WO2010038391A1 - 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法 - Google Patents

炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法 Download PDF

Info

Publication number
WO2010038391A1
WO2010038391A1 PCT/JP2009/004875 JP2009004875W WO2010038391A1 WO 2010038391 A1 WO2010038391 A1 WO 2010038391A1 JP 2009004875 W JP2009004875 W JP 2009004875W WO 2010038391 A1 WO2010038391 A1 WO 2010038391A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis
gas
hydrocarbon
synthesis gas
reactor
Prior art date
Application number
PCT/JP2009/004875
Other languages
English (en)
French (fr)
Inventor
大西康博
山田栄一
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
新日本石油株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, 新日本石油株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to CN200980138042.9A priority Critical patent/CN102165041B/zh
Priority to BRPI0919387-1A priority patent/BRPI0919387B1/pt
Priority to JP2010531719A priority patent/JP5298133B2/ja
Priority to CA2738263A priority patent/CA2738263C/en
Priority to EP09817434A priority patent/EP2351813A4/en
Priority to EA201170500A priority patent/EA018146B1/ru
Priority to US12/998,191 priority patent/US8586640B2/en
Priority to AU2009299338A priority patent/AU2009299338C1/en
Publication of WO2010038391A1 publication Critical patent/WO2010038391A1/ja
Priority to ZA2011/02240A priority patent/ZA201102240B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam

Definitions

  • the present invention includes a hydrocarbon synthesis reaction apparatus for synthesizing a hydrocarbon compound by blowing a synthesis gas mainly composed of carbon monoxide and hydrogen into a slurry in which solid catalyst particles are suspended in a liquid.
  • the present invention relates to a hydrocarbon synthesis reaction system and a hydrocarbon synthesis method.
  • Patent Document 1 As a hydrocarbon synthesis reaction system for producing a liquid fuel using this GTL technology, as shown in Patent Document 1 below, an FT of synthesis gas and a slurry in which solid catalyst particles are suspended in a liquid are used.
  • a configuration including a hydrocarbon synthesis reaction apparatus that synthesizes a hydrocarbon compound by a chemical reaction such as a synthesis reaction is known.
  • This hydrocarbon synthesis reaction apparatus includes a reactor that contains slurry, and a synthesis gas introduction unit that introduces synthesis gas into the reactor.
  • the synthesis gas introduction part is composed of, for example, a steel pipe, and the synthesis gas that flows through the synthesis gas introduction part and is introduced into the reactor is suspended in the slurry in the reactor.
  • a liquid hydrocarbon is synthesized by a chemical reaction using the produced catalyst particles as a catalyst.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to suppress the deterioration of catalyst particles in the slurry, efficiently synthesize the hydrocarbon compound, and synthesize the hydrocarbon compound at low cost. It is to provide a hydrocarbon synthesis reaction apparatus, a hydrocarbon synthesis method, and a hydrocarbon synthesis reaction system including the hydrocarbon synthesis reaction apparatus.
  • the hydrocarbon synthesis reaction apparatus synthesizes a hydrocarbon compound by a chemical reaction between a synthesis gas mainly composed of hydrogen and carbon monoxide and a slurry in which solid catalyst particles are suspended in a liquid.
  • a hydrocarbon synthesis reaction apparatus which is provided in a reactor containing the slurry, a synthesis gas introduction unit for introducing the synthesis gas into the reactor, and the synthesis gas introduction unit, and is introduced into the reactor And a synthesis gas heating unit for heating the synthesis gas to a temperature equal to or higher than the decomposition temperature of the carbonyl compound.
  • the synthesis gas heating unit is provided in the synthesis gas introduction unit, and the synthesis gas introduced into the reactor is heated to a temperature higher than the decomposition temperature of the carbonyl compound.
  • the carbonyl compound contained in the synthesis gas in the section can be decomposed before being supplied to the slurry accommodated in the reactor. For this reason, it becomes possible to suppress the deterioration of the catalyst particles in the slurry, and as a result of efficiently synthesizing the hydrocarbon compound, it is possible to synthesize the hydrocarbon compound at a lower cost compared to the case where there is no synthesis gas heating part. Can do.
  • the carbonyl compound may be an iron carbonyl compound or a nickel carbonyl compound.
  • the hydrocarbon synthesis reaction apparatus may further include a reactor gas deriving unit for deriving a gas in the reactor heated by the exothermic heat of the chemical reaction, and the synthesis gas heating unit May include a derived gas heat exchange unit that heats the synthesis gas using heat of the gas derived from the reactor gas deriving unit.
  • the gas in the reactor heated by the exothermic heat of the chemical reaction is derived from the reactor gas deriving unit, and the synthesis gas introduced into the reactor by the derived gas heat exchange unit using the heat of the derived gas. Can be heated. Therefore, it is possible to increase the energy efficiency of the hydrocarbon synthesis reaction apparatus by effectively using the heat generated by the chemical reaction, and energy saving can be achieved.
  • the synthesis gas heating unit may further include a steam heat exchange unit that heats the synthesis gas using steam.
  • the synthesis gas heating unit includes a steam heat exchange unit that uses steam separately from the derived gas heat exchange unit, the synthesis gas is reliably heated by the steam even before the chemical reaction in the reactor. be able to. For this reason, deterioration of the catalyst particles in the slurry can be more reliably suppressed.
  • the synthesis gas can be heated using both the derived gas heat exchange section and the steam heat exchange section, so the amount of steam used in the steam heat exchange section is reduced. Thus, energy saving and low running cost of the steam heat exchange unit can be achieved.
  • the synthesis gas heating unit may heat the synthesis gas to 140 ° C. or higher and below the reaction temperature in the reactor.
  • the synthesis gas heating unit heats the synthesis gas to 140 ° C. or more, which is the decomposition temperature of Fe 3 (CO) 12 (dodecacarbonyltriiron), so iron carbonyl contained in the synthesis gas in the synthesis gas introduction unit The compound can be reliably decomposed.
  • the hydrocarbon synthesis reaction system according to the present invention includes the hydrocarbon synthesis reaction apparatus according to the present invention, a hydrocarbon raw material reformed to generate the synthesis gas, and the synthesis gas as the hydrocarbon synthesis reaction apparatus. And a product purification unit for purifying liquid fuel from the hydrocarbon compound.
  • the hydrocarbon synthesis reaction system according to the present invention includes a hydrocarbon synthesis reaction apparatus that can synthesize hydrocarbon compounds efficiently and at low cost, so that liquid fuel can be produced efficiently and at low cost. be able to.
  • the synthesis gas heating unit uses steam generated when reforming the hydrocarbon raw material in the synthesis gas generation unit, and The synthesis gas may be heated.
  • the heat source equipment for supplying heat necessary for the synthesis gas heating unit Since the heat generation amount required for the heat source facility can be reduced, the hydrocarbon synthesis reaction system can be downsized and the facility cost and running cost can be reduced.
  • the hydrocarbon synthesis method according to the present invention synthesizes a hydrocarbon compound by a chemical reaction between a synthesis gas mainly composed of hydrogen and carbon monoxide and a slurry in which solid catalyst particles are suspended in a liquid.
  • the synthesis gas is heated to a temperature higher than the decomposition temperature of the carbonyl compound before the synthesis gas is supplied to the slurry.
  • the synthesis gas before the synthesis gas is supplied to the slurry, the synthesis gas is heated to a temperature higher than the decomposition temperature of the carbonyl compound to decompose the carbonyl compound contained in the synthesis gas. it can. For this reason, it becomes possible to suppress deterioration of the catalyst particles in the slurry, and as a result of efficiently synthesizing the hydrocarbon compound, it is possible to synthesize the hydrocarbon compound at a lower cost compared to the case where it is not heated.
  • the hydrocarbon synthesis reaction apparatus and the hydrocarbon synthesis method according to the present invention the deterioration of the catalyst particles in the slurry is suppressed, and the hydrocarbon compound can be synthesized efficiently and the hydrocarbon compound can be synthesized at a low cost. Moreover, according to the hydrocarbon synthesis reaction system of the present invention, since the hydrocarbon synthesis reaction apparatus is provided, liquid fuel can be produced efficiently and at low cost.
  • FIG. 1 is a diagram showing an overall configuration of a liquid fuel synthesizing system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an overall configuration of a liquid fuel synthesis system 1 according to the present embodiment.
  • a liquid fuel synthesis system 1 is a plant facility that executes a GTL process for converting a hydrocarbon raw material such as natural gas into liquid fuel.
  • the liquid fuel synthesis system 1 includes a synthesis gas generation unit 3, an FT synthesis unit (hydrocarbon synthesis reaction apparatus) 5, and a product purification unit 7.
  • the synthesis gas generation unit 3 reforms natural gas that is a hydrocarbon raw material to generate synthesis gas containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 generates liquid hydrocarbons (hydrocarbon compounds) from the generated synthesis gas by a Fischer-Tropsch synthesis reaction (chemical reaction) (hereinafter referred to as “FT synthesis reaction”).
  • the product refining unit 7 produces liquid fuel products (naphtha, kerosene, light oil, wax, etc.) by hydrogenating and refining the liquid hydrocarbons produced by the FT synthesis reaction.
  • liquid fuel products nophtha, kerosene, light oil, wax, etc.
  • the synthesis gas generation unit 3 mainly includes, for example, a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separation device 26.
  • the desulfurization reactor 10 is composed of a hydrodesulfurization device or the like and removes sulfur components from natural gas as a raw material.
  • the reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to generate a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2 ) as main components.
  • the exhaust heat boiler 14 recovers the exhaust heat of the synthesis gas generated in the reformer 12 and generates high-pressure steam.
  • the gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarboxylation device 20.
  • the decarboxylation device 20 uses an absorption liquid from the synthesis gas supplied from the gas-liquid separator 18 to remove the carbon dioxide gas, and regenerates the carbon dioxide gas from the absorption liquid containing the carbon dioxide gas for regeneration.
  • Tower 24 The hydrogen separation device 26 separates a part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20.
  • the decarboxylation device 20 may not be provided depending on circumstances.
  • the reformer 12 reforms natural gas using carbon dioxide and steam by, for example, the steam / carbon dioxide reforming method represented by the following chemical reaction formulas (1) and (2).
  • a high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas is generated.
  • the reforming method in the reformer 12 is not limited to the steam / carbon dioxide reforming method described above, but includes, for example, a steam reforming method, a partial oxidation reforming method (POX) using oxygen, and a partial oxidation method.
  • An autothermal reforming method (ATR), a carbon dioxide gas reforming method, or the like, which is a combination of the reforming method and the steam reforming method, can also be used.
  • the hydrogen separator 26 is a branch line branched from an introduction pipe (syngas introduction section) 31 that is a pipe connecting the decarbonation apparatus 20 or the gas-liquid separator 18 and the bubble column reactor (reactor) 30.
  • This hydrogen separator 26 can be constituted by, for example, a hydrogen PSA (Pressure Swing Adsorption) device that performs adsorption and desorption of hydrogen using a pressure difference.
  • This hydrogen PSA apparatus has an adsorbent (zeolite adsorbent, activated carbon, alumina, silica gel, etc.) in a plurality of adsorption towers (not shown) arranged in parallel, and hydrogen is added to each adsorption tower.
  • adsorbent zeolite adsorbent, activated carbon, alumina, silica gel, etc.
  • the hydrogen gas separation method in the hydrogen separator 26 is not limited to the pressure fluctuation adsorption method such as the hydrogen PSA device described above, and for example, a hydrogen storage alloy adsorption method, a membrane separation method, or a combination thereof. There may be.
  • the hydrogen storage alloy method is, for example, a hydrogen storage alloy having the property of adsorbing / releasing hydrogen by being cooled / heated (TiFe, LaNi 5 , TiFe 0.7 to 0.9 Mn 0.3 to 0.1 , Alternatively, TiMn 1.5 or the like) is used to separate hydrogen gas.
  • a plurality of adsorption towers containing hydrogen storage alloys are provided, and in each of the adsorption towers, hydrogen adsorption by cooling the hydrogen storage alloys and hydrogen release by heating the hydrogen storage alloys are alternately repeated, so that the inside of the synthesis gas Of hydrogen gas can be separated and recovered.
  • the membrane separation method is a method of separating hydrogen gas having excellent membrane permeability from a mixed gas using a membrane made of a polymer material such as aromatic polyimide. Since this membrane separation method does not involve a phase change, the energy required for operation is small, and the running cost is low. Further, since the structure of the membrane separation apparatus is simple and compact, the equipment cost is low and the required area of the equipment is small. Further, the separation membrane has no driving device and has a wide stable operation range, so that there is an advantage that maintenance management is easy.
  • the FT synthesis unit 5 mainly includes, for example, a bubble column reactor 30, a gas-liquid separator 34, a separator 36, a gas-liquid separator 38, and a first rectifying column 40.
  • the bubble column reactor 30 generates a liquid hydrocarbon by performing an FT synthesis reaction of the synthesis gas produced by the synthesis gas production unit 3, that is, carbon monoxide and hydrogen.
  • the bubble column reactor 30 is connected to the absorption tower 22 of the decarboxylation device 20 by an introduction pipe 31 for introducing synthesis gas into the bubble column reactor 30.
  • the introduction pipe 31 is formed of a steel material made of, for example, iron or nickel.
  • the gas-liquid separator 34 separates water heated through circulation in the heat transfer tube 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 36 is connected to the center of the bubble column reactor 30 and separates the catalyst and the liquid hydrocarbon product.
  • the gas-liquid separator 38 cools the unreacted synthesis gas and the gaseous hydrocarbon product led out from the bubble column reactor 30.
  • the gas-liquid separator 38 is connected to the upper portion of the bubble column reactor 30 so that the gas in the bubble column reactor 30 is connected to the upper part of the bubble column reactor 30 to lead out the gas in the bubble column reactor 30.
  • the first rectifying column 40 distills the liquid hydrocarbons supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38, and separates and purifies each fraction according to the boiling point.
  • the bubble column reactor 30 is an example of a reactor that synthesizes synthesis gas into liquid hydrocarbons, and functions as a reactor for FT synthesis that synthesizes liquid hydrocarbons from synthesis gas by an FT synthesis reaction.
  • the bubble column reactor 30 is constituted by, for example, a bubble column type slurry bed type reactor in which a slurry composed of a catalyst and a medium oil is stored inside a column type container.
  • the bubble column reactor 30 generates liquid hydrocarbons from synthesis gas by an FT synthesis reaction.
  • the synthesis gas which is a raw material gas, is supplied as bubbles from the dispersion plate at the bottom of the bubble column reactor 30 after flowing through the introduction pipe 31, and the catalyst
  • hydrogen gas and carbon monoxide gas cause a synthesis reaction in the slurry state.
  • the bubble column reactor 30 has a heat exchanger type in which a heat transfer tube 32 is disposed, and supplies, for example, water (BFW: Boiler Feed Water) as a refrigerant.
  • BFW Boiler Feed Water
  • the heat of reaction of the FT synthesis reaction can be recovered as medium pressure steam by heat exchange between the slurry and water.
  • the unreacted synthesis gas, the gaseous hydrocarbon product, and the like in the bubble column reactor 30 are heated and rise due to heat generated by the FT synthesis reaction, and are led out from the outlet pipe 39.
  • the FT synthesis unit 5 includes a synthesis gas heating unit 42 that is provided in the introduction pipe 31 and heats the synthesis gas introduced into the bubble column reactor 30 to a temperature higher than the decomposition temperature of the carbonyl compound.
  • the synthesis gas heating unit 42 heats the synthesis gas introduced into the bubble column reactor 30 to a temperature higher than the decomposition temperature of the iron carbonyl compound or the nickel carbonyl compound.
  • the synthesis gas heating unit 42 uses the heat of the gas in the bubble column reactor 30 led out from the lead-out piping 39 to heat the synthesis gas and the steam using the derived gas heat exchanger 44.
  • a steam heat exchanger (steam heat exchanger) 46 for heating the synthesis gas.
  • both the lead-out gas heat exchanger 44 and the steam heat exchanger 46 are provided in the introduction pipe 31.
  • the steam heat exchanger 46 in the introduction pipe 31 is a bubble column type than the lead-out gas heat exchanger 44. It is provided on the reactor 30 side.
  • a gas heated by heat generated by the FT synthesis reaction in the bubble column reactor 30 is supplied to the lead-out gas heat exchanger 44 via the lead-out pipe 39.
  • the lead-out gas heat exchanger 44 can heat the synthesis gas in the introduction pipe 31 by heat exchange between the supplied gas and the synthesis gas in the introduction pipe 31.
  • the steam heat exchanger 46 heats the synthesis gas in the introduction pipe 31 using the steam generated when the natural gas is reformed in the synthesis gas generation unit 3.
  • high-pressure steam is supplied to the steam heat exchanger 46 from the gas-liquid separator 16 of the synthesis gas generation unit 3.
  • the steam heat exchanger 46 can heat the synthesis gas in the introduction pipe 31 by heat exchange between the supplied high-pressure steam and the synthesis gas in the introduction pipe 31.
  • reaction temperature inside the reactor reaction temperature of the FT synthesis reaction which is a chemical reaction (for example, 230 ° C.) or less, more preferably 200 ° C. or more and a reaction temperature of the FT synthesis reaction (for example, 230 ° C.).
  • the product purification unit 7 includes, for example, a WAX fraction hydrocracking reactor 50, a kerosene / light oil fraction hydrocracking reactor 52, a naphtha fraction hydrocracking reactor 54, and gas-liquid separators 56, 58. , 60, a second rectifying tower 70, and a naphtha stabilizer 72.
  • the WAX fraction hydrocracking reactor 50 is connected to the lower part of the first fractionator 40.
  • the kerosene / light oil fraction hydrotreating reactor 52 is connected to the center of the first fractionator 40.
  • the naphtha fraction hydrotreating reactor 54 is connected to the upper part of the first fractionator 40.
  • the gas-liquid separators 56, 58 and 60 are provided corresponding to the hydrogenation reactors 50, 52 and 54, respectively.
  • the second rectification column 70 separates and purifies the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point.
  • the naphtha stabilizer 72 rectifies liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second rectifying column 70, and discharges lighter components than butane to the flare gas side, and has 5 or more carbon atoms. The components are separated and recovered as naphtha of the product.
  • the liquid fuel synthesis system 1 is supplied with natural gas (main component is CH 4 ) as a hydrocarbon feedstock from an external natural gas supply source (not shown) such as a natural gas field or a natural gas plant.
  • the synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas containing carbon monoxide gas and hydrogen gas as main components).
  • the natural gas that is the hydrocarbon raw material is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the desulfurization reactor 10 hydrodesulfurizes sulfur contained in natural gas using the hydrogen gas, for example, with a ZnO catalyst. By desulfurizing the natural gas in advance in this way, it is possible to prevent the activity of the catalyst used in the reformer 12 and the bubble column reactor 30 or the like from being reduced by sulfur.
  • the natural gas (which may contain carbon dioxide) desulfurized in this way is generated in carbon dioxide (CO 2 ) gas supplied from a carbon dioxide supply source (not shown) and the exhaust heat boiler 14. After being mixed with water vapor, it is supplied to the reformer 12.
  • the reformer 12 reforms the natural gas using carbon dioxide and steam by the steam / carbon dioxide reforming method described above, so that the reformer 12 has a high temperature mainly composed of carbon monoxide gas and hydrogen gas. Generate synthesis gas.
  • the reformer 12 is supplied with, for example, fuel gas and air for the burner included in the reformer 12, and the steam / carbonic acid that is endothermic by the combustion heat of the fuel gas in the burner. The reaction heat necessary for the gas reforming reaction is covered.
  • the high-temperature synthesis gas (for example, 900 ° C., 2.0 MPaG) generated in the reformer 12 in this manner is supplied to the exhaust heat boiler 14 and is exchanged by heat exchange with the water flowing in the exhaust heat boiler 14. It is cooled (for example, 400 ° C.) and the exhaust heat is recovered. At this time, the water heated by the synthesis gas in the exhaust heat boiler 14 is supplied to the gas-liquid separator 16, and the gas component from the gas-liquid separator 16 is reformed as high-pressure steam (for example, 3.4 to 10.0 MPaG). The water in the liquid is returned to the exhaust heat boiler 14 after being supplied to the vessel 12 or other external device.
  • high-temperature synthesis gas for example, 900 ° C., 2.0 MPaG
  • the synthesis gas cooled in the exhaust heat boiler 14 is supplied to the absorption tower 22 or the bubble column reactor 30 of the decarboxylation device 20 after the condensed liquid is separated and removed in the gas-liquid separator 18.
  • the absorption tower 22 removes carbon dioxide from the synthesis gas by absorbing the carbon dioxide contained in the synthesis gas in the stored absorption liquid.
  • the absorption liquid containing carbon dioxide gas in the absorption tower 22 is sent to the regeneration tower 24, and the absorption liquid containing carbon dioxide gas is heated by, for example, steam and stripped. To the reformer 12 and reused in the reforming reaction.
  • the synthesis gas produced by the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5.
  • the synthesis gas supplied to the bubble column reactor 30 is subjected to an FT synthesis reaction by a compressor (not shown) provided in a pipe connecting the decarboxylation device 20 and the bubble column reactor 30.
  • the pressure is increased to an appropriate pressure (for example, about 3.6 MPaG).
  • the hydrogen separator 26 separates the hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using the pressure difference as described above.
  • the separated hydrogen is subjected to various hydrogen utilization reactions in which a predetermined reaction is performed using hydrogen in the liquid fuel synthesizing system 1 from a gas holder (not shown) or the like via a compressor (not shown). It supplies continuously to the apparatus (for example, desulfurization reactor 10, WAX fraction hydrocracking reactor 50, kerosene / light oil fraction hydrotreating reactor 52, naphtha fraction hydrotreating reactor 54, etc.).
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced by the synthesis gas production unit 3 by an FT synthesis reaction.
  • the synthesis gas from which the carbon dioxide gas has been separated in the decarbonator 20 flows through the introduction pipe 31 and is introduced into the bubble column reactor 30.
  • the synthesis gas flowing through the introduction pipe 31 is exhausted in the introduction pipe 31 in order to remove moisture contained in the synthesis gas from the time when it is cooled by the exhaust heat boiler 14 to the synthesis gas heating unit 42. It is cooled to, for example, about 40 ° C. by a heat exchanger (not shown) installed between the thermal boiler 14 and the synthesis gas heating unit 42. Therefore, in the present embodiment, the synthesis gas cooled by the synthesis gas heating unit 42 is heated so as to reach, for example, about 200 ° C. when the synthesis gas is introduced into the bubble column reactor 30.
  • the heated synthesis gas flows from the bottom of the bubble column reactor 30 and rises in the catalyst slurry stored in the bubble column reactor 30.
  • the carbon monoxide and hydrogen gas contained in the synthesis gas react with each other by the above-described FT synthesis reaction to generate hydrocarbons.
  • water is circulated through the heat transfer tube 32 of the bubble column reactor 30 to remove the reaction heat of the FT synthesis reaction. Become.
  • the water liquefied by the gas-liquid separator 34 is returned to the heat transfer tube 32, and the gas component is supplied to the external device as medium pressure steam (for example, 1.0 to 2.5 MPaG).
  • the pressure inside the bubble column reactor 30 becomes, for example, about 3.2 MPaG.
  • the reaction temperature in the bubble column reactor 30 is maintained at, for example, about 230 ° C. by the reaction heat of the FT synthesis reaction and the cooling by the heat transfer tube 32.
  • the slurry containing the liquid hydrocarbon synthesized in the bubble column reactor 30 is taken out from the center of the bubble column reactor 30 and sent to the separator 36.
  • the separator 36 separates the taken slurry into a catalyst (solid content) and a liquid content containing a liquid hydrocarbon product. A part of the separated catalyst is returned to the bubble column reactor 30, and the liquid is supplied to the first rectifying column 40.
  • unreacted synthesis gas and synthesized hydrocarbon gas components are led out via the lead-out piping 39, and these gases pass through the lead-out gas heat exchanger 44. After being distributed and heat exchanged as described later, it is introduced into the gas-liquid separator 38.
  • the gas-liquid separator 38 cools these gases, separates some of the condensed liquid hydrocarbons, and introduces them into the first fractionator 40.
  • unreacted synthesis gas (CO and H 2 ) flows between the exhaust heat boiler 14 and the synthesis gas heating unit 42 in the introduction pipe 31.
  • exhaust gas mainly composed of hydrocarbon gas having a low carbon number (C 4 or less) that is not a product target is introduced into an external combustion facility (not shown) and burned into the atmosphere. Released.
  • the operation of the synthesis gas heating unit 42 will be described separately before and after the FT synthesis reaction in the bubble column reactor 30.
  • the heated gas is not supplied to the derived gas heat exchanger 44. Since the synthesis gas cannot be heated by the heat exchanger 44, it is heated only by the steam heat exchanger 46.
  • the gas in the bubble column reactor 30 heated by the FT synthesis reaction is supplied to the lead-out gas heat exchanger 44 via the lead-out pipe 39. Therefore, the synthesis gas in the introduction pipe 31 can be heated by the lead-out gas heat exchanger 44. Therefore, the synthesis gas in the introduction pipe 31 is heated by both the derived gas heat exchanger 44 and the steam heat exchanger 46. At this time, for example, the synthesis gas in the introduction pipe 31 is first heated to about 150 ° C. by the outlet gas heat exchanger 44 and then introduced into the bubble column reactor 30 by the steam heat exchanger 46. Heat to °C.
  • the temperature is measured at the connection portion between the introduction pipe 31 and the bubble column reactor 30 in any case before and after the FT synthesis reaction in the bubble column reactor 30.
  • a portion may be provided to adjust the amount of high-pressure steam supplied to the steam heat exchanger 46 while measuring the temperature of the synthesis gas in the introduction pipe 31.
  • the first rectifying column 40 heats the liquid hydrocarbons (having various carbon numbers) supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above to have a boiling point. Using the difference between the naphtha fraction (boiling point is lower than about 150 ° C), kerosene / light oil fraction (boiling point is about 150-350 ° C), and WAX fraction (boiling point is about 350 ° C) High).
  • the first fractionator 40 WAX fraction of liquid hydrocarbons withdrawn from the bottom of the (mainly C 21 or more) are transferred to the WAX fraction hydrocracking reactor 50, the central portion of the first fractionator 40
  • the liquid hydrocarbon (mainly C 11 to C 20 ) of the kerosene / light oil fraction taken out is transferred to the kerosene / light oil fraction hydrotreating reactor 52 and taken out from the upper part of the first rectifying tower 40.
  • Liquid hydrocarbons (mainly C 5 -C 10 ) are transferred to the naphtha fraction hydrotreating reactor 54.
  • the WAX fraction hydrocracking reactor 50 is supplied with liquid hydrocarbons (approximately C 21 or more) of the WAX fraction having a large number of carbons supplied from the lower part of the first fractionator 40 from the hydrogen separator 26.
  • the hydrogen gas is hydrocracked using the hydrogen gas to reduce the carbon number to 20 or less.
  • this hydrocracking reaction using a catalyst and heat, the C—C bond of a hydrocarbon having a large number of carbon atoms is cleaved to generate a low molecular weight hydrocarbon having a small number of carbon atoms.
  • the product containing liquid hydrocarbon hydrocracked by the WAX fraction hydrocracking reactor 50 is separated into a gas and a liquid by a gas-liquid separator 56, and the liquid hydrocarbon is separated into a second rectification fraction.
  • the gas component (including hydrogen gas) is transferred to the tower 70 and transferred to the kerosene / light oil fraction hydrotreating reactor 52 and the naphtha fraction hydrotreating reactor 54.
  • the kerosene / light oil fraction hydrotreating reactor 52 is a liquid hydrocarbon (approximately C 11 to C 20 ) of the kerosene / light oil fraction having a medium carbon number supplied from the center of the first fractionator 40. Is hydrorefined using the hydrogen gas supplied from the hydrogen separator 26 through the WAX fraction hydrocracking reactor 50. In this hydrorefining reaction, in order to obtain mainly a side chain saturated hydrocarbon, the liquid hydrocarbon is isomerized, and hydrogen is added to the unsaturated bond of the liquid hydrocarbon to be saturated.
  • the hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbon is transferred to the second rectifying column 70, where the gas component (hydrogen Gas is reused) in the hydrogenation reaction.
  • the naphtha fraction hydrotreating reactor 54 supplies liquid hydrocarbons (generally C 10 or less) of the naphtha fraction with a small number of carbons supplied from the upper part of the first rectification column 40 from the hydrogen separator 26 to the WAX fraction. Hydrorefining is performed using the hydrogen gas supplied through the hydrocracking reactor 50. As a result, the hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 60, and the liquid hydrocarbon is transferred to the naphtha stabilizer 72, where the gas component (hydrogen gas is removed). Is reused in the hydrogenation reaction.
  • liquid hydrocarbons generally C 10 or less
  • the second fractionator 70 distills the liquid hydrocarbons supplied from the WAX fraction hydrocracking reactor 50 and the kerosene / light oil fraction hydrotreating reactor 52 as described above to obtain a carbon number.
  • Light oil is taken out from the lower part of the second fractionator 70, and kerosene is taken out from the center.
  • hydrocarbons having a carbon number of 10 or less are taken out from the top of the second rectifying column 70 and supplied to the naphtha stabilizer 72.
  • the naphtha stabilizer 72 distills hydrocarbons having a carbon number of 10 or less supplied from the naphtha fraction hydrotreating reactor 54 and the second rectifying tower 70 to obtain naphtha (C 5 as a product). ⁇ C 10 ) is separated and purified. Thereby, high-purity naphtha is taken out from the lower part of the naphtha stabilizer 72. Meanwhile, from the top of the naphtha stabilizer 72, the exhaust gas carbon number of target products composed mainly of hydrocarbons below predetermined number (C 4 or less) (flare gas) is discharged.
  • the synthesis gas heating unit 42 is provided in the introduction pipe 31, and the synthesis gas introduced into the bubble column reactor 30 is converted into a carbonyl compound. Therefore, the carbonyl compound contained in the synthesis gas in the introduction pipe 31 can be decomposed before being supplied to the slurry accommodated in the bubble column reactor 30. For this reason, it becomes possible to suppress the deterioration of the catalyst particles in the slurry, and as a result of efficiently synthesizing the liquid hydrocarbon, the liquid hydrocarbon is synthesized at a low cost compared with the case where the synthesis gas heating unit 42 is not provided. be able to.
  • the introduction pipe 31 is formed of a steel material mainly composed of iron or nickel. Even in the process in which the synthesis gas flows through the inside of the introduction pipe 31, even if an iron carbonyl compound or a nickel carbonyl compound is generated in the synthesis gas, the synthesis gas is accommodated in the bubble column reactor 30. It becomes possible to decompose before supplying to the slurry, and the deterioration of the catalyst particles in the slurry can be reliably suppressed.
  • the gas in the bubble column reactor 30 heated by the heat generated by the FT synthesis reaction is led out from the lead-out pipe 39, and the bubble column reactor is fed by the lead-out gas heat exchanger 44 using the heat of the lead-out gas.
  • the synthesis gas introduced into 30 can be heated. Therefore, it is possible to increase the energy efficiency of the FT synthesis unit 5 by effectively using the heat generated by the FT synthesis reaction, and energy saving can be achieved.
  • the synthesis gas heating unit 42 includes a steam heat exchanger 46 that uses steam, in addition to the derived gas heat exchanger 44, the steam is generated by the steam even before the FT synthesis reaction in the bubble column reactor 30.
  • the synthesis gas can be reliably heated. For this reason, deterioration of the catalyst particles in the slurry can be more reliably suppressed.
  • the synthesis gas can be heated using both the derived gas heat exchanger 44 and the steam heat exchanger 46, so that the steam heat exchanger The amount of steam used for 46 can be reduced, and the energy saving and low running cost of the steam heat exchanger 46 can be achieved.
  • the steam heat exchanger 46 is provided on the bubble column reactor 30 side of the outlet gas heat exchanger 44 in the introduction pipe 31, the synthesis gas before being introduced into the bubble column reactor 30 is The steam heat exchanger 46, which is easy to adjust the temperature, can be surely heated above the decomposition temperature.
  • the synthesis gas heating unit 42 heats the synthesis gas to 140 ° C. or more, which is the decomposition temperature of Fe 3 (CO) 12 (dodecacarbonyltriiron), iron carbonyl contained in the synthesis gas in the introduction pipe 31.
  • the compound and the nickel carbonyl compound can be reliably decomposed.
  • the decomposition temperatures of other iron carbonyl compounds having fewer carbonyl groups than Fe 3 (CO) 12 are, for example, about 100 ° C. for Fe 2 (CO) 9 and about Fe (CO) 5
  • the decomposition temperature of the nickel carbonyl compound is, for example, about 127 ° C. for Ni (CO) 4 , and both are 140 ° C. or less.
  • the synthesis gas heating unit 42 heats the synthesis gas in the introduction pipe 31 to 140 ° C. or higher, while heating the synthesis gas to be equal to or lower than the reaction temperature of the FT synthesis reaction in the bubble column reactor 30. Therefore, even if heated synthesis gas is introduced into the bubble column reactor 30, the bubble column reactor 30 is not excessively heated, and the FT synthesis reaction is stably performed and liquid carbonization is performed. Hydrogen can be synthesized more efficiently. Furthermore, the synthesis gas heating unit 42 heats the synthesis gas in the introduction pipe 31 to be 200 ° C. or more, particularly while heating the synthesis gas to 140 ° C. or more. Thereby, a carbonyl compound can be decomposed
  • the liquid fuel synthesizing system 1 since the liquid fuel synthesizing system 1 according to the present embodiment includes the FT synthesizing unit 5 that exhibits the above-described effects, the liquid fuel can be efficiently manufactured at low cost. Further, since the synthesis gas is heated by using the high-pressure steam generated in the gas-liquid separator 16 when the synthesis gas heating unit 42 reforms the natural gas, a heat source necessary for the synthesis gas heating unit 42 is supplied. There is no need to provide a separate heat source facility, and the liquid fuel synthesizing system 1 can be reduced in size, equipment cost, and running cost.
  • natural gas is used as the hydrocarbon raw material supplied to the liquid fuel synthesizing system 1.
  • the present invention is not limited to this example, and other hydrocarbon raw materials such as asphalt and residual oil are used. May be.
  • liquid hydrocarbon was synthesize
  • this invention is not limited to this example.
  • the synthesis reaction in the bubble column reactor 30 include oxo synthesis (hydroformylation reaction) “R—CH ⁇ CH 2 + CO + H 2 ⁇ R—CH 2 CH 2 CHO”, methanol synthesis “CO + 2H 2 ⁇ CH 3 OH”. And dimethyl ether (DME) synthesis “3CO + 3H 2 ⁇ CH 3 OCH 3 + CO 2 ”.
  • the synthesis gas heating part 42 shall be provided with the derivation gas heat exchanger 44 and the steam heat exchanger 46, it is good also as what is provided with only any one, and others different from these. You may heat using the structure (For example, the rapid heating system of piping by induction heating).
  • the steam heat exchanger 46 heats synthesis gas using the steam produced when reforming natural gas in the synthesis gas production
  • this steam is not utilized, For example, steam of a heat source facility provided separately may be used, or another steam generated in the liquid fuel synthesis system 1 may be used.
  • the synthesis gas heating unit 42 heats the synthesis gas introduced into the bubble column reactor 30 to a temperature equal to or higher than the decomposition temperature of the iron carbonyl compound or the nickel carbonyl compound. Heated above the decomposition temperature of a carbonyl compound other than the carbonyl compound and nickel carbonyl compound (for example, a compound of a metal and a carbonyl that are in contact with each other in the course of flowing before the synthesis gas is introduced into the bubble column reactor 30) May be.
  • the hydrocarbon synthesis reaction apparatus, the hydrocarbon synthesis method, and the hydrocarbon synthesis reaction system provided with the hydrocarbon synthesis reaction apparatus of the present invention suppress the deterioration of catalyst particles in the slurry and efficiently synthesize hydrocarbon compounds. Hydrocarbon compounds can be synthesized at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 水素及び一酸化炭素を主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとの化学反応によって炭化水素化合物を合成する炭化水素合成反応装置であって、前記スラリーを収容する反応器と、前記合成ガスを前記反応器に導入する合成ガス導入部と、前記合成ガス導入部に設けられ、前記反応器に導入される前記合成ガスをカルボニル化合物の分解温度以上に加熱する合成ガス加熱部とを備えている炭化水素合成反応装置。

Description

炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
 本発明は、液体中に固体の触媒粒子を懸濁させてなるスラリー中に一酸化炭素及び水素を主成分とする合成ガスを吹き込んで炭化水素化合物を合成する炭化水素合成反応装置及びこれを備える炭化水素合成反応システム、並びに炭化水素合成方法に関する。
 本願は、2008年09月30日に日本出願された特願2008-253215に基づいて優先権を主張し、その内容をここに援用する。
 近年、天然ガスから液体燃料を合成するための方法の一つとして、天然ガスを改質して一酸化炭素(CO)と水素(H)とを主成分とする合成ガスを生成し、この合成ガスを原料ガスとしてフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という。)により炭化水素化合物である液体炭化水素を合成し、更にこの液体炭化水素を水素化および精製することで、ナフサ(粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が開発されている。
 このGTL技術を利用して液体燃料を製造する炭化水素合成反応システムとしては、下記特許文献1に示すように、合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとのFT合成反応等の化学反応によって炭化水素化合物を合成する炭化水素合成反応装置を備える構成が知られている。この炭化水素合成反応装置は、スラリーを収容する反応器と、合成ガスを反応器に導入させる合成ガス導入部と、を備えている。この炭化水素合成反応装置では合成ガス導入部は例えば鋼材の配管等で構成されており、この合成ガス導入部内を流動して反応器に導入された合成ガスが、反応器内のスラリーに懸濁された触媒粒子を触媒として化学反応することで、液体炭化水素が合成される。
特表2007-533662号公報
 しかしながら、上記従来の炭化水素合成反応システムでは、合成ガスが合成ガス導入部内を流動する際、合成ガス中の一酸化炭素が合成ガス導入部を構成する鋼材の鉄やニッケル等に作用し、カルボニル化合物(例えば鉄カルボニル化合物やニッケルカルボニル化合物)が発生することがあった。これらカルボニル化合物は、スラリー中の触媒粒子に作用すると触媒粒子を劣化させてしまう恐れがある。そのため、合成ガス導入部内で発生したカルボニル化合物が反応器内に導入されてスラリーに供給された場合、触媒粒子が短期間で劣化してしまうことがあった。また、その結果として、炭化水素化合物の合成を効率良く行うことができず、炭化水素化合物の合成の低コスト化が難しいという問題があった。
 本発明は、上述した事情に鑑みてなされたものであって、その目的は、スラリー中の触媒粒子の劣化が抑制され、炭化水素化合物の合成を効率良く行い炭化水素化合物を低コストで合成することができる炭化水素合成反応装置並びに炭化水素合成方法、及びこの炭化水素合成反応装置を備える炭化水素合成反応システムを提供することである。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る炭化水素合成反応装置は、水素及び一酸化炭素を主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとの化学反応によって炭化水素化合物を合成する炭化水素合成反応装置であって、前記スラリーを収容する反応器と、前記合成ガスを前記反応器に導入する合成ガス導入部と、前記合成ガス導入部に設けられ、前記反応器に導入される前記合成ガスをカルボニル化合物の分解温度以上に加熱する合成ガス加熱部とを備えていることを特徴とするものである。
 本発明に係る炭化水素合成反応装置によれば、合成ガス加熱部が、合成ガス導入部に設けられ、反応器に導入される合成ガスをカルボニル化合物の分解温度以上に加熱するので、合成ガス導入部内の合成ガスに含まれるカルボニル化合物を、反応器に収容されたスラリーに供給する前に分解することができる。このため、スラリー中の触媒粒子の劣化を抑制することが可能となり、炭化水素化合物の合成を効率良く行える結果、合成ガス加熱部がない場合と比較して炭化水素化合物を低コストで合成することができる。
 また、前記カルボニル化合物は、鉄カルボニル化合物又はニッケルカルボニル化合物であってもよい。
 また、本発明に係る炭化水素合成反応装置は、前記化学反応の発熱により加熱された前記反応器内のガスを導出する反応器ガス導出部がさらに備えられていてもよく、前記合成ガス加熱部は、前記反応器ガス導出部から導出される前記ガスの熱を利用して前記合成ガスを加熱する導出ガス熱交換部を備えていてもよい。
 この場合、化学反応の発熱により加熱された反応器内のガスが反応器ガス導出部から導出され、この導出されたガスの熱を利用した導出ガス熱交換部によって反応器に導入される合成ガスを加熱することができる。従って、化学反応により生じる熱を有効利用して炭化水素合成反応装置のエネルギー効率を高めることが可能となり、省エネルギー化を図ることができる。
 また、本発明に係る炭化水素合成反応装置では、前記合成ガス加熱部は、スチームを利用して前記合成ガスを加熱するスチーム熱交換部をさらに備えていてもよい。
 この場合、合成ガス加熱部が、導出ガス熱交換部とは別に、スチームを利用するスチーム熱交換部を備えているので、反応器内での化学反応前でもスチームにより確実に合成ガスを加熱することができる。このため、スラリー中の触媒粒子の劣化をより確実に抑制することができる。
 しかも、反応器内で化学反応がなされた後は、導出ガス熱交換部及びスチーム熱交換部の双方を用いて合成ガスを加熱することができるので、スチーム熱交換部に用いるスチームの量を低減することが可能となり、スチーム熱交換部の省エネルギー化及び低ランニングコスト化を図ることができる。
 また、本発明に係る炭化水素合成反応装置では前記合成ガス加熱部は、前記合成ガスを140℃以上、前記反応器内部における反応温度以下に加熱してもよい。
 この場合、合成ガス加熱部が、合成ガスを、Fe(CO)12(ドデカカルボニル三鉄)の分解温度である140℃以上に加熱するので、合成ガス導入部内の合成ガスに含まれる鉄カルボニル化合物を確実に分解することができる。
 また、本発明に係る炭化水素合成反応システムは、上記本発明に係る炭化水素合成反応装置と、炭化水素原料を改質して前記合成ガスを生成し、前記合成ガスを前記炭化水素合成反応装置の前記合成ガス導入部に導入する合成ガス生成ユニットと、前記炭化水素化合物から液体燃料を精製する製品精製ユニットとを備えている。
 本発明に係る炭化水素合成反応システムによれば、炭化水素化合物の合成を効率良く低コストで行うことができる炭化水素合成反応装置を備えているので、液体燃料の製造を効率良く低コストで行うことができる。
 また、本発明に係る炭化水素合成反応システムでは、前記合成ガス加熱部は、前記合成ガス生成ユニットで前記炭化水素原料を改質する際に生じるスチームを利用して、前記合成ガス導入部内の前記合成ガスを加熱してもよい。
 この場合、合成ガス加熱部が合成ガス生成ユニットで炭化水素原料を改質する際に生じるスチームを利用して合成ガスを加熱するので、合成ガス加熱部のために必要な熱を供給する熱源設備を別途設ける場合、その熱源設備に必要とされる発熱量を小さくすることが可能となるため、炭化水素合成反応システムの小型化及び設備コスト、ランニングコストの低減を図ることができる。
 また、本発明に係る炭化水素合成方法は、水素及び一酸化炭素を主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとの化学反応によって炭化水素化合物を合成する炭化水素合成方法であって、前記スラリーに前記合成ガスが供給される前に、前記合成ガスをカルボニル化合物の分解温度以上に加熱する。
 本発明に係る炭化水素合成方法によれば、スラリーに合成ガスが供給される前に、この合成ガスをカルボニル化合物の分解温度以上に加熱して、合成ガスに含まれるカルボニル化合物を分解することができる。このため、スラリー中の触媒粒子の劣化を抑制することが可能となり、炭化水素化合物の合成を効率良く行える結果、加熱しない場合と比較して炭化水素化合物を低コストで合成することができる。
 本発明に係る炭化水素合成反応装置並びに炭化水素合成方法によれば、スラリー中の触媒粒子の劣化が抑制され、炭化水素化合物の合成を効率良く行い炭化水素化合物を低コストで合成することができる。
 また、本発明に係る炭化水素合成反応システムによれば、上記炭化水素合成反応装置を備えているので、液体燃料の製造を効率良く低コストで行うことができる。
図1は、本発明に係る一実施形態の液体燃料合成システムの全体構成を示す図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
 まず、図1を参照して、本発明の実施形態にかかるGTL(Gas To Liquids)プロセスを実行する液体燃料合成システム(炭化水素合成反応システム)1の全体構成について説明する。図1は、本実施形態にかかる液体燃料合成システム1の全体構成を示す図である。
 図1に示すように、本実施形態にかかる液体燃料合成システム1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット(炭化水素合成反応装置)5と、製品精製ユニット7とから構成される。合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを生成する。FT合成ユニット5は、生成された合成ガスからフィッシャー・トロプシュ合成反応(化学反応)(以下、「FT合成反応」という。)により液体炭化水素(炭化水素化合物)を生成する。製品精製ユニット7は、FT合成反応により生成された液体炭化水素を水素化・精製して液体燃料製品(ナフサ、灯油、軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する。
 まず、合成ガス生成ユニット3について説明する。合成ガス生成ユニット3は、例えば、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16および18と、脱炭酸装置20と、水素分離装置26とを主に備える。脱硫反応器10は、水添脱硫装置等で構成されて原料である天然ガスから硫黄成分を除去する。改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを生成する。排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。脱炭酸装置20は、気液分離器18から供給された合成ガスから吸収液を用いて炭酸ガスを除去する吸収塔22と、当該炭酸ガスを含む吸収液から炭酸ガスを放散させて再生する再生塔24とを有する。水素分離装置26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置20は場合によっては設けないこともある。
 このうち、改質器12は、例えば、下記の化学反応式(1)、(2)で表される水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。なお、この改質器12における改質法は、上記水蒸気・炭酸ガス改質法の例に限定されず、例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
 CH+HO→CO+3H  ・・・(1)
 CH+CO→2CO+2H ・・・(2)
 また、水素分離装置26は、脱炭酸装置20又は気液分離器18と気泡塔型反応器(反応器)30とを接続する配管である導入配管(合成ガス導入部)31から分岐した分岐ライン上に設けられる。この水素分離装置26は、例えば、圧力差を利用して水素の吸着と脱着を行う水素PSA(Pressure Swing Adsorption:圧力変動吸着)装置などで構成できる。この水素PSA装置は、並列配置された複数の吸着塔(図示せず。)内に吸着剤(ゼオライト系吸着剤、活性炭、アルミナ、シリカゲル等)を有しており、各吸着塔で水素の加圧、吸着、脱着(減圧)、パージの各工程を順番に繰り返すことで、合成ガスから分離した純度の高い水素ガス(例えば99.999%程度)を、連続して供給することができる。
 なお、水素分離装置26における水素ガス分離方法としては、上記水素PSA装置のような圧力変動吸着法の例に限定されず、例えば、水素吸蔵合金吸着法、膜分離法、或いはこれらの組合せなどであってもよい。
 水素吸蔵合金法は、例えば、冷却/加熱されることで水素を吸着/放出する性質を有する水素吸蔵合金(TiFe、LaNi、TiFe0.7~0.9Mn0.3~0.1、又はTiMn1.5など)を用いて、水素ガスを分離する手法である。水素吸蔵合金が収容された複数の吸着塔を設け、各吸着塔において、水素吸蔵合金の冷却による水素の吸着と、水素吸蔵合金の加熱による水素の放出とを交互に繰り返すことで、合成ガス内の水素ガスを分離・回収することができる。
 また、膜分離法は、芳香族ポリイミド等の高分子素材の膜を用いて、混合ガス中から膜透過性に優れた水素ガスを分離する手法である。この膜分離法は、相変化を伴わないため、運転に必要なエネルギーが小さくて済み、ランニングコストが安い。また、膜分離装置の構造が単純でコンパクトなため、設備コストが低く設備の所要面積も小さくて済む。さらに、分離膜には駆動装置がなく、安定運転範囲が広いため、保守管理が容易であるという利点がある。
 次に、FT合成ユニット5について説明する。FT合成ユニット5は、例えば、気泡塔型反応器30と、気液分離器34と、分離器36と、気液分離器38と、第1精留塔40とを主に備える。
 気泡塔型反応器30は、上記合成ガス生成ユニット3で生成された合成ガス、即ち、一酸化炭素と水素とをFT合成反応させて液体炭化水素を生成する。本実施形態では、この気泡塔型反応器30は、気泡塔型反応器30に合成ガスを導入する導入配管31により脱炭酸装置20の吸収塔22と接続されている。この導入配管31は、例えば鉄やニッケル等からなる鋼材により形成されている。気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器36は、気泡塔型反応器30の中央部に接続され、触媒と液体炭化水素生成物を分離処理する。気液分離器38は、気泡塔型反応器30から導出された未反応合成ガス及び気体炭化水素生成物を冷却処理する。本実施形態では、この気液分離器38には、気泡塔型反応器30内のガスが、気泡塔型反応器30の上部に接続され気泡塔型反応器30内のガスを導出させる導出配管(反応器ガス導出部)39内と、後述する導出ガス熱交換器(導出ガス熱交換部)44内と、をこの順に流通して供給される。第1精留塔40は、気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を蒸留し、沸点に応じて各留分に分離・精製する。
 このうち、気泡塔型反応器30は、合成ガスを液体炭化水素に合成する反応器の一例であり、FT合成反応により合成ガスから液体炭化水素を合成するFT合成用反応器として機能する。この気泡塔型反応器30は、例えば、塔型の容器内部に触媒と媒体油とからなるスラリーが貯留された気泡塔型スラリー床式反応器で構成される。
 この気泡塔型反応器30は、FT合成反応により合成ガスから液体炭化水素を生成する。詳細には、この気泡塔型反応器30では、原料ガスである合成ガスは、導入配管31内を流通した後、気泡塔型反応器30の底部の分散板から気泡となって供給され、触媒と媒体油からなるスラリー内を通過し、懸濁状態の中で下記化学反応式(3)に示すように水素ガスと一酸化炭素ガスとが合成反応を起こす。
Figure JPOXMLDOC01-appb-I000001
 このFT合成反応は発熱反応であるため、気泡塔型反応器30は内部に伝熱管32が配設された熱交換器型になっており、冷媒として例えば水(BFW:Boiler Feed Water)を供給し、上記FT合成反応の反応熱を、スラリーと水との熱交換により中圧スチームとして回収できるようになっている。なお、FT合成反応の発熱により、気泡塔型反応器30内の未反応合成ガス及び気体炭化水素生成物等は加熱されて上昇し、導出配管39から導出される。
 そして、本実施形態では、FT合成ユニット5は、導入配管31に設けられ、気泡塔型反応器30に導入される合成ガスをカルボニル化合物の分解温度以上に加熱する合成ガス加熱部42を備えている。図示の例では、合成ガス加熱部42は、気泡塔型反応器30に導入される合成ガスを、鉄カルボニル化合物又はニッケルカルボニル化合物の分解温度以上に加熱する。また、この合成ガス加熱部42は、導出配管39から導出される気泡塔型反応器30内のガスの熱を利用して合成ガスを加熱する導出ガス熱交換器44と、スチームを利用して合成ガスを加熱するスチーム熱交換器(スチーム熱交換部)46とを備えている。
 導出ガス熱交換器44及びスチーム熱交換器46は、いずれも導入配管31に設けられており、本実施形態では、導入配管31においてスチーム熱交換器46が導出ガス熱交換器44より気泡塔型反応器30側に設けられている。
 導出ガス熱交換器44には、気泡塔型反応器30内のFT合成反応で発生した熱により加熱されたガスが導出配管39を介して供給される。そして、導出ガス熱交換器44は、この供給されたガスと導入配管31内の合成ガスとの熱交換により、導入配管31内の合成ガスを加熱することができる。
 スチーム熱交換器46は、合成ガス生成ユニット3で天然ガスを改質する際に生じるスチームを利用して、導入配管31内の合成ガスを加熱する。本実施形態では、スチーム熱交換器46には、合成ガス生成ユニット3の気液分離器16から高圧スチームが供給される。そして、スチーム熱交換器46は、この供給された高圧スチームと導入配管31内の合成ガスとの熱交換により、導入配管31内の合成ガスを加熱することができる。
 この合成ガス加熱部42により、導入配管31内の合成ガスは、気泡塔型反応器30に導入される時点で、例えば140℃以上、好ましくは140℃以上且つ気泡塔型反応器30内での化学反応であるFT合成反応の反応温度(反応器内部における反応温度)(例えば230℃)以下、より好ましくは200℃以上且つFT合成反応の反応温度(例えば230℃)以下になるように加熱される。
 最後に、製品精製ユニット7について説明する。製品精製ユニット7は、例えば、WAX留分水素化分解反応器50と、灯油・軽油留分水素化精製反応器52と、ナフサ留分水素化精製反応器54と、気液分離器56,58,60と、第2精留塔70と、ナフサ・スタビライザー72とを備える。WAX留分水素化分解反応器50は、第1精留塔40の下部に接続されている。灯油・軽油留分水素化精製反応器52は、第1精留塔40の中央部に接続されている。ナフサ留分水素化精製反応器54は、第1精留塔40の上部に接続されている。気液分離器56,58,60は、これら水素化反応器50,52,54のそれぞれに対応して設けられている。第2精留塔70は、気液分離器56,58から供給された液体炭化水素を沸点に応じて分離・精製する。ナフサ・スタビライザー72は、気液分離器60及び第2精留塔70から供給されたナフサ留分の液体炭化水素を精留して、ブタンより軽い成分はフレアガス側へ排出し、炭素数5以上の成分は製品のナフサとして分離・回収する。
 次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料を合成する工程(GTLプロセス)について説明する。
 液体燃料合成システム1には、天然ガス田又は天然ガスプラントなどの外部の天然ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
 具体的には、まず、上記炭化水素原料である天然ガスは、水素分離装置26によって分離された水素ガスとともに脱硫反応器10に供給される。脱硫反応器10は、当該水素ガスを用いて天然ガスに含まれる硫黄分を例えばZnO触媒で水添脱硫する。このようにして天然ガスを予め脱硫しておくことにより、改質器12及び気泡塔型反応器30等で用いられる触媒の活性が硫黄により低下することを防止できる。
 このようにして脱硫された天然ガス(二酸化炭素を含んでもよい。)は、二酸化炭素供給源(図示せず。)から供給される二酸化炭素(CO)ガスと、排熱ボイラー14で発生した水蒸気とが混合された上で、改質器12に供給される。改質器12は、例えば、上述した水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。このとき、改質器12には、例えば、改質器12が備えるバーナー用の燃料ガスと空気とが供給されており、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である上記水蒸気・炭酸ガス改質反応に必要な反応熱がまかなわれている。
 このようにして改質器12で生成された高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を流通する水との熱交換により冷却(例えば400℃)されて、排熱回収される。このとき、排熱ボイラー14において合成ガスにより加熱された水は気液分離器16に供給され、この気液分離器16から気体分が高圧スチーム(例えば3.4~10.0MPaG)として改質器12または他の外部装置に供給され、液体分の水が排熱ボイラー14に戻される。
 一方、排熱ボイラー14において冷却された合成ガスは、凝縮液分が気液分離器18において分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガスを吸収することで、当該合成ガスから炭酸ガスを除去する。この吸収塔22内の炭酸ガスを含む吸収液は、再生塔24に送出され、当該炭酸ガスを含む吸収液は例えばスチームで加熱されてストリッピング処理され、放散された炭酸ガスは、再生塔24から改質器12に送られて、上記改質反応に再利用される。
 このようにして、合成ガス生成ユニット3で生成された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。なお、気泡塔型反応器30に供給される合成ガスは、脱炭酸装置20と気泡塔型反応器30とを接続する配管に設けられた圧縮機(図示せず。)により、FT合成反応に適切な圧力(例えば3.6MPaG程度)まで昇圧される。
 また、上記脱炭酸装置20により炭酸ガスが分離された合成ガスの一部は、水素分離装置26にも供給される。水素分離装置26は、上記のように圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された水素は、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料合成システム1内において水素を利用して所定反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、WAX留分水素化分解反応器50、灯油・軽油留分水素化精製反応器52、ナフサ留分水素化精製反応器54など)に連続して供給する。
 次いで、上記FT合成ユニット5は、上記合成ガス生成ユニット3によって生成された合成ガスから、FT合成反応により、液体炭化水素を合成する。
 具体的には、上記脱炭酸装置20において炭酸ガスを分離された合成ガスは、導入配管31内を流動して気泡塔型反応器30に導入される。ここで、導入配管31内を流通する合成ガスは、排熱ボイラー14で冷却されてから合成ガス加熱部42に至るまでに、合成ガス中に含まれる水分を除去するため、導入配管31において排熱ボイラー14と合成ガス加熱部42との間に設置された熱交換器(図示せず。)によって、例えば約40℃まで冷却される。そこで、本実施形態では、合成ガス加熱部42によりこの冷却された合成ガスを、この合成ガスが気泡塔型反応器30に導入される時点で例えば約200℃になるように加熱する。
 その後、加熱された合成ガスは、気泡塔型反応器30の底部から流入されて、気泡塔型反応器30内に貯留された触媒スラリー内を上昇する。この際、気泡塔型反応器30内では、上述したFT合成反応により、当該合成ガスに含まれる一酸化炭素と水素ガスとが反応して、炭化水素が生成される。さらに、この合成反応時には、気泡塔型反応器30の伝熱管32内に水を流通させることで、FT合成反応の反応熱を除去し、この熱交換により加熱された水が気化して水蒸気となる。この水蒸気は、気液分離器34で液化した水が伝熱管32に戻されて、気体分が中圧スチーム(例えば1.0~2.5MPaG)として外部装置に供給される。なお、FT合成反応により、気泡塔型反応器30内部の圧力は、例えば約3.2MPaGとなる。また、FT合成反応の反応熱及び伝熱管32による冷却により、気泡塔型反応器30内部における反応温度は、例えば約230℃に維持される。
 このようにして、気泡塔型反応器30で合成された液体炭化水素を含むスラリーは、気泡塔型反応器30の中央部から取り出されて、分離器36に送出される。分離器36は、取り出されたスラリーを触媒(固形分)と、液体炭化水素生成物を含んだ液体分とに分離する。分離された触媒は、その一部を気泡塔型反応器30に戻され、液体分は第1精留塔40に供給される。
 また、気泡塔型反応器30の塔頂からは、導出配管39を介して未反応の合成ガスと、合成された炭化水素のガス分とが導出され、これらガスが導出ガス熱交換器44を流通して、後述するように熱交換した後に気液分離器38に導入される。気液分離器38は、これらのガスを冷却して、一部の凝縮分の液体炭化水素を分離して第1精留塔40に導入する。一方、気液分離器38で分離されたガス分については、未反応の合成ガス(COとH)は、導入配管31において、排熱ボイラー14と合成ガス加熱部42との間に流入されて、合成ガス加熱部42によって加熱された後、気泡塔型反応器30の底部に再投入されてFT合成反応に再利用される。また、製品対象外である炭素数が少ない(C以下)炭化水素ガスを主成分とする排ガス(フレアガス)は、外部の燃焼設備(図示せず。)に導入されて、燃焼された後に大気放出される。
 ここで、合成ガス加熱部42の動作について、気泡塔型反応器30でのFT合成反応の前後に分けて説明する。
 まず、液体燃料合成システム1を起動させた直後等で、気泡塔型反応器30内でのFT合成反応前の場合は、導出ガス熱交換器44に加熱されたガスが供給されないため、導出ガス熱交換器44により合成ガスを加熱することができないので、スチーム熱交換器46のみによって加熱する。
 次に、気泡塔型反応器30内でのFT合成反応後の場合は、導出ガス熱交換器44に、FT合成反応により加熱された気泡塔型反応器30内のガスが導出配管39を介して供給されるので、導出ガス熱交換器44によって導入配管31内の合成ガスを加熱できるようになる。そのため、導出ガス熱交換器44及びスチーム熱交換器46の双方で導入配管31内の合成ガスを加熱する。この際、導入配管31内の合成ガスを、例えばまず導出ガス熱交換器44で約150℃まで加熱した後、スチーム熱交換器46で、気泡塔型反応器30に導入される時点で約200℃になるように加熱する。
 なお、合成ガス加熱部42の動作について、気泡塔型反応器30でのFT合成反応の前後のいずれの場合であっても、導入配管31と気泡塔型反応器30との接続部分に温度計測部(図示せず。)を設けて、導入配管31内の合成ガスの温度を計測しながらスチーム熱交換器46に供給される高圧スチームの量を調整しても良い。
 次に、第1精留塔40以降の工程について説明する。第1精留塔40は、上記のようにして気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素(炭素数は多様)を加熱して、沸点の違いを利用して分留し、ナフサ留分(沸点が約150℃より低い)と、灯油・軽油留分(沸点が約150~350℃)と、WAX留分(沸点が約350℃より高い)とに分離・精製する。この第1精留塔40の底部から取り出されるWAX留分の液体炭化水素(主としてC21以上)は、WAX留分水素化分解反応器50に移送され、第1精留塔40の中央部から取り出される灯油・軽油留分の液体炭化水素(主としてC11~C20)は、灯油・軽油留分水素化精製反応器52に移送され、第1精留塔40の上部から取り出されるナフサ留分の液体炭化水素(主としてC~C10)は、ナフサ留分水素化精製反応器54に移送される。
 WAX留分水素化分解反応器50は、第1精留塔40の下部から供給された炭素数の多いWAX留分の液体炭化水素(概ねC21以上)を、上記水素分離装置26から供給された水素ガスを利用して水素化分解して、炭素数をC20以下に低減する。この水素化分解反応では、触媒と熱を利用して、炭素数の多い炭化水素のC-C結合を切断して、炭素数の少ない低分子量の炭化水素を生成する。このWAX留分水素化分解反応器50により、水素化分解された液体炭化水素を含む生成物は、気液分離器56で気体と液体とに分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、灯油・軽油留分水素化精製反応器52及びナフサ留分水素化精製反応器54に移送される。
 灯油・軽油留分水素化精製反応器52は、第1精留塔40の中央部から供給された炭素数が中程度である灯油・軽油留分の液体炭化水素(概ねC11~C20)を、水素分離装置26からWAX留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この水素化精製反応では、主に側鎖状飽和炭化水素を得るために、上記液体炭化水素を異性化し、上記液体炭化水素の不飽和結合に水素を付加して飽和させる。この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器58で気体と液体に分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 ナフサ留分水素化精製反応器54は、第1精留塔40の上部から供給された炭素数が少ないナフサ留分の液体炭化水素(概ねC10以下)を、水素分離装置26からWAX留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この結果、水素化精製された液体炭化水素を含む生成物は、気液分離器60で気体と液体に分離され、そのうち液体炭化水素は、ナフサ・スタビライザー72に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
 次いで、第2精留塔70は、上記のようにしてWAX留分水素化分解反応器50及び灯油・軽油留分水素化精製反応器52から供給された液体炭化水素を蒸留して、炭素数がC10以下の炭化水素(沸点が約150℃より低い)と、灯油(沸点が約150~250℃)と、軽油(沸点が約250~350℃)と、WAX留分水素化分解反応器50からの未分解WAX留分(沸点約350℃より高い)とに分離・精製する。第2精留塔70の下部からは軽油が取り出され、中央部からは灯油が取り出される。一方、第2精留塔70の塔頂からは、炭素数がC10以下の炭化水素が取り出されて、ナフサ・スタビライザー72に供給される。
 さらに、ナフサ・スタビライザー72では、上記ナフサ留分水素化精製反応器54及び第2精留塔70から供給された炭素数がC10以下の炭化水素を蒸留して、製品としてのナフサ(C~C10)を分離・精製する。これにより、ナフサ・スタビライザー72の下部からは、高純度のナフサが取り出される。一方、ナフサ・スタビライザー72の塔頂からは、製品対象外である炭素数が所定数以下(C以下)の炭化水素を主成分とする排ガス(フレアガス)が排出される。
 以上、液体燃料合成システム1の工程(GTLプロセス)について説明した。かかるGTLプロセスにより、天然ガスを、高純度のナフサ(C~C10:粗ガソリン)、灯油(C11~C15:ケロシン)及び軽油(C16~C20:ガスオイル)等のクリーンな液体燃料に、容易且つ経済的に転換することができる。さらに、本実施形態では、改質器12において上記水蒸気・炭酸ガス改質法を採用しているので、原料となる天然ガスに含有されている二酸化炭素を有効に利用し、かつ、上記FT合成反応に適した合成ガスの組成比(例えば、H:CO=2:1(モル比))を改質器12の1回の反応で効率的に生成することができ、水素濃度調整装置などが不要であるという利点がある。
 特に、本発明に係る液体燃料合成システム1が備えるFT合成ユニット5によれば、合成ガス加熱部42が、導入配管31に設けられ、気泡塔型反応器30に導入される合成ガスをカルボニル化合物の分解温度以上に加熱するので、導入配管31内の合成ガスに含まれるカルボニル化合物を、気泡塔型反応器30に収容されたスラリーに供給する前に分解することができる。このため、スラリー中の触媒粒子の劣化を抑制することが可能となり、液体炭化水素の合成を効率良く行える結果、合成ガス加熱部42がない場合と比較して液体炭化水素を低コストで合成することができる。
 また、気泡塔型反応器30に導入される合成ガスを、鉄カルボニル化合物又はニッケルカルボニル化合物の分解温度以上に加熱するので、例えば導入配管31が鉄若しくはニッケルを主成分とする鋼材等で形成され、合成ガスがこの導入配管31の内部を流通する過程で合成ガス中に鉄カルボニル化合物若しくはニッケルカルボニル化合物が発生した場合であっても、これらを、合成ガスが気泡塔型反応器30に収容されたスラリーに供給する前に分解することが可能となり、スラリー中の触媒粒子の劣化を確実に抑制することができる。
 また、FT合成反応の発熱により加熱された気泡塔型反応器30内のガスが導出配管39から導出され、この導出されたガスの熱を利用した導出ガス熱交換器44によって気泡塔型反応器30に導入される合成ガスを加熱することができる。従って、FT合成反応により生じる熱を有効利用してFT合成ユニット5のエネルギー効率を高めることが可能になり、省エネルギー化を図ることができる。
 また、合成ガス加熱部42が、導出ガス熱交換器44とは別に、スチームを利用するスチーム熱交換器46を備えているので、気泡塔型反応器30内でのFT合成反応前でもスチームにより確実に合成ガスを加熱することができる。このため、スラリー中の触媒粒子の劣化をより確実に抑制することができる。
 また、気泡塔型反応器30内でFT合成反応がなされた後は、導出ガス熱交換器44及びスチーム熱交換器46の双方を用いて合成ガスを加熱することができるので、スチーム熱交換器46に用いるスチームの量を低減することが可能となり、スチーム熱交換器46の省エネルギー化及び低ランニングコスト化を図ることができる。加えて、導入配管31においてスチーム熱交換器46が導出ガス熱交換器44より気泡塔型反応器30側に設けられているので、気泡塔型反応器30に導入される前の合成ガスを、温度調節が容易なスチーム熱交換器46によって確実に分解温度以上に加熱することができる。
 また、合成ガス加熱部42が、合成ガスを、Fe(CO)12(ドデカカルボニル三鉄)の分解温度である140℃以上に加熱するので、導入配管31内の合成ガスに含まれる鉄カルボニル化合物及びニッケルカルボニル化合物を確実に分解することができる。なお、鉄カルボニル化合物のうち、Fe(CO)12よりもカルボニル基の数が少ない他の鉄カルボニル化合物の分解温度は、例えばFe(CO)が約100℃、Fe(CO)が約77℃となっており、更に、ニッケルカルボニル化合物の分解温度についても、例えばNi(CO)が約127℃であり、いずれも140℃以下である。
 しかも、合成ガス加熱部42は、導入配管31内の合成ガスを140℃以上に加熱する一方で、気泡塔型反応器30内部におけるFT合成反応の反応温度以下になるように加熱している。従って、加熱された合成ガスが気泡塔型反応器30内に導入されても、この気泡塔型反応器30内が過度に加熱されることがなく、FT合成反応が安定的になされて液体炭化水素の合成をより一層効率良く行うことができる。
 更に、合成ガス加熱部42は、導入配管31内の合成ガスを140℃以上に加熱する中でも特に200℃以上になるように加熱している。これにより、より確実にカルボニル化合物を分解させることができる。
 また、本実施形態に係る液体燃料合成システム1は、前述した効果を奏するFT合成ユニット5を備えるので、液体燃料の製造を効率良く低コストで行うことができる。
 更に、合成ガス加熱部42が天然ガスを改質する際に気液分離器16で生じる高圧スチームを利用して合成ガスを加熱するので、合成ガス加熱部42のために必要な熱源を供給する熱源設備を別途設ける必要が無く、液体燃料合成システム1の小型化及び設備コスト、ランニングコストの低減を図ることができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、液体燃料合成システム1に供給される炭化水素原料として、天然ガスを用いたが、かかる例に限定されず、例えば、アスファルト、残油など、その他の炭化水素原料を用いてもよい。
 また、上記実施形態では、気泡塔型反応器30における合成反応として、FT合成反応により液体炭化水素を合成したが、本発明はかかる例に限定されない。気泡塔型反応器30における合成反応としては、例えば、オキソ合成(ヒドロホルミル化反応)「R-CH=CH+CO+H→R-CHCHCHO」、メタノール合成「CO+2H→CHOH」、ジメチルエーテル(DME)合成「3CO+3H→CHOCH+CO」などにも適用することができる。
 また、上記実施形態では、合成ガス加熱部42は、導出ガス熱交換器44とスチーム熱交換器46とを備えるものとしたが、いずれか一方のみ備えるものとしても良いし、これらとは異なる他の構成(例えば、誘導加熱による配管の急速加熱方式)を用いて加熱しても良い。
 また、上記実施形態では、スチーム熱交換器46が合成ガス生成ユニット3で天然ガスを改質する際に生じたスチームを利用して合成ガスを加熱しているが、このスチームを利用せず、例えば、別途設けた熱源設備のスチームを利用しても良いし、液体燃料合成システム1内で生じる別のスチームを利用しても良い。
 また、上記実施形態では、合成ガス加熱部42が、気泡塔型反応器30に導入される合成ガスを鉄カルボニル化合物又はニッケルカルボニル化合物の分解温度以上に加熱するとしたが、これに代えて、鉄カルボニル化合物及びニッケルカルボニル化合物以外のカルボニル化合物(例えば、合成ガスが気泡塔型反応器30に導入される前に流通する過程で接触する金属と、カルボニルと、の化合物)の分解温度以上に加熱しても良い。
 その他、本発明の趣旨に逸脱しない範囲で、上記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
 本発明の炭化水素合成反応装置並びに炭化水素合成方法、及びこの炭化水素合成反応装置を備える炭化水素合成反応システムは、スラリー中の触媒粒子の劣化が抑制され、炭化水素化合物の合成を効率良く行い炭化水素化合物を低コストで合成することができる。
   1 液体燃料合成システム(炭化水素合成反応システム)
   3 合成ガス生成ユニット
   5 FT合成ユニット(炭化水素合成反応装置)
   7 製品精製ユニット
  30 気泡塔型反応器(反応器)
  31 導入配管(合成ガス導入部)
  39 導出配管(反応器ガス導出部)
  42 合成ガス加熱部
  44 導出ガス熱交換器(導出ガス熱交換部)
  46 スチーム熱交換器(スチーム熱交換部)

Claims (8)

  1.  水素及び一酸化炭素を主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとの化学反応によって炭化水素化合物を合成する炭化水素合成反応装置であって、
     前記スラリーを収容する反応器と、
     前記合成ガスを前記反応器に導入する合成ガス導入部と、
     前記合成ガス導入部に設けられ、前記反応器に導入される前記合成ガスをカルボニル化合物の分解温度以上に加熱する合成ガス加熱部と、
     を備えている炭化水素合成反応装置。
  2.  請求項1に記載の炭化水素合成反応装置であって、
     前記カルボニル化合物は、鉄カルボニル化合物又はニッケルカルボニル化合物である炭化水素合成反応装置。
  3.  請求項1又は2に記載の炭化水素合成反応装置であって、
     前記化学反応の発熱により加熱された前記反応器内のガスを導出する反応器ガス導出部がさらに備えられ、
     前記合成ガス加熱部は、前記反応器ガス導出部から導出される前記ガスの熱を利用して前記合成ガスを加熱する導出ガス熱交換部を備えている炭化水素合成反応装置。
  4.  請求項3に記載の炭化水素合成反応装置であって、
     前記合成ガス加熱部は、スチームを利用して前記合成ガスを加熱するスチーム熱交換部をさらに備えている炭化水素合成反応装置。
  5.  請求項1から4のいずれか1項に記載の炭化水素合成反応装置であって、
     前記合成ガス加熱部は、前記合成ガスを140℃以上、前記反応器内部における反応温度以下に加熱する炭化水素合成反応装置。
  6.  請求項1から5のいずれか1項に記載の炭化水素合成反応装置と、
     炭化水素原料を改質して前記合成ガスを生成し、前記合成ガスを前記炭化水素合成反応装置の前記合成ガス導入部に導入する合成ガス生成ユニットと、
     前記炭化水素化合物から液体燃料を精製する製品精製ユニットと、
     を備えている炭化水素合成反応システム。
  7.  請求項6に記載の炭化水素合成反応システムであって、
     前記合成ガス加熱部は、前記合成ガス生成ユニットで前記炭化水素原料を改質する際に生じるスチームを利用して、前記合成ガス導入部内の前記合成ガスを加熱する炭化水素合成反応システム。
  8.  水素及び一酸化炭素を主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなるスラリーとの化学反応によって炭化水素化合物を合成する炭化水素合成方法であって、
     前記スラリーに前記合成ガスが供給される前に、前記合成ガスをカルボニル化合物の分解温度以上に加熱する炭化水素合成方法。
PCT/JP2009/004875 2008-09-30 2009-09-25 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法 WO2010038391A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN200980138042.9A CN102165041B (zh) 2008-09-30 2009-09-25 烃合成反应装置、烃合成反应系统以及烃合成方法
BRPI0919387-1A BRPI0919387B1 (pt) 2008-09-30 2009-09-25 Aparelho de reação de síntese de hidrocarbonetos, sistema de reação de síntese de hidrocarbonetos, e processo de síntese de hidrocarbonetos
JP2010531719A JP5298133B2 (ja) 2008-09-30 2009-09-25 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
CA2738263A CA2738263C (en) 2008-09-30 2009-09-25 Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
EP09817434A EP2351813A4 (en) 2008-09-30 2009-09-25 KOHENWASSERSTOFFSYNTHESEREAKTOR, SYSTEM FOR HYDROCARBON SYNTHESIS ACTION AND HYDROGEN HYDROGEN HYDESIUM PROCESS
EA201170500A EA018146B1 (ru) 2008-09-30 2009-09-25 Установка для реакции синтеза углеводородов, реакционная система синтеза углеводородов и способ синтеза углеводородов
US12/998,191 US8586640B2 (en) 2008-09-30 2009-09-25 Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
AU2009299338A AU2009299338C1 (en) 2008-09-30 2009-09-25 Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
ZA2011/02240A ZA201102240B (en) 2008-09-30 2011-03-25 Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008253215 2008-09-30
JP2008-253215 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038391A1 true WO2010038391A1 (ja) 2010-04-08

Family

ID=42073175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004875 WO2010038391A1 (ja) 2008-09-30 2009-09-25 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法

Country Status (11)

Country Link
US (1) US8586640B2 (ja)
EP (1) EP2351813A4 (ja)
JP (1) JP5298133B2 (ja)
CN (1) CN102165041B (ja)
AU (1) AU2009299338C1 (ja)
BR (1) BRPI0919387B1 (ja)
CA (1) CA2738263C (ja)
EA (1) EA018146B1 (ja)
MY (1) MY153983A (ja)
WO (1) WO2010038391A1 (ja)
ZA (1) ZA201102240B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132337A1 (ja) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガス製造装置への金属混入抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517645A (ja) * 1997-09-24 2001-10-09 テキサコ・デベロップメント・コーポレーション 炭化水素合成の最適化プロセス
JP2002520423A (ja) * 1998-07-08 2002-07-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ガス流からの金属カルボニルの除去方法
JP2005058996A (ja) * 2003-08-09 2005-03-10 Lurgi Ag 工業ガスの洗浄方法
JP2007533662A (ja) 2004-04-06 2007-11-22 フュエルセル エナジー, インコーポレイテッド 複数の反応装置を用いるメタン化アセンブリ
JP2008253215A (ja) 2007-04-06 2008-10-23 Matsushita Electric Works Ltd データ収集システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9801200D0 (en) * 1998-01-20 1998-03-18 Air Prod & Chem Intergration of a cryogenic air separator with synthesis gas production and conversion
EG22489A (en) * 1999-02-05 2003-02-26 Sasol Technology Process for producing liquid and optionally gaseous products from gaseous reactants
EP1156026A1 (en) * 2000-05-19 2001-11-21 Shell Internationale Researchmaatschappij B.V. Process for the production of liquid hydrocarbons
GB0112796D0 (en) * 2001-05-25 2001-07-18 Bp Exploration Operating Process
WO2007131082A2 (en) * 2006-05-03 2007-11-15 Syntroleum Corporation Optimized hydrocarbon synthesis process
CA2662582C (en) * 2006-09-27 2015-09-08 Shell Canada Limited Process for removal of metal carbonyls from a synthesis gas stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517645A (ja) * 1997-09-24 2001-10-09 テキサコ・デベロップメント・コーポレーション 炭化水素合成の最適化プロセス
JP2002520423A (ja) * 1998-07-08 2002-07-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ガス流からの金属カルボニルの除去方法
JP2005058996A (ja) * 2003-08-09 2005-03-10 Lurgi Ag 工業ガスの洗浄方法
JP2007533662A (ja) 2004-04-06 2007-11-22 フュエルセル エナジー, インコーポレイテッド 複数の反応装置を用いるメタン化アセンブリ
JP2008253215A (ja) 2007-04-06 2008-10-23 Matsushita Electric Works Ltd データ収集システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU ET AL.: "Deactivation model of Fischer-Tropsch synthesis over an Fe-Cu-K commercial catalyst", APPL.CATAL.A GEN., vol. 161, no. 1/2, 1997, pages 137 - 151, XP022263664 *
See also references of EP2351813A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132337A1 (ja) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガス製造装置への金属混入抑制方法
JP2012214529A (ja) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp 合成ガス製造装置への金属混入抑制方法
CN103582610A (zh) * 2011-03-31 2014-02-12 独立行政法人石油天然气·金属矿物资源机构 向合成气制造装置中的金属混入抑制方法
AU2012235395B2 (en) * 2011-03-31 2015-04-16 Chiyoda Corporation Method for controlling mixing in of metal in apparatus for manufacturing synthetic gas
AP3483A (en) * 2011-03-31 2015-12-31 Method of suppressing metal contamination of synthesis gas production
US9725656B2 (en) 2011-03-31 2017-08-08 Japan Oil, Gas And Metals National Corporation Method of suppressing metal contamination of synthesis gas production apparatus
US9884998B2 (en) 2011-03-31 2018-02-06 Japan Oil, Gas And Metals National Corporation Method of suppressing metal contamination of synthesis gas production apparatus
EA031520B1 (ru) * 2011-03-31 2019-01-31 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Способ подавления загрязнения металлами устройства для получения синтез-газа

Also Published As

Publication number Publication date
EP2351813A1 (en) 2011-08-03
CN102165041B (zh) 2014-08-20
JPWO2010038391A1 (ja) 2012-02-23
CA2738263A1 (en) 2010-04-08
MY153983A (en) 2015-04-30
CA2738263C (en) 2015-12-15
JP5298133B2 (ja) 2013-09-25
US20110201696A1 (en) 2011-08-18
AU2009299338A1 (en) 2010-04-08
AU2009299338C1 (en) 2014-01-23
CN102165041A (zh) 2011-08-24
EA201170500A1 (ru) 2011-10-31
BRPI0919387A2 (pt) 2020-09-15
BRPI0919387B1 (pt) 2021-11-23
EA018146B1 (ru) 2013-05-30
AU2009299338B2 (en) 2013-08-01
US8586640B2 (en) 2013-11-19
ZA201102240B (en) 2012-06-27
EP2351813A4 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5501365B2 (ja) スラリー調製方法、スラリー調製装置、炭化水素合成反応装置、及び炭化水素合成反応システム
JP5107234B2 (ja) 液体燃料合成システム
WO2007114277A1 (ja) 液体燃料合成システム
JP5501366B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに炭化水素合成反応方法
JP5138586B2 (ja) 液体燃料合成システム
JP5364716B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP5417446B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに液体炭化水素の回収方法
JP5364713B2 (ja) 気泡塔型反応器及び気泡塔型反応器の制御方法
JP5743643B2 (ja) 反応容器の運転停止方法
JP5364714B2 (ja) 液体燃料合成方法及び液体燃料合成装置
JPWO2007114276A1 (ja) 液体燃料合成システムの起動方法、及び液体燃料合成システム
JP5298133B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP5364786B2 (ja) 触媒分離システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138042.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531719

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2738263

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009817434

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201170500

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2009299338

Country of ref document: AU

Date of ref document: 20090925

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12998191

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0919387

Country of ref document: BR

Free format text: VIDE PARECER

ENP Entry into the national phase

Ref document number: PI0919387

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110328