraviolet region as in the present embodiment, the gas in the space PW is also replaced with a low absorption gas in order to avoid the absorption of the exposure light by the absorption gas such as oxygen and water vapor. There is a need to. For this reason, in the present embodiment, the space PW is filled with the low-absorbent gas by using the first air supply pipe 111 and the first exhaust pipe 112.
すなわち、 前記第 1給気管 1 1 1の他端は、 図 2に示されるように、 ガス供 給装置 5 0の一端に接続され、 第 1排気管 1 1 2の他端は不図示のガス回収装 置に接続されている。 第 1給気管 1 1 1、 第 1排気管 1 1 2には、 それぞれ不 図示の給気弁、 及び排気弁が設けられており、 不図示の制御装置が、 給気弁、 排気弁の開閉、 及びガス供給装置 5 0に内蔵されたポンプの作動、 停止を適宜 制御することにより、 空間 P W内に低吸収性ガスが充填され、 その内部の吸収 性ガスの濃度は数 P p m以下の濃度となっている。 なお、 空間 P W内に低吸収 性ガスを常時フローすることとしても良い。  That is, as shown in FIG. 2, the other end of the first air supply pipe 111 is connected to one end of a gas supply device 50, and the other end of the first exhaust pipe 112 is a gas not shown. Connected to collection device. The first air supply pipe 1 1 1 and the first exhaust pipe 1 1 2 are provided with an air supply valve and an exhaust valve (not shown), respectively, and a control device (not shown) opens and closes the air supply and exhaust valves. The space PW is filled with a low-absorbent gas by appropriately controlling the operation and stop of the pump incorporated in the gas supply device 50, and the concentration of the absorptive gas in the space PW is several ppm or less. It has become. It should be noted that the low-absorbent gas may always flow in the space PW.
前記第 2給気管 1 1 3 A〜 1 1 3 Cは、 図 7 A及び図 7 Bを総合するとわか るように、 ウェハガスパージスカート 3 6内にほぼ等間隔で形成された略丁字 状の第 2給気管路 1 2 3 A〜 1 2 3 Cに対してウェハガスパージスカート 3 6 の外側からコネクタを介して接続されている。 第 2給気管路 1 2 3 A〜 1 2 3 Cのそれぞれは、 ウェハガスパージス力一ト 3 6の上端面 3 6 aに形成された 給気口としての給気用環状凹溝 1 1 7と、 ウェハガスパージスカート 3 6の下 端面 3 6 bに形成された給気口としての給気用環状凹溝 1 1 9に連通した状態 となっている。  7A and 7B, the second air supply pipes 113A to 113C are substantially c-shaped and formed at substantially equal intervals in the wafer gas purge skirt 36. The two air supply lines 123 A to 123 C are connected via connectors from outside the wafer gas purge skirt 36. Each of the second air supply pipes 1 2 3 A to 1 2 3 C is provided with an annular groove for air supply as an air supply port formed on the upper end surface 36 a of the wafer gas purges force 36. In this state, the gas supply skirt 36 communicates with the gas supply annular groove 1 19 as a gas supply port formed in the lower end surface 36 b of the wafer gas purge skirt 36.
また、 前記第 2排気管 1 1 4 A〜 1 1 4 Cは、 ウェハガスパージスカート 3 6内の前記第 2給気管路 1 2 3 A〜 1 2 3 C近傍に形成された略 T字状の第 2 排気管路 1 2 4 A ~ 1 2 4 Cに対し、 ウェハガスパージスカート 3 6の外側か らコネクタを介して接続されている。 第 2排気管路 1 24A〜1 24Cのそれ ぞれは、 ウェハガスパージスカート 36の上端面 36 aの空間 PWに対して前 記給気用環状凹溝 1 1 7の外側に形成された排気用環状凹溝 1 1 8と、 ウェハ ガスパージスカート 36の下端面 36 bの空間 PWに対して前記給気用環状凹 溝 1 1 9の外側に形成された排気口としての排気用環状凹溝 1 20に連通した 状態となっている。 Further, the second exhaust pipes 114A to 114C are substantially T-shaped formed in the vicinity of the second air supply pipes 123A to 123C in the wafer gas purge skirt 36. Second exhaust line 1 2 4 A to 1 2 4 C Are connected via a connector. Each of the second exhaust pipes 124A to 124C is for exhaust formed outside the air supply annular groove 117 with respect to the space PW of the upper end surface 36a of the wafer gas purge skirt 36. The annular concave groove 1 18 and the exhaust annular concave groove 1 20 as an exhaust port formed outside the air supply annular groove 1 19 with respect to the space PW of the lower end surface 36 b of the wafer gas purge skirt 36. It is in a state of communication with.
この場合において、 給気用環状凹溝 1 1 7, 1 1 9及び排気用環状凹溝 1 1 8, 1 20は、 いずれもその幅が例えば 1〜 3mm程度、 その深さが例えば 1 〜 3 mm程度に設定されている。 また、 環状凹溝 1 1 7, 1 1 8間の間隔、 環 状凹溝 1 1 9, 1 20間の間隔は、 ともに 5〜 2 Omm程度に設定することが できる。 なお、 気密性確保の点からは、 その間隔をウェハガスパージスカート 36側壁の厚さに応じて、 可能な限り広く設定しておくことが好ましい。 ここで、 第 2給気管 1 1 3A〜 1 1 3 C (以下、 適宜 「第 2給気管 1 1 3」 とも記述する) は、 図 2に示されるように、 ウェハガスパージスカート 36と 供給装置 80とを接続し、 第 2排気管 1 1 4A〜 1 1 4C (以下、 適宜 「第 2 排気管 1 1 4」 とも記述する) は、 ウェハガスパージスカート 36と真空ボン プ 79とを接続する。 そして、 不図示の制御装置が、 供給装置 80に内蔵され たポンプ及び真空ポンプ 79の作動、 停止を適宜制御することにより、 前述と 同様に第 2給気管 1 1 3及び給気管路 1 23を介して供給された加圧気体が、 環状凹溝 1 1 7、 1 1 9それぞれからウェハガスパージスカート 36の上端面 36 aと投影光学系 P Lの下面との間のクリアランス D 4、 ウェハガスパージ スカ一卜 36の下端面 36 bとウェハ Wとの間のクリアランス D 5にそれぞれ 供給され、 それらのクリアランス D 4, D 5内部のガスは環状凹溝 1 1 8, 1 20、 排気管路 1 24及び第 2排気管 1 1 4を順次介して外部に排気される。 すなわち、 第 2給気管 1 1 3及び第 2排気管 1 1 4を含む気体の流れは、 主に 第 2給気管 1 1 3→給気管路 1 23A〜 1 23 C→給気用環状凹溝 1 1 7 (又 は 1 1 9) —クリアランス D 4 (又は D5) →排気用環状凹溝 1 1 8 (又は 1 20) —排気管路 1 24A〜1 24〇→第2排気管1 1 4となり、 クリアラン ス D4, D 5のそれぞれには、 ウェハガスパージスカート 36の内側 (すなわ ち空間 P W側) から外側に向かう気体の流れが形成されることになる。 In this case, each of the air supply annular groove 1 17, 1 19 and the exhaust annular groove 1 18, 120 has a width of, for example, about 1 to 3 mm and a depth of, for example, 1 to 3. It is set to about mm. The interval between the annular grooves 1 17 and 1 18 and the interval between the annular grooves 1 19 and 1 20 can both be set to about 5 to 2 Omm. From the viewpoint of ensuring airtightness, it is preferable to set the interval as wide as possible in accordance with the thickness of the side wall of the wafer gas purge skirt 36. Here, as shown in FIG. 2, the second air supply pipes 113A to 113C (hereinafter, also appropriately referred to as "second air supply pipes 113") are connected to the wafer gas purge skirt 36 and the supply device 80, respectively. The second exhaust pipes 114A to 114C (hereinafter, also appropriately referred to as "second exhaust pipe 114") connect the wafer gas purge skirt 36 and the vacuum pump 79. Then, the control device (not shown) controls the operation and stop of the pump and the vacuum pump 79 built in the supply device 80 as appropriate, thereby connecting the second air supply pipe 113 and the air supply pipe 123 as described above. The pressurized gas supplied via the annular concave grooves 1 17 and 1 19 respectively provides a clearance D 4 between the upper end surface 36 a of the wafer gas purge skirt 36 and the lower surface of the projection optical system PL, and a wafer gas purge scan. The gas in the clearances D 4 and D 5 is supplied to the clearances D 4 and D 5, respectively, and is supplied to the clearances D 5 and D 5 between the lower end surface 36 b of the wafer 36 and the wafer W. The air is exhausted to the outside via the second exhaust pipe 114 in sequence. That is, the flow of the gas including the second air supply pipe 113 and the second exhaust pipe 114 is mainly the second air supply pipe 113 → the air supply line 123A to 123C → the annular groove for air supply. 1 1 7 (Also 1 1 9) —Clearance D 4 (or D5) → Circumferential groove for exhaust 1 1 8 (or 1 20) —Exhaust line 1 24A to 1 24〇 → Second exhaust pipe 1 14 and clearance D4 , D5, a gas flow from the inside of the wafer gas purge skirt 36 (that is, the space PW side) to the outside is formed.
このように、 ウェハガスパージスカート 36の上端面 36 a及び下端面 36 bの両方において、 空間 P Wの内側から外側への気体の流れが形成されている ことから、 空間 PWに対するウェハガスパージスカート 36の外側の酸素や水 蒸気の流入を遮断することができ、 空間 PW内のパージ性能 (すなわち酸素濃 度, 水蒸気濃度の低減性能) 向上に極めて効果がある。  As described above, since the gas flows from the inside to the outside of the space PW at both the upper end surface 36a and the lower end surface 36b of the wafer gas purge skirt 36, the outside of the wafer gas purge skirt 36 with respect to the space PW is formed. The flow of oxygen and water vapor can be blocked, and this is extremely effective in improving the purging performance (ie, the performance of reducing the oxygen concentration and water vapor concentration) in the space PW.
この場合、 給気用環状凹溝 1 1 7 (又は 1 1 9) から供給される低吸収性ガ スの一部は、 クリアランス D 4 (又は D 5) を介して空間 PWに浸入する。 ま た、 排気用環状凹溝 1 1 8 (又は 1 20) を介してクリアランス D4 (又は D 5) 内の気体が外部に排気されているので、 ウェハガスパージスカート 36の 外部の気体の一部がクリアランス D 4 (又は D5) に浸入しても、 この気体は 排気用環状凹溝 1 1 8 (又は 1 20) を介して外部に排気される。  In this case, a part of the low-absorbent gas supplied from the supply groove 11 (or 11) enters the space PW via the clearance D4 (or D5). Also, since the gas in the clearance D4 (or D5) is exhausted to the outside through the exhaust annular groove 1 18 (or 120), a part of the gas outside the wafer gas purge skirt 36 is exhausted. Even if the gas enters the clearance D 4 (or D 5), this gas is exhausted to the outside through the exhaust annular groove 118 (or 120).
なお、 環状凹溝としては上記のように 2つの凹溝を形成する場合に限らず、 2つの溝をさらに複数組み合わせ、 4重又は 6重…の溝を形成することも可能 である。  Note that the annular groove is not limited to the case where two grooves are formed as described above, and it is also possible to form a quadruple or six-fold groove by further combining a plurality of two grooves.
なお、 投影光学系 P Lの鏡筒 1 9内のパージガスの種類と、 空間 PW内のパ —ジガスの種類が異なる場合には、 投影光学系 P Lのうちの下端 (ウェハ Wに 近い側) に位置する図 7 Aに示されるレンズ L 2の保持機構 H 2には、 十分な 気密性を持たせ、 両ガスが混入しないようにしておく必要がある。  If the type of purge gas in the barrel 19 of the projection optical system PL is different from the type of purge gas in the space PW, the type is located at the lower end of the projection optical system PL (the side closer to the wafer W). The holding mechanism H2 of the lens L2 shown in FIG. 7A needs to be sufficiently airtight so that both gases are not mixed.
なお、 投影光学系 P Lは第 1架台 34に固定されているので、 ウェハガスパ 一ジスカート 36と投影光学系 P Lとは、 Oリング等のシール部材を介して気 密的に接合 (固定) することも可能である。 ただし、 ウェハガスパージスカー ト 36がウェハステージ WS Tの駆動等により振動し、 その振動が投影光学系 P Lに伝達して、 結像特性を劣化されるおそれがある場合には、 本実施形態の ように所定の間隔をあけて、 近接して配置したほうが好ましい。 Since the projection optical system PL is fixed to the first frame 34, the wafer gas skirt 36 and the projection optical system PL may be hermetically joined (fixed) via a sealing member such as an O-ring. It is possible. However, the wafer gas purge scar 36 is vibrated by driving the wafer stage WST, etc., and the vibration is generated by the projection optical system. When there is a possibility that the light may be transmitted to the PL to deteriorate the imaging characteristics, it is preferable to arrange them closely at predetermined intervals as in the present embodiment.
説明が前後したが、 本実施形態のように、 真空紫外域の光を露光光 Eしとし て用いる場合には、 照明系ハウジング 2内部や、 投影光学系 P Lの鏡筒内部か ら吸収性ガスを排除する必要があることは勿論である。 このため、 本実施形態 では、 照明系ハウジング 2は、 図 2に示されるように給気管 1 0によリガス供 給装置 5 0に接続され、 排気管 1 1により不図示のガス回収装置に接続されて いる。 同様に、 鏡筒 1 9は、 給気管 3 0によリガス供給装置 5 0に接続され、 排気管 3 1により不図示のガス回収装置に接続されている。 給気管 1 0、 3 0 にはそれぞれ不図示の給気弁が設けられ、 排気管 1 1、 3 1には、 それぞれ不 図示の排気弁が設けられている。 不図示の制御装置が、 各給気弁、 各排気弁の 開閉、 及びガス供給装置 5 0に内蔵されたポンプの作動、 停止を適宜制御する ことにより、 照明系ハウジング 2の内部や投影光学系 P Lの鏡筒 1 9の内部に 低吸収性ガスが充填され、 その内部の吸収性ガスの濃度は数 p p m以下の濃度 に抑制されている。 なお、 これらの空間の内部に低吸収性ガスを常時フローす ることとしても良い。  As described in the present embodiment, when light in the vacuum ultraviolet region is used as the exposure light E as in the present embodiment, the absorption gas from the inside of the illumination system housing 2 and the inside of the barrel of the projection optical system PL is used. Of course must be eliminated. For this reason, in this embodiment, the illumination system housing 2 is connected to the regas supply device 50 by an air supply pipe 10 as shown in FIG. 2, and connected to a gas recovery device (not shown) by an exhaust pipe 11. It has been. Similarly, the lens barrel 19 is connected to a regas supply device 50 by an air supply pipe 30 and connected to a gas recovery device (not shown) by an exhaust pipe 31. Each of the air supply pipes 10 and 30 is provided with an air supply valve (not shown), and each of the exhaust pipes 11 and 31 is provided with an exhaust valve (not shown). A control device (not shown) controls the opening and closing of each air supply valve and each exhaust valve, and the operation and stop of the pump built in the gas supply device 50 as appropriate, so that the inside of the illumination system housing 2 and the projection optical system are controlled. The PL tube 19 is filled with low-absorbing gas, and the concentration of the absorbing gas inside is controlled to a concentration of several ppm or less. It should be noted that a low-absorbent gas may always flow inside these spaces.
なお、 上記の説明では、 ガス供給装置 5 0から各空間内に供給された低吸収 性ガスを使用後にはガス回収装置に向けて排気する場合について説明したが、 これに限らず、 それぞれの排気管をガス供給装置 5 0に接続して、 使用後のガ スをガス供給装置 5 0に戻すこととしても良い。 この場合、 ガス供給装置 5 0 の内部には、 低吸収性ガスの貯蔵タンク、 ポンプ、 ガス精製装置等 (いずれも 図示省略) が内蔵される。 この場合、 ガス供給装置 5 0に内蔵されるガス精製 装置は、 各空間の内部を通過して純度が低下した低吸収性ガスを再度所定の純 度に再生するもので、 例えば H E P Aフィルタあるいは U L P Aフィルタ等の 塵 (パーティクル) を除去するエアフィルタと前述した酸素、 水蒸気、 炭化水 素系のガス等の吸収性ガスを除去するケミカルフィルタとを含むフィルタタイ プのものや、 クライオポンプを用い、 該クライオポンプで液化されたガス中の 含有物質の気化温度の違いを利用して低吸収性ガスと不純物とを分離するタイ プのものなどを用いることができる。 また、 ガス供給装置 5 0内部の貯蔵タン クは、 流量制御機能を有する弁を介して外部の低吸収性ガスの供給源に接続さ れ、 不足分の低吸収性ガスが適宜補われるようにすることが望ましい。 In the above description, the case where the low-absorbent gas supplied from the gas supply device 50 into each space is exhausted to the gas recovery device after use, but is not limited thereto. The pipe may be connected to the gas supply device 50, and the used gas may be returned to the gas supply device 50. In this case, a storage tank for low-absorbent gas, a pump, a gas purification device, etc. (all not shown) are built in the gas supply device 50. In this case, the gas purification device built in the gas supply device 50 regenerates the low-absorbency gas whose purity has decreased through the interior of each space to the specified purity again. For example, a HEPA filter or ULPA A filter tie that includes an air filter that removes dust (particles) from a filter and a chemical filter that removes absorptive gases such as oxygen, water vapor, and hydrocarbon-based gases described above. Or a type that uses a cryopump and separates low-absorbent gas and impurities using the difference in vaporization temperature of the substances contained in the gas liquefied by the cryopump. it can. The storage tank inside the gas supply device 50 is connected to an external low-absorbent gas supply source via a valve having a flow rate control function, so that the insufficient low-absorbent gas can be appropriately supplemented. It is desirable to do.
そして、 不図示の制御装置が、 給気弁、 排気弁の開閉、 及びガス供給装置 5 0に内蔵されたポンプの作動、 停止を適宜制御することにより、 各空間内に低 吸収性ガスが充填され、 照明系ハウジング 2内の吸収性ガスの濃度は数 p p m 以下の濃度に抑制することができる。 この場合、 ガス供給装置 5 0を含む循環 経路によリ低吸収性ガスを長時間に渡つて循環使用しても、 ガス精製装置の作 用により、 各空間内の吸収性ガスの濃度を数 P p m以下の濃度に維持できる。 また、 ガス供給装置 5 0は、 その内部を前記各空間に応じて第 1室〜第 9室 の 9つの部屋に分割しても良い。 この場合、 各部屋の内部の低吸収性ガスの種 類を異ならせても良い。  The control device (not shown) controls the opening and closing of the air supply valve and the exhaust valve, and the operation and stop of the pump incorporated in the gas supply device 50 as appropriate, so that each space is filled with the low-absorbent gas. Thus, the concentration of the absorbent gas in the illumination system housing 2 can be suppressed to a concentration of several ppm or less. In this case, even if the low-absorbent gas is circulated for a long time through the circulation path including the gas supply device 50, the concentration of the absorptive gas in each space is reduced by the operation of the gas purification device. Concentrations below P pm can be maintained. Further, the gas supply device 50 may be divided into nine rooms of a first room to a ninth room according to each of the spaces. In this case, the type of the low-absorbent gas in each room may be different.
なお、 本実施形態では、 送光光学系内部の光路にも上記照明系ハウジング 2 と同様に低吸収性ガスが満たされていることは言うまでもない。  In the present embodiment, it goes without saying that the light path inside the light transmission optical system is also filled with the low-absorbent gas similarly to the illumination system housing 2.
これまでの説明から分かるように、 ガス供給装置 5 0、 第 1給気管 6 0、 不 図示の給気弁によリ、 照明系側ガスパージスカート 2 2内部の空間 I Mに低吸 収性ガス (特定ガス) を供給するガス供給系が構成され、 不図示のガス回収装 置、 第 1排気管 6 1、 不図示の排気弁により、 空間 I M内のガスを外部に排気 するガス排気系が構成されている。また、ガス供給装置 5 0、第 1給気管 7 7、 不図示の給気弁により、 投影系側ガスパージスカート 2 8内部の空間 M Pに低 吸収性ガス (特定ガス) を供給するガス供給系が構成され、 不図示のガス回収 装置、 第 1排気管 7 8、 不図示の排気弁により、 空間 M P内のガスを外部に排 気するガス排気系が構成されている。 さらに、 ガス供給装置 5 0、 第 1給気管 1 1 1、 不図示の給気弁により、 ウェハ側ガスパージスカート 3 6内部の空間 PWに低吸収性.ガス (特定ガス) を供給するガス供給系が構成され、 不図示の ガス回収装置、 第 1排気管 1 1 2、 不図示の排気弁により、 空間 PW内のガス を外部に排気するガス排気系が構成されている。 As can be understood from the above description, the gas supply device 50, the first air supply pipe 60, the air supply valve (not shown), the low-absorbing gas ( A gas supply system that supplies gas (specific gas) is configured. A gas exhaust system that exhausts the gas in the space IM to the outside is configured by a gas recovery device (not shown), the first exhaust pipe 61, and an exhaust valve (not shown). Have been. Further, a gas supply system for supplying a low-absorbent gas (specific gas) to the space MP inside the projection system side gas purge skirt 28 by a gas supply device 50, a first air supply pipe 77, and an air supply valve (not shown). The gas recovery system (not shown), the first exhaust pipe 78, and an exhaust valve (not shown) constitute a gas exhaust system that exhausts the gas in the space MP to the outside. Furthermore, the space inside the wafer-side gas purge skirt 36 is provided by the gas supply device 50, the first air supply pipe 111, and an air supply valve (not shown). A gas supply system that supplies gas (specific gas) to the PW is configured. The gas in the space PW is externalized by a gas recovery device (not shown), the first exhaust pipe 1 12 and an exhaust valve (not shown). A gas exhaust system for exhausting air is configured.
また、 供給装置 80、 真空ポンプ 79、 第 2給気管路 1 67、 第 2排気管路 1 68、 第 2給気管 72及び第 2排気管 73により、 クリアランス D 1内に加 圧気体 (低吸収性ガス) を供給するとともに、 クリアランス D 1内のガスを外 部に排気する差動排気機構が構成されている。 また、 供給装置 80、 真空ボン プ 79、 第 2給気管路 1 69、 第 2排気管路 1 7 1、 第 2給気管 81及び第 2 排気管 82により、 クリアランス D 2内に加圧気体を供給するとともに、 クリ ァランス D 2内のガスを外部に排気する差動排気機構が構成されている。また、 供給装置 80、 真空ポンプ 79、 第 2給気管路 1 73、 第 2排気管路 1 75、 第 2給気管 83及び第 2排気管 84により、 クリアランス D 3内に加圧気体を 供給するとともに、 クリアランス D 3内のガスを外部に排気する差動排気機構 が構成されている。 また、 供給装置 80、 真空ポンプ 79、 第 2給気管路 1 2 3A〜1 23 C、 第 2排気管路 1 24A〜 1 24C、 第 2給気管 1 1 3 A〜 1 1 3 C及び第 2排気管 1 1 4A〜1 1 4Cにより、 クリアランス D4、 D5内 に加圧気体をそれぞれ供給するとともに、 それらのクリアランス D 4、 D5内 のガスを外部に排気する差動排気機構が構成されている。  The supply device 80, vacuum pump 79, second air supply line 167, second exhaust line 168, second air supply line 72, and second exhaust line 73 provide a pressurized gas (low absorption) in the clearance D1. And a differential exhaust mechanism that exhausts the gas in the clearance D1 to the outside. In addition, the pressurized gas is supplied into the clearance D2 by the supply device 80, the vacuum pump 79, the second supply line 169, the second exhaust line 171, the second supply line 81, and the second exhaust line 82. A differential exhaust mechanism is configured to supply and exhaust the gas in the clearance D2 to the outside. Also, pressurized gas is supplied into the clearance D3 by the supply device 80, the vacuum pump 79, the second supply line 173, the second exhaust line 175, the second supply line 83, and the second exhaust line 84. In addition, a differential exhaust mechanism that exhausts the gas in the clearance D3 to the outside is configured. In addition, supply device 80, vacuum pump 79, second air supply line 123A to 123C, second exhaust line 124A to 124C, second air supply line 113A to 113C and second air supply line Exhaust pipes 114A to 114C constitute a differential exhaust mechanism that supplies pressurized gas into clearances D4 and D5, respectively, and exhausts gas in clearances D4 and D5 to the outside. .
以上詳細に説明したように、 本実施形態の露光装置 1 00及び該露光装置で 行われるガスパージ方法によると、 第 1遮蔽機構 1 01を構成する照明系側ガ スパージスカート 22は、 レチクルステージ RS Tとの間にクリアランス D 1 が形成される状態で配置されるので、 そのクリアランス D 1を適宜な寸法に設 定することにより、 露光光 E Lの光路上に配置されたレチクル Rと照明ュニッ ト I LUとの間の空間 I M内をある程度気密な状態で外気から遮蔽することが できる。 そして、 その空間 I M内に照明系側ガスパージスカート 22に接続さ れた第 1給気管 60を介して露光光 E Lに対する吸収特性が前述の吸収性ガス に比べて低い低吸収性ガスが供給され、 照明系側ガスパージスカート 2 2に接 続された第 1排気管 6 1を介して排気される。 これにより、 レチクル Rと照明 ュニット I L Uとの間の空間 I Mの気体を低吸収性ガスに効率良く置換するこ とができ、 これにより空間 I M内から吸収性ガスを追放 (パージ) することが できる。 As described above in detail, according to the exposure apparatus 100 of the present embodiment and the gas purging method performed by the exposure apparatus, the illumination system side gas purge skirt 22 constituting the first shielding mechanism 101 is provided with the reticle stage RS Since the clearance D1 is formed in a state where it is formed between the reticle R and the illumination unit, the clearance D1 is set to an appropriate dimension so that the reticle R disposed on the optical path of the exposure light EL is illuminated. The space between the ILU and the IM can be shielded from the outside air in a somewhat airtight state. Then, in the space IM, the absorption characteristic of the exposure light EL through the first air supply pipe 60 connected to the illumination system side gas purge skirt 22 is changed to the absorption gas described above. Is supplied, and is exhausted through the first exhaust pipe 61 connected to the illumination system side gas purge skirt 22. As a result, the gas in the space IM between the reticle R and the lighting unit ILU can be efficiently replaced with a low-absorbing gas, whereby the absorbing gas can be purged from the space IM. .
また、 照明系側ガスパージスカート 2 2のレチクル R側の下端面 2 2 bに形 成された給気用環状凹溝 6 7等を介して低吸収性ガスをクリアランス D 1内に 供給するとともに、 クリアランス D 1内の気体を下端面 2 2 bの空間 I Mに対 し給気用環状凹溝 6 7の外側に形成された排気用環状凹溝 6 8を介して外部に 排気する構成としたことにより、 レチクルステージ R S Tと照明ユニット I L Uとの間の空間 I Mの気密性を実質的に高め、 より高精度なガスパージの実現 が可能になる。  In addition, the low-absorbent gas is supplied into the clearance D 1 through an air supply annular groove 67 formed on the lower end surface 22 b of the illumination system side gas purge skirt 22 on the reticle R side, and The gas in the clearance D1 is exhausted to the outside through the exhaust annular groove 68 formed outside the air supply annular groove 67 in the space IM of the lower end face 22b. Thereby, the airtightness of the space IM between the reticle stage RST and the lighting unit ILU is substantially improved, and more accurate gas purge can be realized.
また、 第 2遮蔽機構 1 0 2を構成する投影系側ガスパージスカート 2 8は、 レチクルステージ R S Tとの間にクリアランス D 2が形成される状態で配置さ れるので、 そのクリアランス D 2を適宜な寸法に設定することにより、 露光光 E Lの光路上に配置されたレチクル Rと投影光学系 P Lとの間の空間 M P内を ある程度気密な状態で外気から遮蔽することができる。 そして、 その空間 M P 内に投影系側ガスパージスカー卜 2 8に接続された第 1給気管 7 7を介して低 吸収性ガスが供給され、 投影系側ガスパージスカー卜 2 8に接続された第 1排 気管 7 8を介して排気される。 これにより、 空間 I Mのみならず、 レチクル R と投影光学系 P Lとの間の空間 M Pからも露光光を吸収する吸収性ガスが排除 される  Further, since the projection system side gas purge skirt 28 forming the second shielding mechanism 102 is disposed in a state where a clearance D2 is formed between the projection system side gas purge skirt 28 and the reticle stage RST, the clearance D2 is appropriately dimensioned. By setting to, the space MP between the reticle R arranged on the optical path of the exposure light EL and the projection optical system PL can be shielded from the outside air in a somewhat airtight state. Then, into the space MP, a low-absorbing gas is supplied via a first air supply pipe 77 connected to the projection system-side gas purge cartridge 28, and the first MP connected to the projection system-side gas purge cartridge 28. The air is exhausted through the exhaust pipe 78. Thereby, not only the space IM but also the absorbing gas absorbing the exposure light is removed from the space MP between the reticle R and the projection optical system PL.
従って、 大型で重い気密型のレチクルステージチャンバを用いることなく、 照明ュニッ卜 I L Uから投影光学系 Pしに至る露光光 E Lの光路上の空間内の 高精度なガス置換を行うことができ、 これらの空間から吸収性ガスを排除する ことが可能となる。 この場合、 照明系側ガスパージスカート 2 2、 投影系側ガ スパージスカート 2 8として、 レチクルステージ R S Tと照明ュニット I L U 又は投影光学系 P Lとの間の空間を覆うことができる程度の小型のものを用い ることができるので、 装置の大型化、 重量化を抑制することができ、 さらに、 上記のようにクリアランス D 1、 D 2がレチクルステージ R S Tとの間に形成 されているので、 レチクル Rのパターン領域の一方の面側及び他方の面側の空 間を外気から遮蔽しているにもかかわらず、 レチクルステージ R S Tに外部か ら容易にアクセス可能となっている。 Therefore, gas replacement in the space on the optical path of the exposure light EL from the illumination unit ILU to the projection optical system P can be performed with high accuracy without using a large and heavy airtight reticle stage chamber. It is possible to remove the absorbent gas from the space. In this case, the illumination system side gas purge skirt 22 Since the sparged skirt 28 can be small enough to cover the space between the reticle stage RST and the illumination unit ILU or the projection optical system PL, the size and weight of the device can be reduced. In addition, since the clearances D 1 and D 2 are formed between the reticle stage RST and the reticle stage RST as described above, the space on one surface side and the other surface side of the pattern area of the reticle R can be reduced. Despite shielding the reticle stage from outside air, reticle stage RST can be easily accessed from outside.
また、 投影系側ガスパージスカート 2 8においても、 照明系側ガスパージス カート 2 8と同様、 レチクル Rに対向する面 (上端面 2 8 a ) に形成された給 気用環状凹溝 1 7 0から低吸収性ガスをレチクル R (レチクルステージ R S T ) に向けて供給するとともに、 クリアランス D 2内の気体を上端面 2 8 aの空間 M Pに対して給気用環状凹溝 1 7 0の外側に形成された排気用環状凹溝 1 7 2 を介して外部に排気することとしているので、 空間 M Pの気密性を実質的に向 上して、 より高精度なガス置換が可能となる。  Also, in the projection system-side gas purge skirt 28, similarly to the illumination system-side gas purge skirt 28, the gas supply annular groove 170 formed on the surface (top end surface 28 a) facing the reticle R is low. The absorbent gas is supplied toward the reticle R (reticle stage RST), and the gas in the clearance D2 is formed outside the air supply annular groove 170 with respect to the space MP on the upper end surface 28a. Since the air is exhausted to the outside through the exhaust annular groove 17 2, the airtightness of the space MP is substantially improved, and more accurate gas replacement is possible.
また、 投影光学系 P Lと投影系側ガスパージスカート 2 8の間には、 所定の クリアランス D 3が形成されているので、 投影系側ガスパージスカート 2 8が レチクルステージ R S Tの駆動に伴って振動が生じても、 その振動が投影光学 系 P Lに伝達されるのを防止することができる。 このようにクリアランス D 3 が形成されていても、 本実施形態では、 クリアランス D 3内にクリアランス D 1 , D 2と同様、 空間 M Pの内側から外側に向かうガスの流れが形成されてい るので、 気密性が低下することは殆どない。  Further, since a predetermined clearance D3 is formed between the projection optical system PL and the projection system side gas purge skirt 28, the projection system side gas purge skirt 28 generates vibration due to the driving of the reticle stage RST. However, it is possible to prevent the vibration from being transmitted to the projection optical system PL. Even if the clearance D 3 is formed in this way, in the present embodiment, since the gas flow from the inside to the outside of the space MP is formed in the clearance D 3 as in the clearances D 1 and D 2, The airtightness is hardly reduced.
また、 本実施形態では、 第 3遮蔽機構 1 0 3を構成するウェハガスパージス カート 3 6が、 投影光学系 P Lとの間に所定のクリアランス D 4を形成し、 か つウェハ Wとの間に所定のクリアランス D 5を形成した状態で、 投影光学系 P Lとウェハ Wとの間に配置され、 ウェハガスパージスカート 3 6内部の空間も 上記各空間と同様にしてガス置換が行われている。 また、 ウェハガスパージスカート 36においても、 投影光学系 P Lに対向す る面 (上端面 36 a) に形成された給気用環状凹溝 1 1 7から低吸収性ガスを クリアランス D 4内に供給するとともに、 クリアランス D 4内のガスを上端面 36 aの給気用環状凹溝 1 1 7の外側に形成された排気用環状凹溝 1 1 8を介 して外部に排気することとしている。 さらに、 ウェハ Wに対向する面 (下端面 36 b) に形成された給気用環状凹溝 1 1 9から低吸収性ガスをクリアランス D 5内に供給するとともに、 クリアランス D 5内のガスを下端面 36 bの給気 用環状凹溝 1 1 9の外側に形成された排気用環状凹溝 1 20を介して外部に排 気することとしている。 このため、 空間 PWの気密性を実質的に向上して、 よ リ高精度なガス置換が可能となる。 Further, in the present embodiment, the wafer gas purge scar 36 constituting the third shielding mechanism 103 forms a predetermined clearance D4 with the projection optical system PL, and the wafer gas purge scar 36 with the wafer W. With the predetermined clearance D5 formed, it is arranged between the projection optical system PL and the wafer W, and the space inside the wafer gas purge skirt 36 is also subjected to gas replacement in the same manner as the above spaces. Also, in the wafer gas purge skirt 36, the low-absorbent gas is supplied into the clearance D4 from the air supply annular groove 1 17 formed on the surface (the upper end surface 36a) facing the projection optical system PL. At the same time, the gas in the clearance D4 is exhausted to the outside through the exhaust annular groove 118 formed outside the air supply annular groove 117 on the upper end surface 36a. Further, a low-absorbent gas is supplied into the clearance D5 from the air supply annular groove 1 19 formed on the surface (lower end surface 36b) facing the wafer W, and the gas in the clearance D5 is lowered. The air is exhausted to the outside through the exhaust annular groove 120 formed outside the air supply annular groove 119 on the end face 36b. For this reason, the airtightness of the space PW is substantially improved, and more accurate gas replacement is possible.
従って、 大型で重い気密型のウェハステージチャンバを用いることなく、 投 影光学系 P Lからウェハ Wに至る露光光 E Lの光路上の空間内の高精度なガス 置換を行うことができ、この空間から吸収性ガスを排除することが可能となる。 この場合、 ウェハガスパージスカート 36として、 ウェハ Wと投影光学系 P L との間の空間を覆うことができる程度の小型のものを用いることができるので、 装置の大型化、 重量化を抑制することができる。  Therefore, gas replacement in the space on the optical path of the exposure light EL from the projection optical system PL to the wafer W can be performed with high accuracy without using a large and heavy airtight wafer stage chamber. Absorbable gas can be eliminated. In this case, as the wafer gas purge skirt 36, a small one that can cover the space between the wafer W and the projection optical system PL can be used, so that an increase in the size and weight of the apparatus can be suppressed. it can.
以上により、 照明ユニット I LUからウェハ Wに至る露光光 E Lの光路上の 空間から低吸収性ガスを排除することができるので、 露光光 E Lの透過率を良 好に維持して高精度な露光を長期に渡って行うことができる。  As described above, since the low-absorbing gas can be excluded from the space on the optical path of the exposure light EL from the illumination unit ILU to the wafer W, the transmittance of the exposure light EL can be maintained at a high level and the exposure can be performed with high accuracy. Can be performed over a long period of time.
また、 照明系側ガスパージスカー卜 22のレチクルステージ RS Tに対向し た面(下端面 22 b)、投影系側ガスパージスカート 28のレチクルステージ R STに対向した面 (上端面 28 a) はともに平面であり、 レチクルステージ R S Tの上下面はともに平面としたことにより、 クリアランス D 1 , D 2を充分 に狭くした場合であっても、 レチクルステージ RS Tを移動させた際に、 各パ 一ジスカート 22, 28がレチクルステージ RS Tに接触することがない。 従 つて、 空間 I M, MPの気密性を高く維持しつつ、 レチクルステージ RSTを 大きく動かしたり、 その移動の後にレチクル交換を容易に行ったり、 あるいは レチクルステージ R S Tのメンテナンスを容易に行ったりすることが可能とな る。 The surface of the gas purge skirt 22 on the illumination system side facing the reticle stage RST (lower end surface 22b) and the surface of the gas purge skirt 28 on the projection system side facing the reticle stage RST (upper end surface 28a) are both flat. The upper and lower surfaces of the reticle stage RST are both flat, so that even when the clearances D 1 and D 2 are sufficiently narrow, when the reticle stage RST is moved, each package skirt 22 , 28 do not contact reticle stage RST. Therefore, while maintaining high airtightness of space IM and MP, reticle stage RST This makes it possible to make a large movement, easily replace the reticle after the movement, or easily perform maintenance of the reticle stage RST.
また、 上記実施形態では、 レチクルステージ R S Tを駆動する Y軸リニアモ ータ 2 4 A , 2 4 Bがパージ空間の外側に配置されることから、 ガスパージを 行うべき空間を小さくし、ガスパージ用めガスの使用量を削減できるとともに、 投影光学系 P Lゃレチクル Rを、 レチクルステージ R S Tの走査に伴う発麈ゃ 発熱から遮蔽することができ、 露光装置の安定性や、 レチクルに対する塵付着 (コンタミネーシヨン) の防止が可能になる。  Further, in the above embodiment, since the Y-axis linear motors 24 A and 24 B for driving the reticle stage RST are arranged outside the purge space, the space in which the gas purge should be performed is reduced, and the gas purge gas is reduced. And the projection optical system PL ゃ Reticle R can be shielded from the generation of dust and heat generated by the scanning of the reticle stage RST, and the stability of the exposure equipment and the adhesion of dust to the reticle (contamination) ) Can be prevented.
なお、 上記実施形態では、 照明ュニット I L Uから投影光学系 P Lまでの間 の空間のみならず、 投影光学系 Pしとウェハ Wとの間の空間も、 ウェハガスパ 一ジスカート 3 6を用いて、 ほぼ気密状態にする場合について説明したが、 本 発明がこれに限定されるものではない。 投影光学系 Pしとウェハ Wとの間の空 間は、 通常距離が短いので、 この空間にガス供給配管とガス排気配管のそれぞ れの端部を位置させて、 ガス供給配管を介して低吸収性ガスを前記空間内に送 リ込むとともに、 その空間内の吸収性ガスを含むガスをガス排気配管を介して 外部に排気することによつても、 ある程度吸収性ガスを投影光学系 P Lとゥェ ハ Wとの間の光路上の空間から排除することが可能である。 従って、 かかる技 術と、 レチクル側に適用された本発明のガスパージ方法とを組み合わせても良 い。  In the above embodiment, not only the space between the illumination unit ILU and the projection optical system PL, but also the space between the projection optical system P and the wafer W is almost air-tight by using the wafer gas skirt 36. Although the case where the state is set has been described, the present invention is not limited to this. Since the space between the projection optical system P and the wafer W is usually short, the respective ends of the gas supply pipe and the gas exhaust pipe are located in this space, and the space is provided via the gas supply pipe. By sending the low-absorbing gas into the space and exhausting the gas containing the absorptive gas in the space to the outside through a gas exhaust pipe, the absorbing optical system PL It is possible to exclude from the space on the optical path between and Jeha W. Therefore, such a technique may be combined with the gas purging method of the present invention applied to the reticle side.
また、 上記実施形態において、 ウェハガスパージスカート 3 6と投影光学系 P Lとの間については、 給気用環状凹溝 1 1 7を省略することもできる。 すな わち、 ウェハガスパージスカート 3 6と投影光学系 P Lとの間は、 排気用環状 凹溝 1 1 8によるクリアランス D 4内のガス、 あるいはクリアランス D 4を介 した外部のガス及び空間 P W内のガスを吸引排気する構成であっても良い。 こ のようにウェハガスパージスカート 3 6と投影光学系 P Lとの間に、 排気用環 状凹溝 1 1 8を設けるだけでも、 空間 P Wに対するウェハガスパージスカート 3 6の外側の酸素や水蒸気の流入を遮断することができる。 In the above-described embodiment, the annular groove for air supply 117 can be omitted between the wafer gas purge skirt 36 and the projection optical system PL. That is, between the wafer gas purge skirt 36 and the projection optical system PL, the gas in the clearance D4 by the annular groove for exhaustion 118, or the external gas and space PW through the clearance D4. May be configured to suck and exhaust the gas. Thus, an exhaust ring is provided between the wafer gas purge skirt 36 and the projection optical system PL. The inflow of oxygen and water vapor outside the wafer gas purge skirt 36 into the space PW can be blocked only by providing the concave grooves 118.
なお、 上記実施形態では、 照明系側ガスパージスカート 2 2が、 照明ュニッ ト I L Uの下端面に直接固設されている場合について説明したが、 その他の部 分と同様に、 所定間隔の間隙が形成されるように照明系側ガスパージスカート In the above-described embodiment, the case where the illumination system side gas purge skirt 22 is directly fixed to the lower end surface of the illumination unit ILU has been described. However, similarly to the other parts, a predetermined gap is formed. As the lighting system side gas purge skirt
2 2を設けることとしても良い。 22 may be provided.
すなわち、 図 8に示されるように、 照明系側ガスパージスカート 2 2と照明 ユニット I L Uのハウジング 2の下端面との間にクリアランス D 6が形成され るように設けることができる。 この場合、 空間 I Mの気密性を高めるために、 これまでと同様に、 給気口としての給気用環状凹溝 3 7 0と排気口としての排 気用環状凹溝 3 7 2を照明系側ガスパージスカート 2 2の上端面 2 2 aに形成 し、 給気用環状凹溝 3 7 0に連通して形成された断面 U字状の第 2給気管路 3 6 9と排気用環状凹溝 3 7 2に連通して形成された断面 U字状の第 2排気管路 That is, as shown in FIG. 8, the clearance D6 can be provided between the illumination system side gas purge skirt 22 and the lower end surface of the housing 2 of the illumination unit ILU. In this case, in order to increase the airtightness of the space IM, the air supply annular groove 370 as the air supply port and the exhaust annular groove 372 as the exhaust port are used as in the past. U-shaped second air supply conduit 3 69 9 and an exhaust annular groove formed in the upper end surface 2 2 a of the side gas purge skirt 22 and communicating with the annular supply groove 37 0 2nd exhaust pipe with a U-shaped cross section formed in communication with 3 7 2
3 7 1のそれぞれに、 第 2給気管 3 8 3と第 2排気管 3 8 4の一端を接続し、 これら第 2給気管 3 8 3、 第 2排気管 3 8 4の他端を供給装置 8 0及び真空ポ ンプ 7 9にそれぞれ接続する。このように構成することで、これまでと同様に、 クリアランス D 6内には空間 I Mから外側に向かうガスの流れが形成されるの で、 空間 I M外からのガスの流入が最大限に抑えられることになる。 Connect one end of the second air supply pipe 3 8 3 and one end of the second exhaust pipe 3 8 4 to each of 3 7 1 and connect the other end of these second air supply pipe 3 8 3 and the second exhaust pipe 3 8 4 80 and vacuum pump 79, respectively. With this configuration, a gas flow outward from the space IM is formed in the clearance D6 as in the past, so that the inflow of gas from outside the space IM is minimized. Will be.
この場合も、 給気用環状凹溝 3 7 0から供給される低吸収性ガスの一部は、 クリアランス D 6を介して空間 I Mに浸入する。 また、 排気用環状凹溝 3 7 2 を介してクリアランス D 6内の気体が外部に排気されているので、 照明系側ガ スパージスカー卜 2 2の外部の気体の一部がクリアランス D 6に浸入しても、 この気体は排気用環状凹溝 3 7 2を介して外部に排気される。  Also in this case, a part of the low-absorbent gas supplied from the annular groove for air supply 370 enters the space IM via the clearance D6. Further, since the gas in the clearance D 6 is exhausted to the outside through the annular groove for exhaust 3 72, a part of the gas outside the illumination system side gas purge scar 22 enters the clearance D 6. However, this gas is exhausted to the outside through the exhaust annular groove 372.
このため、 空間 I M内のパージ性能を維持した状態で、 レチクルステージ R S Tの移動に伴った振動が照明系ガスパージスカート 2 2に発生したとしても, 照明ュニット I L Uへの振動の伝達を回避することができる。 この場合、 供給装置 8 0、 真空ポンプ 7 9、 第 2給気管路 3 6 9、 第 2排気 管路 3 7 1、 第 2給気管 3 8 3、 第 2排気管 3 8 4により、 クリアランス D 6 内に、 クリアランス D 6内に加圧気体 (低吸収性ガス) を供給するとともに、 クリアランス D 6内のガスを外部に排気する差動排気機構が構成されている。 なお、 上記実施形態ではステップ 'アンド 'スキャン方式の露光装置に本発 明のガスパージ方法を採用した場合について説明したが、 本発明がこれに限ら れるものではなく、 ステップ,アンド■ リピート方式の露光装置 (いわゆるス テツパ) についても、 好適に適用することができる。 For this reason, even if vibrations caused by the movement of the reticle stage RST occur in the illumination system gas purge skirt 22 while maintaining the purge performance in the space IM, it is possible to avoid transmission of the vibration to the illumination unit ILU. it can. In this case, the supply device 80, vacuum pump 79, second air supply line 369, second exhaust line 371, second air supply line 383, and second exhaust line 384 allow clearance D A differential exhaust mechanism that supplies pressurized gas (low-absorbent gas) into the clearance D6 and exhausts the gas in the clearance D6 to the outside is configured in the inside of the clearance D6. In the above embodiment, the case where the gas purge method of the present invention is adopted in the exposure apparatus of the step 'and' scan method has been described. However, the present invention is not limited to this, and the exposure method of the step and & The present invention can also be suitably applied to an apparatus (so-called stepper).
図 9には、 本発明のガスパージ方法を適用するのに好適なステツパ型の露光 装置におけるレチクルステージ近傍の状態が一部断面して示されている。 この図 9に示されるように、 レチクルステージは平板状の形状を有するステ ージ本体 1 3 0と、 該ステージ本体 1 3 0の中央に形成された矩形開口 1 3 0 a近傍に固定された複数 (例えば 4つ) のレチクル保持部 1 3 2とを備えてい る。  FIG. 9 shows a partial cross section of a state near a reticle stage in a stepper type exposure apparatus suitable for applying the gas purging method of the present invention. As shown in FIG. 9, the reticle stage is fixed near a stage main body 130 having a flat plate shape and a rectangular opening 130 a formed in the center of the stage main body 130. A plurality of (for example, four) reticle holders 132 are provided.
前記レチクル保持部 1 3 2のそれぞれには、 その上面に凹部 1 3 4が形成さ れており、 該凹部 1 3 4に連通して形成された吸引用の管路 1 3 5を介して、 レチクル保持部 1 3 2に接続された吸気管 1 3 6により、 レチクル Rが吸着保 持されている。  Each of the reticle holding portions 13 2 has a concave portion 13 4 formed on the upper surface thereof, and a suction conduit 13 5 formed in communication with the concave portion 13 4. Reticle R is suction-held by suction pipe 1 36 connected to reticle holding section 1 32.
レチクル Rと照明ユニット I L Uとの間には、 上記実施形態と同様の第 1の 遮蔽機構 1 0 1 ' が設けられている。  Between the reticle R and the illumination unit ILU, a first shielding mechanism 101 ′ similar to the above embodiment is provided.
この第 1の遮蔽機構 1 0 1 ' は、 照明系側ガスパージスカート 2 2 ' を含ん で構成され、 この照明系側ガスパージスカート 2 2 ' には、 前述の第 1の遮蔽 機構 1 0 1と同様に、 第 1給気管 6 0 ' と第 1排気管 6 1 ' と複数の第 2給気 管 7 2 ' と複数の第 2排気管 7 3 ' が接続されている。 第 1給気管 6 0 ' はガ ス供給装置 5 0に、 第 1排気管 6 1, は、 不図示のガス回収装置にそれぞれ接 続されており、 これにより、 第 1給気管 6 0 ' からは、 照明系側ガスパージス カート 22' と照明ユニット I LUとレチクル Rとにより形成される概ね気密 化された空間 I M' 内に低吸収性ガスが供給され、 第 1排気管 61 ' からは空 間 I M' 内の気体が排出されるので、 空間 I M' 内が低吸収性ガスによリ置換 される。 また、 第 2給気管 72' と第 2排気管 73' とは、 供給装置 80及び 真空ポンプ 79にそれぞれ接続され、 第 2給気管 72' からは照明系側ガスパ 一ジスカート 22' とレチクル Rとの間のクリアランス D 1 ' に対して加圧気 体が供給され、 第 2排気管 73' からはクリアランス D 1 ' の気体が真空ボン プの吸引力によって排気されるので、 クリアランス D 1 ' には、 空間 I M' か ら外側に向かつたガスの流れが形成される。 The first shielding mechanism 101 'includes an illumination-system-side gas purge skirt 22', and the illumination-system-side gas purge skirt 22 'has the same structure as the first shielding mechanism 101 described above. In addition, a first supply pipe 60 ′, a first exhaust pipe 61 ′, a plurality of second supply pipes 72 ′, and a plurality of second exhaust pipes 73 ′ are connected. The first supply pipe 60 ′ is connected to a gas supply device 50, and the first exhaust pipe 61, is connected to a gas recovery device (not shown). Is the gas purges on the lighting system side The low-absorbing gas is supplied into the generally airtight space IM 'formed by the cart 22', the lighting unit I LU and the reticle R, and the gas in the space IM 'is supplied from the first exhaust pipe 61'. Since the gas is discharged, the space IM 'is replaced with a low-absorbent gas. The second air supply pipe 72 'and the second exhaust pipe 73' are connected to a supply device 80 and a vacuum pump 79, respectively, and from the second air supply pipe 72 ', the illumination system side gas skirt 22' and the reticle R are connected. The pressurized gas is supplied to the clearance D 1 ′ during this time, and the gas in the clearance D 1 ′ is exhausted from the second exhaust pipe 73 ′ by the suction force of the vacuum pump. An outward gas flow is formed from the space IM '.
レチクル Rの下面側、 すなわちレチクル Rと投影光学系 P Lとの間には、 第 2の遮蔽機構 1 02が設けられている。  A second shielding mechanism 102 is provided on the lower surface side of the reticle R, that is, between the reticle R and the projection optical system PL.
この第 2の遮蔽機構 1 02は、 投影系側ガスパージスカート 28' を含んで 構成され、 この投影系側ガスパージスカート 28, には、 上記実施形態と同様 に、 第 1給気管 77'、 第 1排気管 78'、複数の第 2給気管 8 1 '、複数の第 2 排気管 82' が接続されている。 これら第 1給気管 77'、 第 1排気管 78' は ガス供給装置 50、 不図示のガス回収装置にそれぞれ接続されている。 これに より、 第 1給気管 77' からは、 投影系側ガスパージスカート 28' とレチク ル Rと投影光学系 P Lとにより形成される概ね気密化された空間 MP' 内に低 吸収性ガスが供給され、 第 1排気管 78' からは空間 MP' 内の気体が排出さ れるので、 空間 MP' 内の気体が低吸収性ガスにより置換される。  The second shielding mechanism 102 includes a projection-system-side gas purge skirt 28 '. The projection-system-side gas purge skirt 28' includes a first air supply pipe 77 'and a first An exhaust pipe 78 ', a plurality of second air supply pipes 8 1', and a plurality of second exhaust pipes 82 'are connected. The first air supply pipe 77 'and the first exhaust pipe 78' are connected to a gas supply device 50 and a gas recovery device (not shown), respectively. As a result, the low-absorbent gas is supplied from the first air supply pipe 77 'into the substantially hermetically sealed space MP' formed by the projection system side gas purge skirt 28 ', the reticle R, and the projection optical system PL. Then, the gas in the space MP 'is discharged from the first exhaust pipe 78', so that the gas in the space MP 'is replaced by the low-absorbent gas.
また、 第 2給気管 81 ' 及び第 2排気管 82' は上記実施形態と同様に供給 装置 80、 真空ポンプ 79にそれぞれ接続されている。 そして、 第 2給気管 8 1 ' からは投影系側ガスパージスカート 28' とレチクル Rとの間のクリアラ ンス D 2'、及び投影系側ガスパージスカート 28' と投影光学系 P Lとの間の クリアランス D3' に対して低吸収性ガスが供給され、 第 2排気管 82, から はクリランス D 2'及びクリアランス D 3'の気体が排出される。これにより、 クリアランス D2', D 3' には、 空間 MP' から外側に向かったガスの流れが 形成されるので、 空間 MP' の気密性をより高めることが可能となっている。 ここで、 ステツパにおいては露光動作中にレチクルを走査させない (すなわ ち、 スキャニング■ステツパのような大きな動作がなされない) ので、 第 1、 第 2の遮蔽機構を構成するガスパージスカー卜は、 上記実施形態よりも更にレ チクル Rに近接した状態で配置することができる。 すなわち、 各ガスパージス カート等により形成される概ね気密化された空間 I Μ', MP' は、上記実施形 態の空間 I M, MPよりも更に気密化されたパージ空間とすることができる。 従って、 露光光 E Lの吸収が上記実施形態よりもさらに抑制され、 高精度な露 光を実現することが可能となる。 The second air supply pipe 81 'and the second exhaust pipe 82' are connected to a supply device 80 and a vacuum pump 79, respectively, as in the above embodiment. From the second air supply pipe 81 ', a clearance D2' between the projection system side gas purge skirt 28 'and the reticle R, and a clearance D3 between the projection system side gas purge skirt 28' and the projection optical system PL. , A low-absorbent gas is supplied to the second exhaust pipe 82, and the gas of the clearance D 2 ′ and the clearance D 3 ′ is exhausted from the second exhaust pipe 82. This allows In the clearances D2 'and D3', a gas flow is formed outward from the space MP ', so that the airtightness of the space MP' can be further improved. Here, in the stepper, the reticle is not scanned during the exposure operation (that is, a large operation like a scanning stepper is not performed). Therefore, the gas purge scars constituting the first and second shielding mechanisms are as described above. It can be arranged closer to the reticle R than in the embodiment. That is, the substantially hermetically sealed space IΜ ', MP' formed by each gas purge scar and the like can be a more airtight purge space than the spaces IM, MP of the above embodiment. Therefore, the absorption of the exposure light EL is further suppressed as compared with the above embodiment, and it is possible to realize highly accurate exposure.
なお、 この場合のレチクル交換の方法は、 例えば、 レチクル Rを図 9の紙面 直交方向にスライ ドすることで容易に実現可能となっている。  In this case, the reticle exchange method can be easily realized by, for example, sliding the reticle R in the direction perpendicular to the plane of FIG.
なお、 これまでの説明では、 空間 ( I M, MP, PW (又は I M', MP')) 内の排気を、 各パージスカー卜に接続された第 1排気管を介して行うこととし たが、 これに限らず、 各空間の隙間から外部に排気する構成とすることもでき る。  In the description so far, the exhaust in the space (IM, MP, PW (or IM ', MP')) is performed via the first exhaust pipe connected to each purge scar. However, the present invention is not limited to this, and a configuration in which air is exhausted to the outside through gaps in each space can be adopted.
なお、 上記実施形態においては、 投影光学系 Pしとして、 図 1に示されるよ うな直筒型の鏡筒を採用したが、 これに代えて、 例えば、 反射屈折型の投影光 学系を採用した場合には、 投影光学系の形状は曲折部分及び突起部分等を有す る形状となるが、 そのような場合であっても、 投影光学系のレチクル側端面、 あるいはウェハ側端面に、 ガスパージスカートを近接配置することで、 本発明 を好適に適用することができる。  In the above embodiment, a straight-tube type lens barrel as shown in FIG. 1 is employed as the projection optical system P. Instead, for example, a catadioptric projection optical system is employed. In such a case, the shape of the projection optical system has a bent portion and a protruding portion, but even in such a case, a gas purge skirt is provided on the reticle-side end surface or the wafer-side end surface of the projection optical system. By arranging in close proximity, the present invention can be suitably applied.
また、 上記実施形態では、 投影系側ガスパージスカート 28の端部と、 投影 光学系 P Lの鏡筒 1 9の上端面との間に、 所定のクリアランスを形成するよう に構成したが、 投影光学系側ガスパージスカート 28の端部を、 投影光学系 P Lの鏡筒 1 9の側面に対向するように構成し、 投影光学系 P Lの鏡筒 1 9の側 面との間に、 所定のクリアランスを形成するようにしても良い。 Further, in the above embodiment, a predetermined clearance is formed between the end of the projection system side gas purge skirt 28 and the upper end surface of the lens barrel 19 of the projection optical system PL. The end of the side gas purge skirt 28 is configured to face the side of the barrel 19 of the projection optical system PL, and the side of the barrel 19 of the projection optical system PL is configured. A predetermined clearance may be formed between the surface and the surface.
さらに、 上記実施形態では、 投影系側ガスパージスカート 2 8と投影光学系 P Lとの間では、 振動が伝わらないように差動排気機構を設ける構成について 説明したが、 投影系側ガスパージスカート 2 8と投影光学系 P Lとをフィルム 状の連結部材で連結しても良い。 この場合、 連結部材としては、 吸光物質の発 生が低減されたフィル厶状部材を用いることが好ましい。 このフィルム状部材 は、 例えばエチレン ' ビニル■アルコール樹脂 (E V O H樹脂) より成るフィ ルム状素材の外面に、 接着剤を介してポリエチレンより成る伸縮性の良好な保 護膜を被着し、 更にそのフィルム状素材の内面にアルミニウムより成る安定化 膜を蒸着等によってコーティングして形成することができる。 E V O H樹脂と しては、 例えば株式会社クラレの 「商品名 ェバール」 を使用することができ る。  Further, in the above-described embodiment, the configuration in which the differential pumping mechanism is provided between the projection system side gas purge skirt 28 and the projection optical system PL so as not to transmit the vibration has been described. The projection optical system PL may be connected with a film-like connecting member. In this case, it is preferable to use, as the connecting member, a film-shaped member in which generation of a light-absorbing substance is reduced. This film-like member is formed by applying a highly stretchable protective film made of polyethylene via an adhesive to the outer surface of a film-like material made of, for example, ethylene vinyl alcohol resin (EVOH resin). It can be formed by coating a stabilizing film made of aluminum on the inner surface of the film material by vapor deposition or the like. As the EVOH resin, for example, KURARAY Co., Ltd. “Product name EVAL” can be used.
また、 本発明のガスパージ方法は、 投影露光装置のみでなく、 投影露光装置 に搭載する投影光学系の検査に使用する検査光学装置に対しても適用すること ができる。 この検査光学装置についての実施形態が、 次に説明する第 2の実施 形態である。  Further, the gas purge method of the present invention can be applied not only to a projection exposure apparatus but also to an inspection optical apparatus used for inspection of a projection optical system mounted on the projection exposure apparatus. This embodiment of the inspection optical device is a second embodiment described next.
《第 2の実施形態》  << 2nd Embodiment >>
次に、本発明の第 2の実施形態について図 1 0に基づいて説明する。ここで、 前述した第 1の実施形態と同一若しくは同等の構成部分については、 同一の符 号を用いるとともに、 その説明を簡略化し、 若しくは省略するものとする。 本第 2の実施形態は、 投影光学系 P Lの検査を行う検査光学装置に固有の、 検査光学系が配置される空間を、 本発明のガスパージ方法によってガスパージ する場合についてのものである。  Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same reference numerals are used for the same or equivalent components as those in the first embodiment, and the description thereof will be simplified or omitted. The second embodiment relates to a case where the space in which the inspection optical system is arranged, which is unique to the inspection optical device that inspects the projection optical system PL, is gas-purged by the gas purging method of the present invention.
図 1 0には、 検査光学装置を構成する検査部 2 0 0が投影光学系 P L及びゥ ェハガスパージスカート 1 0 3とともに断面図にて示されている。 なお、 不図 示ではあるが検査光学装置のうちのレチクル側 (投影光学系 P Lの上方) のガ スパージ方法については、 前述したステツバの場合と同様であり、 また、 投影 光学系 P Lの下側に設けられているウェハガスパージスカート 1 0 3は、 上記 第 1の実施形態と同一であるので、 その説明は省略するものとする。 FIG. 10 is a cross-sectional view of the inspection unit 200 constituting the inspection optical device, together with the projection optical system PL and the wafer gas purge skirt 103. Although not shown, the gas on the reticle side (above the projection optical system PL) of the inspection optical device is not shown. The sparging method is the same as in the case of the above-mentioned stepper, and the wafer gas purge skirt 103 provided below the projection optical system PL is the same as in the first embodiment. Description is omitted.
検査光学装置を構成する検査部 2 0 0は、 図 1 0に示されるように、 一方の 端部 (下端) が閉じられ、 他方の面 (上面) が開口した円筒状 (底のある円筒 状) の光学系支持筐体 O Bと、 該光学系支持筐体 O B内に Z軸方向に沿って順 次配設されたレンズ 1 6 1, 1 6 2 , 1 6 3を含んで構成される光学系として の検査光学系 1 6 0と、 該検査光学系 1 6 0の下方に配置された光検出器とし ての撮像素子 1 6 4と、 前記光学系支持筐体 O Bを X軸方向に駆動する X軸リ ニァモータ M Xと、 光学系支持筐体 O Bを Y軸方向に駆動する Y軸リニアモー タ M Yと、 光学系支持筐体 O Bの上端面に固定された平板 1 5 0と、 を備えて いる。  As shown in FIG. 10, the inspection section 200 constituting the inspection optical device has a cylindrical shape (a cylindrical shape with a bottom) with one end (lower end) closed and the other surface (upper surface) opened. ) Optical system support housing OB and lenses 16 1, 16 2, 16 3 arranged sequentially along the Z-axis direction in the optical system support housing OB. The inspection optical system 160 as a system, the image sensor 164 as a photodetector disposed below the inspection optical system 160, and the optical system support housing OB are driven in the X-axis direction. An X-axis linear motor MX, a Y-axis linear motor MY for driving the optical system support housing OB in the Y-axis direction, and a flat plate 150 fixed to the upper end surface of the optical system support housing OB. I have.
前記検査光学系 1 6 0のうちのレンズ 1 6 1は、 レンズホルダ 2 1 0を介し て光学系支持筐体 O B内の上端部近傍にて保持されており、 該レンズ 1 6 1と レンズホルダ 2 1 0により、 光学系支持筐体 O B内のレンズ 1 6 1よりも下側 の空間は、 気密状態とされている。 以下においては、 この空間を 「空間 O C J と呼ぶものとする。  The lens 16 1 of the inspection optical system 16 0 is held near the upper end of the optical system support housing OB via the lens holder 2 10, and the lens 16 1 and the lens holder Due to 210, the space below the lens 161 in the optical system support housing OB is airtight. Hereinafter, this space is referred to as “space O C J”.
この検査光学装置を用いた投影光学系 P Lの収差計測に際しても、 上記第 1 の実施形態と同様に、 真空紫外光を使用することから、 その真空紫外光の光路 となる光学系支持筐体 O B内部 (空間 O C内部) は、 窒素や希ガス等の低吸収 性ガスで置換する必要がある。 このため、 光学系支持筐体 O Bには、 外側から 内側にかけて給気用開口としての貫通孔 2 5 5が形成され、 該貫通孔 2 5 5の 外側には、 コネクタ 1 5 2を介して給気管 1 5 1が接続されている。 また、 貫 通孔 2 5 5の内側には、給気ノズル 1 5 3が設けられている。空間 0 C内には、 これら給気管 1 5 1等を介して、 ガス供給装置から低吸収性ガスが供給される ようになつている。 また、 光学系支持筐体 OBには、 上記貫通孔 255とは別の排気用開口とし ての貫通孔 256が形成され、 該貫通孔 255の外側には、 コネクタ 1 55を 介して排気管 1 56が接続されている。 空間 OC内のガスは、 これら排気管 1 56等を介して光学系支持筐体 OB外部へ排気される。 このようにして、 空間 O C内のガスは低吸収性ガスにて置換される。 When measuring the aberration of the projection optical system PL using this inspection optical device, as in the first embodiment, since the vacuum ultraviolet light is used, the optical system support housing OB serving as the optical path of the vacuum ultraviolet light is used. The interior (the interior of the space OC) must be replaced with a low-absorbing gas such as nitrogen or a rare gas. For this reason, a through hole 255 as an air supply opening is formed in the optical system support housing OB from the outside to the inside, and the outside of the through hole 255 is supplied through a connector 152. Trachea 1 5 1 is connected. An air supply nozzle 153 is provided inside the through hole 255. In the space 0 C, a low-absorbent gas is supplied from a gas supply device through the air supply pipes 151 and the like. The optical system support housing OB is formed with a through hole 256 as an exhaust opening different from the through hole 255, and an exhaust pipe 1 is provided outside the through hole 255 via a connector 155. 56 is connected. The gas in the space OC is exhausted to the outside of the optical system support housing OB through the exhaust pipe 156 and the like. In this way, the gas in the space OC is replaced by the low-absorbent gas.
前記 X軸リニアモータ MXは、 光学系支持筐体 OBと接続された可動子 21 2と X軸方向を長手方向とする固定子 21 4とを含んで構成されている。 可動 子 21 2は固定子 21 4に沿って X軸方向に駆動され、 これにより光学系支持 筐体 OBが X軸方向にスライ ド駆動される。 また、 Y軸リニアモータ MYは、 X軸リニアモータ MXの固定子 21 4の下側に固定された可動子 21 6と Y軸 方向を長手方向とする固定子 21 8とを含んで構成されている。 可動子 21 6 は固定子 21 8に沿って Y軸方向に駆動され、 これにより光学系支持筐体 OB が前記 X軸リニアモータ MYとともに Y軸方向にスライド駆動される。  The X-axis linear motor MX includes a mover 212 connected to the optical system support housing OB and a stator 214 whose longitudinal direction is in the X-axis direction. The mover 212 is driven in the X-axis direction along the stator 214, whereby the optical system support housing OB is slid in the X-axis direction. The Y-axis linear motor MY includes a mover 216 fixed below the stator 214 of the X-axis linear motor MX, and a stator 218 having a longitudinal direction in the Y-axis direction. I have. The mover 216 is driven in the Y-axis direction along the stator 218, whereby the optical system support housing OB is slid in the Y-axis direction together with the X-axis linear motor MY.
このように、 検査光学系 1 60及び撮像素子 1 64を内部に備える光学系支 持筐体 OBが 2次元面内を移動可能とされている。  As described above, the optical system supporting housing OB including the inspection optical system 160 and the image sensor 164 is movable in a two-dimensional plane.
前記平板 1 50は、 例えば平面視 (上方から見て) 矩形の形状を有し、 その 中央部に円形開口 1 50 aが形成されている。 なお、 この平板 1 50について は後に詳述する。  The flat plate 150 has, for example, a rectangular shape in plan view (when viewed from above), and has a circular opening 150a formed in the center thereof. The flat plate 150 will be described later in detail.
このように構成される検査部 200では、 投影光学系 P Lによって形成され る像等を、 検査光学系 1 60を構成するレンズ 1 61〜1 63を介して CCD 等から成る撮像素子 1 64上に拡大投影し、 例えば投影光学系 P Lの光学特性 (収差など) を計測する。 この場合、 上記のように、 リニアモータ MX, MY により光学系支持筐体 OBが 2次元移動可能とされているので、 投影光学系 P Lの視野内の各計測点からの像光束すベてを受光可能であり、 視野内の各計測 点における収差等を計測することが可能となっている。  In the inspection section 200 configured as described above, an image formed by the projection optical system PL is transferred onto lenses 161 to 163 constituting the inspection optical system 160 onto an imaging element 164 such as a CCD. Magnify and project, for example, measure the optical characteristics (such as aberration) of the projection optical system PL. In this case, as described above, since the optical system support housing OB can be moved two-dimensionally by the linear motors MX and MY, all the image light fluxes from each measurement point in the field of view of the projection optical system PL are taken. It can receive light and can measure aberrations at each measurement point in the field of view.
平板 1 50は、 上記のように投影光学系の視野内の各計測点からの像光束を 受光する際に、 リニアモータ M Y , M Xにより光学系支持筐体 O Bが 2次元面 内で移動しても、 ウェハガスパージスカート 3 6の下端面が平板 1 5 0からは み出さない程度の大きさを有している。 すなわち、 平板 1 5 0を設けることに より、 投影光学系 P Lとウェハガスパージスカート 3 6と検査部 2 0 0との間 に、 上記実施形態と同様に、 概ね気密化された空間 P Oが形成され、 この空間 P Oは、 検査部 2 0 0が検査のために 2次元方向に移動しても気密状態が常時 維持されるようになっている。 As described above, the flat plate 150 transmits the image light flux from each measurement point in the field of view of the projection optical system. When receiving, even if the optical system support housing OB moves in a two-dimensional plane by the linear motors MY and MX, the lower end surface of the wafer gas purge skirt 36 does not protrude from the flat plate 150. have. That is, by providing the flat plate 150, a substantially airtight space PO is formed between the projection optical system PL, the wafer gas purge skirt 36, and the inspection unit 200, as in the above embodiment. However, in this space PO, the airtight state is always maintained even when the inspection unit 200 moves in the two-dimensional direction for the inspection.
以上説明したように、 本第 2の実施形態によると、 投影光学系 P Lから検査 部 2 0 0の撮像素子 1 6 4までの光路がすべて低吸収性ガスで置換されるので、 高精度な投影光学系 P Lの検査が可能となる。  As described above, according to the second embodiment, since the entire optical path from the projection optical system PL to the imaging device 164 of the inspection unit 200 is replaced with a low-absorbing gas, highly accurate projection is performed. Inspection of optical system PL becomes possible.
なお、 光学系支持筐体 O B中に設ける撮像素子 1 6 4として C C Dを用いる 場合には、 一般的にはセラミックパッケージに装填され、 その前面にはカバー ガラスが設置されている。 しかしながら、 真空紫外光用に適したカバーガラス は透過率の点から良いものがなく、 また仮にホタル石ゃフッ素添加の石英を力 バ一ガラスに添付した場合には、 カバーガラスと C C Dの受光面との間の空間 のガス置換が、 困難になるという問題がある。 この点を改善したのが次に示す 第 3の実施形態である。  When CCD is used as the imaging device 164 provided in the optical system support housing OB, it is generally mounted in a ceramic package, and a cover glass is provided on the front surface thereof. However, there is no cover glass suitable for vacuum ultraviolet light in terms of transmittance, and if fluorite / fluorine-added quartz is attached to the power glass, the cover glass and the light-receiving surface of the CCD There is a problem that gas replacement in the space between the two becomes difficult. This point is improved in the following third embodiment.
《第 3の実施形態》  << Third embodiment >>
次に、 本発明の第 3の実施形態について図 1 1 A , 図 1 1 Bに基づいて説明 する。 ここで、 前述した第 2の実施形態と同一若しくは同等の構成部分につい ては、 同一の符号を用いるとともに、 その説明を簡略化し、 若しくは省略する ものとする。  Next, a third embodiment of the present invention will be described with reference to FIGS. 11A and 11B. Here, the same reference numerals are used for the same or equivalent components as those in the above-described second embodiment, and the description thereof will be simplified or omitted.
本第 3の実施形態では、 上記第 2の実施形態の光学系支持筐体の構成、 及び 光検出器としての撮像素子 (C C D ) 1 6 4の配置方法及び C C D上方に光透 過窓部材 2 8 7を設けた点に特徴を有している。  In the third embodiment, the configuration of the optical system support housing of the second embodiment, the arrangement method of the imaging device (CCD) 164 as a photodetector, and the light transmitting window member 2 above the CCD are described. It is characterized by the provision of 87.
本実施形態においては、上記第 2の実施形態の光学系支持筐体 O Bに代えて、 図 1 1 Aに示されるように、 第 1部分筐体 O B aと、 第 2部分筐体 O B bとか ら構成される光学系支持筐体 O B ' が用いられている。 これら第 1部分筐体 O B a、 第 2部分筐体 O B bの境界部分には、 溝部 2 3 1が形成され、 該溝部 2 3 1にてホタル石またはフッ素ドープ石英等から成る光透過窓部材 2 8 7が部 分筐体 O B a , O B bにより上下両側から挟持されている。 この場合、 光透過 窓部材 2 8 7は、 第 1部分筐体 O B aと第 2部分筐体 O B bの双方の端面から わずかに突出した各 3点の突起部 2 9 0により点接触にて保持されている。 In the present embodiment, instead of the optical system support housing OB of the second embodiment, As shown in FIG. 11A, an optical system support housing OB ′ including a first partial housing OBa and a second partial housing OBb is used. At the boundary between the first partial housing OBa and the second partial housing OBb, a groove 231 is formed, and a light transmitting window member made of fluorite or fluorine-doped quartz is formed in the groove 231. 287 is sandwiched between the upper and lower sides by the partial housings OBa and OBb. In this case, the light transmitting window member 287 is point-contacted by three projections 290 each slightly protruding from both end surfaces of the first partial housing OBa and the second partial housing OBb. Is held.
このように光透過窓部材 2 8 7を上下各 3点で点接触にて保持 (挟持) した のは、 光透過窓部材 2 8 7を上下の空間が完全に気密になるように強固に固定 すると、 光透過窓部材 2 8 7に多少なリとも応力変形が生じてしまうからであ リ、 光透過窓部材 2 8 7にて仕切られる上下の空間に同種の低吸収性ガスが供 給される場合には、 このように各 3点にて挟持するのが望ましい。  The reason that the light transmitting window member 287 is held (pinched) at three points at each of the upper and lower points in this manner is that the light transmitting window member 287 is firmly fixed so that the upper and lower spaces are completely airtight. Then, any stress deformation occurs in the light transmitting window member 287, and the same kind of low-absorbing gas is supplied to the upper and lower spaces partitioned by the light transmitting window member 287. In this case, it is desirable to pinch at each of these three points.
なお、 第 2部分筐体 O B bの上方には、 第 2実施形態と同様に検査光学系 1 6 0が設けられている。  Note that an inspection optical system 160 is provided above the second partial housing O BB as in the second embodiment.
第 1部分筐体 O B aの下端面には、 Oリング 3 8 1を介して保持部材として のセラミックパッケージ 2 7 0が C C D 1 6 4を搭載した状態で気密に接合さ れ、 断面概略 S字状の止め金 2 7 9及びねじ 2 8 0を介して第 1部分筐体 O B aの下端面に固定されている。 この場合、 セラミックパッケージ 2 7 0は、 図 1 1 Bに示されるように、 上面中央に凹部 2 7 0 bが形成された箱状部材から 成り、 その上端面 2 7 0 aは平坦度が高く設定されている。  A ceramic package 270 as a holding member is hermetically bonded to the lower end surface of the first partial housing OBa via an O-ring 381 with a CCD 164 mounted thereon, and has an approximately S-shaped cross section. It is fixed to the lower end face of the first partial housing OBa via a stopper 279 and a screw 280 in a shape of a circle. In this case, as shown in FIG. 11B, the ceramic package 270 is made of a box-shaped member having a concave portion 270b formed in the center of the upper surface, and the upper end surface 270a has a high flatness. Is set.
なお、 通常のセラミックパッケージではその前面 (上面) にカバーガラスが 設けられるが、 本実施形態では、 カバーガラスを設けないこととしている。 ' セラミックパッケージ 2 7 0の C C D 1 6 4の下側部分には図 1 1 Aに示さ れるように、 C C D 1 6 4の電荷転送制御回路等の電気回路からの電気配線 2 7 1を引き出すための配線用孔 1 6 5が形成されている。 このようにして配線 用孔 1 6 5を形成することで、 該配線用孔 1 6 5から電気配線 2 7 1を引き出 し、 外部で不図示の接続配線と接続を行なうことで、 CCD 1 64上面側のガ スが配線用孔 1 65を介して外部に漏れ出すことなく、 CCD 1 64に対する 配線を行うことが可能となる。 In a normal ceramic package, a cover glass is provided on the front surface (upper surface), but in the present embodiment, no cover glass is provided. '' The lower part of the CCD 164 of the ceramic package 270 is used to draw out the electrical wiring 271 from the electric circuit such as the charge transfer control circuit of the CCD 164, as shown in Fig. 11A. The wiring holes 165 are formed. By forming the wiring hole 165 in this way, the electric wiring 271 is drawn out from the wiring hole 165. By connecting to the connection wiring (not shown) externally, it is possible to wire to the CCD 164 without the gas on the top side of the CCD 164 leaking out through the wiring hole 165 Becomes
ところで、 セラミックパッケージ 270の下面側には、 図 1 1 Aに示される ように、 ベルチ:!:素子 272及び放熱装置 274が設けられている。  By the way, on the lower surface side of the ceramic package 270, as shown in FIG. 11A, a belch:!: Element 272 and a heat dissipation device 274 are provided.
前記ペルチヱ素子 272は、 該ペルチエ素子 272に接続された電流配線を 介して所定の電流が供給されることにより、 セラミックパッケージ 270を冷 却する機能を有している。  The Peltier element 272 has a function of cooling the ceramic package 270 by supplying a predetermined current through a current wiring connected to the Peltier element 272.
前記放熱装置 274は、 前記ペルチェ素子 272のセラミックパッケージ 2 70とは反対の面側に設けられている。 この放熱装置 274は、 例えば内部に 液体配管 275が設けられ、 該液体配管 275に対し、 不図示の液体供給装置 から冷却液体を流すことによりペルチェ素子 272の冷却を行う。 なお、 放熱 装置 274としては、 その他の装置 (例えば冷却ファンなど) を採用すること としても良い。  The heat dissipation device 274 is provided on the surface of the Peltier element 272 opposite to the ceramic package 270. The radiator 274 has, for example, a liquid pipe 275 provided therein, and cools the Peltier element 272 by flowing a cooling liquid from the liquid supply device (not shown) to the liquid pipe 275. Note that, as the heat dissipation device 274, another device (for example, a cooling fan or the like) may be employed.
このようにペルチェ素子 272及び放熱装置 274を設けた理由は、 (1 )ぺ ルチェ素子 272については、 CCD 1 64が微弱光を検知する際には、 SZ N比 (信号 Zノイズ比) を改善する必要から、 CCD 1 64を冷却することが 望ましいからであり、 (2)放熱装置 274については、ペルチェ素子 272の CCDと反対側 (図 1 1 Aにおける下側の面) は上記 CCD 1 64の冷却の際 に高温になるので、ペルチェ素子 272の下面側を、周囲温度 (例えば 23°C) よリも温度が大きく上昇しないように冷却する必要があるからである。  The reason for providing the Peltier element 272 and the heat dissipation device 274 in this way is as follows: (1) Regarding the Peltier element 272, when the CCD 164 detects weak light, the SZN ratio (signal Z noise ratio) is improved. This is because it is desirable to cool the CCD 164 because of the necessity of (2) For the heat dissipation device 274, the opposite side of the Peltier element 272 from the CCD (the lower surface in FIG. This is because the temperature of the Peltier element 272 becomes high when it is cooled, so that it is necessary to cool the lower surface side of the Peltier element 272 so that the temperature does not rise much more than the ambient temperature (for example, 23 ° C.).
ここで、 ペルチェ素子 272を用いて CCD 1 64を冷却すると、 ペルチェ 素子 272によって冷却された CCD 1 64近傍のガスが、 対流等によって C CD 1 64の上方に配置されたレンズやその近傍の気体を冷却し光学性能を不 安定にし兼ねない。 そこで、 上述のように光透過窓部材 287を設けることと したのである。 この場合において、 光透過窓部材 2 8 7と C C D 1 6 4の間の空間も、 真空 紫外光が吸収されることなく良好に透過するように、 低吸収性ガスにて置換す る必要がある。 このため、 本実施形態では、 これまでと同様に、 給気管 2 8 1 の一端が第 1部分筐体 O B aの外側から内側にかけて形成された給気用開口と しての貫通孔 2 5 7にコネクタ 2 8 3を介して接続され、 貫通孔 2 5 7の給気 管 2 8 1 とは反対側には、 給気ノズル 2 8 5が設けられている。 これら給気管 2 8 1等を介して不図示のガス供給装置から低吸収性ガスが光透過窓部材 2 8 7、 第 1部分筐体 O B a及びセラミックパッケージ 2 7 0により形成された気 密化された空間 G C内に供給される。 一方、 前記貫通孔 2 5 7とは別に、 第 1 部分筐体 O B aの外側から内側にかけて形成された排気用開口としての貫通孔 2 5 8に、 コネクタ 2 8 4を介して排気管 2 8 2が接続されている。 これら貫 通孔 2 5 8、 排気管 2 8 2等を介して空間 G C内のガスが外部に排気される。 これにより、 空間 G C内のガスが低吸収性ガスにて置換される。 Here, when the CCD 164 is cooled using the Peltier element 272, the gas near the CCD 164 cooled by the Peltier element 272 becomes a lens disposed above the CCD 164 due to convection or the like and the gas near the lens. Cooling may make the optical performance unstable. Therefore, the light transmission window member 287 is provided as described above. In this case, the space between the light transmitting window member 287 and the CCD 164 also needs to be replaced with a low-absorbing gas so that the vacuum ultraviolet light can be transmitted well without being absorbed. . Therefore, in the present embodiment, as in the past, one end of the air supply pipe 281 is formed as a through-hole 257 as an air supply opening formed from the outside to the inside of the first partial housing OBa. The air supply nozzle 285 is provided on the opposite side of the through-hole 257 from the air supply pipe 281. A low absorptive gas is formed from the gas supply device (not shown) through the air supply pipe 281 and the like by the light transmitting window member 287, the first partial housing OBa, and the ceramic package 270. The space is supplied to the GC. On the other hand, separately from the through hole 2 57, a through hole 2 58 as an exhaust opening formed from the outside to the inside of the first partial housing OB a is connected to the exhaust pipe 28 through a connector 28 4. 2 is connected. The gas in the space GC is exhausted to the outside through the through holes 258, the exhaust pipe 282, and the like. As a result, the gas in the space GC is replaced with the low-absorbing gas.
なお、 C C D 1 6 4を、 より低温に冷却する必要がある場合には、 冷却され た C C D 1 6 4周辺のガスが、 上方に位置する光学系に伝わらないように光透 過窓部材 2 8 7と同様の光透過窓部材を多数段設けることが好ましい。  When it is necessary to cool the CCD 164 to a lower temperature, the light-transmitting window member 284 is used to prevent the gas around the cooled CCD 164 from being transmitted to the optical system located above. It is preferable to provide a large number of light transmitting window members similar to those in FIG.
以上詳細に説明したように、 本第 3の実施形態によると、 一方の面が開口し 内部に C C D 1 6 4をその受光面を開口に向けて収容したセラミックパッケ一 ジ 2 7 0の開口の周囲の端面 2 7 0 aを、 第 1部分筐体 O B aに対してシール 部材 (Oリング) 3 8 1を介して結合し、 C C D 1 6 4の受光面を含む空間 G Cを外気から遮蔽する。 このため、 第 1部分筐体 O B aとセラミックパッケ一 ジ 2 7 0とで形成される空間 G Cが、 気密性の良い空間となる。 そして、 空間 G C内に受光素子に入射する光に対する吸収特性が吸収性ガスに比べて低い特 定ガス (低吸収性ガス) が、 第 1部分筐体 O B aに接続された給気管 2 8 1を 介して供給され、 空間 G C内のガスが第 1部分筐体 O B aに接続された排気管 を介して外部に排気される。 これにより、 空間 G Cが、 低吸収性ガスにて精度 良く置換されるので、 CCD 1 64の受光面にて受光されるまでの間に、 光が 吸収されることがほとんどなくなる。 従って、 CCD 1 64の光量検出を精度 良く行うことが可能となり、 この光量検出の結果に基づいて、 例えば投影光学 系 P Lの光学特性の計測などを行う場合には、 その計測精度を向上させること が可能となる。 As described above in detail, according to the third embodiment, the opening of one side of the ceramic package 270 in which the CCD 164 is accommodated with the light receiving surface facing the opening is provided. The peripheral end surface 270a is connected to the first partial housing OBa via a sealing member (O-ring) 381 to shield the space GC including the light receiving surface of the CCD 164 from outside air. . Therefore, the space GC formed by the first partial housing OBa and the ceramic package 270 is a space with good airtightness. Then, a specific gas (low-absorbing gas) having a lower absorption characteristic for light incident on the light receiving element in the space GC than the absorbing gas is supplied to the air supply pipe connected to the first partial housing OBa. The gas in the space GC is exhausted to the outside via an exhaust pipe connected to the first partial housing OBa. This allows spatial GC to be accurate with low-absorbing gas Since the light is well replaced, the light is hardly absorbed before the light is received by the light receiving surface of the CCD 164. Therefore, it is possible to detect the light quantity of the CCD 164 with high accuracy, and when, for example, measuring the optical characteristics of the projection optical system PL based on the result of the light quantity detection, it is necessary to improve the measurement precision. Becomes possible.
なお、 上記第 3の実施形態では、 空間 GC内のガス置換のための給気管 28 1及び排気管 282を第 1部分筐体 O B aに接続することとしたが、 これに限 らず、 セラミックパッケージ 270に開口を形成し、 該開口に対して給気管 2 81 , 排気管 282を接続することとしても良い。  In the third embodiment, the air supply pipe 281 and the exhaust pipe 282 for gas replacement in the space GC are connected to the first partial housing OBa. However, the present invention is not limited to this. An opening may be formed in the package 270, and the air supply pipe 281 and the exhaust pipe 282 may be connected to the opening.
なお、 上記第 3の実施形態では、 光透過窓部材 287を設ける必要から、 光 学系支持筐体として、 第 1部分筐体 OB a、 第 2部分筐体 OB bの 2つの部分 筐体から成る光学系支持筐体 OB' を用いることとしたが、 これに限らず、 光 透過窓部材 287を設けなくても良い場合には、 第 2部分筐体 OB bのみを用 し、、 セラミックパッケージ 270は、 第 2部分筐体 OBbに直接固設すること としても良い。  In the third embodiment, since the light-transmitting window member 287 needs to be provided, the optical system supporting housing is formed of two partial housings of the first partial housing OBa and the second partial housing OBb. The optical system supporting housing OB ′ is used, but the present invention is not limited to this. If the light transmission window member 287 does not need to be provided, only the second partial housing OBb is used, and the ceramic package is used. 270 may be fixed directly to the second partial housing OBb.
なお、 上記実施形態の露光装置の光源は、 F2 レーザ光源、 A r Fエキシマ レーザ光源、 K r Fエキシマレーザ光源などに限らず、 例えば、 D FB半導体 レーザ又はファイバーレーザから発振される赤外域、 又は可視域の単一波長レ 一ザ光を、 例えばエルビウム (又はエルビウムとイッテルビウムの両方) がド ープされたファイバーアンプで増幅し、 非線形光学結晶を用いて紫外光に波長 変換した高調波を用いても良い。 また、 投影光学系の倍率は縮小系のみならず 等倍および拡大系のいずれでも良い。 The light source of the exposure apparatus of the above embodiment, F 2 laser light source, A r F excimer laser light source is not limited like the K r F excimer laser light source, e.g., an infrared region, which is oscillated from the D FB semiconductor laser or fiber laser Or single-wavelength laser light in the visible region is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and then converted to ultraviolet light using a nonlinear optical crystal. May be used. The magnification of the projection optical system is not limited to a reduction system, and may be any of an equal magnification and an enlargement system.
なお、 複数のレンズから構成される照明ユニット、 投影光学系を露光装置本 体に組み込み、 光学調整をするとともに、 多数の機械部品からなるウェハステ ージ (スキャン型の場合はレチクルステージも) を露光装置本体に取り付けて 配線や配管を接続し、 レチクル室、 ウェハ室を構成する各隔壁を組み付け、 ガ スの配管系を接続し、 の制御系に対する各部の接続を行い、 更に総合調整 (電 気調整、 動作確認等) をすることにより、 上記実施形態の露光装置 1 0 0等の 本発明に係る露光装置を製造することができる。 なお、 露光装置の製造は温度 およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 《デバイス製造方法》 The illumination unit and projection optical system consisting of a plurality of lenses are incorporated into the main body of the exposure apparatus, optical adjustment is performed, and the wafer stage (or reticle stage in the case of the scan type) consisting of many mechanical parts is exposed. Attach to the equipment body, connect wiring and piping, and assemble each partition that composes the reticle chamber and wafer chamber. The present invention relates to the exposure apparatus 100 and the like according to the above-described embodiment by connecting the piping system of the system, connecting each part to the control system of the system, and further performing overall adjustment (electrical adjustment, operation confirmation, etc.). An exposure apparatus can be manufactured. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled. 《Device manufacturing method》
次に上述した露光装置をリソグラフィ工程で使用したデバイスの製造方法の 実施形態について説明する。  Next, an embodiment of a device manufacturing method using the above-described exposure apparatus in a lithography process will be described.
図 1 2には、 デバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 C C D、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートが示され ている。 図 1 2に示されるように、 まず、 ステップ 3 0 1 (設計ステップ) に おいて、 デバイスの機能■性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。 引き続き、 ステップ 3 0 2 (マスク製作ステップ) において、 設計した回路パターンを形成したマ スクを製作する。 一方、 ステップ 3 0 3 (ウェハ製造ステップ) において、 シ リコン等の材料を用いてウェハを製造する。  FIG. 12 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). As shown in Fig. 12, first, in step 301 (design step), a device function / performance design (for example, a circuit design of a semiconductor device, etc.) is performed, and a pattern for realizing the function is performed. Do the design. Subsequently, in step 302 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 303 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 3 0 4 (ウェハ処理ステップ) において、 ステップ 3 0 1〜 ステップ 3 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 3 0 5 (デバイス組立てステップ) において、 ステップ 3 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 3 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。  Next, in step 304 (wafer processing step), using the mask and wafer prepared in steps 301 to 303, an actual circuit is formed on the wafer by lithography technology or the like as described later. Etc. are formed. Next, in step 304 (device assembling step), device assembling is performed using the wafer processed in step 304. This step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
最後に、 ステップ 3 0 6 (検査ステップ) において、 ステップ 3 0 5で作成 されたデバイスの動作確認テスト、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。  Finally, in step 360 (inspection step), inspections such as an operation confirmation test and a durability test of the device created in step 305 are performed. After these steps, the device is completed and shipped.
図 1 3には、 半導体デバイスにおける、 上記ステップ 3 0 4の詳細なフロー 例が示されている。 図 1 3において、 ステップ 3 1 (酸化ステップ) におい てはウェハの表面を酸化させる。 ステップ 3 1 2 ( C V Dステップ) において はウェハ表面に絶縁膜を形成する。 ステップ 3 1 3 (電極形成ステップ) にお いてはウェハ上に電極を蒸着によって形成する。 ステップ 3 1 4 (イオン打ち 込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 3 1 1 〜ステップ 3 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成してお リ、 各段階において必要な処理に応じて選択されて実行される。 Figure 13 shows the detailed flow of step 304 above for a semiconductor device. An example is shown. In FIG. 13, in step 31 (oxidation step), the surface of the wafer is oxidized. In step 312 (CVD step), an insulating film is formed on the wafer surface. In step 3 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 3 14 (ion implantation step), ions are implanted into the wafer. Each of the above steps 311 to 3114 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 3 1 5 (レジスト形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 3 1 6 (露光ステップ) において、 上で説明したリソグラフイシ ステム (露光装置) 及び露光方法によってマスクの回路パターンをウェハに転 写する。 次に、 ステップ 3 1 7 (現像ステップ) においては露光されたウェハ を現像し、 ステップ 3 1 8 (エッチングステップ) において、 レジストが残存 している部分以外の部分の露出部材をエッチングにより取り去る。 そして、 ス テツプ 3 1 9 (レジスト除去ステップ) において、 エッチングが済んで不要と なったレジストを取り除く。  In each stage of the wafer process, when the above-mentioned pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 315 (resist forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 316 (exposure step), the circuit pattern of the mask is transferred to the wafer by the lithographic system (exposure apparatus) and the exposure method described above. Next, in Step 317 (development step), the exposed wafer is developed, and in Step 318 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 319 (resist removing step), unnecessary resist after etching is removed.
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。  By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 3 1 6 ) において上記第 1の実施形態の露光装置が用いられるので、 露光光 透過率を長期に渡り良好に維持して精度良くレチクルのパターンをウェハ上に 転写することができる。 この結果、 高集積度のデバイスの生産性を向上させる ことが可能になる。 産業上の利用可能性 以上説明したように、 本発明のガスパージ方法は、 光の光路上に配置された 物体と光学装置との間の空間のガス置換に適している。 また、 本発明の露光装 置は、装置の大型化、重量化を抑制しつつ露光精度を向上するのに適している。 また、本発明のデバイス製造方法は、高集積度のデバイスの生産に適している。 If the device manufacturing method of the present embodiment described above is used, the exposure apparatus of the first embodiment is used in the exposure step (step 316), so that the exposure light transmittance can be maintained well over a long period of time. The reticle pattern can be transferred onto the wafer with high precision. As a result, the productivity of highly integrated devices can be improved. Industrial applicability As described above, the gas purging method of the present invention is suitable for gas replacement of a space between an optical device and an object arranged on the optical path of light. Further, the exposure apparatus of the present invention is suitable for improving the exposure accuracy while suppressing an increase in the size and weight of the apparatus. Further, the device manufacturing method of the present invention is suitable for producing a highly integrated device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定波長の光の光路上に配置された物体と光学装置との間の空間をガス パージするガスパージ方法であって、  1. A gas purging method for gas purging a space between an optical device and an object arranged on an optical path of light having a predetermined wavelength,
少なくとも前記物体及び該物体を保持する保持部材のいずれかである特定物 体との間に所定の第 1クリアランスが形成される状態で、 前記光学装置と前記 物体との間の空間を外気から遮蔽する遮蔽部材を配置する工程と ;  At least a space between the optical device and the object is shielded from outside air in a state where a predetermined first clearance is formed between the object and a specific object that is one of holding members that hold the object. Arranging a shielding member to perform;
前記光に対する吸収特性が吸収性ガスよリ低い特定ガスを、 前記遮蔽部材に 形成された給気用開口を介して前記遮蔽部材内部の空間に供給する工程と ; を 含むガスパージ方法。  Supplying a specific gas having lower absorption characteristics to the light than the absorbing gas to a space inside the shielding member through an air supply opening formed in the shielding member.
2 . 請求項 1に記載のガスパージ方法において、 2. In the gas purging method according to claim 1,
前記遮蔽部材内部の空間内のガスを前記遮蔽部材に形成された排気用開口を 介して外部に排気する工程を更に含むことを特徴とするガスパージ方法。  A gas purging method, further comprising: exhausting gas in a space inside the shielding member to the outside through an exhaust opening formed in the shielding member.
3 . 請求項 1に記載のガスパージ方法において、 3. In the gas purging method according to claim 1,
前記第 1クリアランスは、 約 3 m m以下であることを特徴とするガスパージ 方法。  The method according to claim 1, wherein the first clearance is about 3 mm or less.
4 . 請求項 3に記載のガスパージ方法において、 4. In the gas purging method according to claim 3,
前記遮蔽部材の前記特定物体に対向する端面に形成された給気口を介して所 定の気体を前記第 1クリアランス内に供給するとともに、 前記第 1クリアラン ス内の気体を前記端面の前記空間に対して前記給気口の外側に形成された排気 口を介して外部に排気する工程を更に含むことを特徴とするガスパージ方法。  A predetermined gas is supplied into the first clearance via an air supply port formed on an end surface of the shielding member facing the specific object, and the gas in the first clearance is supplied to the space on the end surface. A gas purging method, further comprising the step of exhausting air to the outside through an exhaust port formed outside the air supply port.
5 . 請求項 1に記載のガスパージ方法において、 前記遮蔽部材は、 前記光学装置に対する振動の伝達を低減するこ^:を特徴と するガスパージ方法。 5. The gas purging method according to claim 1, wherein The gas purging method, wherein the shielding member reduces transmission of vibration to the optical device.
6 . 請求項 5に記載のガスパージ方法において、 6. The gas purging method according to claim 5, wherein
前記遮蔽部材は、 前記光学装置との間に、 所定の第 2クリアランスを形成し た状態で配置されていることを特徴とするガスパージ方法。  The gas purging method, wherein the shielding member is disposed in a state where a predetermined second clearance is formed between the shielding member and the optical device.
7 . 請求項 6に記載のガスパージ方法において、 7. The gas purging method according to claim 6, wherein
前記第 2クリアランスは、 約 3 m m以下であることを特徴とするガスパージ 方法。  The method according to claim 1, wherein the second clearance is about 3 mm or less.
8 . 請求項 7に記載のガスパージ方法において、 8. The gas purging method according to claim 7, wherein
前記遮蔽部材の前記光学装置に対向する端面に形成された給気口を介して所 定の気体を前記第 2クリアランス内に供給するとともに、 前記第 2クリアラン ス内の気体を前記端面の前記空間に対して前記給気口の外側に形成された排気 口を介して外部に排気する工程を更に含むガスパージ方法。  A predetermined gas is supplied into the second clearance via an air supply port formed on an end face of the shielding member facing the optical device, and the gas in the second clearance is supplied to the space on the end face. A gas purging method, further comprising the step of: exhausting air to the outside through an exhaust port formed outside the air supply port.
9 . 所定波長の光が照射される光学系を有する光学装置に用いられる光検出 器の受光面を含む空間をガスパージするガスパージ方法であって、 9. A gas purging method for purging a space including a light receiving surface of a photodetector used for an optical device having an optical system irradiated with light of a predetermined wavelength,
一方の面が開口し内部に前記光検出器をその受光面を前記開口に向けて収容 した保持部材の前記開口の周囲の端面を、 前記光学装置の構成部品の一部に、 シール部材を介して結合し、 前記光検出器の受光面を含む空間を外気から遮蔽 する工程と ;  One surface is open, and the end face around the opening of the holding member, in which the photodetector is accommodated with the light receiving surface facing the opening, is disposed inside a part of the optical device through a sealing member. And shielding the space including the light receiving surface of the photodetector from the outside air;
前記光に対する吸収特性が吸収性ガスに比べて低い特定ガスを、 前記構成部 品及び前記保持部材のいずれかに形成された給気用開口を介して前記空間に供 給し、 該空間内のガスを前記構成部品及び前記保持部材のいずれかに形成され た排気用開口を介して外部に排気する工程と ; を含むガスパージ方法。 A specific gas having a lower light absorption characteristic than the absorbing gas is supplied to the space through an air supply opening formed in one of the component and the holding member. Gas is formed on either the component or the holding member Exhausting to the outside through the exhaust opening.
1 0 . 請求項 9に記載のガスパージ方法において、 10. The gas purging method according to claim 9, wherein
前記保持部材の前記光検出器が載置される部分に予め貫通孔を形成する工程 前記光検出器の裏面側から前記貫通孔を介して前記光検出器からの電気配線 を外部に取り出す工程と ; を更に含むガスパージ方法。  Forming a through hole in advance on a portion of the holding member on which the photodetector is mounted; and taking out an electric wiring from the photodetector to the outside from the back surface side of the photodetector via the through hole. A gas purge method further comprising:
1 1 . 請求項 9に記載のガスパージ方法において、 11. The gas purging method according to claim 9, wherein
前記保持部材を冷却する工程を更に含むガスパージ方法。  A gas purge method further comprising a step of cooling the holding member.
1 2 . 請求項 1 1に記載のガスパージ方法において、 12. The gas purging method according to claim 11, wherein
前記保持部材の冷却は、 前記保持部材の前記光検出器とは反対側の面にペル チェ素子を接続して行うことを特徴とするガスパージ方法。  A gas purging method, wherein the cooling of the holding member is performed by connecting a Peltier element to a surface of the holding member opposite to the photodetector.
1 3 . 請求項 1 2に記載のガスパージ方法において、 13. The gas purging method according to claim 12,
前記ベルチ X素子の前記保持部材とは反対側を冷却する工程を更に含むガス パージ方法。  A gas purging method, further comprising a step of cooling a side of the Velchi X element opposite to the holding member.
1 4 . 請求項 9に記載のガスパージ方法において、 14. The gas purging method according to claim 9, wherein
前記光学装置の前記保持部材が結合される前記構成部品の前記保持部材とは 反対側に光透過性部材を配置して、 前記光検出器の受光面を含む空間を複数の 空間に仕切る工程を更に含むガスパージ方法。  A step of arranging a light transmissive member on a side of the component to which the holding member of the optical device is coupled, opposite to the holding member, to partition a space including a light receiving surface of the photodetector into a plurality of spaces. A gas purge method further comprising:
1 5 . マスクに形成されたパターンを基板上に転写する露光装置であって、 所定波長の光により前記マスクを照明する照明光学系と ; 前記マスク及び該マスクを保持するマスク保持部材のいずれかである特定物 体と前記照明光学系との間に配置され、 少なくとも前記特定物体との間に所定 の第 1クリアランスを形成した状態で、 前記マスクの前記照明光学系側の少な くとも前記マスクのパターン領域に対応する領域を含む第 1空間を外気から遮 蔽する第 1遮蔽部材と ; 15. An exposure apparatus for transferring a pattern formed on a mask onto a substrate, comprising: an illumination optical system for illuminating the mask with light of a predetermined wavelength; A state in which a predetermined first clearance is formed between the specific object, which is one of the mask and a mask holding member that holds the mask, and the illumination optical system; and A first shielding member that shields a first space including an area corresponding to at least a pattern area of the mask on the illumination optical system side of the mask from outside air;
前記第 1遮蔽部材に形成された給気用開口を介して前記光に対する吸収特性 が吸収性ガスより低い特定ガスを前記第 1空間に供給する第 1ガス供給系と ; を備える露光装置。  An exposure apparatus comprising: a first gas supply system configured to supply a specific gas having lower absorption characteristics to the light than the absorptive gas to the first space via an air supply opening formed in the first shielding member.
1 6 . 請求項 1 5に記載の露光装置において、 16. The exposure apparatus according to claim 15, wherein
前記マスクから射出される光を前記基板上に投射する投影光学系と ; 前記特定物体と前記投影光学系との間に配置され、 前記投影光学系に対する 振動の伝達を低減した状態で、 前記マスクの前記投影光学系側の少なくとも前 記マスクのパターン領域を含む第 2空間を外気から遮蔽する第 2遮蔽部材と ; 前記第 2遮蔽部材に形成された給気用開口を介して前記特定ガスを前記第 2 空間に供給する第 2ガス供給系と ; を更に備える露光装置。  A projection optical system for projecting light emitted from the mask on the substrate; and a mask disposed between the specific object and the projection optical system, wherein the transmission of vibration to the projection optical system is reduced. A second shielding member that shields at least the second space including the pattern region of the mask from the outside air on the side of the projection optical system; and the specific gas through an air supply opening formed in the second shielding member. An exposure apparatus, further comprising: a second gas supply system that supplies the second gas to the second space.
1 7 . 請求項 1 6に記載の露光装置において、 17. The exposure apparatus according to claim 16, wherein
前記第 2遮蔽部材は、 少なくとも前記特定物体との間に、 所定の第 2クリア ランスを形成した状態で配置されることを特徴とする露光装置。  An exposure apparatus, wherein the second shielding member is disposed with at least a predetermined second clearance formed between the second shielding member and the specific object.
1 8 . 請求項 1 7に記載の露光装置において、 18. The exposure apparatus according to claim 17,
前記第 1遮蔽部材に形成された排気用開口を介して前記第 1空間内のガスを 外部に排気する第 1ガス排気系と ;  A first gas exhaust system that exhausts gas in the first space to the outside through an exhaust opening formed in the first shielding member;
前記第 2遮蔽部材に形成された排気用開口を介して前記第 2空間内のガスを 外部に排気する第 2ガス排気系と ; を更に備える露光装置。 A second gas exhaust system that exhausts gas in the second space to the outside through an exhaust opening formed in the second shielding member.
1 9 . 請求項 1 7に記載の露光装置において、 19. The exposure apparatus according to claim 17,
前記第 1及び第 2クリアランスの少なくとも一方は、 約 3 m m以下であるこ とを特徴とする露光装置。  An exposure apparatus, wherein at least one of the first and second clearances is about 3 mm or less.
2 0 . 請求項 1 9に記載の露光装置において、 20. The exposure apparatus according to claim 19,
前記第 1遮蔽部材の前記特定物体に対向する端面に形成された給気口から所 定の気体を前記第 1クリアランス内に供給するとともに、 前記第 1クリアラン ス内の気体を前記端面の前記第 1空間に対して前記給気口の外側に形成された 排気口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied into the first clearance from an air supply port formed on an end face of the first shielding member facing the specific object, and the gas in the first clearance is supplied to the first clearance on the end face. An exposure apparatus, further comprising a differential exhaust mechanism for exhausting air to the outside via an exhaust port formed outside the air supply port with respect to one space.
2 1 . 請求項 1 9に記載の露光装置において、 21. The exposure apparatus according to claim 19,
前記第 2遮蔽部材の前記特定物体に対向する端面に形成された給気口から所 定の気体を前記特定物体に向けて供給するとともに、 前記第 2クリアランス内 の気体を前記端面の前記第 2空間に対して前記給気口の外側に形成された排気 口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied toward the specific object from an air supply port formed on an end surface of the second shielding member facing the specific object, and the gas in the second clearance is supplied to the second surface of the end surface. An exposure apparatus further comprising a differential exhaust mechanism for exhausting air to the outside through an exhaust port formed outside the air supply port with respect to a space.
2 2 . 請求項 1 7に記載の露光装置において、 22. The exposure apparatus according to claim 17,
前記第 1遮蔽部材の前記特定物体側の端部に設けられ、 前記第 1クリアラン スを前記第 1遮蔽部材の全周に渡って調整可能な調整機構と ;前記第 2遮蔽部 材の前記特定物体側の端部に設けられ、 前記第 2クリアランスを前記第 2遮蔽 部材の全周に渡って調整可能な調整機構と ;の少なくとも一方を更に備える露  An adjusting mechanism provided at an end of the first shielding member on the specific object side, the adjusting mechanism being capable of adjusting the first clearance over the entire circumference of the first shielding member; and the identification of the second shielding member. An adjusting mechanism provided at an end on the object side, the adjusting mechanism being capable of adjusting the second clearance over the entire circumference of the second shielding member.
2 3 . 請求項 1 7に記載の露光装置において、 23. The exposure apparatus according to claim 17,
前記第 2遮蔽部材と前記投影光学系との間には、 所定の第 3クリアランスが 形成されていることを特徴とする露光装置。 A predetermined third clearance is provided between the second shielding member and the projection optical system. An exposure apparatus characterized by being formed.
2 4 . 請求項 2 3に記載の露光装置において、 24. The exposure apparatus according to claim 23,
前記第 3クリアランスは、 約 3 m m以下であることを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the third clearance is about 3 mm or less.
2 5 . 請求項 2 3に記載の露光装置において、 25. The exposure apparatus according to claim 23,
前記第 2遮蔽部材の前記投影光学系に対向する端面に形成された給気口から 所定の気体を前記第 3クリアランス内に供給するとともに、 前記第 3クリァラ ンス内の気体を前記端面の前記第 2空間に対して前記給気口の外側に形成され た排気口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied into the third clearance from an air supply port formed on the end face of the second shielding member facing the projection optical system, and the gas in the third clearance is supplied to the third face on the end face. An exposure apparatus further comprising a differential exhaust mechanism for exhausting the two spaces to the outside through an exhaust port formed outside the air supply port.
2 6 . 請求項 1 7に記載の露光装置において、 26. The exposure apparatus according to claim 17,
前記第 1遮蔽部材の前記特定物体に対向する端面及び前記第 2遮蔽部材の前 記特定物体に対向する端面はともに平面であり、 これらの端面にそれぞれ対向 する前記特定物体の面はともに平面であることを特徴とする露光装置。  The end surface of the first shielding member facing the specific object and the end surface of the second shielding member facing the specific object are both flat surfaces, and the surfaces of the specific object facing these end surfaces are both flat surfaces. An exposure apparatus, comprising:
2 7 . 請求項 1 7に記載の露光装置において、 27. The exposure apparatus according to claim 17,
前記基板を保持する基板保持部材と ;  A substrate holding member for holding the substrate;
前記マスク保持部材を所定の走査方向に駆動する駆動源を含み、 前記マスク 保持部材と前記基板保持部材とを所定の走査方向に同期移動する駆動装置と ; を更に備え、  A drive device for driving the mask holding member in a predetermined scanning direction; and a driving device for synchronously moving the mask holding member and the substrate holding member in a predetermined scanning direction.
前記駆動源の少なくとも一部が、 前記第 1空間及び前記第 2空間の外部に配 置されることを特徴とする露光装置。  An exposure apparatus, wherein at least a part of the driving source is disposed outside the first space and the second space.
2 8 . 請求項 2 7に記載の露光装置において、 28. The exposure apparatus according to claim 27,
前記第 1遮蔽部材の前記走査方向に関する長さは、 少なくとも、 前記露光が 行われる前記同期移動時の前後の加速域と減速域とで前記マスク保持部材が移 動する助走距離と、 前記マスクのパターン領域の前記走査方向の長さとに基づ いて決定されることを特徴とする露光装置。 The length of the first shielding member in the scanning direction is at least: It is determined based on the approach distance by which the mask holding member moves in the acceleration region and the deceleration region before and after the synchronous movement to be performed, and the length of the pattern region of the mask in the scanning direction. Exposure apparatus.
2 9 . 請求項 1 7に記載の露光装置において、 29. The exposure apparatus according to claim 17,
前記基板と前記投影光学系との間に配置され、 少なくとも前記基板との間に 所定の第 3クリアランスを形成した状態で、 前記基板の前記投影光学系側の第 3空間を外気から遮蔽する第 3遮蔽部材と ;  A third space that is disposed between the substrate and the projection optical system and shields a third space on the projection optical system side of the substrate from outside air in a state where at least a predetermined third clearance is formed between the substrate and the projection optical system; 3 shielding members;
前記第 3遮蔽部材に形成された給気用開口を介して前記特定ガスを前記第 3 空間に供給する第 3ガス供給系と ; を更に備える露光装置。  And a third gas supply system that supplies the specific gas to the third space via an air supply opening formed in the third shielding member.
3 0 . 請求項 2 9に記載の露光装置において、 30. The exposure apparatus according to claim 29,
前記第 3遮蔽部材に形成された排気用開口を介して前記第 3空間内のガスを 外部に排気するガス排気系を更に備える露光装置。  An exposure apparatus further comprising a gas exhaust system that exhausts gas in the third space to the outside through an exhaust opening formed in the third shielding member.
3 1 . 請求項 2 9に記載の露光装置において、 31. In the exposure apparatus according to claim 29,
前記第 3遮蔽部材は、 前記投影光学系との間に、 所定の第 4クリアランスを 形成した状態で配置されることを特徴とする露光装置。  An exposure apparatus, wherein the third shielding member is disposed in a state where a predetermined fourth clearance is formed between the third shielding member and the projection optical system.
3 2 . 請求項 3 1に記載の露光装置において、 3 2. The exposure apparatus according to claim 31,
前記第 3遮蔽部材の前記投影光学系に対向する端面に形成された排気口を介 して、 前記第 4クリアランス内の気体を外部に排気する排気機構を更に備える  An exhaust mechanism that exhausts the gas in the fourth clearance to the outside via an exhaust port formed on an end surface of the third shielding member facing the projection optical system.
3 3 . 請求項 3 2に記載の露光装置において、 33. The exposure apparatus according to claim 32,
前記排気機構は、 前記第 3空間内のガスを前記第 4クリアランスを介して外 部に排気することを特徴とする露光装置。 The exhaust mechanism discharges the gas in the third space via the fourth clearance. An exposure apparatus characterized by exhausting air to a section.
3 4 . 請求項 3 3に記載の露光装置において、 34. The exposure apparatus according to claim 33,
前記第 3ガス供給系は、 前記第 4クリアランスを介して前記特定ガスを前記 第 3空間に供給することを特徴とする露光装置。  The exposure apparatus, wherein the third gas supply system supplies the specific gas to the third space via the fourth clearance.
3 5 . 請求項 2 9に記載の露光装置において、 35. The exposure apparatus according to claim 29, wherein
前記第 3遮蔽部材の前記基板に対向する端面に形成された給気口から所定の 気体を前記第 3クリアランス内に供給するとともに、 前記第 3クリアランス内 の気体を前記端面の前記第 3空間に対して前記給気口の外側に形成された排気 口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied into the third clearance from an air supply port formed on the end face of the third shielding member facing the substrate, and the gas in the third clearance is supplied to the third space on the end face. An exposure apparatus further comprising a differential exhaust mechanism for exhausting air to the outside via an exhaust port formed outside the air supply port.
3 6 . 請求項 1 5に記載の露光装置において、 36. The exposure apparatus according to claim 15, wherein
前記第 1遮蔽部材と前記照明光学系との間には、 所定の第 2クリアランスが 形成されていることを特徴とする露光装置。  An exposure apparatus, wherein a predetermined second clearance is formed between the first shielding member and the illumination optical system.
3 7 . 請求項 3 6に記載の露光装置において、 37. The exposure apparatus according to claim 36,
前記第 2クリアランスは、 約 3 m m以下であることを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the second clearance is about 3 mm or less.
3 8 . 請求項 3 6に記載の露光装置において、 38. The exposure apparatus according to claim 36,
前記第 1遮蔽部材の前記照明光学系に対向する端面に形成された給気口から 所定の気体を前記第 2クリアランス内に供給するとともに、 前記第 2クリアラ ンス内の気体を前記端面の前記第 1空間に対して前記給気口の外側に形成され た排気口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied into the second clearance from an air supply port formed on an end surface of the first shielding member facing the illumination optical system, and a gas in the second clearance is supplied to the first surface of the end surface. An exposure apparatus further comprising a differential exhaust mechanism that exhausts air to the outside of one space through an exhaust port formed outside the air supply port.
3 9 . 請求項 1 5に記載の露光装置において、 前記基板と前記投影光学系との間に配置され、 少なくとも前記基板との間に 所定の第 2クリアランスを形成した状態で、 前記基板の前記投影光学系側の第 2空間を外気から遮蔽する第 2遮蔽部材と ; 39. The exposure apparatus according to claim 15, wherein A second space that is disposed between the substrate and the projection optical system and shields a second space on the projection optical system side of the substrate from outside air in a state where at least a predetermined second clearance is formed between the substrate and the projection optical system. Two shielding members;
前記第 2遮蔽部材に形成された給気用開口を介して前記特定ガスを前記第 2 空間に供給する第 2ガス供給系と ; を更に備える露光装置。  A second gas supply system that supplies the specific gas to the second space via an air supply opening formed in the second shielding member.
4 0 . 請求項 3 9に記載の露光装置において、 40. The exposure apparatus according to claim 39,
前記第 2遮蔽部材に形成された排気用開口を介して前記第 2空間内のガスを 外部に排気するガス排気系を更に備える露光装置。  An exposure apparatus further comprising a gas exhaust system for exhausting gas in the second space to the outside via an exhaust opening formed in the second shielding member.
4 1 . 請求項 3 9に記載の露光装置において、 41. The exposure apparatus according to claim 39, wherein
前記第 2遮蔽部材は、 前記投影光学系との間に、 所定の第 3クリアランスを 形成した状態で配置されることを特徴とする露光装置。  An exposure apparatus, wherein the second shielding member is disposed in a state where a predetermined third clearance is formed between the second shielding member and the projection optical system.
4 2 . 請求項 4 1に記載の露光装置において、 42. The exposure apparatus according to claim 41, wherein
前記第 2遮蔽部材の前記投影光学系に対向する端面に形成された排気口を介 して、 前記第 3クリアランス内の気体を外部に排気する排気機構を更に備える  An exhaust mechanism that exhausts gas in the third clearance to the outside through an exhaust port formed on an end surface of the second shielding member facing the projection optical system.
4 3 . 請求項 4 2に記載の露光装置において、 43. The exposure apparatus according to claim 42, wherein
前記排気機構は、 前記第 2空間内のガスを前記第 3クリアランスを介して外 部に排気することを特徴とする露光装置。  An exposure apparatus, wherein the exhaust mechanism exhausts gas in the second space to the outside via the third clearance.
4 4 . 請求項 4 3に記載の露光装置において、 44. The exposure apparatus according to claim 43, wherein
前記第 2ガス供給系は、 前記第 3クリアランスを介して前記特定ガスを前記 第 2空間に供給することを特徴とする露光装置。 The exposure apparatus, wherein the second gas supply system supplies the specific gas to the second space via the third clearance.
4 5 . 請求項 3 9に記載の露光装置において、 45. The exposure apparatus according to claim 39, wherein
前記第 2遮蔽部材の前記基板に対向する端面に形成された給気口から所定の 気体を前記第 2クリアランス内に供給するとともに、 前記第 2クリアランス内 の気体を前記端面の前記第 2空間に対して前記給気口の外側に形成された排気 口を介して外部に排気する差動排気機構を更に備える露光装置。  A predetermined gas is supplied into the second clearance from an air supply port formed on an end surface of the second shielding member facing the substrate, and the gas in the second clearance is supplied to the second space on the end surface. An exposure apparatus further comprising a differential exhaust mechanism for exhausting air to the outside through an exhaust port formed outside the air supply port.
4 6 . 請求項 3 9に記載の露光装置において、 46. In the exposure apparatus according to claim 39,
前記第 2遮蔽部材の前記基板側の端部に設けられ、 前記第 2クリアランスを 前記第 2遮蔽部材の全周に渡って調整可能な調整機構を更に備える露光装置。  An exposure apparatus, further comprising an adjustment mechanism provided at an end of the second shielding member on the substrate side, the adjustment mechanism being capable of adjusting the second clearance over the entire circumference of the second shielding member.
4 7 . 請求項 1 5に記載の露光装置において、 47. The exposure apparatus according to claim 35, wherein
前記基板を保持する基板保持部材と ;  A substrate holding member for holding the substrate;
前記マスク保持部材と前記基板保持部材とを所定の走査方向に同期移動する 駆動装置と ; を更に備える露光装置。  A driving device that synchronously moves the mask holding member and the substrate holding member in a predetermined scanning direction.
4 8 . 請求項 4 7に記載の露光装置において、 48. In the exposure apparatus according to claim 47,
前記第 1遮蔽部材の前記走査方向に関する長さは、 少なくとも、 前記露光が 行われる前記同期移動時の前後の加速域と減速域とで前記マスク保持部材が移 動する助走距離と、 前記マスクのパターン領域の前記走査方向の長さとに基づ いて決定されることを特徴とする露光装置。  The length of the first shielding member in the scanning direction is at least a running distance by which the mask holding member moves in an acceleration region and a deceleration region before and after the synchronous movement in which the exposure is performed, and An exposure apparatus, which is determined based on a length of a pattern area in the scanning direction.
4 9 . 請求項 4 8に記載の露光装置において、 49. The exposure apparatus according to claim 48,
前記第 1遮蔽部材の前記走査方向に関する長さは、 さらに、 前記光により前 記マスクが照明される照明領域の前記走査方向の長さに基づいて決定されるこ とを特徴とする露光装置。 , An exposure apparatus, wherein a length of the first shielding member in the scanning direction is further determined based on a length of the illumination area in which the mask is illuminated by the light in the scanning direction. ,
5 0 . 露光光で照明されたマスクのパターンを、 投影光学系を介して基板上 に転写する露光装置であって、 50. An exposure apparatus for transferring a mask pattern illuminated by exposure light onto a substrate via a projection optical system,
前記基板と前記投影光学系との間に、 前記基板と前記投影光学系とに接触す ることなく配置され、 前記基板と前記投影光学系との間における前記露光光の 光路を含む空間を外気から遮蔽する遮蔽部材を備えることを特徴とする露光装  A space disposed between the substrate and the projection optical system without contacting the substrate and the projection optical system, and a space including an optical path of the exposure light between the substrate and the projection optical system is exposed to outside air. Exposure device, comprising a shielding member for shielding from light.
5 1 . 請求項 5 0に記載の露光装置において、 51. The exposure apparatus according to claim 50,
前記基板と前記遮蔽部材との間、 あるいは前記投影光学系と前記遮蔽部材と の間に形成されるクリアランス内のガスを吸引排気することによって、 前記遮 蔽部材で遮蔽された空間を前記外気から遮蔽することを特徴とする露光装置。  By sucking and exhausting a gas in a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member, a space shielded by the shielding member is removed from the outside air. An exposure apparatus for shielding.
5 2 . 請求項 5 1に記載の露光装置において、 52. The exposure apparatus according to claim 51,
前記基板と前記遮蔽部材との間、 あるいは前記投影光学系と前記遮蔽部材と の間に形成されるクリアランス内に、 前記露光光に対する吸収特性が吸収性ガ スょリ低い特定ガスを供給することを特徴とする露光装置。  Supplying a specific gas having a low absorption property to the exposure light into a clearance formed between the substrate and the shielding member or between the projection optical system and the shielding member. Exposure apparatus characterized by the above-mentioned.
5 3 . リソグラフイエ程を含むデバイス製造方法であって、 5 3. A device manufacturing method including a lithographic process,
前記リソグラフイエ程では、 請求項 1 5〜5 2のいずれか一項に記載の露光 装置を用いて露光を行うことを特徴とするデバイス製造方法。  A device manufacturing method, comprising: performing exposure using the exposure apparatus according to claim 15 in the lithographic process.
PCT/JP2002/013425 2001-12-21 2002-12-24 Gas purging method and exposure system, and device production method WO2003054936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002366929A AU2002366929A1 (en) 2001-12-21 2002-12-24 Gas purging method and exposure system, and device production method
JP2003555564A JPWO2003054936A1 (en) 2001-12-21 2002-12-24 Gas purge method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-390668 2001-12-21
JP2001390668 2001-12-21

Publications (1)

Publication Number Publication Date
WO2003054936A1 true WO2003054936A1 (en) 2003-07-03

Family

ID=19188433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013425 WO2003054936A1 (en) 2001-12-21 2002-12-24 Gas purging method and exposure system, and device production method

Country Status (4)

Country Link
JP (1) JPWO2003054936A1 (en)
AU (1) AU2002366929A1 (en)
TW (1) TWI222668B (en)
WO (1) WO2003054936A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050924B4 (en) * 2003-10-20 2007-02-01 General Motors Corp., Detroit Control for a regeneratively operable compressor motor for a fuel cell drive system
JP2008072139A (en) * 2004-06-23 2008-03-27 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2014170974A (en) * 2005-01-31 2014-09-18 Nikon Corp Exposure device, exposure method, and device manufacturing method
JP2015179295A (en) * 2009-08-07 2015-10-08 株式会社ニコン Exposure apparatus and device manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417980B (en) * 2009-02-04 2013-12-01 Hoya Corp Stage cleaner, writing apparatus and substrate processing apparatus
CN108398858B (en) * 2018-03-20 2019-05-10 李笛 A kind of gas isolator and partition method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133728A (en) * 1983-12-21 1985-07-16 Seiko Epson Corp Far ultraviolet ray projecting exposure device
WO2001006548A1 (en) * 1999-07-16 2001-01-25 Nikon Corporation Exposure method and system
JP2001068400A (en) * 1999-08-27 2001-03-16 Nikon Corp Light absorbing substance detecting method, and exposure method and apparatus
EP1098225A2 (en) * 1999-11-05 2001-05-09 Asm Lithography B.V. Lithographic projection apparatus with purge gas system and method using the same
EP1207425A2 (en) * 2000-11-15 2002-05-22 Canon Kabushiki Kaisha Exposure apparatus and maintenance method
JP2002373853A (en) * 2001-06-15 2002-12-26 Canon Inc Aligner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133728A (en) * 1983-12-21 1985-07-16 Seiko Epson Corp Far ultraviolet ray projecting exposure device
WO2001006548A1 (en) * 1999-07-16 2001-01-25 Nikon Corporation Exposure method and system
JP2001068400A (en) * 1999-08-27 2001-03-16 Nikon Corp Light absorbing substance detecting method, and exposure method and apparatus
EP1098225A2 (en) * 1999-11-05 2001-05-09 Asm Lithography B.V. Lithographic projection apparatus with purge gas system and method using the same
EP1207425A2 (en) * 2000-11-15 2002-05-22 Canon Kabushiki Kaisha Exposure apparatus and maintenance method
JP2002373853A (en) * 2001-06-15 2002-12-26 Canon Inc Aligner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050924B4 (en) * 2003-10-20 2007-02-01 General Motors Corp., Detroit Control for a regeneratively operable compressor motor for a fuel cell drive system
JP2008072139A (en) * 2004-06-23 2008-03-27 Asml Netherlands Bv Lithographic apparatus, and device manufacturing method
JP2014170974A (en) * 2005-01-31 2014-09-18 Nikon Corp Exposure device, exposure method, and device manufacturing method
JP2015179295A (en) * 2009-08-07 2015-10-08 株式会社ニコン Exposure apparatus and device manufacturing method
US9946171B2 (en) 2009-08-07 2018-04-17 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method

Also Published As

Publication number Publication date
JPWO2003054936A1 (en) 2005-04-28
AU2002366929A1 (en) 2003-07-09
TWI222668B (en) 2004-10-21
TW200307979A (en) 2003-12-16

Similar Documents

Publication Publication Date Title
US6791766B2 (en) Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
US6853443B2 (en) Exposure apparatus, substrate processing system, and device manufacturing method
JP4985691B2 (en) Stage apparatus, exposure apparatus, and device manufacturing method
US20020145711A1 (en) Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses
WO2000055891A1 (en) Exposure device, exposure method, and device manufacturing method
WO2003085708A1 (en) Exposure method, exposure device, and device manufacturing method
US7288859B2 (en) Wafer stage operable in a vacuum environment
JP4081813B2 (en) Optical apparatus, exposure apparatus, and device manufacturing method
JP2008277824A (en) Moving object apparatus, aligner and optical unit, and method of manufacturing device
KR20020036951A (en) Exposure method and apparatus
WO2003054936A1 (en) Gas purging method and exposure system, and device production method
JP4258840B2 (en) Support apparatus, optical apparatus and exposure apparatus, and device manufacturing method
JP2004354656A (en) Optical cleaning apparatus, optical cleaning method, exposure apparatus, exposure method and method for manufacturing device
JP2002033258A (en) Aligner, mask apparatus, pattern protective apparatus, and method of manufacturing device
JP2001291663A (en) Exposure method and aligner, stage module, method of manufacturing the aligner, and method of manufacturing device
JP2004349285A (en) Stage equipment, aligner and method of fabricating device
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
JP2006134944A (en) Exposure device
JP2001189268A (en) Aligner and exposure method, and device manufacturing method
JP2005166922A (en) Backing device, optical device, aligner and method for manufacturing device
JPWO2003075327A1 (en) Exposure apparatus and device manufacturing method
JP2004063790A (en) Aligner and device manufacturing method
JP2004259756A (en) Gas substituting apparatus, exposure unit and method for manufacturing device
JP4325371B2 (en) Exposure apparatus and device manufacturing method
JP2003215785A (en) Pattern protection device, mask device and its manufacturing method, device and method for exposure, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003555564

Country of ref document: JP

122 Ep: pct application non-entry in european phase