WO2010038278A1 - Digital signal processing circuit and digital control circuit - Google Patents

Digital signal processing circuit and digital control circuit Download PDF

Info

Publication number
WO2010038278A1
WO2010038278A1 PCT/JP2008/067765 JP2008067765W WO2010038278A1 WO 2010038278 A1 WO2010038278 A1 WO 2010038278A1 JP 2008067765 W JP2008067765 W JP 2008067765W WO 2010038278 A1 WO2010038278 A1 WO 2010038278A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
digital
output
value
moving average
Prior art date
Application number
PCT/JP2008/067765
Other languages
French (fr)
Japanese (ja)
Inventor
不二雄 黒川
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Priority to PCT/JP2008/067765 priority Critical patent/WO2010038278A1/en
Publication of WO2010038278A1 publication Critical patent/WO2010038278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/026Averaging filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0219Compensation of undesirable effects, e.g. quantisation noise, overflow
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0219Compensation of undesirable effects, e.g. quantisation noise, overflow
    • H03H2017/0222Phase error

Definitions

  • the present invention provides a digital signal processing circuit having a simple configuration in which digital control corresponding to analog PID control is realized by combining a first filter circuit that performs processing such as moving average and a second filter circuit having high-pass characteristics.
  • the present invention also relates to a digital control circuit having excellent dynamic characteristics and equipped with this processing circuit.
  • a typical power conversion circuit (indicated by reference numeral 9) as shown in FIG. 11 includes a switch circuit 91 that receives the voltage Ei of the power supply 4 and an inductor that is connected to the switch circuit 91 and stores and discharges energy. 92 and a load 3 is connected to the output terminal of the power conversion circuit 9.
  • the control device 90 When the power converter 9 is driven, the control device 90 performs constant voltage control, constant current control, and constant power control.
  • the constant voltage control the average value or effective value (Eo) of the output voltage eo is normally detected, and feedback control is performed so that, for example, the deviation between the detected value Eo and the target value Eo * becomes zero.
  • the average value or effective value (Io) of the output current io is detected, and feedback control is performed so that the deviation between the detected value Io and the target value Io * becomes zero. Further, for example, the peak value, average value or effective value (I L ) of the current i L flowing through the inductor 92 is detected, and constant current control is performed so that the deviation between the detected value I L and the target value I L * becomes zero. May be performed.
  • constant power control normally, the product of output voltage eo and output current io (or the product of Eo and Io) is detected, and feedback control is performed so that the deviation between detected value P and target value P * becomes zero. is doing.
  • the deviation (X * ⁇ X) between the detected value of voltage, current, and power (here, X) and the target value (X * ) is obtained by a comparator.
  • the deviation (X * ⁇ X) is subjected to analog processing such as proportional compensation (P compensation), proportional / integral compensation (PI compensation), or proportional / integral / derivative compensation (PID compensation).
  • the conventional control method described above cannot perform high-speed processing because a delay in an analog element such as a comparator is inevitable.
  • the switching frequency is limited to about 2 MHz.
  • the analog control circuit is naturally unprogrammable, so it is not suitable for characteristic adjustment or design change.
  • the FIR filter is formed by connecting a plurality of sets of a delay block that returns one sample before and a block that multiplies the output value of this delay block by a weight parameter. You can make properties. However, it is not easy to obtain the values of these weight parameters, and it is necessary to perform a complicated analysis. Even if such an analysis can be performed, the FIR filter has an integral characteristic, so that a phase delay is likely to occur. Therefore, it cannot normally be applied to control.
  • the IIR filter does not simply multiply the output of the delay block by the weight parameter like the FIR filter, but incorporates feedback processing. Thereby, since integral characteristics and differential identification can be held together, phase lag can be suppressed.
  • the IIR filter it is not easier to obtain parameter values for stable operation (for example, no oscillation) than FIR, and the algorithm becomes more complicated, so that it is practically impossible to apply to control. is there.
  • An object of the present invention is to realize digital control corresponding to analog PID control by combining a first filter that performs moving average processing or FIR processing and a second filter circuit having a high-pass characteristic, with a simple configuration. It is an object of the present invention to provide a signal processing circuit and a digital control circuit having an excellent dynamic characteristic equipped with this processing circuit.
  • the gist of the digital signal processing circuit of the present invention is (1) to (4).
  • a first filter circuit that inputs a digital value and performs a moving average process or a finite impulse response (FIR) process
  • a second filter circuit that inputs the digital value and has a high-pass characteristic and a leading phase
  • An adder circuit for generating a signal for adding the output of the first filter circuit and the output of the second filter circuit
  • a digital signal processing circuit wherein a phase delay occurring in the first filter circuit is compensated by an output of the second filter circuit.
  • a digital signal having a phase lag output from the first filter circuit and a second filter circuit typically a digital differentiation circuit, having a high-pass characteristic and a leading phase characteristic).
  • the signal output by the digital adder is added by a digital adder.
  • a digital signal with compensated phase delay can be obtained.
  • the moving average calculates a circuit, 2 r pieces of the FIFO capable of storing sampled values, type 2 r pieces of sampling values stored in the FIFO adder for sequentially output by adding these And a shift register that shifts and outputs the addition result data from the adder to the lower order of r bits and outputs the digital control circuit according to (1).
  • the differentiation circuit includes a FIFO that can store two sampling values, a subtracter that inputs the two sampling values stored in the FIFO, subtracts them, and outputs them sequentially, and the subtractor
  • a first coefficient multiplier circuit that multiplies the output of the first filter circuit by a predetermined coefficient and outputs the multiplied value
  • a second coefficient multiplying circuit for multiplying the output of the second filter circuit by a predetermined coefficient and outputting the multiplied value
  • the gist of the digital control circuit of the present invention is (5) or (6).
  • a digital control circuit equipped with the digital signal processing circuit according to (1) A digital control circuit, wherein the digital value is a deviation (X * -X) between a detected value X of a predetermined electric quantity of a device to be controlled and a target value X * of the electric quantity. Since the first filter circuit does not have differential characteristics, the output phase of the first filter circuit is originally delayed, but a digital control signal in which the phase delay is compensated by the second filter circuit can be obtained.
  • the predetermined amount of electricity of the device to be controlled is Output voltage, output current or output power of the device to be controlled, Current flowing through the switch element of the device to be controlled, A current flowing through a reactor for energy storage included in the control target device; (4) The digital control circuit according to (5).
  • the first filter circuit for performing the moving average process and the finite impulse response process, the second filter circuit having a high-pass characteristic, and the digital addition circuit can be configured by a relatively simple circuit. Therefore, the configuration is simple, and it is suitable for making a high-speed control-dedicated IC or FPGA.
  • the present invention can be applied to various digital signal processing circuits, for example, a control circuit for a power conversion device and a sound processing circuit.
  • control equivalent to or higher than PID control in analog control can be performed.
  • control at a switching frequency on the order of 2 MHz is the limit, but control at a switching frequency much higher than this frequency can be realized by a digital circuit.
  • (A) is explanatory drawing which shows one Embodiment of the digital signal processing circuit of this invention
  • (B) is a figure which shows a digital signal by a discrete value.
  • (A) is a block diagram of a moving average circuit used in the present invention
  • (B) is an example of frequency characteristics of the moving average circuit
  • (C) is an example of phase characteristics of the moving average circuit.
  • (A) is an example of frequency characteristics of a differentiation circuit
  • (B) is an example of phase characteristics of a differentiation circuit.
  • FIG. It is explanatory drawing which shows the example which deform
  • (A) is a circuit which calculates a moving average
  • (B) is a graph which shows four sampling points. It is a figure which shows the differentiation circuit used by this invention.
  • (A) shows the transient characteristics of the reactor current when the power conversion circuit is simulated by the PID controller
  • (B) shows the transient characteristics of the reactor current when the power conversion circuit is simulated by the digital control circuit of the present invention.
  • FIG. It is explanatory drawing which shows the conventional power converter circuit.
  • FIG. 1A is an explanatory diagram showing an embodiment of a digital signal processing circuit of the present invention.
  • the digital signal processing circuit 11A includes a moving average circuit 111A, a differentiating circuit 112, and an adding circuit 113.
  • the moving average circuit 111A is the first filter circuit of the present invention
  • the differentiating circuit 112 is the second filter circuit of the present invention.
  • FIG. 1B a digital signal (discrete value), ..., X (1), X (2), ..., X (M), ... Indicates.
  • the time axis is ..., 1, 2, ..., M-1, M, ... It is shown by.
  • the digital value X is, for example, a deviation of electricity such as voltage, current, and power.
  • the moving average circuit 111A receives the digital value X and calculates a moving average MQ (n).
  • the differentiating circuit 112 receives the digital value X, and calculates the time-sequential n-time phase-lag differential value (compensation amount) CQ (n) generated in the moving average circuit 111A.
  • the adding circuit 113 adds the moving average MQ (n) and the compensation amount CQ (n) to generate a digital signal Dc (n) that compensates for the phase delay. Note that FIG. 1A shows the flow of processing, and does not show the signal value of each part at a certain moment.
  • Equation 1 The difference equation of the moving average MQ at time n in time series is expressed by Equation 1.
  • MQ (n) (1 / M) ⁇ X (k) (Equation 1)
  • M is the number of samples.
  • n is a coefficient corresponding to the sampling time M.
  • FIG. 2A shows a block diagram of the moving average circuit 111A.
  • the Z ⁇ 1 block means that the digital value of the previous sampling is output.
  • a coefficient multiplication circuit (1 / M) is provided at the final stage of the moving average circuit 111A.
  • digital values X (M), X (M ⁇ 1),. .., X (2), X (1) is summed and multiplied by (1 / M).
  • a coefficient multiplication circuit can be provided in the subsequent stage of the moving average circuit 111A and the differentiation circuit 112. It can be used together with a coefficient multiplication circuit provided at the subsequent stage of the moving average circuit 111A.
  • FIG. 2B shows an example of the frequency characteristic of the moving average circuit 111A
  • FIG. 2C shows an example of the phase characteristic of the moving average circuit 111A.
  • the output of the moving average circuit 111A has a phase delay in the practical frequency range.
  • the differentiation circuit 112 in FIG. 1A has high-pass characteristics, and the compensation amount CQ (n) at time n in time series is expressed by Equation 2.
  • CQ (n) (X (k) ⁇ X (k ⁇ 1)) / ⁇ t (Formula 2)
  • ⁇ t is a discrete time interval
  • k is any value from 2 to M, for example.
  • n is a coefficient corresponding to the sampling time M-1.
  • CQ (n) is a differential value using a discrete value sequence
  • the time interval can be represented by ⁇ 2t as shown in Equation 3.
  • CQ (n) (X (k) ⁇ X (k ⁇ 2)) / ⁇ 2t (Expression 3)
  • k is, for example, any value from 2 to M, for example, any value from 3 to M.
  • FIG. 3A shows an example of the frequency characteristic of the differentiating circuit 112
  • FIG. 3B shows an example of the phase characteristic of the differentiating circuit 112.
  • the adding circuit 113 adds the moving average MQ (n) and the output of the differentiating circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of MQ (n) depends on CQ (n). Reduced.
  • FIG. 4 is an explanatory view showing another embodiment of the digital signal processing circuit of the present invention.
  • the digital signal processing circuit 11B includes an FIR filter circuit 111B, a differentiating circuit 112, an adding circuit 113, and a coefficient multiplying circuit.
  • the moving average circuit 111B is the first filter circuit of the present invention
  • the differentiation circuit 112 is the second filter circuit of the present invention, like the digital signal processing circuit of FIG.
  • the difference equation at time n in the time series of the FIR filter circuit 111B is expressed by Expression 4.
  • FQ (n) ⁇ a k X (k) (Formula 4)
  • M is the number of samples
  • a k is a weighting coefficient.
  • n is a coefficient corresponding to the sampling time M.
  • FIG. 5 shows a block diagram of the FIR filter circuit 111B.
  • the block of Z ⁇ 1 means that the digital value of the previous sampling is output.
  • a coefficient multiplication circuit (a k ) is provided in the subsequent stage of the block of Z ⁇ 1 , and when X (M) is input to the FIR filter circuit 111B, a M X (M), a M ⁇ 1 X The sum of (M ⁇ 1),..., A 2 X (2), a 1 X (1) is calculated.
  • a coefficient multiplication circuit may be provided at the subsequent stage of the FIR filter circuit 111 ⁇ / b> B and the differentiation circuit 112, similarly to the moving average circuit 111 ⁇ / b> A of FIGS. 1 (A) and 2 (A). it can.
  • the frequency characteristics and phase characteristics of the FIR filter circuit 111B are the same as those shown for the moving average circuit 111A in FIGS. 2B and 2C, and the output FQ (n) of the FIR filter circuit 111B has a practical frequency range. A phase lag occurs.
  • the compensation amount CQ (n) at time n in time series which is the output of the differentiating circuit 112 in FIG.
  • CQ (n) is a differential value using a discrete value sequence, for example, the time interval can be represented by ⁇ 2t, and can be expressed as in Expression 3 described above.
  • a coefficient multiplication circuit is provided at the subsequent stage of the FIR filter circuit 111B and the differentiation circuit 112 as in the moving average circuit 111A of FIGS. 1 (A) and 2 (A). be able to. Also in the digital signal processing circuit 11B of FIG. 4, the phase of the output CQ (n) of the differentiating circuit 112 is advanced in the practical frequency range. Therefore, the addition circuit 113 adds the output FQ (n) of the FIR filter circuit 111B and the output of the differentiation circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of FQ (n) is CQ. Canceled by (n).
  • FIG. 6 is an explanatory diagram showing an embodiment of the digital control circuit of the present invention.
  • the power conversion circuit is controlled by a digital control circuit having the digital signal processing circuit 11A of FIG. 1 mounted thereon.
  • the power conversion circuit is controlled by the digital control circuit having the digital signal processing circuit 11B of FIG.
  • the following description also applies to the case of controlling the above.
  • the power conversion circuit 2 includes a switch circuit 21 that inputs a voltage Ei from the power supply 4 and an inductor 22 that is connected to the switch circuit 21 and stores and releases energy.
  • the switch circuit 21 includes a load 3. (The inductor 22 may be connected between the switch circuit 21 and the load 3 depending on the power conversion method).
  • the digital control circuit 1 includes an input unit 12, an input comparison unit 13, a digital signal processing circuit 11A, and a control signal output unit 14.
  • the input unit 12 has a signal selection function, and can select either the output voltage eo or the output current io, or can select both the output voltage eo and the output current io.
  • the digital control circuit 1 can perform various controls such as a constant voltage mode, a constant current mode, a power mode, an overcurrent limit mode, and an overvoltage limit mode. For example, when the digital control circuit 1 performs control in the constant voltage mode, the input unit 12 selects only eo, and when the load 3 increases rapidly, the input unit 12 switches to only io selection, The digital control circuit 1 performs control in the overcurrent limit mode. Further, in the process of shifting from the constant voltage mode to the overcurrent limiting mode, the input unit 12 selects both eo and io, performs multiplication of eo and io, and the digital control circuit 1 performs control in the power mode. May be performed.
  • the output of the input unit 12 is set to ad.
  • the voltage detection value is not limited to the instantaneous value eo, but may be an average value or an effective value Eo.
  • the detected current value is not limited to the instantaneous value io, and may be an average value or an effective value Io.
  • the input comparison unit 13 following the input unit 12 includes an operational amplifier 131 and an A / D converter 132.
  • the differential amplifier 131 outputs a difference (ad * ⁇ ad) between the power detection value ad and the target value ad *, and the A / D converter 132 converts the difference (ad * ⁇ ad) into a digital signal, and the deviation. It is output to the digital signal processing circuit 11 as (digital discrete value X).
  • the A / D converter 132 is provided at the subsequent stage of the differential amplifier 131.
  • the differential amplifier 131 in this case, a digital comparator
  • an A / D converter may be provided at the subsequent stage of the A / D converter 132. it can.
  • an A / D converter may be provided in the previous stage of the input unit 12.
  • the input unit 12 is an A / D converter 1211 and 1212 and a digital multiplier 122
  • the comparison unit 13 is a digital comparator.
  • the output of the digital multiplier 122 is indicated by D
  • the comparator 13 inputs the output D and the target value D *, and outputs the digital deviation D * ⁇ D as X.
  • a coefficient multiplication circuit 114 is provided in the subsequent stage of the moving average circuit 111 ⁇ / b> A
  • a coefficient multiplication circuit 115 is provided in the subsequent stage of the differentiation circuit 112.
  • the digital signal processing circuit 11A constitutes a part of the control circuit, performs arithmetic processing of the moving average MQ (n) of the digital deviation D X , and the coefficient multiplication circuit 114 applies a predetermined coefficient K to MQ (n). Multiplying by M , the moving average manipulated variable K M ⁇ MQ (n) is output. Further, the differential circuit 112 performs arithmetic processing of the digital deviation X of the differential value CQ (n), the coefficient multiplying circuit 115 multiplies a predetermined coefficient K D in CQ (n), moving average operation amount K D -Outputs CQ (n).
  • the adder circuit 113 adds the output K A ⁇ MQ (n) of the coefficient multiplier circuit 114 and the output differential value K D ⁇ CQ (n) of the coefficient multiplier circuit 115 to obtain a signal Dc (n) compensated for the phase delay. Output.
  • the circuit for calculating the moving average can also be composed of a shift register as shown in FIG. In FIG. 8A, the circuit for calculating the moving average includes a FIFO 1301, an adder 1302, a shift register 1303, and a coefficient multiplication circuit 1304.
  • the FIFO 1301 sequentially inputs sampling values and stores a plurality of consecutive sampling values.
  • a state is shown in which four sampling values X1, X2, X3, and X4 shown in FIG. 8B are stored.
  • the coefficient multiplication circuit 1304 multiplies ⁇ Xi by a coefficient (including a coefficient (1/4) for averaging) K M / 4, and outputs K M ⁇ (1/4) ⁇ Xi.
  • the shift register 1303 shifts the addition result (for example, binary number: b 1 b 2 b 3 b 4 ) twice to the lower side to calculate (X1 + X2 + X3 + X4) / 2 2, and outputs the shifter 1313 (X1 + X2 + X3 + X4) ) / 2 2 may be multiplied by a coefficient K M to output AM (n).
  • the coefficient multiplication circuit 1304 can be integrated with the shift register 1303.
  • the differentiating circuit 112 can be composed of a FIFO 1121, a subtracting circuit 1122, and a coefficient multiplying circuit 1123.
  • the FIFO 1121 inputs the last two values X 3 and X 4 among X 1, X 2, X 3, and X 4 and outputs these values to the subtraction circuit 1122.
  • Subtraction circuit 1122 outputs the subtracted value (X3-X4) to the coefficient multiplier circuit 1123, the coefficient multiplying circuit 1123 subtracts value (X3-X4) to be multiplied by a coefficient K D derivative value CQ (n) Output.
  • the FIFO 1121 in FIG. 9 can be shared with the FIFO 1301 of the circuit for calculating the moving average shown in FIG.
  • FIG. 10A shows the transient characteristics of the reactor current when the power conversion circuit 2 is simulated by the PID control device
  • FIG. 10B shows the reactor when the power conversion circuit 2 is simulated by the digital control circuit 1. Current transient characteristics are shown. Overshoot when the reactor current flows is greater in FIG. 10 (A), the by choosing appropriately the parameters K M and K D as described above in FIG. 10 (B), the is suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided are a digital signal processing circuit which attains digital control corresponding to analog PID control by combining a first filter which conducts moving average processing and so on and a second filter circuit which conducts lowpass processing and so on, and a digital control circuit in which the processing circuit is mounted. The digital signal processing circuit (11) is characterized by comprising a moving average circuit (111A) which has a digital value X inputted thereto, a differentiating circuit (112) which has the digital value inputted thereto and conducts differentiation processing , and an adding circuit (113) which generates a signal of adding an output from the moving average circuit (111A) and that from the differentiating circuit (112), thereby compensating the delay of a phase generated in the moving average circuit (111A) by means of the output from the differentiating circuit (112).

Description

ディジタル信号処理回路およびディジタル制御回路Digital signal processing circuit and digital control circuit
 本発明は、アナログPID制御に対応するディジタル制御を、移動平均等の処理を行う第1フィルタ回路と高域通過特性を持つ第2フィルタ回路とを組み合わせて実現した簡単な構成のディジタル信号処理回路およびこの処理回路を搭載した優れた動特性を持つディジタル制御回路に関する。 The present invention provides a digital signal processing circuit having a simple configuration in which digital control corresponding to analog PID control is realized by combining a first filter circuit that performs processing such as moving average and a second filter circuit having high-pass characteristics. The present invention also relates to a digital control circuit having excellent dynamic characteristics and equipped with this processing circuit.
 従来、図11に示すような典型的な電力変換回路(符号9で示す)は、電源4の電圧Eiを入力とするスイッチ回路91と、スイッチ回路91に接続されエネルギーの蓄積・放出を行うインダクタ92とを備えており、電力変換回路9の出力端子には負荷3が接続されている。 Conventionally, a typical power conversion circuit (indicated by reference numeral 9) as shown in FIG. 11 includes a switch circuit 91 that receives the voltage Ei of the power supply 4 and an inductor that is connected to the switch circuit 91 and stores and discharges energy. 92 and a load 3 is connected to the output terminal of the power conversion circuit 9.
 電力変換器9の駆動に際しては、制御装置90により定電圧制御、定電流制御、定電力制御が行われる。
 定電圧制御では、通常は、出力電圧eoの平均値や実効値(Eo)を検出し、たとえば検出値Eoと目標値Eo*との偏差がゼロになるようにフィードバック制御している。
When the power converter 9 is driven, the control device 90 performs constant voltage control, constant current control, and constant power control.
In the constant voltage control, the average value or effective value (Eo) of the output voltage eo is normally detected, and feedback control is performed so that, for example, the deviation between the detected value Eo and the target value Eo * becomes zero.
 定電流制御では、通常は、出力電流ioの平均値や実効値(Io)を検出し、検出値Ioと目標値Io*との偏差がゼロになるように、フィードバック制御している。また、たとえば、インダクタ92を流れる電流iLのピーク値、平均値または実効値(IL)を検出し、検出値ILと目標値IL *との偏差がゼロになるように定電流制御を行うこともある。
 定電力制御では、通常は、出力電圧eoと出力電流ioとの積(あるいはEoとIoとの積)を検出し、検出値Pと目標値P*との偏差がゼロになるようにフィードバック制御している。
In the constant current control, normally, the average value or effective value (Io) of the output current io is detected, and feedback control is performed so that the deviation between the detected value Io and the target value Io * becomes zero. Further, for example, the peak value, average value or effective value (I L ) of the current i L flowing through the inductor 92 is detected, and constant current control is performed so that the deviation between the detected value I L and the target value I L * becomes zero. May be performed.
In constant power control, normally, the product of output voltage eo and output current io (or the product of Eo and Io) is detected, and feedback control is performed so that the deviation between detected value P and target value P * becomes zero. is doing.
 従来のフィードバック制御では、前述したように電圧や電流や電力の検出値(ここでは、Xとする)と目標値(X*)との偏差(X*-X)をコンパレータにより求める。そして、この偏差(X*-X)に対して、比例補償(P補償)、比例・積分補償(PI補償)、または比例・積分・微分補償(PID補償)等のアナログ処理を行う。 In the conventional feedback control, as described above, the deviation (X * −X) between the detected value of voltage, current, and power (here, X) and the target value (X * ) is obtained by a comparator. The deviation (X * −X) is subjected to analog processing such as proportional compensation (P compensation), proportional / integral compensation (PI compensation), or proportional / integral / derivative compensation (PID compensation).
 ところが、上記した従来の制御方式では、コンパレータ等のアナログ素子における遅延が必然であるため高速処理ができない。たとえば、アナログ制御回路では、スイッチング周波数は2MHz程度が限界とされている。またアナログ制御回路は、当然、アンプログラマブルなので、特性の調整や設計変更等には不向きである。 However, the conventional control method described above cannot perform high-speed processing because a delay in an analog element such as a comparator is inevitable. For example, in an analog control circuit, the switching frequency is limited to about 2 MHz. In addition, the analog control circuit is naturally unprogrammable, so it is not suitable for characteristic adjustment or design change.
 そこで、FIR(有限インパルス応答)フィルタ,IIR(無限インパルス応答処理)フィルタ等のディジタルフィルタを制御に応用することも考えられる。FIRフィルタは、1サンプル前に戻る遅延ブロックと、この遅延ブロックの出力値に重みパラメータを乗算するブロックとの組を複数接続したもので、各重みパラメータの値を適宜選ぶことで、種々のフィルタ特性を作ることができる。しかし、これらの重みパラメータの値を求めることは容易ではなく、複雑な解析を行う必要がある。仮に、このような解析ができたとしても、FIRフィルタは、積分特性を持つため位相遅れが生じ易く、したがって通常、制御への応用はできない。 Therefore, it is also conceivable to apply digital filters such as FIR (finite impulse response) filters and IIR (infinite impulse response processing) filters to control. The FIR filter is formed by connecting a plurality of sets of a delay block that returns one sample before and a block that multiplies the output value of this delay block by a weight parameter. You can make properties. However, it is not easy to obtain the values of these weight parameters, and it is necessary to perform a complicated analysis. Even if such an analysis can be performed, the FIR filter has an integral characteristic, so that a phase delay is likely to occur. Therefore, it cannot normally be applied to control.
 一方、IIRフィルタは、FIRフィルタのように単に遅延ブロックの出力に重みパラメータを乗算するのではなく、フィードバック処理を取り入れている。これにより、積分特性と微分特定とを併せて持ことができるので、位相遅れを抑えることができる。しかし、IIRフィルタでは、安定に動作させる(たとえば、発振させない)ためのパラメータ値を求めることが、FIRよりさらに容易ではなく、アルゴリズムがより複雑となるため、制御への応用は実質上不可能である。 On the other hand, the IIR filter does not simply multiply the output of the delay block by the weight parameter like the FIR filter, but incorporates feedback processing. Thereby, since integral characteristics and differential identification can be held together, phase lag can be suppressed. However, in the IIR filter, it is not easier to obtain parameter values for stable operation (for example, no oscillation) than FIR, and the algorithm becomes more complicated, so that it is practically impossible to apply to control. is there.
 本発明の目的は、アナログPID制御に対応するディジタル制御を、移動平均処理またはFIR処理を行う第1フィルタと、高域通過特性を持つ第2フィルタ回路とを組み合わせて実現した簡単な構成のディジタル信号処理回路およびこの処理回路を搭載した優れた動特性を持つディジタル制御回路を提供することにある。 An object of the present invention is to realize digital control corresponding to analog PID control by combining a first filter that performs moving average processing or FIR processing and a second filter circuit having a high-pass characteristic, with a simple configuration. It is an object of the present invention to provide a signal processing circuit and a digital control circuit having an excellent dynamic characteristic equipped with this processing circuit.
 本発明のディジタル信号処理回路は、(1)から(4)を要旨とする。
(1) ディジタル値を入力し、移動平均処理または有限インパルス応答(FIR)処理を行う第1フィルタ回路と、
 前記ディジタル値を入力し、高域通過特性かつ進み位相を持つ第2フィルタ回路と、
 前記第1フィルタ回路の出力と前記第2フィルタ回路の出力とを加算する信号を生成する加算回路とを備え、
 前記第1フィルタ回路において生じる位相の遅れを、前記第2フィルタ回路の出力により補償することを特徴とするディジタル信号処理回路。
 本発明のディジタル信号処理回路では、第1フィルタ回路が出力する位相遅れを持つディジタル信号と、第2フィルタ回路(典型的にはディジタル微分回路であり、高域通過特性をもち、進み位相特性を持つ)が出力する信号は、ディジタル加算器により加算される。これにより、位相遅れが補償されたディジタル信号を得ることができる。
The gist of the digital signal processing circuit of the present invention is (1) to (4).
(1) a first filter circuit that inputs a digital value and performs a moving average process or a finite impulse response (FIR) process;
A second filter circuit that inputs the digital value and has a high-pass characteristic and a leading phase;
An adder circuit for generating a signal for adding the output of the first filter circuit and the output of the second filter circuit;
A digital signal processing circuit, wherein a phase delay occurring in the first filter circuit is compensated by an output of the second filter circuit.
In the digital signal processing circuit of the present invention, a digital signal having a phase lag output from the first filter circuit and a second filter circuit (typically a digital differentiation circuit, having a high-pass characteristic and a leading phase characteristic). The signal output by the digital adder is added by a digital adder. As a result, a digital signal with compensated phase delay can be obtained.
(2) 前記移動平均を演算する回路は、2r個のサンプリング値を記憶できるFIFOと、前記FIFOに記憶されている2r個のサンプリング値を入力しこれらを加算して順次出力する加算器と、前記加算器からの加算結果データをrビット下位側にシフトさせて出力するシフトレジスタとを備えたことを特徴とする(1)に記載のディジタル制御回路。 (2) the moving average calculates a circuit, 2 r pieces of the FIFO capable of storing sampled values, type 2 r pieces of sampling values stored in the FIFO adder for sequentially output by adding these And a shift register that shifts and outputs the addition result data from the adder to the lower order of r bits and outputs the digital control circuit according to (1).
(3) 前記微分回路は、2個のサンプリング値を記憶できるFIFOと、前記FIFOに記憶されている2個のサンプリング値を入力しこれらを減算して順次出力する減算器と、前記減算器からの減算結果データに時間係数を乗算して出力する乗算回路とを備えたことを特徴とする(1)または(2)に記載のディジタル制御回路。
(4) 前記第1フィルタ回路の出力に所定係数を乗算して当該乗算値を出力する第1の係数乗算回路と、
 前記第2フィルタ回路の出力に所定係数を乗算して当該乗算値を出力する第2の係数乗算回路と、
を備えたことを特徴とする(1)から(3)の何れかに記載のディジタル制御回路。
 本発明のディジタル制御回路は、(5)または(6)を要旨とする。
(5) (1)に記載のディジタル信号処理回路を搭載したディジタル制御回路であって、
 前記ディジタル値が、制御対象機器の所定電気量の検出値Xと、当該電気量の目標値X*との偏差(X*-X)であることを特徴とするディジタル制御回路。
 前記第1フィルタ回路は微分特性を持たないため、本来であれば第1フィルタ回路の出力の位相は遅れるが、前記第2フィルタ回路により位相遅れが補償されたディジタル制御信号を得ることができる。
(3) The differentiation circuit includes a FIFO that can store two sampling values, a subtracter that inputs the two sampling values stored in the FIFO, subtracts them, and outputs them sequentially, and the subtractor The digital control circuit according to (1) or (2), further comprising: a multiplication circuit that multiplies the subtraction result data by a time coefficient and outputs the result.
(4) a first coefficient multiplier circuit that multiplies the output of the first filter circuit by a predetermined coefficient and outputs the multiplied value;
A second coefficient multiplying circuit for multiplying the output of the second filter circuit by a predetermined coefficient and outputting the multiplied value;
The digital control circuit according to any one of (1) to (3), comprising:
The gist of the digital control circuit of the present invention is (5) or (6).
(5) A digital control circuit equipped with the digital signal processing circuit according to (1),
A digital control circuit, wherein the digital value is a deviation (X * -X) between a detected value X of a predetermined electric quantity of a device to be controlled and a target value X * of the electric quantity.
Since the first filter circuit does not have differential characteristics, the output phase of the first filter circuit is originally delayed, but a digital control signal in which the phase delay is compensated by the second filter circuit can be obtained.
(6) 前記制御対象機器の前記所定電気量が、
  前記制御対象機器の出力電圧、出力電流または出力電力、
  前記制御対象機器のスイッチ素子を流れる電流、
  前記制御対象機器に含まれるエネルギー蓄積用のリアクトルを流れる電流、
であることを特徴とする(5)に記載のディジタル制御回路。
(6) The predetermined amount of electricity of the device to be controlled is
Output voltage, output current or output power of the device to be controlled,
Current flowing through the switch element of the device to be controlled,
A current flowing through a reactor for energy storage included in the control target device;
(4) The digital control circuit according to (5).
 本発明のディジタル信号処理回路は、移動平均処理や有限インパルス応答処理を行う第1フィルタ回路、高域通過特性を持つ第2フィルタ回路、ディジタル加算回路は、比較的簡単な回路により構成することができるので、構成が簡単であり、高速の制御専用ICやFPGAなどを作るのに適している。種々のディジタル信号処理回路、たとえば、電力変換装置の制御回路や、音声処理回路などへの適用ができる。 In the digital signal processing circuit of the present invention, the first filter circuit for performing the moving average process and the finite impulse response process, the second filter circuit having a high-pass characteristic, and the digital addition circuit can be configured by a relatively simple circuit. Therefore, the configuration is simple, and it is suitable for making a high-speed control-dedicated IC or FPGA. The present invention can be applied to various digital signal processing circuits, for example, a control circuit for a power conversion device and a sound processing circuit.
 本発明のディジタル制御回路では、アナログ制御におけるPID制御と同等ないし同等以上の制御を行うことができる。特に、従来のアナログ制御では、たとえば2MHzオーダ程度のスイッチング周波数での制御が限界であったが、この周波数よりもはるかに高いスイッチング周波数での制御をディジタル回路で実現できる。 In the digital control circuit of the present invention, control equivalent to or higher than PID control in analog control can be performed. In particular, in conventional analog control, for example, control at a switching frequency on the order of 2 MHz is the limit, but control at a switching frequency much higher than this frequency can be realized by a digital circuit.
(A)は本発明のディジタル信号処理回路の一実施形態を示す説明図、(B)はディジタル信号を離散値で示す図である。(A) is explanatory drawing which shows one Embodiment of the digital signal processing circuit of this invention, (B) is a figure which shows a digital signal by a discrete value. (A)は本発明で使用される移動平均回路のブロック図、(B)は移動平均回路の周波数特性例、(C)は移動平均回路の位相特性例である。(A) is a block diagram of a moving average circuit used in the present invention, (B) is an example of frequency characteristics of the moving average circuit, and (C) is an example of phase characteristics of the moving average circuit. (A)は微分回路の周波数特性例であり、(B)は微分回路の位相特性例である。(A) is an example of frequency characteristics of a differentiation circuit, and (B) is an example of phase characteristics of a differentiation circuit. 本発明のディジタル信号処理回路の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the digital signal processing circuit of this invention. 本発明で使用されるFIRフィルタ回路のブロック図である。It is a block diagram of the FIR filter circuit used by this invention. 本発明のディジタル制御回路の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the digital control circuit of this invention. 図6のディジタル制御回路の入力部と入力比較部とを変形した例を示す説明図である。It is explanatory drawing which shows the example which deform | transformed the input part and input comparison part of the digital control circuit of FIG. (A)は移動平均を演算する回路であり、(B)は4つのサンプリング点を示すグラフである。(A) is a circuit which calculates a moving average, (B) is a graph which shows four sampling points. 本発明で使用される微分回路を示す図である。It is a figure which shows the differentiation circuit used by this invention. (A)は電力変換回路をPID制御装置でシミュレートしたときのリアクトル電流の過渡特性を示し、(B)は電力変換回路を本発明のディジタル制御回路でシミュレートしたときのリアクトル電流の過渡特性を示す図である。(A) shows the transient characteristics of the reactor current when the power conversion circuit is simulated by the PID controller, and (B) shows the transient characteristics of the reactor current when the power conversion circuit is simulated by the digital control circuit of the present invention. FIG. 従来の電力変換回路を示す説明図である。It is explanatory drawing which shows the conventional power converter circuit.
符号の説明Explanation of symbols
 2 電力変換回路
 3 負荷
 4 電源
 11A,11B ディジタル信号処理回路
 12 入力部
 13 入力比較部
 14 制御信号出力部
 21 イッチ回路
 22 インダクタ
 111A 移動平均回路
 111B FIRフィルタ回路
 112 微分回路
 113 加算回路
 114,115 係数乗算回路
 131 差動増幅器
 131 比較器
 132 A/D変換器
2 Power conversion circuit 3 Load 4 Power supply 11A, 11B Digital signal processing circuit 12 Input unit 13 Input comparison unit 14 Control signal output unit 21 Switch circuit 22 Inductor 111A Moving average circuit 111B FIR filter circuit 112 Differentiation circuit 113 Addition circuit 114, 115 Coefficient Multiplier circuit 131 Differential amplifier 131 Comparator 132 A / D converter
 図1(A)は本発明のディジタル信号処理回路の一実施形態を示す説明図である。図1(A)において、ディジタル信号処理回路11Aは、移動平均回路111Aと、微分回路112と、加算回路113とを備えている。ここで、移動平均回路111Aは本発明の第1フィルタ回路であり、微分回路112は本発明の第2フィルタ回路である。 FIG. 1A is an explanatory diagram showing an embodiment of a digital signal processing circuit of the present invention. In FIG. 1A, the digital signal processing circuit 11A includes a moving average circuit 111A, a differentiating circuit 112, and an adding circuit 113. Here, the moving average circuit 111A is the first filter circuit of the present invention, and the differentiating circuit 112 is the second filter circuit of the present invention.
 図1(B)に、ディジタル信号(離散値)、
 ・・・,X(1),X(2),・・・,X(M),・・・
を示す。図1(B)では、時間軸を、
  ・・・,1,2,・・・,M-1,M,・・・
で示してある。
In FIG. 1B, a digital signal (discrete value),
..., X (1), X (2), ..., X (M), ...
Indicates. In FIG. 1B, the time axis is
..., 1, 2, ..., M-1, M, ...
It is shown by.
 ディジタル値Xは、たとえば、電圧、電流、電力等の電気量の偏差である。
 移動平均回路111Aは、上記のディジタル値Xを入力し、移動平均MQ(n)を演算する。
 微分回路112は、ディジタル値Xを入力し、移動平均回路111Aにおいて生じた、時系列のn時刻の位相遅れの微分値(補償量)CQ(n)を演算する。加算回路113は、移動平均MQ(n)と補償量CQ(n)とを加算して位相遅れを補償したディジタル信号Dc(n)を生成する。なお、図1(A)では、処理の流れを示すもので、ある瞬間における各部の信号値を示すものではない。
The digital value X is, for example, a deviation of electricity such as voltage, current, and power.
The moving average circuit 111A receives the digital value X and calculates a moving average MQ (n).
The differentiating circuit 112 receives the digital value X, and calculates the time-sequential n-time phase-lag differential value (compensation amount) CQ (n) generated in the moving average circuit 111A. The adding circuit 113 adds the moving average MQ (n) and the compensation amount CQ (n) to generate a digital signal Dc (n) that compensates for the phase delay. Note that FIG. 1A shows the flow of processing, and does not show the signal value of each part at a certain moment.
 移動平均MQの、時系列のn時刻における差分方程式は式1で表される。
     MQ(n)=(1/M)ΣX(k)・・・(式1)
 ただし、ΣX(k)は、k=1~Mまでの加算値であり、Mはサンプル数である。nは、ここでは、サンプリング時刻Mに対応する係数である。
The difference equation of the moving average MQ at time n in time series is expressed by Equation 1.
MQ (n) = (1 / M) ΣX (k) (Equation 1)
However, ΣX (k) is an addition value from k = 1 to M, and M is the number of samples. Here, n is a coefficient corresponding to the sampling time M.
 図2(A)に、移動平均回路111Aのブロック図を示す。図2(A)において、Z-1のブロックは、1つ前のサンプリングのディジタル値を出力することを意味する。移動平均回路111Aの最終段には、係数乗算回路(1/M)が設けられており、X(n)が入力されると、ディジタル値X(M),X(M-1),・・・,X(2),X(1)の合計値が計算され、これに(1/M)が乗算される。
 図1(A),図2(A)には図示していないが、移動平均回路111Aおよび微分回路112の後段に係数乗算回路を設けることができる。移動平均回路111Aの後段に設けた係数乗算回路と併用できる。
FIG. 2A shows a block diagram of the moving average circuit 111A. In FIG. 2A, the Z −1 block means that the digital value of the previous sampling is output. A coefficient multiplication circuit (1 / M) is provided at the final stage of the moving average circuit 111A. When X (n) is input, digital values X (M), X (M−1),. .., X (2), X (1) is summed and multiplied by (1 / M).
Although not shown in FIGS. 1A and 2A, a coefficient multiplication circuit can be provided in the subsequent stage of the moving average circuit 111A and the differentiation circuit 112. It can be used together with a coefficient multiplication circuit provided at the subsequent stage of the moving average circuit 111A.
 図2(B)に移動平均回路111Aの周波数特性の例を示し、図2(C)に移動平均回路111Aの位相特性の例を示す。図2(B),(C)からわかるように、移動平均回路111Aの出力には、実用周波数域において位相遅れが生じる。 2B shows an example of the frequency characteristic of the moving average circuit 111A, and FIG. 2C shows an example of the phase characteristic of the moving average circuit 111A. As can be seen from FIGS. 2B and 2C, the output of the moving average circuit 111A has a phase delay in the practical frequency range.
 図1(A)における微分回路112は、高域通過特性を持ち、時系列のn時刻における補償量CQ(n)は、式2で表される。
     CQ(n)=(X(k)-X(k-1))/Δt・・・(式2)
 ただし、Δtは離散値の時間間隔であり、kはたとえば2~Mのうちの何れかの値である。また、nは、ここでは、サンプリング時刻M-1に対応する係数である。
The differentiation circuit 112 in FIG. 1A has high-pass characteristics, and the compensation amount CQ (n) at time n in time series is expressed by Equation 2.
CQ (n) = (X (k) −X (k−1)) / Δt (Formula 2)
However, Δt is a discrete time interval, and k is any value from 2 to M, for example. Here, n is a coefficient corresponding to the sampling time M-1.
 なお、CQ(n)は、離散値列を用いた微分値であれば、たとえば時間間隔をΔ2tとして、式3のように表すこともできる。
     CQ(n)=(X(k)-X(k-2))/Δ2t・・・(式3)
 kはたとえば2~Mのうちの何れかの値であり、たとえば3~Mのうちの何れかの値である。
If CQ (n) is a differential value using a discrete value sequence, for example, the time interval can be represented by Δ2t as shown in Equation 3.
CQ (n) = (X (k) −X (k−2)) / Δ2t (Expression 3)
k is, for example, any value from 2 to M, for example, any value from 3 to M.
 図3(A)に微分回路112の周波数特性の例を示し、図3(B)に微分回路112の位相特性の例を示す。図2(A),(B)からわかるように、微分回路112の出力には、実用周波数域において位相が進んでいる。したがって、加算回路113が、移動平均MQ(n)と微分回路112の出力(補償量CQ(n))とを加算することで、MQ(n)の位相遅れ分の影響はCQ(n)により低減される。 3A shows an example of the frequency characteristic of the differentiating circuit 112, and FIG. 3B shows an example of the phase characteristic of the differentiating circuit 112. As can be seen from FIGS. 2A and 2B, the phase of the output of the differentiation circuit 112 is advanced in the practical frequency range. Therefore, the adding circuit 113 adds the moving average MQ (n) and the output of the differentiating circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of MQ (n) depends on CQ (n). Reduced.
 図4は本発明のディジタル信号処理回路の他の実施形態を示す説明図である。図4において、ディジタル信号処理回路11Bは、FIRフィルタ回路111Bと、微分回路112と、加算回路113と、係数乗算回路を備えている。ここで、移動平均回路111Bは本発明の第1フィルタ回路であり、図1のディジタル信号処理回路と同様、微分回路112は本発明の第2フィルタ回路である。
 FIRフィルタ回路111Bの、時系列のn時刻における差分方程式は式4で表される。
     FQ(n)=ΣakX(k)・・・(式4)
 ただし、ΣakX(k)は、k=1~Mまでの加算値であり、Mはサンプル数、akは重み係数である。nは、ここでは、サンプリング時刻Mに対応する係数である。
FIG. 4 is an explanatory view showing another embodiment of the digital signal processing circuit of the present invention. In FIG. 4, the digital signal processing circuit 11B includes an FIR filter circuit 111B, a differentiating circuit 112, an adding circuit 113, and a coefficient multiplying circuit. Here, the moving average circuit 111B is the first filter circuit of the present invention, and the differentiation circuit 112 is the second filter circuit of the present invention, like the digital signal processing circuit of FIG.
The difference equation at time n in the time series of the FIR filter circuit 111B is expressed by Expression 4.
FQ (n) = Σa k X (k) (Formula 4)
However, Σa k X (k) is an addition value from k = 1 to M, M is the number of samples, and a k is a weighting coefficient. Here, n is a coefficient corresponding to the sampling time M.
 図5に、FIRフィルタ回路111Bのブロック図を示す。図5において、Z-1のブロックは、1つ前のサンプリングのディジタル値を出力することを意味する。Z-1のブロックの後段には、係数乗算回路(ak)が設けられており、FIRフィルタ回路111BにX(M)が入力されると、aMX(M),aM-1X(M-1),・・・,a2X(2),a1X(1)の合計値が計算される。 FIG. 5 shows a block diagram of the FIR filter circuit 111B. In FIG. 5, the block of Z −1 means that the digital value of the previous sampling is output. A coefficient multiplication circuit (a k ) is provided in the subsequent stage of the block of Z −1 , and when X (M) is input to the FIR filter circuit 111B, a M X (M), a M−1 X The sum of (M−1),..., A 2 X (2), a 1 X (1) is calculated.
 図4,図5には図示していないが、図1(A),図2(A)の移動平均回路111Aと同様、FIRフィルタ回路111Bおよび微分回路112の後段に係数乗算回路を設けることができる。 Although not shown in FIGS. 4 and 5, a coefficient multiplication circuit may be provided at the subsequent stage of the FIR filter circuit 111 </ b> B and the differentiation circuit 112, similarly to the moving average circuit 111 </ b> A of FIGS. 1 (A) and 2 (A). it can.
 FIRフィルタ回路111Bの周波数特性、位相特性は、図2(B),(C)に移動平均回路111Aについて示したと同様であり、FIRフィルタ回路111Bの出力FQ(n)には、実用周波数域において位相遅れが生じる。 The frequency characteristics and phase characteristics of the FIR filter circuit 111B are the same as those shown for the moving average circuit 111A in FIGS. 2B and 2C, and the output FQ (n) of the FIR filter circuit 111B has a practical frequency range. A phase lag occurs.
 図5における微分回路112の出力である、時系列のn時刻における補償量CQ(n)は、前述した式2で表される。また、CQ(n)は、離散値列を用いた微分値であれば、たとえば時間間隔をΔ2tとして、前述した式3のように表すこともできる。 The compensation amount CQ (n) at time n in time series, which is the output of the differentiating circuit 112 in FIG. Further, if CQ (n) is a differential value using a discrete value sequence, for example, the time interval can be represented by Δ2t, and can be expressed as in Expression 3 described above.
 なお、図4および図5には図示していないが、図1(A),図2(A)の移動平均回路111Aと同様、FIRフィルタ回路111Bおよび微分回路112の後段に係数乗算回路を設けることができる。
 図4のディジタル信号処理回路11Bでも、微分回路112の出力CQ(n)は、実用周波数域において位相が進んでいる。したがって、加算回路113が、FIRフィルタ回路111Bの出力FQ(n)と微分回路112の出力(補償量CQ(n))とを加算することで、FQ(n)の位相遅れ分の影響はCQ(n)によりキャンセルされる。
Although not shown in FIGS. 4 and 5, a coefficient multiplication circuit is provided at the subsequent stage of the FIR filter circuit 111B and the differentiation circuit 112 as in the moving average circuit 111A of FIGS. 1 (A) and 2 (A). be able to.
Also in the digital signal processing circuit 11B of FIG. 4, the phase of the output CQ (n) of the differentiating circuit 112 is advanced in the practical frequency range. Therefore, the addition circuit 113 adds the output FQ (n) of the FIR filter circuit 111B and the output of the differentiation circuit 112 (compensation amount CQ (n)), so that the influence of the phase delay of FQ (n) is CQ. Canceled by (n).
 図6は、本発明のディジタル制御回路の実施形態を示す説明図である。本実施形態では、図1のディジタル信号処理回路11Aを搭載したディジタル制御回路により、電力変換回路を制御する例を示すが、図4のディジタル信号処理回路11Bを搭載したディジタル制御回路により電力変換回路を制御する場合も、以下の説明がそのまま当てはまる。 FIG. 6 is an explanatory diagram showing an embodiment of the digital control circuit of the present invention. In this embodiment, an example is shown in which the power conversion circuit is controlled by a digital control circuit having the digital signal processing circuit 11A of FIG. 1 mounted thereon. However, the power conversion circuit is controlled by the digital control circuit having the digital signal processing circuit 11B of FIG. The following description also applies to the case of controlling the above.
 図6において、電力変換回路2は、電源4からの電圧Eiを入力するスイッチ回路21と、スイッチ回路21に接続されエネルギー蓄積・放出を行うインダクタ22とから構成され、スイッチ回路21には負荷3が接続されている(インダクタ22は、電力変換方式によっては、スイッチ回路21と負荷3との間に接続されることもある)。 In FIG. 6, the power conversion circuit 2 includes a switch circuit 21 that inputs a voltage Ei from the power supply 4 and an inductor 22 that is connected to the switch circuit 21 and stores and releases energy. The switch circuit 21 includes a load 3. (The inductor 22 may be connected between the switch circuit 21 and the load 3 depending on the power conversion method).
 ディジタル制御回路1は、入力部12と、入力比較部13と、ディジタル信号処理回路11Aと、制御信号出力部14とを備えている。入力部12は、信号選択機能を備えており、出力電圧eoと出力電流ioの何れか一方を選択することもできるし、出力電圧eoと出力電流ioの双方を選択することもできる。 The digital control circuit 1 includes an input unit 12, an input comparison unit 13, a digital signal processing circuit 11A, and a control signal output unit 14. The input unit 12 has a signal selection function, and can select either the output voltage eo or the output current io, or can select both the output voltage eo and the output current io.
 ディジタル制御回路1は定電圧モード、定電流モード、電力モード、過電流制限モード、過電圧制限モード等の種々の制御を行うことができる。
 たとえば、ディジタル制御回路1が定電圧モードで制御を行っているときには、入力部12はeoのみを選択し、負荷3が急増したような場合には、入力部12はioのみの選択に切り換え、ディジタル制御回路1は、過電流制限モードでの制御を行う。また、定電圧モードから過電流制限モードに移行する過程で、入力部12がeoとioとの双方を選択し、eoとioとの乗算を行い、ディジタル制御回路1は、電力モードでの制御を行うこともある。
The digital control circuit 1 can perform various controls such as a constant voltage mode, a constant current mode, a power mode, an overcurrent limit mode, and an overvoltage limit mode.
For example, when the digital control circuit 1 performs control in the constant voltage mode, the input unit 12 selects only eo, and when the load 3 increases rapidly, the input unit 12 switches to only io selection, The digital control circuit 1 performs control in the overcurrent limit mode. Further, in the process of shifting from the constant voltage mode to the overcurrent limiting mode, the input unit 12 selects both eo and io, performs multiplication of eo and io, and the digital control circuit 1 performs control in the power mode. May be performed.
 ここでは、入力部12の出力をadとする。なお、図示はしないが、電圧検出値は瞬時値eoに限らず、平均値または実効値Eoであってもよい。また電流検出値も瞬時値ioに限らず、平均値または実効値Ioであってもよい。
 入力部12の後段の入力比較部13は、作動増幅器131とA/D変換器132とからなる。差動増幅器131は電力検出値adと目標値ad*との差分(ad*-ad)を出力し、A/D変換器132はこの差分(ad*-ad)をディジタル信号に変換し、偏差(ディジタル離散値X)としてディジタル信号処理回路11に出力する。
Here, the output of the input unit 12 is set to ad. Although not shown, the voltage detection value is not limited to the instantaneous value eo, but may be an average value or an effective value Eo. The detected current value is not limited to the instantaneous value io, and may be an average value or an effective value Io.
The input comparison unit 13 following the input unit 12 includes an operational amplifier 131 and an A / D converter 132. The differential amplifier 131 outputs a difference (ad * −ad) between the power detection value ad and the target value ad *, and the A / D converter 132 converts the difference (ad * −ad) into a digital signal, and the deviation. It is output to the digital signal processing circuit 11 as (digital discrete value X).
 図6では、差動増幅器131の後段にA/D変換器132が設けられているが、A/D変換器132の後段に差動増幅器131(この場合にはディジタル比較器)を設けることができる。また、入力部12の前段に、A/D変換器を設けるようにしてもよい。この場合には、図7に示すように、入力部12は、A/D変換器1211,1212とディジタル乗算器122であり、比較部13はディジタル比較器である。図5ではディジタル乗算器122の出力をDで示し、比較部13は出力Dと目標値D*を入力し、ディジタル偏差D*-DをXとして出力する。
 なお、図6では移動平均回路111Aの後段に係数乗算回路114が設けられ、微分回路112の後段に係数乗算回路115が設けられている。
In FIG. 6, the A / D converter 132 is provided at the subsequent stage of the differential amplifier 131. However, the differential amplifier 131 (in this case, a digital comparator) may be provided at the subsequent stage of the A / D converter 132. it can. Further, an A / D converter may be provided in the previous stage of the input unit 12. In this case, as shown in FIG. 7, the input unit 12 is an A / D converter 1211 and 1212 and a digital multiplier 122, and the comparison unit 13 is a digital comparator. In FIG. 5, the output of the digital multiplier 122 is indicated by D, and the comparator 13 inputs the output D and the target value D *, and outputs the digital deviation D * −D as X.
In FIG. 6, a coefficient multiplication circuit 114 is provided in the subsequent stage of the moving average circuit 111 </ b> A, and a coefficient multiplication circuit 115 is provided in the subsequent stage of the differentiation circuit 112.
 ディジタル信号処理回路11Aは、制御回路の一部を構成しており、ディジタル偏差DXの移動平均MQ(n)の演算処理を行い、係数乗算回路114は、MQ(n)に所定の係数KMを乗算して、移動平均操作量KM・MQ(n)を出力する。また、微分回路112は、ディジタル偏差Xの微分値CQ(n)の演算処理を行い、係数乗算回路115は、CQ(n)に所定の係数KDを乗算して、移動平均操作量KD・CQ(n)を出力する。
 加算回路113は、係数乗算回路114の出力KA・MQ(n)と係数乗算回路115の出力微分値KD・CQ(n)とを加算し、位相遅れを補償した信号Dc(n)を出力する。
The digital signal processing circuit 11A constitutes a part of the control circuit, performs arithmetic processing of the moving average MQ (n) of the digital deviation D X , and the coefficient multiplication circuit 114 applies a predetermined coefficient K to MQ (n). Multiplying by M , the moving average manipulated variable K M · MQ (n) is output. Further, the differential circuit 112 performs arithmetic processing of the digital deviation X of the differential value CQ (n), the coefficient multiplying circuit 115 multiplies a predetermined coefficient K D in CQ (n), moving average operation amount K D -Outputs CQ (n).
The adder circuit 113 adds the output K A · MQ (n) of the coefficient multiplier circuit 114 and the output differential value K D · CQ (n) of the coefficient multiplier circuit 115 to obtain a signal Dc (n) compensated for the phase delay. Output.
 移動平均を演算する回路は、図8(A)に示すようにシフトレジスタから構成することもできる。図8(A)では、移動平均を演算する回路は、FIFO1301と、加算器1302と、シフトレジスタ1303と、係数乗算回路1304とからなる。 The circuit for calculating the moving average can also be composed of a shift register as shown in FIG. In FIG. 8A, the circuit for calculating the moving average includes a FIFO 1301, an adder 1302, a shift register 1303, and a coefficient multiplication circuit 1304.
 図8(A)では、FIFO1301は、サンプリング値を順次入力して、連続した複数のサンプリング値を記憶している。ここでは、図8(B)に示す、4つのサンプリング値X1,X2,X3,X4が記憶されている様子が示されている。 8A, the FIFO 1301 sequentially inputs sampling values and stores a plurality of consecutive sampling values. Here, a state is shown in which four sampling values X1, X2, X3, and X4 shown in FIG. 8B are stored.
 FIFO1301に記憶されたサンプリング値X1,X2,X3,X4は、加算器1302に入力され、加算器1302はΣXi(=X1+X2+X3+X4)を出力する。
 シフトレジスタ1303は、係数乗算回路1304は、ΣXiに係数(平均化するための係数(1/4)を含む)KM/4を乗算し、KM・(1/4)ΣXiを出力する。
The sampling values X1, X2, X3, and X4 stored in the FIFO 1301 are input to the adder 1302, and the adder 1302 outputs ΣXi (= X1 + X2 + X3 + X4).
In the shift register 1303, the coefficient multiplication circuit 1304 multiplies ΣXi by a coefficient (including a coefficient (1/4) for averaging) K M / 4, and outputs K M · (1/4) ΣXi.
 なお、シフトレジスタ1303により、加算結果(たとえば、2進数:b1234)を、下位側に2回シフトさせて(X1+X2+X3+X4)/22を演算し、シフタ1313の出力(X1+X2+X3+X4)/22に係数KMを乗じて、AM(n)を出力するようにしてもよい。この場合、係数乗算回路1304は、シフトレジスタ1303と一体に構成できる。たとえば、係数KMが1/2であるときには、シフトレジスタ1303の処理において、さらに2進数:b1234全体をさらに1ビット(合計で3ビット)だけ下位側にシフトさせればよいし、係数KMが2であるときには、シフトレジスタ1303の処理において、2進数:b1234全体を1ビットだけ下位側にシフトさせればよい(すなわち、2ビット下位側にシフトさせ、1ビット上位側にシフトさせる処理と同じである)。 The shift register 1303 shifts the addition result (for example, binary number: b 1 b 2 b 3 b 4 ) twice to the lower side to calculate (X1 + X2 + X3 + X4) / 2 2, and outputs the shifter 1313 (X1 + X2 + X3 + X4) ) / 2 2 may be multiplied by a coefficient K M to output AM (n). In this case, the coefficient multiplication circuit 1304 can be integrated with the shift register 1303. For example, when the coefficient K M is 1/2, in the processing of the shift register 1303, further binary number: ask b 1 b 2 b 3 b 4 entire further shifted to the lower side by one bit (3 bits in total) If the coefficient K M is 2, the entire binary number b 1 b 2 b 3 b 4 may be shifted by 1 bit to the lower side in the processing of the shift register 1303 (that is, 2 bits lower) This is the same as the process of shifting to the upper side and shifting to the upper side by 1 bit).
 微分回路112は、図9に示すようにFIFO1121と、減算回路1122と、係数乗算回路1123とから構成できる。図9では、FIFO1121は、X1,X2,X3,X4のうち最後の2つの値X3,X4を入力し、この値を減算回路1122に出力している。減算回路1122は、この減算値(X3-X4)を係数乗算回路1123に出力し、係数乗算回路1123は、減算値(X3-X4)に係数KDを乗算して微分値CQ(n)を出力する。
 図9のFIFO1121は、図8(A)に示した移動平均を算出する回路のFIFO1301と共用できる。
As shown in FIG. 9, the differentiating circuit 112 can be composed of a FIFO 1121, a subtracting circuit 1122, and a coefficient multiplying circuit 1123. In FIG. 9, the FIFO 1121 inputs the last two values X 3 and X 4 among X 1, X 2, X 3, and X 4 and outputs these values to the subtraction circuit 1122. Subtraction circuit 1122 outputs the subtracted value (X3-X4) to the coefficient multiplier circuit 1123, the coefficient multiplying circuit 1123 subtracts value (X3-X4) to be multiplied by a coefficient K D derivative value CQ (n) Output.
The FIFO 1121 in FIG. 9 can be shared with the FIFO 1301 of the circuit for calculating the moving average shown in FIG.
 本発明のディジタル制御回路は、負荷変動しない場合において優れた制御特性を発揮することはもちろんであるが、負荷が急増したような場合にも、ピーク値を抑えた制御が可能である。
 図10(A)に電力変換回路2をPID制御装置でシミュレートしたときのリアクトル電流の過渡特性を示し、図10(B)に電力変換回路2をディジタル制御回路1でシミュレートしたときのリアクトル電流の過渡特性を示す。リアクトル電流が流れるときのオーバーシュートは、図10(A)では大きいが、図10(B)では上述したパラメータKMやKDを適切に選ぶことにより、抑えられている。
The digital control circuit of the present invention exhibits excellent control characteristics when the load does not fluctuate, but can also perform control while suppressing the peak value even when the load suddenly increases.
FIG. 10A shows the transient characteristics of the reactor current when the power conversion circuit 2 is simulated by the PID control device, and FIG. 10B shows the reactor when the power conversion circuit 2 is simulated by the digital control circuit 1. Current transient characteristics are shown. Overshoot when the reactor current flows is greater in FIG. 10 (A), the by choosing appropriately the parameters K M and K D as described above in FIG. 10 (B), the is suppressed.

Claims (6)

  1.  ディジタル値を入力し、移動平均処理または有限インパルス応答処理を行う第1フィルタ回路と、
     前記ディジタル値を入力し、高域通過特性かつ進み位相を持つ第2フィルタ回路と、
     前記第1フィルタ回路の出力と前記第2フィルタ回路の出力とを加算する信号を生成する加算回路とを備え、
     前記第1フィルタ回路において生じる位相の遅れを、前記第2フィルタ回路の出力により補償することを特徴とするディジタル信号処理回路。
    A first filter circuit for inputting a digital value and performing a moving average process or a finite impulse response process;
    A second filter circuit that inputs the digital value and has a high-pass characteristic and a leading phase;
    An adder circuit for generating a signal for adding the output of the first filter circuit and the output of the second filter circuit;
    A digital signal processing circuit, wherein a phase delay occurring in the first filter circuit is compensated by an output of the second filter circuit.
  2.  前記移動平均を演算する回路は、2r個のサンプリング値を記憶できるFIFOと、前記FIFOに記憶されている2r個のサンプリング値を入力しこれらを加算して順次出力する加算器と、前記加算器からの加算結果データをrビット下位側にシフトさせて出力するシフトレジスタとを備えたことを特徴とする請求項1に記載のディジタル制御回路。 Said moving average calculating circuit includes a FIFO capable of storing 2 r pieces of sampling values, and enter the 2 r pieces of sampling values stored in the FIFO adder for sequentially output by adding these, the 2. The digital control circuit according to claim 1, further comprising a shift register for shifting the addition result data from the adder to r bits lower side and outputting the result.
  3.  前記微分回路は、2個のサンプリング値を記憶できるFIFOと、前記FIFOに記憶されている2個のサンプリング値を入力しこれらを減算して順次出力する減算器と、前記減算器からの減算結果データに時間係数を乗算して出力する乗算回路とを備えたことを特徴とする請求項1または請求項2に記載のディジタル制御回路。 The differentiation circuit includes a FIFO that can store two sampling values, a subtracter that inputs the two sampling values stored in the FIFO, subtracts them, and sequentially outputs them, and a subtraction result from the subtractor The digital control circuit according to claim 1, further comprising a multiplication circuit that multiplies the data by a time coefficient and outputs the multiplication result.
  4.  前記第1フィルタ回路の出力に所定係数を乗算して当該乗算値を出力する第1の係数乗算回路と、
     前記第2フィルタ回路の出力に所定係数を乗算して当該乗算値を出力する第2の係数乗算回路と、
    を備えたことを特徴とする請求項1から請求項3の何れかに記載のディジタル制御回路。
    A first coefficient multiplication circuit that multiplies the output of the first filter circuit by a predetermined coefficient and outputs the multiplication value;
    A second coefficient multiplying circuit for multiplying the output of the second filter circuit by a predetermined coefficient and outputting the multiplied value;
    The digital control circuit according to any one of claims 1 to 3, further comprising:
  5.  請求項1から請求項4の何れかに記載のディジタル信号処理回路を搭載したディジタル制御回路であって、
     前記ディジタル値が、制御対象機器の所定電気量の検出値Xと、当該電気量の目標値X*との偏差(X*-X)であることを特徴とするディジタル制御回路。
    A digital control circuit equipped with the digital signal processing circuit according to any one of claims 1 to 4,
    A digital control circuit, wherein the digital value is a deviation (X * -X) between a detected value X of a predetermined electric quantity of a device to be controlled and a target value X * of the electric quantity.
  6.  前記制御対象機器の前記所定電気量が、
      前記制御対象機器の出力電圧、出力電流または出力電力、
      前記制御対象機器のスイッチ素子を流れる電流、
      前記制御対象機器に含まれるエネルギー蓄積用のリアクトルを流れる電流、
    であることを特徴とする請求項5に記載のディジタル制御回路。
    The predetermined amount of electricity of the device to be controlled is
    Output voltage, output current or output power of the device to be controlled,
    Current flowing through the switch element of the device to be controlled,
    A current flowing through a reactor for energy storage included in the control target device;
    The digital control circuit according to claim 5, wherein:
PCT/JP2008/067765 2008-09-30 2008-09-30 Digital signal processing circuit and digital control circuit WO2010038278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067765 WO2010038278A1 (en) 2008-09-30 2008-09-30 Digital signal processing circuit and digital control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067765 WO2010038278A1 (en) 2008-09-30 2008-09-30 Digital signal processing circuit and digital control circuit

Publications (1)

Publication Number Publication Date
WO2010038278A1 true WO2010038278A1 (en) 2010-04-08

Family

ID=42073071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067765 WO2010038278A1 (en) 2008-09-30 2008-09-30 Digital signal processing circuit and digital control circuit

Country Status (1)

Country Link
WO (1) WO2010038278A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066233A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Moving average filter and a/d converter using filter thereof
JPH0854902A (en) * 1994-05-06 1996-02-27 Vlt Corp Feedback control system
WO2003100782A1 (en) * 2002-05-28 2003-12-04 Sony Corporation Signal processing apparatus and method, and digital data reproducing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066233A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Moving average filter and a/d converter using filter thereof
JPH0854902A (en) * 1994-05-06 1996-02-27 Vlt Corp Feedback control system
WO2003100782A1 (en) * 2002-05-28 2003-12-04 Sony Corporation Signal processing apparatus and method, and digital data reproducing apparatus

Similar Documents

Publication Publication Date Title
JP5487438B2 (en) Power conversion circuit control device and control method
WO2009145318A1 (en) A/d conversion device and servo control device
RU2340075C1 (en) Mode of transform circuit operation and related device for implementation thereof
KR101374033B1 (en) Non-linear pwm controller for dc-to-dc converters
TW201024950A (en) Digital compensator for power supply applications
EP2539996B1 (en) Feedforward digital control unit for switched mode power supply and method thereof
Nazir Taylor series expansion based repetitive controllers for power converters, subject to fractional delays
JP5217397B2 (en) Parallel operation control system for power converter
TWI506385B (en) Pulse width modulation power converter and control method
US8099199B2 (en) Digital controller
WO2021069259A1 (en) Model predictive pulse pattern control based on small-signal pulse pattern optimization
JP5352820B2 (en) Digital signal processing circuit and digital control circuit
WO2010038278A1 (en) Digital signal processing circuit and digital control circuit
JP4746107B2 (en) Method for operating a converter circuit and apparatus for performing the method
JP5261967B2 (en) Voltage fluctuation compensator control method
JP4980743B2 (en) Power converter
Escobar et al. Implementation of repetitive controllers subject to fractional delays
KR20100031083A (en) Method for estimating states of a power electronic system
JP2006222701A (en) Output correction circuit for a/d converter
Yang et al. Harmonics Cancellation of Boost Converters Based on Two-Phase Sliding Mode
JP4962766B2 (en) AC / AC direct converter controller
JP3233176B2 (en) Analog quantity measuring device
JP2011030142A (en) Dtmf generation device, equalizer device, and dither generation circuit
JP2011166892A (en) Digital control machine of power supply device
KR101723431B1 (en) High precision voltage control apparatus based on dual current feedback with virtually weighted reactance method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08811364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08811364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP