WO2010038507A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010038507A1
WO2010038507A1 PCT/JP2009/059590 JP2009059590W WO2010038507A1 WO 2010038507 A1 WO2010038507 A1 WO 2010038507A1 JP 2009059590 W JP2009059590 W JP 2009059590W WO 2010038507 A1 WO2010038507 A1 WO 2010038507A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
region
display device
crystal display
reflective
Prior art date
Application number
PCT/JP2009/059590
Other languages
English (en)
French (fr)
Inventor
小川勝也
齊藤全亮
藤岡和巧
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/120,391 priority Critical patent/US20110169722A1/en
Publication of WO2010038507A1 publication Critical patent/WO2010038507A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a transflective liquid crystal display device.
  • Liquid crystal display devices are widely used in electronic devices such as monitors, projectors, mobile phones, and personal digital assistants (PDAs), taking advantage of their thin and light weight and low power consumption.
  • PDAs personal digital assistants
  • As such types of liquid crystal display devices there are known a transmission type, a reflection type, a transflective type (a reflection / transmission type), and the like.
  • the transmissive liquid crystal display device performs display by guiding light from the back side of a backlight or the like provided on the back side of the liquid crystal display panel to the inside of the liquid crystal display panel and emitting it to the outside.
  • the reflective liquid crystal display device displays light by guiding light from the front side (observation surface side) such as the surroundings and front light to the inside of the liquid crystal display panel and reflecting it.
  • the transflective liquid crystal display device performs transmissive display using light from the back side in a relatively dark environment such as indoors, and the front side in a relatively bright environment such as outdoors.
  • the reflection display using the light from is performed.
  • the transflective liquid crystal display device has both the excellent visibility in a bright environment of a reflective liquid crystal display device and the excellent visibility in a dark environment of a transmissive liquid crystal display device. is there.
  • a liquid crystal having negative dielectric anisotropy is vertically aligned, and a multi-domain vertical alignment type (Multi) in which banks (linear protrusions) and electrode extraction portions (slits) are provided on a substrate as an alignment regulating structure.
  • Multi multi-domain vertical alignment type
  • -Domain Vertical Alignment liquid crystal display device hereinafter abbreviated as MVA-LCD
  • Patent Document 1 by providing liquid crystal alignment regulating means for each of a region contributing to transmissive display (transmissive region) and a region contributing to reflective display (reflective region), a voltage is applied to the liquid crystal layer in the reflective region.
  • An MVA-LCD is disclosed that is less likely to be applied and intended to match the electro-optical characteristics of the reflective display with those of the transmissive display.
  • the liquid crystal orientation regulating means a slit-like opening formed by opening a part of the electrode and / or a convex part made of a dielectric formed on the electrode is provided. The opening area and / or the area occupied by the convex portion in the substrate plane direction is configured to be larger in the reflective display region than in the transmissive display region.
  • the area where the openings and convex portions, which are orientation regulating means, are arranged to cause a decrease in the aperture ratio. Therefore, a loss of transmittance occurs in the portion where these are provided. Further, in the vicinity of the protrusion, there is room for improvement in that the contrast decreases due to the light leakage due to the disorder of alignment, the white luminance is low, and the display is dark.
  • a ⁇ / 4 phase difference plate necessary for reflection display is provided on the entire outer surface of each of the observation surface side substrate (color filter substrate) and the back surface side substrate. For this reason, in transmissive display, the light emitted from the backlight passes through the ⁇ / 4 phase difference plate which is originally unnecessary, so that the optical axis deviation or phase difference of the ⁇ / 4 phase difference plate is in-plane.
  • the contrast characteristics of the transmissive display are likely to deteriorate due to the influence of variations and the like.
  • the thickness of the liquid crystal layer in the transmissive region is made larger than the thickness of the liquid crystal layer in the reflective region, and a retardation plate ( ⁇ / 4 retardation plate) necessary for reflective display between the substrate in the reflective region and the liquid crystal layer.
  • An MVA-LCD in which is arranged is disclosed (for example, see Patent Document 2).
  • the MVA-LCD having such a configuration can improve the transmission contrast ratio without causing a decrease in transmittance.
  • the MVA-LCD having the above-described configuration still requires protrusions and slits that are orientation regulating means. Further, since the orientation control direction of the orientation regulating means and the number of divisions in the pixel are different between the transmission region and the reflection region, the manufacturing process becomes complicated. Furthermore, since a step is required to change the thickness of the liquid crystal layer in the transmissive region and the thickness of the liquid crystal layer in the reflective region, the orientation of the liquid crystal is disturbed at this step, so a high-definition model with a particularly small pixel size. However, there is room for improvement in that the influence on the orientation of both the transmissive region and the reflective region is large.
  • a technique for providing a pretilt angle using a polymer is known as a technique for controlling the alignment of liquid crystal without using alignment regulating means such as protrusions and slits (see, for example, Patent Document 3).
  • a liquid crystal composition in which a polymerizable component such as a monomer or an oligomer is mixed with liquid crystal is sealed between substrates, and then a voltage is applied between the substrates to tilt the liquid crystal molecules.
  • the polymerizable component is polymerized in the state. Thereby, a liquid crystal layer tilted in a predetermined tilt direction is obtained.
  • FIG. 4 of Patent Document 3 discloses a liquid crystal display device using a stripe electrode having an electrode width of 3 ⁇ m and a space width of 3 ⁇ m.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a transflective liquid crystal display device which has a high contrast ratio and an aperture ratio of transmissive display and can cope with pixel miniaturization. It is.
  • a pixel electrode including a trunk portion and a plurality of branch portions branched from the trunk portion is provided on the first substrate, and the branch portion and the slit (pixel electrode) are provided.
  • the ⁇ / 4 retardation plate necessary for the reflective display is reflected on the liquid crystal layer side of the second substrate (observation surface side substrate). It has been found that if it is selectively formed only in the portion corresponding to the region, the area for providing the orientation regulating means can be reduced, the aperture ratio can be improved, and the contrast ratio of the transmissive display can be increased.
  • the inventors have arrived at the present invention by conceiving that the problem can be solved brilliantly.
  • the present invention is a liquid crystal display device having a first substrate, a liquid crystal layer, and a second substrate in this order, wherein the first substrate includes a trunk and a plurality of branches branched from the trunk.
  • the liquid crystal display device includes a display region including a region in which the branches and slits are alternately arranged, the display region includes a reflective region and a transmissive region, and the reflective region
  • the first substrate has a reflective film under the pixel electrode
  • the second substrate has a ⁇ / 4 retardation layer on the liquid crystal layer side.
  • the liquid crystal display device of the present invention performs display by changing the retardation of the liquid crystal layer by changing the voltage applied to the liquid crystal layer.
  • the pixel electrode is usually provided for each pixel and is used for applying a voltage to the liquid crystal layer.
  • the pixel electrode having a shape including a trunk and a plurality of branches branched from the trunk is a so-called fishbone electrode.
  • the pixel electrode there is a form in which the inside of the pixel is divided into four regions by a cross-shaped trunk, and a plurality of branches extend to each of the four regions.
  • the four regions are provided with branches extending in the 45 ° direction when the extending direction of the cross-shaped trunk is set to 0 °, 90 °, 180 °, and 270 °.
  • a region provided with branches extending in the direction of 135 ° a region provided with branches extending in the direction of 225 °, and a region provided with branches extending in the direction of 315 °. .
  • the liquid crystal display device of the present invention has a display region including a region where the branch portions and the slits are alternately arranged.
  • the width of the branches is from the viewpoint of stabilizing the alignment of the liquid crystal molecules only by the fishbone type electrode of the first substrate without providing the second substrate with an alignment regulating means. Is preferably 3 ⁇ m or less, and the width of the slit is preferably 3 ⁇ m or less.
  • the display area includes a transmissive area and a reflective area.
  • the transmissive region refers to a region that contributes to transmissive display
  • the reflective region refers to a region that contributes to reflective display. That is, light used for transmissive display passes through the liquid crystal layer in the transmissive region, and light used for reflective display passes through the liquid crystal layer in the reflective region.
  • the first substrate has a reflective film under the pixel electrode. Details of the reflective film will be described later.
  • the second substrate (observation surface side substrate) has a ⁇ / 4 retardation layer on the liquid crystal layer side, that is, in the cell.
  • the ⁇ / 4 retardation layer is a retardation plate having optical anisotropy made so that an optical path difference of ⁇ / 4 is generated between two polarization components that vibrate in the vertical direction. It has a function of converting circularly polarized light or circularly polarized light into linearly polarized light, and is used for reflective display.
  • the liquid crystal display device of the present invention can stabilize the alignment of the liquid crystal molecules by the fishbone electrode provided on the first substrate. Without providing projections or slits, the ⁇ / 4 retardation layer can be provided on the liquid crystal layer side of the second substrate and only in the reflective region.
  • positioning aspect of (lambda) / 4 phase difference layer the aspect provided between a 2nd board
  • the ⁇ / 4 retardation layer is not provided in the transmissive display region, so that high contrast characteristics equivalent to those of the transmissive liquid crystal display device are realized in the transmissive display.
  • a transflective liquid crystal display device having a reflection function is obtained.
  • the transmissive region and the reflective region preferably have the same orientation control direction and the same number of divisions, and the transmissive region and the reflective region are preferably continuously oriented.
  • the second substrate in the liquid crystal display device of the present invention further includes a light shielding body at a boundary portion between the reflection region and the transmission region and at the boundary portion of the ⁇ / 4 retardation layer.
  • a light blocking body black matrix
  • light that passes through the in-cell retardation layer can be blocked in the transmission region, and light that does not pass through the in-cell retardation layer can be blocked in the reflection region. Therefore, it is possible to obtain good display characteristics without deterioration of transmissive and reflective display while ensuring a manufacturing margin.
  • a metal material such as chromium or chromium oxide, an acrylic resin in which carbon fine particles are dispersed, or the like can be suitably used.
  • the second substrate is on the liquid crystal layer side of the ⁇ / 4 retardation layer, and at least in the transmission region, the step between the region where the ⁇ / 4 retardation layer is disposed and another region is flattened. It is preferable to further have an insulating film for this purpose. Thereby, the alignment disturbance caused by the step can be suppressed, and light leakage at the step portion can be prevented.
  • An acrylic resin can be suitably used for forming the insulating film.
  • the region where the trunk portion of the pixel electrode is disposed is preferably used as a reflection region.
  • the alignment directions of the liquid crystals in the four areas are different from each other, and the trunk is arranged. Regions become boundaries of different orientations. For this reason, in the region where the trunk portion is disposed, the alignment of the liquid crystal is difficult to stabilize, which may cause display roughness.
  • reflective display is not designed based on high display quality compared to transmissive display, so even if it is used as a reflective area without shading the trunk, the influence on display quality can be kept small, and the aperture ratio Improvements can be made.
  • the reflective film needs to be disposed below the pixel electrode at least in a region overlapping with the slit of the pixel electrode, but may be formed on the pixel electrode in a region overlapping with the trunk and branch of the pixel electrode.
  • the thickness of the liquid crystal layer in the reflective region is preferably 60% or more of the thickness of the liquid crystal layer in the transmissive region from the viewpoint of improving the display quality of the reflective display. More preferably, the thickness of the liquid crystal layer in the reflection region is substantially equal to the thickness of the liquid crystal layer in the transmission region.
  • This configuration is advantageous in that the manufacturing process is simplified because it does not employ a multi-gap structure in which the thickness of the liquid crystal layer in the reflective region is approximately half the thickness of the liquid crystal layer in the transmissive region. Further, since the thickness of the liquid crystal layer in the reflective region is substantially equal to the thickness of the liquid crystal layer in the transmissive region, the response speed of the liquid crystal in the reflective region and the response speed of the liquid crystal in the transmissive region can be made equal. Thereby, the voltage application conditions during overshoot driving can be made the same in the transmissive region and the reflective region.
  • overshoot driving is intended to improve the response speed of the liquid crystal, and is a step with respect to a predetermined input image signal of the current frame according to a combination of the input image signal of the previous frame and the input image signal of the current frame.
  • This is a liquid crystal driving method for supplying a liquid crystal display panel with a driving voltage higher (overshooted) or lower (undershooted) than a regulated voltage.
  • the voltage-luminance characteristics (voltage-reflection luminance characteristics) of the reflective area and the voltage-luminance characteristics (voltage-transmission luminance characteristics) of the transmissive area will be different.
  • transmissive display light from the back side passes only once through the liquid crystal layer from entering the liquid crystal display panel to exiting, whereas when performing reflective display. Since the light from the front side passes through the liquid crystal layer twice from entering the liquid crystal display panel to being emitted, the reflection region is effectively calculated from twice the thickness of the liquid crystal layer. It is necessary to consider retardation.
  • the thickness of the liquid crystal layer is substantially the same in the transmissive region and the reflective region, when the liquid crystal in the transmissive region and the liquid crystal in the reflective region are driven with the same voltage, The effective retardation is larger than the retardation of the liquid crystal layer in the transmission region.
  • the voltage-reflection luminance characteristics are steeper than the voltage-transmission luminance characteristics.
  • the applied voltage Rmax that maximizes the luminance of the reflective region is smaller than the applied voltage Tmax that maximizes the luminance of the transmissive region, and the luminance of the reflective region when a voltage larger than Rmax (for example, Tmax) is applied.
  • Rmax is smaller than the luminance of the reflection region when Rmax is applied.
  • the brightness of the reflective display increases as the applied voltage increases, but reaches a maximum at an applied voltage (Rmax) lower than the applied voltage (Tmax) at which the brightness of the transmissive display is maximized. Decreases monotonically with increase. Therefore, when the thickness of the liquid crystal layer in the transmissive region and the thickness of the liquid crystal layer in the reflective region are the same, and the transmissive region and the reflective region are driven integrally with the same signal, the gradation inversion of the reflective display occurs. End up.
  • the present invention by adjusting the ratio of the occupied area of the slit in the reflection region, it is possible to obtain voltage-reflection luminance characteristics in which gradation inversion hardly occurs without adopting a multi-gap structure. That is, the inventors of the present invention have proposed that in the region where the slits in the reflective region are arranged (hereinafter also referred to as slit regions), even if the slit width is narrowed to 5 ⁇ m or less, the regions where the pixel electrode branches are arranged ( In the following, it was also difficult to apply a voltage to the liquid crystal layer as compared with the electrode region.) And the transmittance was found to decrease.
  • the applied voltage Rmax that maximizes the luminance of the reflective region is large, and is equal to or greater than the voltage Tmax that maximizes the luminance of the transmissive region (slit region Rmax ⁇ Tmax> electrode region Rmax). ).
  • this slit area for reflection display by adjusting the area occupied by the electrode area and the slit area in the reflection area, even if the transmission area and the reflection area are driven with the same signal voltage, The voltage-transmittance characteristic and the voltage-transmittance characteristic of the transmissive region can be brought close to each other, and gradation inversion of reflective display can be suppressed.
  • the ratio of the area occupied by the slit of the pixel electrode is 30% or more with respect to the entire reflection region.
  • TFT thin film transistor
  • Examples of methods for adjusting the ratio of the area occupied by the slit in the reflective region include a method in which the electrode width in the reflective region is made smaller than that in the transmissive region, a method in which the width of the reflective film near the trunk is increased, and reflection under the slit.
  • membrane is mentioned.
  • the first substrate As a preferable form of the first substrate, a polymer formed by polymerizing a polymerizable component added in the liquid crystal layer while applying a voltage to the liquid crystal layer is provided on the substrate surface, and the polymer is a liquid crystal
  • numerator and / or the orientation direction at the time of voltage application is mentioned. According to such a form, the response speed of the liquid crystal can be improved while suppressing a decrease in the aperture ratio.
  • a preferred embodiment of the liquid crystal layer includes an embodiment containing liquid crystal molecules that are aligned in a direction perpendicular to the substrate surface when no voltage is applied and that are aligned in a horizontal direction relative to the substrate surface when a voltage is applied.
  • a display method of a liquid crystal display device using such a liquid crystal layer is called a vertical alignment (VA) mode.
  • VA vertical alignment
  • liquid crystal molecules having negative dielectric anisotropy are used.
  • the liquid crystal display device of the present invention may be in a normally black mode (a mode in which light transmittance or luminance in an off state is lower than those in an on state), or in a normally white mode (in an off state).
  • the light transmittance or luminance may be higher than those in the on state).
  • a preferred form of the reflective film includes a form using signal wiring, and for example, an auxiliary capacitor bus line, a gate bus line, and a source bus line are preferably used. These signal wirings are necessary for driving an active matrix type liquid crystal display device, and by using these signal wirings as a reflective film, the process of forming a reflective region is compared with a method for manufacturing a transmissive liquid crystal display device. Therefore, it is possible to easily manufacture a transflective liquid crystal display device.
  • the auxiliary capacitor bus line is normally arranged in the display region in order to form an auxiliary capacitor in each pixel, the auxiliary capacitor bus line is used as a reflective film from the viewpoint of increasing the aperture ratio. preferable.
  • a conductor provided separately from the signal wiring in the same layer as the signal wiring may be used as the reflective film so that it can be formed in the same process as the signal wiring.
  • the first substrate further has a conductive portion and an insulating film covering the conductive portion under the pixel electrode, and the insulating film has an opening in the reflective region.
  • the conductive portion and the pixel electrode are electrically connected within the opening, and the thickness of the liquid crystal layer is larger than the transmission region in the opening formation region.
  • the thickness of the liquid crystal layer is larger than the thickness of the liquid crystal layer in other areas. Therefore, when the voltage Tmax that maximizes the luminance of the transmissive display is applied to the reflective area and the transmissive area, The effective retardation of the liquid crystal layer in the region where the openings are formed is a value exceeding twice the retardation of the liquid crystal layer in the transmissive region.
  • the voltage-luminance characteristic of the aperture formation region shows that the first luminance maximum voltage appears as the applied voltage is increased in the applied voltage range below the luminance maximum voltage Tmax of the transmission region. After that, at least the luminance minimum voltage and the second luminance maximum voltage appear in this order. If the voltage-luminance characteristics in the opening formation region are used, the voltage-luminance characteristics of the remaining area in the reflection area and the voltage-luminance characteristics of the opening formation area are added together to obtain the remaining area in the reflection area. In the range of the applied voltage higher than the luminance maximum voltage Rmax, the monotonic decrease in luminance in the remaining region in the reflection region can be compensated by the second and subsequent monotonically increasing portions in the aperture formation region.
  • the thickness of the liquid crystal layer in the opening formation region is preferably 1.1 to 3.0 times the thickness of the liquid crystal layer in the transmission region. If the thickness of the liquid crystal layer in the transmissive region is less than 1.1 times, the effect of compensation by the second monotonous increase in the aperture formation region cannot be obtained. There is a possibility that the voltage generated by the shift to the low voltage side. If it exceeds 3.0 times the thickness of the liquid crystal layer in the transmission region, the shift of the first maximum voltage, the minimum voltage, and the second maximum voltage to the low voltage side of the aperture formation region becomes large. There is a possibility that the voltage at which the voltage-luminance characteristic is not monotonously increased in the middle of the first maximum voltage and the voltage at which the luminance inversion phenomenon occurs shifts to the low voltage side.
  • the thickness of the liquid crystal layer in the opening formation region is more preferably 1.5 to 2.5 times the thickness of the liquid crystal layer in the transmission region.
  • the “conductive portion” includes not only a member made of a conductive material but also a member made of a semiconductor material. Examples of the conductive portion include a drain electrode of a thin film transistor (TFT).
  • TFT thin film transistor
  • a preferable form of the pixel electrode includes a form in which the part of the transmissive region is formed of a transparent conductive material and the part of the reflective region includes a reflective conductive film. Since the pixel electrode in the reflective region includes a reflective conductive film, the optical path of light used for reflective display is shortened compared to the case where the reflective conductive film in the lower layer is used for reflective display. Since a decrease in reflectance due to absorption and interface reflection can be suppressed, the reflectance can be improved.
  • transparent conductive material examples include indium tin oxide (ITO), indium zinc oxide (IZO), and zinc oxide.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • zinc oxide examples of the transparent conductive material
  • the pixel electrode in the reflective region a laminate of a transparent conductive film and a reflective conductive film is preferably used.
  • the pixel electrode in the reflective region preferably has a film formed of a material having a work function difference of less than 0.3 eV with respect to the transparent conductive film in the transmissive region on the uppermost layer facing the liquid crystal layer. Used for. According to this aspect, it is possible to suppress the flicker phenomenon caused by the optimum counter voltage difference between the transmission region and the reflection region.
  • the transparent conductive film in the transmissive region is ITO, for example, molybdenum nitride (MoN) or IZO is preferably used as the film provided on the uppermost layer facing the liquid crystal layer in the reflective region.
  • a preferable form of the second substrate includes a form having a common electrode in which a slit or an opening is formed in the reflection region.
  • This form is suitable for adjusting the occupation area ratio of the electrode non-formation region in the reflection region.
  • the width of the slit or opening formed in the common electrode is preferably 3 ⁇ m or less from the viewpoint of stabilizing the alignment of liquid crystal molecules.
  • the shape of a slit or opening is not specifically limited, For example, linear shape, a circumferential shape, a cross shape etc. are mentioned.
  • the slit or opening direction formed in the common electrode is 45 °, 135 °, 225 °, as in the slit direction formed in the pixel electrode of the first substrate. It may be 315 °.
  • the sum of the occupied area ratio of the slits of the pixel electrode and the occupied area ratio of the slits and openings of the common electrode is preferably 30% or more with respect to the entire reflection region.
  • the area where the slit of the pixel electrode and the slit or opening of the common electrode face each other is included in only one of the occupied area ratio of the slit of the pixel electrode and the occupied area ratio of the slit / opening of the common electrode.
  • a form in which the ratio of the occupied area of the slits and openings of the common electrode is 30% or more with respect to the entire reflection region is also preferably used. This configuration is suitable when it is difficult to increase the ratio of the area occupied by the slits of the pixel electrode.
  • the liquid crystal display device of the present invention a form in which the slit width of the transmissive region and the slit width of the reflective region are different is mentioned.
  • the width of the branch portion of the pixel electrode in the transmission region is different from the width of the branch portion of the pixel electrode in the reflection region.
  • a pixel electrode including a trunk and a plurality of branches branched from the trunk is provided, and an area where branches and slits are alternately arranged is used as a display area. Since the / 4 retardation layer is selectively formed only in the portion corresponding to the reflective display area in the cell, unnecessary ⁇ / 4 retardation layer is eliminated in the transmissive display area, and high contrast characteristics as transmissive display are obtained. Can be realized. In addition, since the area where the alignment regulating means is provided is reduced, it is possible to provide a transflective liquid crystal display device having a high aperture ratio and capable of responding to pixel miniaturization.
  • FIG. 3 is a schematic plan view illustrating pixels of the liquid crystal display device according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing a cross section taken along line AB in FIG. 1.
  • FIG. 6 is a diagram showing a result of simulating applied voltage-reflectance characteristics (VR characteristics) to pixel electrodes for the liquid crystal display device according to the first embodiment. It is a figure which shows the relationship between the occupation area ratio of the slit area
  • region. 6 is a schematic plan view showing pixels of a liquid crystal display device according to Embodiment 2.
  • FIG. FIG. 7 is a schematic cross-sectional view showing a cross section taken along line AB in FIG. 6.
  • the ⁇ / 4 retardation layer necessary for the reflective display is selectively formed only in the portion corresponding to the reflective display region in the cell, thereby realizing high contrast characteristics as the transmissive display.
  • the region where the pixel electrode is disposed, the region where the slit of the pixel electrode is disposed, and the region where the contact hole is disposed are used for reflection display, and different voltage-reflectance characteristics (VR) of the three regions are used.
  • VR voltage-reflectance characteristics
  • FIG. 1 is a schematic plan view illustrating pixels of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a cross section taken along the line AB in FIG.
  • an 8-inch diagonal WVGA panel (pixel pitch: 72.5 ⁇ m ⁇ 217.5 ⁇ m, number of pixels: 800 ⁇ RGB ⁇ 480) was produced.
  • the liquid crystal display device according to the present embodiment is sandwiched between the rear substrate 10, the observation surface substrate 60 provided so as to face the rear substrate 10, and the rear substrate 10 and the observation substrate 60. And a liquid crystal layer 100 provided on the surface.
  • the liquid crystal display device has a transmissive region T and a reflective region R, and is a transflective liquid crystal display device that can perform both transmissive display and reflective display.
  • a backlight (not shown) provided on the back side of the back side substrate 10 is used as a light source, and when performing reflective display, it is incident on the liquid crystal layer 100 from the observation surface side. External light, front light, etc. are used as the light source.
  • the back substrate 10 includes a plurality of gate signal lines 13 and auxiliary capacitance (Cs) wirings 14 extending in parallel to each other, and a plurality of source signal lines 16 extending orthogonally to the gate signal lines 13 and auxiliary capacitance wirings 14 and in parallel with each other. And a thin film transistor (TFT) 30 provided at each intersection of the gate signal line 13 and the source signal line 16.
  • the gate signal line 13 is formed of a TiN / Al / Ti laminate.
  • the source signal line 16 is formed of an Al / Ti laminate.
  • the TFT 30 includes a gate electrode connected to the gate signal line 13, a source electrode connected to the source signal line 16, and a drain electrode 17 electrically connected to the pixel electrode 19 through the contact hole 31.
  • the drain electrode 17 is provided with a region facing the auxiliary capacitance line 14 via the gate insulating film 15, and an auxiliary capacitance (Cs) is formed in this region.
  • the contact hole 31 is formed by forming a transparent conductive film constituting the pixel electrode 19 in an opening provided in the interlayer insulating film 18.
  • the back substrate 10 has a base coat film, a gate signal line 13 (auxiliary capacitance wiring (reflection film) 14), a gate insulating film 15, and a source signal line 16 (drain electrode 17) on a glass substrate 11. ), An interlayer insulating film 18, a pixel electrode 19, and a vertical alignment film (not shown).
  • the contact hole 31 is used to electrically connect the drain electrode 17 and the pixel electrode 19, and forms a recess on the surface of the back side substrate 10 on the liquid crystal layer 100 side.
  • one contact hole 31 is provided at the center of the pixel. A configuration in which two or more contact holes 31 are provided per pixel may be employed.
  • the pixel electrode 19 is formed in a cross shape, and includes a trunk portion 19a that divides the inside of the pixel into four regions, and a plurality of branch portions 19b that extend from both sides of the trunk portion 19a. From the viewpoint of improving the viewing angle characteristics, branch portions 19b extending in different directions are formed in the four regions divided by the trunk portion 19a.
  • the region where the branch portion extending in the 45 ° direction is formed, and the branch portion extending in the 135 ° direction are There are a formed region, a region where a branch portion extending in the 225 ° direction is formed, and a region where a branch portion extending in the 315 ° direction is formed.
  • the width of the trunk portion 19a is 3.0 ⁇ m.
  • the width of each branch portion 19b is 2.5 ⁇ m, and the interval between the branch portions 19b (slit width) is 2.5 ⁇ m.
  • the pixel electrode 19 is made of ITO.
  • the auxiliary capacitance line 14 also functions as a reflection film for reflecting external light.
  • the auxiliary capacitance line 14 as a reflective film, it is not necessary to form a reflective film dedicated to reflective display, and therefore, the manufacturing process is not increased with respect to the transmissive liquid crystal display device.
  • a similar advantage can be obtained by the gate signal line 13, the source signal line 16, or the conductor provided separately in the same layer as the gate signal line 13, the auxiliary capacitance line 14, and the source signal line 16.
  • a plurality of auxiliary capacitance lines 14 are provided in parallel on the back substrate 10, and a common auxiliary capacitance line 14 is used for pixels in the same row among a plurality of pixels arranged in a matrix.
  • a branching portion 14a extending in a direction parallel to the extending direction of the source signal line 16 (vertical direction in FIG. 1) is formed.
  • the auxiliary capacitance line 14 overlaps almost the entire trunk portion 19 a of the pixel electrode 19 except for the vicinity of the gate signal line 13. Further, the auxiliary capacitance wiring 14 overlaps with a part of the plurality of branches 19b of the pixel electrode 19 and a slit between the branches 19b.
  • the cross-shaped region in which the auxiliary capacitance wiring 14 is disposed is used as the reflective region, and the four domains separated by the reflective region are used as the transmissive region. Note that the area ratios in the pixels of the four domains in the transmissive region are equal, and this enables uniform display over a wide viewing angle.
  • the contact hole 31 is located in the reflection region (hole region). The area ratio of each area in the display area is summarized as shown in Table 1 below.
  • a polymer (not shown) formed by polymerizing a polyfunctional acrylate monomer is formed on the surface of the vertical alignment film provided on the back substrate 10 side.
  • a method for forming this polymer for example, (1) a polyfunctional acrylate monomer having a methacryloyl group in an empty panel formed by bonding the back side substrate 10 and the observation surface side substrate 60 together with a sealing material is added to the polymer. A nematic liquid crystal having negative dielectric anisotropy added at 3 wt% is injected. (2) While applying an AC voltage of 10 V to the liquid crystal layer 100, an ultraviolet ray having a bright line peak between wavelengths of 300 to 400 nm is irradiated.
  • the residual monomer in the liquid crystal layer 100 can be removed by exposing the liquid crystal layer 100 to a fluorescent lamp for 48 hours without applying a voltage.
  • the polymer formed by the above method has a surface structure that defines the pretilt angle of the liquid crystal molecules in the liquid crystal layer 100 and / or the alignment direction of the liquid crystal molecules when a voltage is applied.
  • the ⁇ / 4 retardation layer 50 is formed on the observation surface side substrate 60 only in the reflection region R on the glass substrate 61.
  • the ⁇ / 4 retardation layer 50 formed on the observation surface side substrate 60 and the auxiliary capacitance wiring 14 formed on the back surface side substrate 10 are at the same position when viewed from the observation surface side.
  • the observation surface side substrate 60 includes a color filter layer 62 composed of a colored layer formed so as to cover the glass substrate 61 on which the ⁇ / 4 retardation layer 50 is formed and a black matrix (BM) 40, and a ⁇ / 4 position.
  • An insulating layer 64 for flattening a step between the region where the phase difference layer 50 is disposed and another region, a counter electrode 63, and a vertical alignment film (not shown) are sequentially stacked.
  • the colored layers are arranged so that the red (R), green (G), and blue (B) layers respectively correspond to the pixel electrodes 19 of the back side substrate 10.
  • the counter electrode 63 is formed not as a pixel but as one electrode (common electrode) corresponding to a plurality of pixels.
  • the counter electrode 63 is made of ITO.
  • Polarizers 110 and 120 are attached to the back surface side of the glass substrate 11 of the back surface side substrate 10 and the observation surface side of the glass substrate 61 of the observation surface side substrate 60, respectively.
  • the absorption axes of the polarizers 110 and 120 and the slow axis of the ⁇ / 4 retardation layer 50 are arranged to form an angle of 45 °. Further, the absorption axes of the polarizers 110 and 120 are arranged so as to form an angle of 90 °.
  • the display mode of the liquid crystal display device of the present embodiment is a vertical alignment (VA) mode
  • the liquid crystal layer 100 is composed of nematic liquid crystal having negative dielectric anisotropy.
  • the liquid crystal molecules in the liquid crystal layer 100 are aligned in a direction perpendicular to the alignment film surfaces of the back side substrate 10 and the observation surface side substrate 60 in a state where no voltage is applied (off state), and the voltage is applied. It falls down in the horizontal direction in the state (on state).
  • the thickness of the liquid crystal layer 100, the so-called cell gap d, is 3.2 ⁇ m.
  • the refractive index anisotropy ⁇ n of the liquid crystal material is 0.098.
  • the cell gap d of the transmissive region T is constant.
  • the reflective region R includes an electrode region (a region where a pixel electrode is formed) and a slit region (a region where a slit is formed) having the same cell gap d1 as the cell gap d of the transmissive region T, and a transmissive region. And a hole region having a cell gap d2 larger than the cell gap of T (d1 ⁇ d2).
  • the pixel electrode 19 has a thickness of 1400 mm, which is very small compared to the cell gaps d and d1 (3.2 ⁇ m) and the depth d2 (3.0 ⁇ m) of the hole region. The difference in cell gap from the region can be ignored in the voltage-luminance characteristics.
  • the voltage applied to the pixel electrode-reflectance characteristics were obtained by simulation.
  • the result is shown in FIG.
  • the reflectance in FIG. 3 has shown the luminance ratio when the maximum luminance in each area
  • the reflection display light in the reflection region R is light obtained by mixing the reflection display light in the electrode region (A), the reflection display light in the slit region (B), and the reflection display light in the hole region (C). Therefore, the VR characteristic of the reflection region R is obtained by adding the VR characteristics of these three regions (A to C) in accordance with the area of each region.
  • the reflectance of the electrode region (A) increases as the applied voltage increases, reaches a maximum at 4.8 V, and decreases as the applied voltage further increases. ing.
  • the effective retardation of the liquid crystal layer is also small.
  • the reflectance of the slit region (B) increases gently as the applied voltage increases, and reaches a maximum at 6.0V.
  • the hole region (C) Since the hole region (C) has a cell gap larger than that of the electrode region (A) and the slit region (B), the effective retardation of the liquid crystal layer is increased. Further, the reflectance of the hole region (C) increases sharply as the applied voltage increases, shows the initial maximum value at 3.0V, decreases as the applied voltage further increases, and reaches the minimum value at 4.0V. The second maximum value is shown at 6.0V.
  • the VR characteristic of the entire reflection area (A + B + C) obtained by synthesizing the VR characteristics of the three areas (A to C) increases as the applied voltage increases, reaches a maximum at 5.5V, and is almost up to 6.0V. The maximum value is maintained, and almost coincides with the VT characteristic of the transmission region.
  • the slit occupation area ratio in the reflection region R is adjusted to 30% or more in order to utilize the electric field drop in the slit region (B) for reflection display, and contact is made in the reflection region.
  • the cell gap d in the transmissive region T and the most cell gap d1 in the reflective region R are the same.
  • the response speeds of the liquid crystal molecules in the transmissive region T and the liquid crystal molecules in the reflective region R become equal, so that the overshoot driving condition of the transmissive region T and the overshoot driving condition of the reflective region R can be made equal. Therefore, the response speed of the liquid crystal molecules can be easily improved by overshoot driving. Furthermore, it is not necessary to perform a process for forming a multi-gap structure.
  • the material of the pixel electrode 19 can be made the same in the transmissive region T and the reflective region R, the flicker phenomenon caused by the optimum counter voltage difference between the transmissive region T and the reflective region R is effectively prevented. Can be reduced.
  • the area which provides an orientation control means is reduced.
  • the aperture ratio of the transmission region T is 37.3%
  • the aperture ratio of the reflection region R is 16.6%
  • a total aperture ratio of 53.9% is obtained.
  • FIGS. 4 and 5 show the VR characteristic of the entire reflection region R.
  • FIG. 5 shows the VR characteristic of the slit region (B) in the reflection region R.
  • the reflectances in FIGS. 4 and 5 indicate the luminance ratio when the maximum luminance under each condition is 100%.
  • the voltage corresponding to the maximum luminance is shifted to the high voltage side.
  • FIG. 6 is a schematic plan view illustrating pixels of the liquid crystal display device according to the second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a cross section taken along line AB in FIG.
  • the liquid crystal display device according to the present embodiment is the same as the liquid crystal display device according to the first embodiment except that a light blocking body 51 is further provided at the boundary portion of the ⁇ / 4 retardation layer 50 between the transmission region T and the reflection region R. It has the same configuration as.
  • the light shielding body 51 is made of an acrylic resin in which carbon fine particles are dispersed and has a thickness of 1.2 ⁇ m.
  • the light passing through the ⁇ / 4 retardation layer 50 is transmitted in the transmission region T by further providing the light shielding body 51 at the boundary portion of the ⁇ / 4 retardation layer 50 provided in the cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、透過表示のコントラスト比及び開口率が高く、画素の微細化にも対応できる半透過型の液晶表示装置を提供する。 本発明の液晶表示装置は、第一基板(10)と、液晶層(100)と、第二基板(60)とをこの順に有する液晶表示装置であって、上記第一基板(10)は、幹部と、上記幹部から分岐した複数の枝部とを備える画素電極(19)を有し、枝部とスリットとが交互に配置された領域を含む表示領域は、反射領域(R)及び透過領域(T)からなり、上記反射領域(R)において、上記第一基板(10)は、上記画素電極(19)下に反射膜(14)を有し、上記第二基板(60)は、上記液晶層(100)の側にλ/4位相差層(50)を有する液晶表示装置である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、半透過型の液晶表示装置に関するものである。
液晶表示装置は、薄型で軽量、かつ、低消費電力といった特長を活かし、モニター、プロジェクタ、携帯電話、携帯情報端末(PDA)等の電子機器に幅広く利用されている。このような液晶表示装置の種類としては、透過型、反射型及び半透過型(反射透過両用型)等が知られている。
透過型の液晶表示装置は、液晶表示パネルの背面側に設けられたバックライト等の背面側からの光を液晶表示パネルの内部に導き、外部に出射することによって、表示を行うものである。反射型の液晶表示装置は、周囲やフロントライト等の前面側(観察面側)からの光を液晶表示パネルの内部に導き、反射することによって表示を行うものである。
これらに対し、半透過型の液晶表示装置は、屋内等の比較的に暗い環境下では、背面側からの光を利用した透過表示を行い、屋外等の比較的に明るい環境下では、前面側からの光を利用した反射表示を行うものである。すなわち、半透過型の液晶表示装置は、反射型の液晶表示装置の明るい環境下での優れた視認性と、透過型の液晶表示装置の暗い環境下での優れた視認性とを併せ持つものである。
一方、負の誘電率異方性を有する液晶を垂直配向させ、配向規制用構造物として基板上に土手(線状突起)や電極の抜き部(スリット)を設けたマルチドメイン垂直配向型(Multi-domain Vertical Alignment)液晶表示装置(以下、MVA-LCDと略称する)が知られている。
例えば、特許文献1には、透過表示に寄与する領域(透過領域)及び反射表示に寄与する領域(反射領域)のそれぞれについて液晶の配向規制手段を設けることによって、反射領域において液晶層に電圧をかかり難くし、反射表示の電気光学特性を透過表示の電気光学特性に揃えることを意図したMVA-LCDが開示されている。液晶の配向規制手段としては、電極の一部を開口して形成したスリット状の開口部、及び/又は、電極上に形成された誘電体からなる凸状部を設けており、上記開口部の開口面積、及び/又は、凸状部の基板平面方向の占有面積を、上記透過表示領域よりも上記反射表示領域において大きく構成している。
しかしながら、MVA-LCDは、配向規制手段である開口部や凸状部が配置された領域が開口率を低下させる要因となるため、これらが設けられた部分において透過率のロスが発生する。また、突起の周辺では、配向乱れによる光モレによりコントラストが低下し、白輝度が低く表示が暗いという点で改善の余地があった。
また、MVA-LCDには、一般的に、反射表示に必要なλ/4位相差板が、観察面側基板(カラーフィルタ基板)及び背面側基板における各々外側の全面に設けられている。そのため、透過表示においては、バックライトから出射された光が本来は不必要なλ/4位相差板を通過することになるため、λ/4位相差板の光軸ずれや位相差の面内バラツキ等の影響によって透過表示のコントラスト特性が劣化しやすくなる。
そこで、透過領域の液晶層の厚みを反射領域の液晶層の厚みよりも厚くするとともに、反射領域の基板と液晶層との間に反射表示に必要な位相差板(λ/4位相差板)を配置したMVA-LCDが開示されている(例えば、特許文献2参照。)。このような構成を有するMVA-LCDは、透過率の低下を招くことなく透過コントラスト比を向上させることができる。
しかしながら、上記のような構成を有するMVA-LCDにおいてもやはり、配向規制手段である突起やスリットが必要となる。また、透過領域と反射領域とでは、配向規制手段の配向制御方向や画素内の分割数が異なることから、製造工程が煩雑になる。更に、透過領域の液晶層の厚みと反射領域の液晶層の厚みとを変えるための段差部が必要となることから、この段差部において液晶の配向が乱れるため、特に画素サイズの小さい高精細モデルでは、透過領域及び反射領域の双方の領域の配向に与える影響が大きいという点で改善の余地があった。
これに対し、突起やスリットのような配向規制手段によらずに液晶の配向を制御する手法として、ポリマーを用いたプレチルト角の付与技術が知られている(例えば、特許文献3参照。)。ポリマーを用いたプレチルト角の付与技術では、液晶にモノマーやオリゴマー等の重合性成分を混合した液晶組成物を基板間に封止した後、基板間に電圧を印加して液晶分子をチルトさせた状態で重合性成分を重合させる。これにより、所定の傾斜方向にチルト(傾斜)する液晶層が得られる。なお、特許文献3の図4には、電極幅3μm、スペースの幅3μmのストライプ電極を用いた液晶表示装置が開示されている。
特開2004-198920号公報 特開2008-83610号公報 特開2003-149647号公報
本発明は、上記現状に鑑みてなされたものであり、透過表示のコントラスト比及び開口率が高く、画素の微細化にも対応できる半透過型の液晶表示装置を提供することを目的とするものである。
本発明者らは、半透過型の液晶表示装置について種々検討したところ、幹部と、上記幹部から分岐した複数の枝部とを備える画素電極を第一基板に設け、枝部とスリット(画素電極非形成部)とが交互に配置された領域を表示領域に用いる表示モードにおいて、反射表示に必要なλ/4位相差板を、第二基板(観察面側基板)の液晶層側における反射表示領域に相当する部分のみに選択的に形成すれば、配向規制手段を設ける面積を低減することができ、開口率の向上が図れ、更に、透過表示のコントラスト比を高めることができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、第一基板と、液晶層と、第二基板とをこの順に有する液晶表示装置であって、上記第一基板は、幹部と、上記幹部から分岐した複数の枝部とを備える画素電極を有し、上記液晶表示装置は、上記枝部とスリットとが交互に配置された領域を含む表示領域を有し、上記表示領域は、反射領域及び透過領域を含み、上記反射領域において、上記第一基板は、上記画素電極下に反射膜を有し、上記第二基板は、上記液晶層の側にλ/4位相差層を有する液晶表示装置である。
以下に本発明を詳述する。
本発明の液晶表示装置は、液晶層に印加する電圧を変化させることにより、液晶層のリタデーションを変化させることで表示を行うものである。
上記画素電極は、通常、画素ごとに設けられ、液晶層への電圧の印加に用いられる。上記のように、幹部とこの幹部から分岐した複数の枝部とを備える形状の画素電極は、いわゆるフィッシュボーン型電極と呼ばれるものである。画素電極の好ましい形態としては、十字形状の幹部により画素内が4つの領域に分割され、この4つの領域のそれぞれに複数の枝部が伸びる形態が挙げられる。このとき、視野角特性を向上させる観点から、4つの領域は、十字状の幹部の延伸方向を0°、90°、180°、270°としたときに、45°方向に伸びる枝部が設けられた領域、135°方向に伸びる枝部が設けられた領域、225°方向に伸びる枝部が設けられた領域、及び、315°方向にそれぞれ伸びる枝部が設けられた領域からなることが好ましい。
本発明の液晶表示装置は、上記枝部とスリットとが交互に配置された領域を含む表示領域を有する。枝部とスリットとが交互に配置された領域において、第二基板に配向規制手段を設けることなく第一基板のフィッシュボーン型電極のみにより液晶分子の配向を安定化させる観点から、枝部の幅は3μm以下であることが好ましく、スリットの幅は3μm以下であることが好ましい。
上記表示領域は、透過領域及び反射領域を含む。透過領域は、透過表示に寄与する領域をいい、反射領域は、反射表示に寄与する領域をいう。すなわち、透過表示に用いられる光は、透過領域の液晶層を通過し、反射表示に用いられる光は、反射領域の液晶層を通過する。上記反射領域において、第一基板は、画素電極下に反射膜を有する。反射膜の詳細については、後述する。
上記反射領域において、第二基板(観察面側基板)は、液晶層の側、すなわちセル内にλ/4位相差層を有する。λ/4位相差層は、互いに垂直方向に振動する2つの偏光成分の間にλ/4の光路差が生ずるように作られた光学的異方性を持つ位相差板であり、直線偏光を円偏光に、又は、円偏光を直線偏光に変換する機能を有し、反射表示に用いられる。
本発明の液晶表示装置は、上記のように、第一基板に設けられたフィッシュボーン型電極により液晶分子の配向を安定化させることができるため、液晶の配向制御や画素内の分割のための突起やスリットを設けることなく、λ/4位相差層を第二基板における液晶層の側であって、かつ、反射領域のみに設けることができる。λ/4位相差層の配置態様としては、例えば、第二基板とカラーフィルタ層との間に設ける態様が挙げられる。
上記のような構成を有する本発明の液晶表示装置は、透過表示領域にλ/4位相差層が設けられていないため、透過型液晶表示装置と同等の高いコントラスト特性を透過表示において実現しつつ、反射機能を有する半透過型液晶表示装置が得られる。また、透過領域と反射領域とは、配向制御方向及び分割数は同一であることが好ましく、また透過領域と反射領域とは連続的に配向していることが好ましい。このような形態にすれば、配向分割のための突起やスリットを形成する必要がなくなり、開口率の低下が著しい画素サイズの小さい高精細モデルにおいても高い開口率を維持でき、高い透過コントラスト特性を得ることが可能となる。
本発明の液晶表示装置における上記第二基板は、反射領域と透過領域との境界部分であって、かつ、上記λ/4位相差層の境界部分に、遮光体を更に備えることが好ましい。遮光体(ブラックマトリクス)を設けることで、透過領域においてはセル内位相差層を透過する光を遮断し、反射領域においてはセル内位相差層を透過しない光を遮断することができる。したがって、製造上のマージンを確保しつつ、透過、反射表示の劣化のない良好な表示特性を得ることが可能となる。遮光体(ブラックマトリクス)の形成には、クロム、酸化クロム等の金属材料やカーボン微粒子を分散させたアクリル系樹脂等が好適に使用できる。
上記第二基板は、上記λ/4位相差層よりも上記液晶層の側であって、少なくとも透過領域に、λ/4位相差層が配置された領域と他の領域との段差を平坦化するための絶縁膜を更に有することが好ましい。これにより、段差により生じる配向乱れを抑制して、段差部での光モレを防止できる。絶縁膜の形成には、アクリル樹脂が好適に使用できる。
なお、画素電極の幹部が配置された領域は、反射領域に用いることが好ましい。例えば、十字形状の幹部により画素内を4つの領域に分割し、この4つの領域のそれぞれに複数の枝部が伸びる形態では、4つの領域の液晶の配向方向が互いに異なり、幹部の配置された領域が異なる配向の境界となる。このため、幹部が配置された領域は、液晶の配向が安定し難く、表示ざらつきの原因となることがある。一般に、反射表示の方が透過表示に比べて高い表示品位を基準に設計されないことから、幹部を遮光せずに反射領域として用いても表示品位への影響を小さく抑えることができ、開口率の向上を図ることができる。
上記反射膜は、少なくとも画素電極のスリットと重畳する領域において画素電極下に配置される必要があるが、画素電極の幹部、枝部と重畳する領域においては画素電極上に形成してもよい。画素電極上に反射膜を形成することで、反射表示に用いられる光の光路を短縮し、反射率の向上を図ることができる。
本発明の液晶表示装置は、反射表示の表示品位を高める観点からは、反射領域における液晶層の厚みが透過領域における液晶層の厚みの60%以上であることが好ましい。より好ましくは、反射領域における液晶層の厚みと透過領域における液晶層の厚みとが実質的に等しい形態である。
この形態は、反射領域における液晶層の厚みを透過領域における液晶層の厚みの略半分とするマルチギャップ構造を採用しないので、製造工程が簡略化されている点で有利である。また、反射領域における液晶層の厚みが透過領域における液晶層の厚みと実質的に等しいことにより、反射領域における液晶の応答速度と透過領域における液晶の応答速度とを等しくすることができる。これにより、オーバーシュート駆動の際の電圧印加条件を透過領域と反射領域で同じにすることができる。
なお、オーバーシュート駆動とは、液晶の応答速度の向上を目的として、1フレーム前の入力画像信号と現フレームの入力画像信号の組み合わせに応じて、予め決められた現フレームの入力画像信号に対する階調電圧より高い(オーバーシュートされた)駆動電圧、又は、より低い(アンダーシュートされた)駆動電圧を液晶表示パネルに供給する液晶駆動方法である。
一方、半透過型の液晶表示装置においては、マルチギャップ構造を採用しない場合、反射領域の電圧-輝度特性(電圧-反射輝度特性)と、透過領域の電圧-輝度特性(電圧-透過輝度特性)とが異なってしまう。具体的には、透過表示を行う場合には、背面側からの光が、液晶表示パネルに入射してから出射するまでに液晶層を一度しか通過しないのに対し、反射表示を行う場合には、前面側からの光が、液晶表示パネルに入射してから出射されるまでに液晶層を二度通過することとなるため、反射領域については、液晶層の厚みの2倍から算出される実効リタデーションを考慮する必要がある。
上記形態においては、液晶層の厚みが透過領域と反射領域とで実質的に等しいため、透過領域の液晶と反射領域の液晶とが同一の電圧で駆動される場合に、反射領域における液晶層の実効リタデーションは、透過領域における液晶層のリタデーションよりも大きくなる。
したがって、画素電極に印加される電圧を横軸に取り、輝度を縦軸に取り、反射領域の電圧-輝度特性をプロットすると、電圧-反射輝度特性は電圧-透過輝度特性に比べて急峻となる。また、反射領域の輝度を極大にする印加電圧Rmaxは、透過領域の輝度を極大にする印加電圧Tmaxよりも小さく、Rmaxよりも大きな電圧(例えば、Tmax)を印加したときの反射領域の輝度は、Rmaxを印加したときの反射領域の輝度よりも小さくなる。言い換えれば、反射表示の輝度は、印加電圧の増大とともに増加するものの、透過表示の輝度が最大になる印加電圧(Tmax)よりも低い印加電圧(Rmax)で極大を迎え、その後は、印加電圧の増大とともに単調に減少する。したがって、透過領域における液晶層の厚みと反射領域における液晶層の厚みとを同一にして、透過領域と反射領域とを同一の信号で一体的に駆動しようとすると、反射表示の階調反転が生じてしまう。
これに対し、本発明においては、上記反射領域におけるスリットの占有面積比を調整することによりマルチギャップ構造を採用することなく、階調反転の発生し難い電圧-反射輝度特性を得ることができる。すなわち本発明者らは、反射領域内のスリットが配置された領域(以下、スリット領域とも称す。)では、たとえスリット幅を5μm以下に細くしたとしても画素電極の枝部が配置された領域(以下、電極領域とも称す。)と比べて液晶層に電圧が印加され難くなっており、透過率が低下してしまうことを見いだした。
したがって、スリット領域では反射領域の輝度を極大にする印加電圧Rmaxが大きくなっており、透過領域の輝度を極大にする電圧Tmaxと同じ、又はそれよりも大きい(スリット領域Rmax≧Tmax>電極領域Rmax)。このスリット領域を反射表示に活用することで(反射領域内の電極領域とスリット領域の占有面積を調整することで)透過領域と反射領域とを同一の信号電圧で駆動しても、反射領域の電圧-透過率特性と透過領域の電圧-透過率特性とを近づけることができ、反射表示の階調反転を抑制することができる。
具体的には、上記画素電極の上記スリットの占有面積比率が、上記反射領域全体に対して30%以上であることが好ましい。このように反射領域におけるスリットの占有面積比率を調整することにより、マルチギャップ構造を形成しない場合であっても、透過領域の液晶と反射領域の液晶とを別々の信号電圧で駆動する必要がないので、透過領域と反射領域に個別に薄膜トランジスタ(TFT)等を設ける必要がなく、高い開口率を得ることができる。
上記反射領域のスリットの占有面積比率を調整する方法としては、例えば、反射領域の電極幅を透過領域の電極幅よりも細くする方法、幹部付近の反射膜の幅を広げる方法、スリット下に反射膜を配置する方法が挙げられる。
上記第一基板の好ましい形態としては、上記液晶層中に添加した重合性成分を上記液晶層に電圧を印加しながら重合させて形成した重合体を基板面に有し、上記重合体は、液晶分子のプレチルト角及び/又は電圧印加時の配向方向を規定する表面構造を備える形態が挙げられる。このような形態によれば、開口率の減少を抑制しつつ、液晶の応答速度を向上させることができる。
上記液晶層の好ましい態様としては、電圧無印加時に基板面に対して垂直方向に配向し、かつ電圧印加時に基板面に対して水平方向に配向する液晶分子を含有する態様が挙げられる。このような液晶層を用いる液晶表示装置の表示方法は、垂直配向(VA)モードと呼ばれる。高いコントラスト比が得られるノーマリブラックを実現するためには、負の誘電率異方性を有する液晶分子が用いられる。
なお、本発明の液晶表示装置は、ノーマリブラックモード(オフ状態での光透過率又は輝度が、オン状態でのそれらより低いモード)であってもよく、ノーマリホワイトモード(オフ状態での光透過率又は輝度が、オン状態でのそれらより高いモード)であってもよい。
上記反射膜の好ましい形態としては、信号配線を用いる形態が挙げられ、例えば、補助容量バスライン、ゲートバスライン、ソースバスラインが好適に用いられる。これらの信号配線は、アクティブマトリクス型の液晶表示装置の駆動に必要であり、これらの信号配線を反射膜としても利用することで、透過型液晶表示装置の製造方法と比べて反射領域の形成工程を追加する必要がなくなるので、簡便に半透過型液晶表示装置の製造が可能となる。
また、画素電極でない反射膜を反射表示に用いることにより、透過領域と反射領域とで画素電極の材料を酸化インジウム錫(ITO)等に統一することができることから、透過表示と反射表示との最適対向電圧差に起因するフリッカ現象を抑制することができる。
なかでも、補助容量バスラインは、各画素において補助容量を形成するために通常では表示領域内に配置されるので、開口率を高くする観点からは、補助容量バスラインを反射膜として用いることが好ましい。また、信号配線と同一工程において形成できるように、信号配線と同一階層に信号配線と分離して設けられた導電体を反射膜として用いてもよい。
本発明の液晶表示装置の好ましい形態としては、上記第一基板は、画素電極下に、更に、導電部と、該導電部を覆う絶縁膜とを有し、上記絶縁膜は、反射領域に開口が形成され、上記開口内にて導電部と画素電極とが電気的に接続され、上記液晶層の厚みは、開口の形成領域にて透過領域よりも大きい形態が挙げられる。
開口の形成領域は、他の領域の液晶層の厚みよりも液晶層の厚みが大きくなるため、透過表示の輝度を極大にする電圧Tmaxを反射領域及び透過領域に印加した際に、反射領域内の開口の形成領域における液晶層の実効リタデーションは、透過領域における液晶層のリタデーションの2倍を超える値となる。
したがって、この形態においては、開口の形成領域の電圧-輝度特性は、透過領域の輝度極大電圧Tmax以下の印加電圧の範囲において、印加電圧を大きくするのに伴い、第一の輝度極大電圧が現れた後、少なくとも、輝度極小電圧、及び、第二の輝度極大電圧がこの順に現れる。この開口の形成領域における電圧-輝度特性を利用すれば、反射領域内の残りの領域の電圧-輝度特性と開口の形成領域の電圧-輝度特性とを足し合わせ、反射領域内の残りの領域の輝度極大電圧Rmaxよりも大きい印加電圧の範囲において、反射領域内の残りの領域における輝度の単調減少分を開口の形成領域における輝度の2番目以降の単調増加部分で補填することができる。
上記開口の形成領域の液晶層の厚みは、透過領域における液晶層の厚みの1.1~3.0倍であることが好ましい。透過領域における液晶層の厚みの1.1倍未満であると、開口の形成領域の2番目の単調増加による補填効果が充分に得られないため、合成後の電圧-輝度特性で輝度の反転現象が発生する電圧が低電圧側にシフトするおそれがある。透過領域における液晶層の厚みの3.0倍を超えると、開口の形成領域の第一の極大電圧、極小電圧及び第二の極大電圧の低電圧側へのシフトが大きくなるため、合成後の電圧-輝度特性が第一の極大電圧になる途中で単調増加にならず、また輝度の反転現象が発生する電圧が低電圧側にシフトするおそれがある。上記開口の形成領域における液晶層の厚みは、透過領域における液晶層の厚みの1.5~2.5倍であることがより好ましい。
上記開口は、いわゆるコンタクトホールと呼ばれる。なお、本明細書で「導電部」とは、導電材料から構成される部材だけでなく、半導体材料から構成される部材をも含むものである。導電部としては、例えば、薄膜トランジスタ(TFT)のドレイン電極等が挙げられる。
上記画素電極の好ましい形態としては、上記透過領域の部分が透明導電材料で形成されており、上記反射領域の部分が反射性導電膜を含む形態が挙げられる。反射領域の画素電極が反射性導電膜を含むことで、下層の反射性導電膜を反射表示に利用する場合と比べ、反射表示に用いられる光の光路を短縮し、透明樹脂等の下層材料による吸収や界面反射に起因する反射率低下を抑制できるので、反射率の向上を図ることができる。
透明導電材料としては、例えば酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛が挙げられる。反射性導電膜としては、例えばアルミニウム(Al)が挙げられる。
上記反射領域の画素電極としては、透明導電膜と反射性導電膜との積層体が好適に用いられる。また、上記反射領域の画素電極としては、上記液晶層に面する最上層に上記透過領域の透明導電膜との仕事関数の差が0.3eV未満の材料で形成された膜を有する形態が好適に用いられる。この形態によれば、透過領域と反射領域との最適対向電圧差に起因するフリッカ現象を抑制することができる。透過領域の透明導電膜がITOであれば、反射領域の液晶層に面する最上層に設けられる膜としては、例えば、窒化モリブデン(MoN)、IZOが好適に用いられる。
上記第二基板の好ましい形態としては、反射領域にスリット又は開口が形成された共通電極を有する形態が挙げられる。この形態は、反射領域における電極非形成領域の占有面積比率を調整するのに好適である。共通電極に形成されるスリット又は開口の幅は、液晶分子の配向を安定化させる観点から、3μm以下であることが好ましい。また、スリット又は開口の形状は特に限定されず、例えば、直線状、円周状、十字状等が挙げられる。十字状のスリット又は開口を設ける場合、第一基板の画素電極に形成されたスリットの延伸方向と同様に、共通電極に形成されたスリット又は開口の延伸方向を45°、135°、225°、315°にしてもよい。
上記画素電極のスリットの占有面積比率と上記共通電極のスリット及び開口の占有面積比率との和は、反射領域全体に対して30%以上であることが好ましい。なお、画素電極のスリットと共通電極のスリット又は開口とが対向する領域については、画素電極のスリットの占有面積比率、及び、共通電極のスリット・開口の占有面積比率のいずれか一方のみに含めて和を求めることとする。また、共通電極のスリット及び開口の占有面積比率が、反射領域全体に対して30%以上である形態も好適に用いられる。この形態は、画素電極のスリットの占有面積比率を高めることが困難な場合に好適である。
本発明の液晶表示装置の好ましい形態としては、上記透過領域のスリット幅と上記反射領域のスリット幅とが異なる形態が挙げられる。このとき、上記透過領域における画素電極の上記枝部の幅と上記反射領域における画素電極の上記枝部の幅とが異なることが好ましい。この形態では、透過領域と反射領域の画素電極を同一の形状で構成することにより、スリット占有面積以外の要素が影響して透過領域と反射領域の表示品位に差が現れることを防止しつつ、枝部間の間隔を変えることにより、透過領域と反射領域のスリットの占有面積比率を調整することができる。その結果、所望の表示品位を得るための設計が容易となる。
本発明によれば、幹部と、上記幹部から分岐した複数の枝部とを備える画素電極を設け、枝部とスリットとが交互に配置された領域を表示領域に用い、反射表示に必要なλ/4位相差層をセル内の反射表示領域に相当する部分のみに選択的に形成することから、透過表示領域には、不必要なλ/4位相差層がなくなり、透過表示として高いコントラスト特性を実現できる。また、配向規制手段を設ける面積が低減されることから、高い開口率を有し、画素の微細化にも対応できる半透過型の液晶表示装置を提供することができる。
実施形態1に係る液晶表示装置の画素を示す平面模式図である。 図1中のA-B線に沿った断面を示す断面模式図である。 実施形態1に係る液晶表示装置について、画素電極への印加電圧-反射率特性(V-R特性)をシミュレーションした結果を示す図である。 反射領域内のスリット領域の占有面積比と反射領域全体のV-R特性との関係を示す図である。 反射領域内のスリット領域の占有面積比と該スリット領域のV-R特性との関係を示す図である。 実施形態2に係る液晶表示装置の画素を示す平面模式図である。 図6中のA-B線に沿った断面を示す断面模式図である。
以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。
実施形態1
実施形態1においては、反射表示に必要なλ/4位相差層をセル内の反射表示領域に相当する部分のみに選択的に形成することで、透過表示として高いコントラスト特性を実現している。また、画素電極が配置された領域、画素電極のスリットが配置された領域、及び、コンタクトホールが配置された領域を反射表示に利用し、3つの領域の異なる電圧-反射率特性(V-R特性)を合成して、透過表示の電圧-透過率特性(V-T特性)に対して階調反転しない反射表示のV-R特性を実現している。
図1は、実施形態1に係る液晶表示装置の画素を示す平面模式図である。図2は、図1中のA-B線に沿った断面を示す断面模式図である。
本実施形態では、対角8インチのWVGAパネル(画素ピッチ72.5μm×217.5μm、画素数800×RGB×480)を作製した。本実施形態に係る液晶表示装置は、背面側基板10と、それに対向するように設けられた観察面側基板60と、背面側基板10と観察面側基板60との間に狭持されるように設けられた液晶層100とを備える。また、液晶表示装置は、透過領域Tと反射領域Rとを有し、透過表示及び反射表示の両方を行うことができる半透過型の液晶表示装置である。透過表示を行う際には、背面側基板10の背面側に設けられたバックライト(図示せず)が光源として利用され、反射表示を行う際には、観察面側から液晶層100に入射した外光、フロントライト等が光源として利用される。
背面側基板10は、互いに平行に伸びる複数のゲート信号線13及び補助容量(Cs)配線14と、ゲート信号線13及び補助容量配線14に直交しかつ相互に平行に伸びる複数のソース信号線16と、ゲート信号線13とソース信号線16との各交差部に設けられた薄膜トランジスタ(TFT)30とを有する。ゲート信号線13はTiN/Al/Tiの積層体により形成されている。ソース信号線16は、Al/Tiの積層体により形成されている。
TFT30は、ゲート信号線13に接続されたゲート電極と、ソース信号線16に接続されたソース電極と、コンタクトホール31を介して画素電極19に電気的に接続されたドレイン電極17とを有する。ドレイン電極17は、ゲート絶縁膜15を介して補助容量配線14と対向する領域が設けられており、この領域で補助容量(Cs)が形成される。
コンタクトホール31は、層間絶縁膜18に設けられた開口内に画素電極19を構成する透明導電膜が形成されたものである。図2に示すように、背面側基板10は、ガラス基板11上に、ベースコート膜、ゲート信号線13(補助容量配線(反射膜)14)、ゲート絶縁膜15、ソース信号線16(ドレイン電極17)、層間絶縁膜18、画素電極19、垂直配向膜(図示せず)の順に積層された構成を有する。コンタクトホール31は、ドレイン電極17と画素電極19とを電気的に接続するのに用いられているとともに、背面側基板10の液晶層100側表面に窪みを形成している。本実施形態においては、コンタクトホール31は、画素の中央に1つ設けられている。コンタクトホール31を1画素につき2以上設ける構成としてもよい。
画素電極19は、十字状に形成され、画素内を4つの領域に分割する幹部19aと、幹部19aの両側から伸びる複数の枝部19bとから構成される。視野角特性を向上させる観点から、幹部19aにより分割された4つの領域には、互いに異なる方向に伸びる枝部19bが形成されている。具体的には、十字状の幹部の延伸方向を0°、90°、180°、270°としたときに、45°方向に伸びる枝部が形成された領域、135°方向に伸びる枝部が形成された領域、225°方向に伸びる枝部が形成された領域、及び、315°方向に伸びる枝部が形成された領域がある。幹部19aの幅は3.0μmである。各枝部19bの幅は2.5μmであり、枝部19b同士の間隔(スリットの幅)は2.5μmである。画素電極19は、ITOにより形成されている。
本実施形態において、補助容量配線14は、外光を反射するための反射膜としても機能する。補助容量配線14を反射膜として用いることにより、反射表示専用の反射膜を形成する必要がなくなるため、透過型の液晶表示装置に対して製造プロセスを増加させることがない。ゲート信号線13、ソース信号線16、又は、ゲート信号線13、補助容量配線14、ソース信号線16と同一階層に分離して設けられた導電体によっても同様の利点が得られる。
補助容量配線14は、背面側基板10上に複数本が平行に設けられており、マトリクス状に配置された複数の画素のうち、同一行の画素では共通の補助容量配線14が利用される。そして、各画素内において、ソース信号線16の延伸方向と平行な方向(図1中の上下方向)に伸びる分岐部14aが形成されている。補助容量配線14は、ゲート信号線13の近傍を除いて、画素電極19の幹部19aのほぼ全体と重畳している。また、補助容量配線14は、画素電極19の複数の枝部19b、及び、枝部19b間のスリットのうちの一部とも重畳している。
以上のように、本実施形態では、補助容量配線14が配置された十字状の領域を反射領域として用いるとともに、反射領域により分離された4つのドメインを透過領域として用いている。なお、透過領域の4つのドメインの画素内における面積比率は等しく、これにより広い視野角において均一な表示が得られる。また、コンタクトホール31は、反射領域内に位置している(ホール領域)。表示領域における各領域の面積比率をまとめると、下記表1のようになる。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、反射領域におけるスリット領域の面積比率は、(スリット領域)/(反射領域)=923/2614であることから、35%である。
また、背面側基板10の側に設けられた垂直配向膜の表面には、多官能アクリレートモノマーを重合してなる重合体(図示せず)が形成されている。この重合体の形成方法としては、例えば、(1)背面側基板10と観察面側基板60とをシール材で貼り合わせてなる空パネル内に、メタアクリロイル基を有する多官能アクリレートモノマーを0.3wt%添加した負の誘電率異方性を持つネマチック液晶を注入し、(2)液晶層100に交流電圧を10V印加しながら、波長300~400nm間に輝線ピークを有する紫外線を照射光強度25mW/cm、照射光量30J/cm(共にI線(365nm)基準)の条件で照射することにより形成することができる。更に、液晶層100に電圧を印加せずに蛍光灯下に48時間暴露することで、液晶層100中の残留モノマーを除去することができる。
以上の方法により形成された重合体は、液晶層100中の液晶分子のプレチルト角及び/又は電圧印加時の液晶分子の配向方向を規定する表面構造を備える。
一方、観察面側基板60には、ガラス基板61上の反射領域Rのみに、λ/4位相差層50が形成されている。なお、観察面側基板60に形成されたλ/4位相差層50と、背面側基板10に形成された補助容量配線14とは、観察面側から見たときに同じ位置にある。
観察面側基板60は、λ/4位相差層50が形成されたガラス基板61を覆うように形成された着色層とブラックマトリクス(BM)40とからなるカラーフィルタ層62と、λ/4位相差層50が配置された領域と他の領域との段差を平坦化するための絶縁層64と、対向電極63と、垂直配向膜(図示せず)とが順に積層された構成を有する。
着色層は、赤色(R)、緑色(G)及び青色(B)の層がそれぞれ、背面側基板10の画素電極19にそれぞれ対応するように配置されている。対向電極63は、画素ごとではなく、複数の画素に対応する1つの電極(共通電極)として形成されている。対向電極63は、ITOにより形成されている。
背面側基板10のガラス基板11の背面側、及び、観察面側基板60のガラス基板61の観察面側には、偏光子110、120がそれぞれ貼付されている。偏光子110、120の吸収軸とλ/4位相差層50の遅相軸とは、45°の角度をなすように配置されている。また、偏光子110、120の吸収軸は、90°の角度をなすように配置されている。
本実施形態の液晶表示装置の表示モードは、垂直配向(VA)モードであり、液晶層100は、負の誘電率異方性を持つネマチック液晶から構成される。液晶層100中の液晶分子は、電圧が印加されていない状態(オフ状態)では、背面側基板10及び観察面側基板60の配向膜表面に対して垂直方向に配向し、電圧が印加された状態(オン状態)で水平方向に向かって倒れ込む。液晶層100の厚み、いわゆるセルギャップdは、3.2μmである。液晶材料の屈折率異方性Δnは、0.098である。
本実施形態において、透過領域Tのセルギャップdは一定である。これに対し、反射領域Rは、透過領域Tのセルギャップdと同じセルギャップd1を持った電極領域(画素電極が形成された領域)及びスリット領域(スリットが形成された領域)と、透過領域Tのセルギャップよりも大きなセルギャップd2を持ったホール領域とを備える(d1<d2)。
なお、画素電極19の厚みは1400Åであり、セルギャップd、d1(3.2μm)、及び、ホール領域の窪みの深さd2(3.0μm)に比べて非常に小さいので、電極領域とスリット領域とのセルギャップの差は、電圧-輝度特性において無視できる。
実施形態1に係る液晶表示装置について、画素電極への印加電圧-反射率特性(V-R特性)をシミュレーションにより求めた。その結果を図3に示す。なお、図3中の反射率は、各領域における最大輝度を100%としたときの輝度比を示している。
反射領域Rの反射表示光は、電極領域(A)の反射表示光と、スリット領域(B)の反射表示光と、ホール領域(C)の反射表示光とが混合した光である。したがって、反射領域RのV-R特性は、これら3つの領域(A~C)のV-R特性を各領域の面積に応じて足し合わせたものとなる。
図3に示すように、本実施形態の液晶表示装置では、電極領域(A)の反射率は、印加電圧が大きくなるにつれ増大し、4.8Vで最大となり、更に印加電圧が大きくなると低下している。スリット領域(B)は、電極領域(A)よりも液晶層にかかる電圧が小さくなるため、液晶層の実効リタデーションも小さくなる。スリット領域(B)の反射率は、印加電圧が大きくなるにつれ緩やかに増大し、6.0Vで最大となっている。
ホール領域(C)は、電極領域(A)及びスリット領域(B)よりもセルギャップが大きくなっているため、液晶層の実効リタデーションが大きくなる。また、ホール領域(C)の反射率は、印加電圧が大きくなるにつれ急峻に増大し、3.0Vで最初の極大値を示し、更に印加電圧が大きくなると低下し、4.0Vで極小値を示し、6.0Vで二度目の極大値を示している。
3つの領域(A~C)のV-R特性を合成した反射領域全体(A+B+C)のV-R特性は、印加電圧が大きくなるにつれ増大し、5.5Vで最大となり、6.0Vまでほぼ最大値を維持しており、透過領域のV-T特性とほぼ一致している。
本実施形態に係る液晶表示装置では、スリット領域(B)における電界降下を反射表示に活用するために反射領域R内でのスリット占有面積比率を30%以上に調整し、かつ反射領域内にコンタクトホール31を配置したことにより、階調反転のない画素電極への印加電圧-輝度特性が得られている。
本実施形態では、透過領域Tのセルギャップdと反射領域Rの大部分のセルギャップd1とが同一である。これにより、透過領域Tの液晶分子と反射領域Rの液晶分子の応答速度が等しくなるので、透過領域Tのオーバーシュート駆動条件と反射領域Rのオーバーシュート駆動条件とを等しくすることができる。したがって、容易にオーバーシュート駆動による液晶分子の応答速度の向上が可能である。更に、マルチギャップ構造を形成する工程を行う必要がなくなる。
本実施形態では、透過領域Tと反射領域Rとで画素電極19の材料を同一にすることができることから、透過領域Tと反射領域Rとの最適対向電圧差に起因するフリッカ現象を効果的に低減することができる。
更に本実施形態では、枝部とスリットとが交互に配置された領域を表示領域に用いていることから、配向規制手段を設ける面積が低減されている。本実施形態の液晶表示装置においては、透過領域Tの開口率が37.3%であり、反射領域Rの開口率が16.6%であり、合計53.9%の開口率が得られた。
なお、スリット領域(B)の占有面積比を20~60%の範囲内で10%ずつ変えたときのV-R特性の変化をシミュレーションにより求めた。その結果を図4及び図5に示す。図4は、反射領域R全体のV-R特性を示している。図5は、反射領域R内のスリット領域(B)のV-R特性を示している。なお、図4及び図5中の反射率は、各条件における最大輝度を100%としたときの輝度比を示している。図4及び図5に示すように、スリット領域(B)の占有面積比が大きくなるにつれ、最大輝度に対応する電圧が高電圧側にシフトしている。
実施形態2
図6は、実施形態2に係る液晶表示装置の画素を示す平面模式図である。図7は、図6中のA-B線に沿った断面を示す断面模式図である。本実施形態の液晶表示装置は、透過領域Tと反射領域Rとの間におけるλ/4位相差層50の境界部分に、遮光体51を更に設けたこと以外は、実施形態1の液晶表示装置と同様の構成を有する。遮光体51は、カーボン微粒子を分散させたアクリル系樹脂からなり、厚みは1.2μmである。
本実施形態によれば、セル内に設けたλ/4位相差層50の境界部分に、遮光体51を更に設けることにより、透過領域Tにおいてはλ/4位相差層50を通過する光を遮断し、反射領域Rにおいてはλ/4位相差層50を通過しない光を遮断することで、製造上のマージンを確保しつつ、透過・反射表示の劣化のない良好な表示特性を得ることができた。
本願は、2008年10月2日に出願された日本国特許出願2008-257682号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
10 背面側基板
11 ガラス基板
13 ゲート信号線
14 補助容量配線
14a 分岐部
15 ゲート絶縁膜
16 ソース信号線
17 ドレイン電極
18 層間絶縁膜
19 画素電極(ITO膜)
19a 幹部
19b 枝部
20 Al膜
21 MoN膜
30 薄膜トランジスタ
31 コンタクトホール
40 ブラックマトリクス
50 λ/4位相差層
51 遮光体
60 観察面側基板
61 ガラス基板
62 カラーフィルタ層
63 対向電極
63a、63b 開口
100 液晶層
110、120 偏光子
R 反射領域
T 透過領域

Claims (19)

  1. 第一基板と、液晶層と、第二基板とをこの順に有する液晶表示装置であって、
    該第一基板は、幹部と、該幹部から分岐した複数の枝部とを備える画素電極を有し、
    該液晶表示装置は、該枝部とスリットとが交互に配置された領域を含む表示領域を有し、
    該表示領域は、透過領域及び反射領域を含み、
    該反射領域において、該第一基板は、該画素電極下に反射膜を有し、該第二基板は、該液晶層の側にλ/4位相差層を有する
    ことを特徴とする液晶表示装置。
  2. 前記第二基板は、前記反射領域と前記透過領域との境界部分であって、かつ、前記λ/4位相差層の境界部分に、遮光体を更に備えることを特徴とする請求項1記載の液晶表示装置。
  3. 前記第二基板は、前記λ/4位相差層よりも前記液晶層の側であって、少なくとも透過領域に、該λ/4位相差層が配置された領域と他の領域との段差を平坦化するための絶縁膜を更に有することを特徴とする請求項1又は2記載の液晶表示装置。
  4. 前記反射領域における液晶層の厚みが前記透過領域における液晶層の厚みの60%以上であることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記反射領域における液晶層の厚みと前記透過領域における前記液晶層の厚みとが実質的に等しいことを特徴とする請求項4記載の液晶表示装置。
  6. 前記画素電極の前記スリットの占有面積比率は、前記反射領域全体に対して30%以上であることを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記第一基板は、前記液晶層中に添加した重合性成分を前記液晶層に電圧を印加しながら重合させて形成した重合体を基板面に有し、該重合体は、液晶分子のプレチルト角及び/又は電圧印加時の配向方向を規定する表面構造を備えることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記液晶層は、電圧無印加時に基板面に対して垂直方向に配向し、かつ電圧印加時に基板面に対して水平方向に配向する液晶分子を含有することを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記反射膜は、補助容量バスライン、ゲートバスライン又はソースバスラインであることを特徴とする請求項1~8のいずれかに記載の液晶表示装置。
  10. 前記第一基板は、画素電極下に、更に、導電部と、該導電部を覆う絶縁膜とを有し、
    該絶縁膜は、反射領域に開口が形成され、該開口内にて導電部と画素電極とが電気的に接続され、
    前記液晶層の厚みは、開口の形成領域にて透過領域よりも大きい
    ことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
  11. 前記開口の形成領域における液晶層の厚みは、前記透過領域における液晶層の厚みの1.1~3.0倍であることを特徴とする請求項10記載の液晶表示装置。
  12. 前記透過領域の前記画素電極は、透明導電材料で形成されており、前記反射領域の前記画素電極は、反射性導電膜を含むことを特徴とする請求項1~11のいずれかに記載の液晶表示装置。
  13. 前記反射領域の前記画素電極は、透明導電膜と反射性導電膜との積層体であることを特徴とする請求項12記載の液晶表示装置。
  14. 前記反射領域の前記画素電極は、前記液晶層に面する最上層に前記透過領域の透明導電膜との仕事関数の差が0.3eV未満の材料で形成された膜を有することを特徴とする請求項12又は13記載の液晶表示装置。
  15. 前記第二基板は、前記反射領域にスリット又は開口が形成された共通電極を有することを特徴とする請求項1~14のいずれかに記載の液晶表示装置。
  16. 前記画素電極の前記スリットの占有面積比率と前記共通電極のスリット及び開口の占有面積比率との和は、前記反射領域全体に対して30%以上であることを特徴とする請求項15記載の液晶表示装置。
  17. 前記共通電極のスリット及び開口の占有面積比率は、前記反射領域全体に対して30%以上であることを特徴とする請求項15記載の液晶表示装置。
  18. 前記透過領域のスリット幅と前記反射領域のスリット幅とが異なることを特徴とする請求項1~17のいずれかに記載の液晶表示装置。
  19. 前記透過領域における画素電極の前記枝部の幅と前記反射領域における画素電極の前記枝部の幅とが異なることを特徴とする請求項18記載の液晶表示装置。
PCT/JP2009/059590 2008-10-02 2009-05-26 液晶表示装置 WO2010038507A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/120,391 US20110169722A1 (en) 2008-10-02 2009-05-26 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257682A JP2011257437A (ja) 2008-10-02 2008-10-02 液晶表示装置
JP2008-257682 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038507A1 true WO2010038507A1 (ja) 2010-04-08

Family

ID=42073283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059590 WO2010038507A1 (ja) 2008-10-02 2009-05-26 液晶表示装置

Country Status (3)

Country Link
US (1) US20110169722A1 (ja)
JP (1) JP2011257437A (ja)
WO (1) WO2010038507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293756A (zh) * 2013-05-30 2013-09-11 京东方科技集团股份有限公司 一种显示处理装置、系统及方法
US8614777B2 (en) 2008-08-20 2013-12-24 Sharp Kabushiki Kaisha Liquid crystal display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647955B2 (ja) * 2011-08-24 2015-01-07 株式会社ジャパンディスプレイ 液晶表示装置
TWI483165B (zh) * 2012-09-21 2015-05-01 Au Optronics Corp 電容式觸控感測結構及其應用
CN104007590A (zh) * 2014-06-17 2014-08-27 深圳市华星光电技术有限公司 Tft阵列基板结构
KR102240418B1 (ko) * 2015-01-05 2021-04-14 삼성디스플레이 주식회사 액정 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315766A (ja) * 2001-09-18 2003-11-06 Sharp Corp 液晶表示装置
JP2003322857A (ja) * 2002-02-26 2003-11-14 Sony Corp 液晶表示装置及びその製造方法
JP2004302174A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2004341524A (ja) * 2003-05-12 2004-12-02 Hannstar Display Corp 半透過型液晶ディスプレイ装置とその製造方法
JP2005338472A (ja) * 2004-05-27 2005-12-08 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2006078890A (ja) * 2004-09-10 2006-03-23 Sharp Corp 半透過型液晶表示装置及びその製造方法
JP2008083610A (ja) * 2006-09-29 2008-04-10 Hitachi Displays Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4039232B2 (ja) * 2002-12-20 2008-01-30 セイコーエプソン株式会社 液晶表示装置および電子機器
US7433005B2 (en) * 2003-03-31 2008-10-07 Sharp Kabushiki Kaisha Liquid crystal display device having electrode units each provided with a solid part and an extending part and method of manufacturing the same
JP4614726B2 (ja) * 2003-11-25 2011-01-19 シャープ株式会社 液晶表示装置
JP4499481B2 (ja) * 2004-06-03 2010-07-07 富士通株式会社 液晶表示装置及びその製造方法
JP2007065647A (ja) * 2005-08-30 2007-03-15 Samsung Electronics Co Ltd 液晶表示装置ならびにその駆動装置及び駆動方法
JP2011149968A (ja) * 2008-05-12 2011-08-04 Sharp Corp 液晶表示装置
WO2010021179A1 (ja) * 2008-08-20 2010-02-25 シャープ株式会社 液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315766A (ja) * 2001-09-18 2003-11-06 Sharp Corp 液晶表示装置
JP2003322857A (ja) * 2002-02-26 2003-11-14 Sony Corp 液晶表示装置及びその製造方法
JP2004302174A (ja) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2004341524A (ja) * 2003-05-12 2004-12-02 Hannstar Display Corp 半透過型液晶ディスプレイ装置とその製造方法
JP2005338472A (ja) * 2004-05-27 2005-12-08 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2006078890A (ja) * 2004-09-10 2006-03-23 Sharp Corp 半透過型液晶表示装置及びその製造方法
JP2008083610A (ja) * 2006-09-29 2008-04-10 Hitachi Displays Ltd 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614777B2 (en) 2008-08-20 2013-12-24 Sharp Kabushiki Kaisha Liquid crystal display device
CN103293756A (zh) * 2013-05-30 2013-09-11 京东方科技集团股份有限公司 一种显示处理装置、系统及方法
WO2014190723A1 (zh) * 2013-05-30 2014-12-04 京东方科技集团股份有限公司 显示处理装置、系统及方法
CN103293756B (zh) * 2013-05-30 2016-08-10 京东方科技集团股份有限公司 一种显示处理装置、系统及方法
US9563064B2 (en) 2013-05-30 2017-02-07 Boe Technoplogy Group Co., Ltd. Display processing apparatus, system and method

Also Published As

Publication number Publication date
JP2011257437A (ja) 2011-12-22
US20110169722A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US8319921B2 (en) Liquid crystal display device
US7471361B2 (en) Liquid crystal display with particular phase plates having specific axis angles
KR100728506B1 (ko) 액정장치 및 전자기기
US8031305B2 (en) Transflective liquid crystal display comprising a polarizing layer disposed between a reflective layer and an electrode group, and the reflective layer is an upper layer of a TFT in the reflection area
KR100594678B1 (ko) 액정 표시 장치 및 전자 기기
US8294852B2 (en) Liquid crystal display device comprising a combination of O-type polarizers and E-type polarizers
US7102714B2 (en) Transflective LCD device with opening formed in electrode positioned corresponding to inclined plane of thickness-adjusting layer
US7995169B2 (en) Liquid crystal display device and electronic apparatus
US8319922B2 (en) Liquid crystal display and electronic apparatus
WO2009139199A1 (ja) 液晶表示装置
US9494724B2 (en) Liquid crystal display device
JP2007140089A (ja) 液晶表示装置
WO2010087047A1 (ja) 液晶表示パネル
WO2010038507A1 (ja) 液晶表示装置
JP5009362B2 (ja) 液晶表示装置
JP2018120175A (ja) 液晶表示装置
US8614777B2 (en) Liquid crystal display device
WO2009113206A1 (ja) 液晶表示装置
CN116794864A (zh) 显示装置
JP2009031437A (ja) 液晶表示パネル
US11988910B1 (en) Viewing angle-controlling liquid crystal panel and display device
WO2010109714A1 (ja) 液晶表示装置
JP2009294402A (ja) 液晶表示装置
JP2007206341A (ja) 液晶装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13120391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP