WO2010037696A1 - Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane - Google Patents

Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane Download PDF

Info

Publication number
WO2010037696A1
WO2010037696A1 PCT/EP2009/062490 EP2009062490W WO2010037696A1 WO 2010037696 A1 WO2010037696 A1 WO 2010037696A1 EP 2009062490 W EP2009062490 W EP 2009062490W WO 2010037696 A1 WO2010037696 A1 WO 2010037696A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cerium
lanthanum
oxide
zirconium
Prior art date
Application number
PCT/EP2009/062490
Other languages
English (en)
Inventor
Christian Hamon
Emmanuel Rohart
Original Assignee
Rhodia Operations
Institut Regional Des Materiaux Avances
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40452900&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010037696(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2011529515A priority Critical patent/JP5313355B2/ja
Priority to AU2009299908A priority patent/AU2009299908B2/en
Priority to CN200980139763.1A priority patent/CN102186563B/zh
Priority to PL09817288T priority patent/PL2334408T3/pl
Priority to BRPI0919582-3A priority patent/BRPI0919582B1/pt
Application filed by Rhodia Operations, Institut Regional Des Materiaux Avances filed Critical Rhodia Operations
Priority to CA2739360A priority patent/CA2739360C/fr
Priority to NZ592589A priority patent/NZ592589A/xx
Priority to EP09817288.5A priority patent/EP2334408B1/fr
Priority to US13/122,424 priority patent/US8444944B2/en
Publication of WO2010037696A1 publication Critical patent/WO2010037696A1/fr
Priority to EG2011030498A priority patent/EG26725A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production

Definitions

  • the present invention relates to a process for decomposing N 2 O in which a catalyst based on a cerium and lanthanum oxide is used.
  • N 2 O is one of the gases that contributes to the greenhouse effect, an effect that we are increasingly seeking to reduce in the context of the fight against global warming.
  • N 2 O is found in a large quantity in the gases emitted by certain industrial installations, such as the manufacture of nitric acid or adipic acid. To avoid N 2 O releases, these gases are treated to decompose N 2 O into oxygen and nitrogen before being released to the atmosphere. To be effective, this treatment requires the use of catalysts.
  • Catalysts for this type of treatment already exist, for example compositions based on magnesium or calcium oxides, on nickel and cobalt oxides, on copper and zinc oxides, or on compositions based on magnesium or calcium oxides. oxides of cerium and cobalt or of cerium and zirconium oxides.
  • the object of the invention is to provide an N 2 O decomposition catalyst which has improved stability.
  • the process of the invention for the decomposition of N 2 O is characterized in that a catalyst based on cerium and lanthanum is used which also comprises at least one oxide of an element chosen from zirconium and rare earths other than cerium and lanthanum.
  • the catalysts of the invention have improved stability even at temperatures above 100O 0 C.
  • the cerium oxide is in the form of ceric oxide, the oxides of the other rare earths in Ln 2 O 3 form , Ln denoting the rare earth, with the exception of praseodymium expressed in the form Pr 6 On.
  • the catalyst used is an oxide based on cerium, lanthanum and zirconium and it furthermore comprises at least one oxide of an element chosen from rare earths other than cerium and lanthanum.
  • the rare earth other than cerium and lanthanum may be praseodymium, neodymium, gadolinium or yttrium.
  • the total proportion of lanthanum element and, optionally, rare earth other than cerium and lanthanum is generally at most 15% by weight of oxide of this or these elements (lanthanum + other rare earth) relative to the mass. total catalyst. This proportion can be more particularly at most 10%.
  • the minimum amount of lanthanum and, optionally, other rare earth is generally at least 3% by weight of oxide. In the specific case where the catalyst comprises lanthanum with at least one other rare earth, the lanthanum content is preferably at least 2% and at most 10%.
  • the set of values mentioned above is given for information only and is not restrictive. The minimum values are those below which the catalyst might not have sufficient stability. The maximum values are those beyond which the catalyst activity may be insufficient or they correspond to economic limits.
  • the proportion of zirconium is preferably at most 40% by weight of zirconium oxide per relative to the total mass of the catalyst. This proportion may be more particularly at most 35%.
  • the catalyst of the invention may further comprise at least one other element selected from cobalt, iron, copper and zinc.
  • This other element is generally present in the catalyst in the form of an oxide.
  • the proportion in this or these other elements is generally at most 15% by weight of oxide of this element relative to the total mass of the catalyst.
  • the minimum amount of this element when present in the catalyst of the invention is preferably at least 1%.
  • the invention applies in the case where the catalyst consists essentially of an oxide based on cerium, lanthanum and one or more of the other elements mentioned above, ie zirconium. rare earths other than cerium and lanthanum, cobalt, iron, copper and zinc.
  • the catalyst may consist essentially of an oxide based on cerium, lanthanum and one or more rare earths other than cerium and lanthanum with possibly another element chosen from cobalt, iron, copper and zinc .
  • consists essentially it is meant that the catalyst in question contains only the oxides of the abovementioned elements and that it contains no oxide of another functional element, that is to say capable of having a positive influence on the stability of the catalyst.
  • the catalyst may contain elements such as impurities which may notably come from its preparation process, for example raw materials or starting reagents used.
  • the catalyst is in the form of a solid solution.
  • the term "be in the form of a solid solution” the fact that the catalyst after calcination in air, in the presence of water (15% by volume), at a temperature of 1050 ° C. C and for 48 hours has a crystallographic structure of the solid solution type.
  • the diffractograms obtained by X-ray diffraction on the catalyst after calcination under the aforementioned conditions reveal, within it, only the existence of a single crystallographic phase. It is generally a clearly identifiable phase of fluorine-like cubic crystal symmetry, thus reflecting the existence of a pure solid solution of lanthanum, zirconium and any other rare earth in cerium oxide.
  • this element is preferably in finely divided form in the catalyst, generally on the surface thereof, so that the presence of an oxide of this element does not appear in X-ray analysis.
  • the catalysts in the form of a solid solution exhibit improved catalytic activity.
  • Oxides having a high specific surface area at elevated temperature are preferably used as catalysts.
  • the catalyst may advantageously have an area of at least 20 m 2 / g after calcination for 6 h at 900 ° C. in air.
  • this surface under the same conditions of temperature and duration, is preferably at least 25 m 2 / g and even more preferably at least 35 m 2 /boy Wut.
  • oxides which may be used as catalysts for the present invention are known. For example, those described in patent application EP-0906244-A1 may be used. These are compositions based on cerium oxides, zirconium and another rare earth.
  • compositions based on cerium, lanthanum and, optionally, other rare earth oxides the products described in EP-0444470-A1 may be used which may have surfaces suitable for the present invention at 900 ° C.
  • a composition based on cerium, lanthanum and, possibly, another rare earth oxides which has an even higher temperature surface and which may be particularly suitable in the context of the present invention.
  • This specific or particular composition is of the type consisting essentially of cerium oxide, lanthanum oxide and at least one oxide of another rare earth, and it is characterized in that it has a surface Specifically at least 20 m 2 / g after calcination at 1000 ° C for 5 h.
  • the composition considered contains only the oxides of the aforementioned elements, cerium and other rare earths and that it does not contain oxide of another element likely to have an positive influence on the stability of the specific surface of the composition.
  • the composition may contain elements such as impurities which may notably come from its preparation process, for example raw materials or starting reagents used.
  • This particular composition may also have a specific surface area of at least 22 m 2 / g after calcination at 1000 ° C. for 5 h. More generally values of at least about 25 m 2 / g can be obtained under the same calcination conditions.
  • this surface can remain high even at an even higher temperature.
  • this surface may be at least 10 m 2 / g, more particularly at least 14 m 2 / g after calcination at 1100 ° C. for 5 h.
  • This same composition can also be characterized by its porosity. It has indeed, even at high temperature, porosities that are important and are provided by pores whose size is at most 200 nm. In other words, the composition has a high mesoporosity.
  • the porosities indicated in the present description are measured by mercury intrusion porosimetry according to ASTM D 4284-03 (Standard method for determining the volume distribution of catalysts by mercury intrusion porosimetry).
  • the composition has, after calcination at 1000 ° C. for 5 hours, a porosity provided by pores with a diameter of at most 200 nm which is at least 0.15 cm 3 / g, more particularly at least 0.2 cm 3 / g.
  • this same composition may have, after calcination at 1000 ° C. for 5 hours, a porosity of at least 0.10 cm 3 / g, more particularly at least 0.15 cm 3 / g, this porosity being provided by pores up to 50 nm in diameter.
  • this specific composition has substantially identical porosities after calcination at 900 ° C. for 5 hours.
  • the porosity of the composition hardly varies after calcination at 900 ° C. and then at 1000 ° C. for 5 hours. This applies particularly to the porosity provided by pores of at most 200 nm. In this case, in fact, the decrease in the porosity is generally at most 10%, preferably at most 5%.
  • the medium is heated to a temperature of at least 100 ° C.
  • the precipitate obtained at the end of the preceding stage is separated from the liquid medium, compounds of the other rare earths (lanthanum and the rare earth other than lanthanum and cerium) are added and another liquid medium is formed;
  • the medium thus obtained is heated to a temperature of at least 100 ° C .; the reaction medium obtained at the end of the preceding heating is brought to a basic pH;
  • the first step of the process therefore consists in forming a liquid medium comprising a cerium compound.
  • the liquid medium is usually water.
  • the cerium compound is preferably selected from soluble compounds. It may be in particular an organic or inorganic acid salt such as a nitrate, a sulfate, an acetate, a chloride, a cerium-ammoniacal nitrate.
  • ceric nitrate is used. It is advantageous to use salts of purity of at least 99.5% and more particularly at least
  • An aqueous solution of ceric nitrate may, for example, be obtained by reacting nitric acid with a hydrated ceric oxide prepared in a conventional manner by reacting a solution of a cerous salt, for example cerous nitrate, and an ammonia solution in the presence of hydrogen peroxide. It is also preferable to use a solution of ceric nitrate obtained by the electrolytic oxidation method of a cerous nitrate solution as described in document FR-A-2 570 087, and which constitutes here an interesting raw material. .
  • aqueous solutions of cerium salts may have some initial free acidity which can be adjusted by the addition of a base or an acid.
  • This neutralization can be done by adding a basic compound to the aforementioned mixture so as to limit this acidity.
  • This basic compound may be for example a solution of ammonia or alkali hydroxides (sodium, potassium, etc.), but preferably an ammonia solution.
  • the starting mixture contains cerium substantially in form III
  • an oxidizing agent for example hydrogen peroxide.
  • a soil as the starting compound of cerium.
  • sol any system consisting of fine solid particles of colloidal dimensions, ie dimensions of between about 1 nm and about 500 nm, based on a cerium compound, this compound being generally an oxide and / or an oxide hydrated cerium, in suspension in an aqueous liquid phase, said particles may further possibly contain residual amounts of bound or adsorbed ions such as for example nitrates, acetates, chlorides or ammoniums.
  • the cerium can be either totally in the form of colloids, or simultaneously in the form of ions and in the form of colloids.
  • the mixture can be indifferently obtained either from compounds initially in the solid state that will be introduced later in a water tank for example, or even directly from solutions of these compounds.
  • the second step of the process consists in heating the medium prepared in the preceding step to a temperature of at least 100 ° C.
  • the temperature at which the medium is heated is generally between 100 ° C. and 150 ° C., more particularly between 110 ° C. and 130 ° C.
  • the heating operation can be conducted by introducing the liquid medium into a closed chamber (autoclave type closed reactor). Under the conditions of the temperatures given above, and in aqueous medium, it is thus possible to specify, by way of illustration, that the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa). It is also possible to carry out heating in an open reactor for temperatures close to 100 ° C.
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the heating can vary within wide limits, for example between 30 minutes and 48 hours, preferably between 1 and 5 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium, for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • a precipitate is obtained which is separated from the liquid medium by any suitable means, for example by withdrawing the mother liquors.
  • Compounds of the other rare earths (lanthanum and the rare earth other than lanthanum and cerium) are added to the precipitate thus separated, forming a second liquid medium.
  • These rare earth compounds may be of the same nature as the cerium compound used in the first step of the process. What has been described above for this compound therefore applies here to these earth compounds rare that may be more particularly chosen from nitrates, sulphates, acetates, chlorides.
  • the second liquid medium is heated to a temperature of at least 100 ° C. Again, what has been described above for the first heating also applies here for the second heating.
  • the reaction medium obtained is brought to a basic pH.
  • a basic compound is introduced into the reaction medium. Hydroxide products can be used as base or basic compound. Mention may be made of alkali or alkaline earth hydroxides.
  • amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations.
  • urea may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations.
  • the basic compound may more particularly be used in the form of a solution.
  • the pH value at which the medium is brought may be more particularly between 8 and 10, more particularly between 8 and 9.
  • the precipitate recovered is then calcined.
  • This calcination makes it possible to develop the crystallinity of the product formed and it can also be adjusted and / or chosen as a function of the temperature of subsequent use reserved for the composition, and this taking into account the fact that the specific surface of the product is as much lower than the calcination temperature implemented is higher.
  • Such calcination is generally carried out under air, but a calcination carried out for example under inert gas or under a controlled atmosphere (oxidizing or reducing) is obviously not excluded.
  • the calcination temperature is generally limited to a range of values of between 300 ° C. and 1000 ° C.
  • catalysts comprising another element chosen from cobalt, iron, copper and zinc these can be obtained from the mixed oxides described above by incorporating said element by any known surface deposition technique such as dry impregnation or wet impregnation.
  • the oxide must have been shaped so that it can be used as a catalyst in the application of the invention. It can thus be for example in the form of extruded or ball.
  • the oxide thus formed may further comprise a binder.
  • This binder is chosen from those which are usually used in extrusion techniques, for example silica, alumina, boehmite, clays, silicates, silico-aluminates, titanium sulphate, ceramics. These binders are present in the proportions generally used, that is to say up to about 30%, more particularly at most about 20% by weight.
  • the catalyst may also be in the form of a coating (coating) based on the oxide of the invention on a ceramic or metal substrate.
  • the catalyst of the invention can be used in a wide range of temperatures and especially at high temperatures, especially above 1000 ° C.
  • the decomposition method of N 2 O of the invention can be implemented very particularly in a process for preparing nitric acid or adipic acid.
  • the catalyst may in particular be used by being placed under the platinum webs of the ammonia oxidation reactor. Examples will now be given.
  • the catalyst CO is a comparative catalyst
  • the catalysts C1 to C4 are catalysts according to the invention.
  • Catalysts C1 to C3 were prepared according to the teaching of
  • Catalyst C4 was prepared in the following manner.
  • Pr 6 We are added to the medium. Pure water is added to bring the total volume of the solution to 1 liter. Then proceed as in the example
  • the oxide obtained was impregnated with a cobalt solution.
  • the heat treatment was carried out under an air + water (15%) mixture at the temperature and for the duration indicated.
  • This example illustrates the conversions to N 2 O obtained on the various catalysts after heat treatment at 950 ° C under the conditions given above.
  • the catalysts are tested in the form of granules whose grain size is between 0.5 mm and 1 mm.
  • the catalyst mass is 10.5 g (ie a volume of 10 ml granule) and the hourly space velocity is 70000 h -1 .
  • the conditions of the laboratory test are as follows:
  • the treated gas mixture contains 15% by volume of H 2 O, 1000 ppm of N 2 O and the balance is air.
  • the water vapor content is adjusted by a stainless steel saturator temperature (60 0 C).
  • N 2 O is analyzed by infrared at the reactor outlet. The conversion to N 2 O is measured at a constant temperature of 850 ° C.
  • This example illustrates the conversions to N 2 O obtained on the various catalysts after thermal treatments at 1050 ° C. under the conditions given above.
  • Table 3 shows that the catalyst according to the invention allows, after heat treatment at 1050 ° C, a better conversion to N 2 O than the comparative catalyst. In addition, its decline in activity is significantly lower than that of the comparative catalyst.
  • This example illustrates the conversions to N 2 O obtained on catalysts after heat treatment at 850 0 C under an air + water mixture (15% by volume) for 1 month.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Linvention concerne un procédé pour la décomposition du N2O. Ce procédé est caractérisé en ce qu'on utilise comme catalyseur un oxyde à base de cérium et de lanthane qui comprend en outre au moins un oxyde d'un élément choisi parmi le zirconium et les terres rares autres que le cérium et le lanthane. Ce catalyseur présente une stabilité améliorée qui permet son utilisation à température élevée.

Description

PROCEDE DE DECOMPOSITION DU N2O UTILISANT UN CATALYSEUR A BASE D'UN OXYDE DE CERIUM ET DE LANTHANE
La présente invention concerne un procédé de décomposition du N2O dans lequel on utilise un catalyseur à base d'un oxyde de cérium et de lanthane.
On sait que le N2O est un des gaz qui participent à l'effet de serre, effet que l'on cherche de plus en plus à diminuer dans le cadre de la lutte contre le réchauffement de la planète.
Or le N2O se trouve en quantité importante dans les gaz émis par certaines installations industrielles comme celles de fabrication de l'acide nitrique ou de l'acide adipique. Pour éviter les rejets de N2O, ces gaz sont traités de manière à décomposer le N2O en oxygène et en azote avant d'être rejetés à l'atmosphère. Pour être efficace, ce traitement nécessite l'utilisation de catalyseurs.
Il existe déjà des catalyseurs pour ce type de traitement, par exemple des compositions à base des oxydes de magnésium ou de calcium, d'oxydes de nickel et de cobalt, d'oxydes de cuivre et de zinc ou encore des compositions à base d'oxydes de cérium et de cobalt ou d'oxydes de cérium et de zirconium.
Le problème des catalyseurs connus est qu'ils présentent une stabilité dans le temps qui est insuffisante.
L'objet de l'invention est de fournir un catalyseur de décomposition du N2O qui présente une stabilité améliorée.
Dans ce but, le procédé de l'invention pour la décomposition du N2O est caractérisé en ce qu'on utilise comme catalyseur un oxyde à base de cérium et de lanthane qui comprend en outre au moins un oxyde d'un élément choisi parmi le zirconium et les terres rares autres que le cérium et le lanthane. Les catalyseurs de l'invention présentent une stabilité améliorée même à des températures supérieures à 100O0C.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. Par terre rare on entend pour la suite de la description les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71. On entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)". Les teneurs sont données en masse d'oxyde sauf indication contraire.
Dans le catalyseur de l'invention, l'oxyde de cérium est sous forme d'oxyde cérique, les oxydes des autres terres rares sous forme Ln2O3, Ln désignant la terre rare, à l'exception du praséodyme exprimé sous la forme Pr6On.
On précise aussi pour la suite de la description que, sauf indication contraire, dans toutes les gammes ou limites de valeurs qui sont données, les valeurs aux bornes sont incluses, les gammes ou limites de valeurs ainsi définies couvrant donc toute valeur au moins égale et supérieure à la borne inférieure et/ou au plus égale ou inférieure à la borne supérieure. En outre, les calcinations à l'issue desquelles sont données les valeurs de surface spécifique sont des calcinations sous air sauf indications contraires.
Selon un mode de réalisation particulier de l'invention, le catalyseur utilisé est un oxyde à base de cérium, de lanthane et de zirconium et il comprend en outre au moins un oxyde d'un élément choisi parmi les terres rares autres que le cérium et le lanthane. Dans les deux modes de réalisation qui ont été décrits ci-dessus, la terre rare autre que le cérium et le lanthane peut être le praséodyme, le néodyme, le gadolinium ou l'yttrium.
La proportion totale en élément lanthane et, éventuellement, terre rare autre que le cérium et le lanthane est généralement d'au plus 15% en masse d'oxyde de cet ou de ces éléments (lanthane + autre terre rare) par rapport à la masse totale du catalyseur. Cette proportion peut être plus particulièrement d'au plus 10%. La quantité minimale en lanthane et, éventuellement, en autre terre rare est généralement d'au moins 3% en masse d'oxyde. Dans le cas précis où le catalyseur comprend du lanthane avec au moins une autre terre rare, la teneur en lanthane est de préférence d'au moins 2% et d'au plus 10%. L'ensemble des valeurs mentionnées ci-dessus est donné à titre indicatif et non limitatif. Les valeurs minimales sont celles en dessous desquelles le catalyseur pourrait ne pas présenter une stabilité suffisante. Les valeurs maximales sont celles au-delà desquelles l'activité du catalyseur pourrait être insuffisante ou bien elles correspondent à des limites économiques.
Dans le cas d'un catalyseur à base de zirconium, la proportion en zirconium est de préférence d'au plus 40% en masse d'oxyde de zirconium par rapport à la masse totale du catalyseur. Cette proportion peut être plus particulièrement d'au plus 35%.
Par ailleurs, le catalyseur de l'invention peut comprendre en outre au moins un autre élément choisi parmi le cobalt, le fer, le cuivre et le zinc. Cet autre élément est généralement présent dans le catalyseur sous la forme d'un oxyde. La proportion en ce ou ces autres éléments est généralement d'au plus 15% en masse d'oxyde de cet élément par rapport à la masse totale du catalyseur. La quantité minimale en cet élément lorsqu'il est présent dans le catalyseur de l'invention est de préférence d'au moins 1 %. On notera que l'invention s'applique au cas où le catalyseur consiste essentiellement en un oxyde à base de cérium, de lanthane et d'un ou des autres éléments qui ont été mentionnés plus haut, c'est-à-dire le zirconium, les terres rares autres que le cérium et le lanthane, le cobalt, le fer, le cuivre et le zinc. Notamment, le catalyseur peut consister essentiellement en un oxyde à base de cérium, de lanthane et d'une ou plusieurs terres rares autres que le cérium et le lanthane avec éventuellement un autre élément choisi parmi le cobalt, le fer, le cuivre et le zinc. Par « consiste essentiellement », on entend que le catalyseur considéré ne contient que les oxydes des éléments précités et qu'il ne contient pas d'oxyde d'un autre élément fonctionnel, c'est à dire susceptible d'avoir une influence positive sur la stabilité du catalyseur. Par contre, le catalyseur peut contenir des éléments tels que des impuretés pouvant notamment provenir de son procédé de préparation, par exemple des matières premières ou des réactifs de départ utilisés.
Selon un autre mode de réalisation intéressant de l'invention, le catalyseur se présente sous la forme d'une solution solide. Au sens de la présente description, on entend par « se présenter sous forme d'une solution solide », le fait que le catalyseur après calcination sous air, en présence d'eau (15% en volume), à une température de 10500C et pendant 48 h présente une structure cristallographique de type solution solide. Dans ce cas, les diffractogrammes obtenus par diffraction des rayons X sur le catalyseur après calcination dans les conditions précitées ne révèlent, au sein de celui-ci, que l'existence d'une phase cristallographique unique. Il s'agit généralement d'une phase clairement identifiable de symétrie cristalline cubique de type fluorine, traduisant ainsi l'existence d'une solution solide pure du lanthane, du zirconium et de l'autre terre rare éventuelle dans l'oxyde de cérium.
Dans le cas de ce même mode de réalisation et pour les catalyseurs comprenant un autre élément choisi parmi le cobalt, le fer, le cuivre et le zinc, cet élément se trouve de préférence sous forme finement divisé dans le catalyseur, généralement à la surface de celui-ci, de sorte que la présence d'un oxyde de cet élément n'apparaît pas à l'analyse aux rayons X.
Dans le cas de ce mode de réalisation, les catalyseurs sous forme d'une solution solide présentent une activité catalytique améliorée. II est préférable d'utiliser à titre de catalyseur des oxydes présentant une surface spécifique importante à température élevée. Ainsi, le catalyseur peut avantageusement présenter une surface d'au moins 20 m2/g après calcination 6 h à 9000C sous air. Dans le cas particulier de catalyseurs comprenant de l'oxyde de zirconium, cette surface, dans les mêmes conditions de température et de durée, est de préférence d'au moins 25 m2/g et encore plus préférentiellement d'au moins 35 m2/g.
Les oxydes susceptibles d'être utilisés comme catalyseur pour la présente invention sont connus. On peut par exemple utiliser ceux décrits dans la demande de brevet EP-0906244-A1. Il s'agit de compositions à base d'oxydes de cérium, de zirconium et d'une autre terre rare.
Pour les compositions à base d'oxydes de cérium, de lanthane et, éventuellement, d'une autre terre rare on peut utiliser les produits décrits EP- 0444470-A1 qui peuvent présenter à 9000C des surfaces adaptées à la présente invention. On va décrire maintenant plus particulièrement une composition à base d'oxydes de cérium, de lanthane et, éventuellement, d'une autre terre rare, qui présente une surface à haute température encore plus élevée et qui peut convenir tout particulièrement bien dans le cadre de la présente invention.
Cette composition spécifique ou particulière est du type consistant essentiellement en de l'oxyde de cérium, en de l'oxyde de lanthane et en au moins un oxyde d'une autre terre rare, et elle est caractérisée en ce qu'elle présente une surface spécifique d'au moins 20 m2/g après calcination à 1000°C pendant 5 h.
Par « consiste essentiellement », on entend, là encore, que la composition considérée ne contient que les oxydes des éléments précités, cérium et autres terres rares et qu'elle ne contient pas d'oxyde d'un autre élément susceptible d'avoir une influence positive sur la stabilité de la surface spécifique de la composition. Par contre, la composition peut contenir des éléments tels que des impuretés pouvant notamment provenir de son procédé de préparation, par exemple des matières premières ou des réactifs de départ utilisés.
Cette composition particulière peut présenter en outre une surface spécifique d'au moins 22 m2/g après calcination à 10000C pendant 5 h. Plus généralement, des valeurs d'au moins environ 25 m2/g peuvent être obtenues dans les mêmes conditions de calcination.
La surface spécifique de cette même composition peut rester encore élevée même à une température encore plus importante. Ainsi, cette surface peut être d'au moins 10 m2/g, plus particulièrement d'au moins 14 m2/g après calcination à 11000C pendant 5 h.
Cette même composition peut se caractériser aussi par sa porosité. Elle présente en effet, même à haute température, des porosités qui sont importantes et qui sont apportées par des pores dont la taille est d'au plus 200 nm. En d'autres termes, la composition présente une mésoporosité importante.
Les porosités indiquées dans la présente description sont mesurées par porosimétrie par intrusion de mercure conformément à la norme ASTM D 4284-03 (Standard method for determining pore volume distribution of catalysts by mercury intrusion porosimetry).
Plus précisément, la composition présente après calcination à 10000C pendant 5 h, une porosité apportée par des pores de diamètre d'au plus 200 nm qui est d'au moins 0,15 cm3/g, plus particulièrement d'au moins 0,2 cm3/g. En outre, cette même composition peut présenter après calcination à 1000°C pendant 5 h, une porosité d'au moins 0,10 cm3/g, plus particulièrement d'au moins 0,15 cm3/g cette porosité étant apportée par des pores de diamètre d'au plus 50 nm.
Il faut aussi noter que cette composition spécifique présente des porosités sensiblement identiques après calcination à 9000C pendant 5 h. En d'autres termes, la porosité de la composition ne varie pratiquement pas après calcination à 900°C puis à 1000°C pendant 5 h. Ceci s'applique tout particulièrement à la porosité apportée par les pores d'au plus 200 nm. Dans ce cas, en effet, la diminution de la porosité est généralement d'au plus 10%, de préférence d'au plus 5%. Le procédé de préparation de cette composition spécifique va maintenant être décrit.
Ce procédé est caractérisé en ce qu'il comprend les étapes suivantes :
- on forme un milieu liquide comprenant un composé du cérium;
- on chauffe le milieu à une température d'au moins 1000C; - on sépare le précipité obtenu à l'issue de l'étape précédente du milieu liquide, on y ajoute des composés des autres terres rares (lanthane et la terre rare autre que le lanthane et le cérium) et on forme un autre milieu liquide;
- on chauffe le milieu ainsi obtenu à une température d'au moins 100°C; - on amène le milieu réactionnel obtenu à l'issue du chauffage précédent à un pH basique;
- on sépare le précipité issu de l'étape précédente et on le calcine.
La première étape du procédé consiste donc à former un milieu liquide comprenant un composé du cérium.
Le milieu liquide est généralement l'eau.
Le composé du cérium est de préférence choisi parmi les composés solubles. Ce peut être notamment un sel d'acide organique ou inorganique comme un nitrate, un sulfate, un acétate, un chlorure, un nitrate céri- ammoniacal.
De préférence, on utilise du nitrate cérique. Il est avantageux d'utiliser des sels de pureté d'au moins 99,5% et plus particulièrement d'au moins
99,9%. Une solution aqueuse de nitrate cérique peut par exemple être obtenue par réaction de l'acide nitrique sur un oxyde cérique hydraté préparé d'une manière classique par réaction d'une solution d'un sel céreux, par exemple le nitrate céreux, et d'une solution d'ammoniac en présence d'eau oxygénée. On peut également, de préférence, utiliser une solution de nitrate cérique obtenue selon le procédé d'oxydation électrolytique d'une solution de nitrate céreux tel que décrit dans le document FR-A-2 570 087, et qui constitue ici une matière première intéressante.
On notera ici que les solutions aqueuses de sels de cérium peuvent présenter une certaine acidité libre initiale qui peut être ajustée par l'addition d'une base ou d'un acide. Il est cependant autant possible de mettre en œuvre une solution initiale de sels de cérium présentant effectivement une certaine acidité libre comme mentionné ci-dessus, que des solutions qui auront été préalablement neutralisées de façon plus ou moins poussée. Cette neutralisation peut se faire par addition d'un composé basique au mélange précité de manière à limiter cette acidité. Ce composé basique peut être par exemple une solution d'ammoniac ou encore d'hydroxydes d'alcalins (sodium, potassium,...), mais de préférence une solution d'ammoniac.
On notera enfin que lorsque le mélange de départ contient du cérium essentiellement sous forme III, il est préférable de faire intervenir dans le cours du procédé un agent oxydant, par exemple de l'eau oxygénée.
Il est aussi possible d'utiliser un sol comme composé de départ du cérium. Par sol on désigne tout système constitué de fines particules solides de dimensions colloïdales, c'est à dire des dimensions comprises entre environ 1 nm et environ 500nm, à base d'un composé de cérium ce composé étant généralement un oxyde et/ou un oxyde hydraté de cérium, en suspension dans une phase liquide aqueuse, lesdites particules pouvant en outre, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des chlorures ou des ammoniums. On notera que dans un tel sol, le cérium peut se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions et sous la forme de colloïdes.
Le mélange peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés.
La seconde étape du procédé consiste à chauffer le milieu préparé à l'étape précédente à une température d'au moins 1000C.
La température à laquelle est chauffé le milieu est généralement comprise entre 1000C et 150°C, plus particulièrement entre 1100C et 130°C. L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote. La durée du chauffage peut varier dans de larges limites, par exemple entre 30 minutes et 48 h, de préférence entre 1 et 5 h. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 h, ces valeurs étant données à titre tout à fait indicatif. On obtient à l'issue du chauffage un précipité qui est séparé du milieu liquide par tout moyen convenable, par exemple par soutirage des eaux mères. On ajoute au précipité ainsi séparé des composés des autres terres rares (lanthane et la terre rare autre que le lanthane et le cérium) en formant un second milieu liquide. Ces composés de terre rare peuvent être de même nature que le composé de cérium utilisé dans la première étape du procédé. Ce qui a été décrit plus haut pour ce composé s'applique donc ici à ces composés de terre rare qui peuvent être plus particulièrement choisis parmi les nitrates, les sulfates, les acétates, les chlorures.
Dans une autre étape du procédé, le second milieu liquide est chauffé à une température d'au moins 1000C. Là encore, ce qui a été décrit plus haut pour le premier chauffage s'applique de même ici pour le second chauffage.
A l'issue de ce second chauffage on amène le milieu réactionnel obtenu à un pH basique. Pour cela on introduit dans le milieu réactionnel un composé basique. On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux.
On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires.
Toutefois, les aminés et l'ammoniac peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée. Le composé basique peut être plus particulièrement utilisé sous forme d'une solution.
La valeur du pH à laquelle est amené le milieu peut être plus particulièrement comprise entre 8 et 10, plus particulièrement entre 8 et 9.
Dans une dernière étape du procédé, le précipité récupéré est ensuite calciné. Cette calcination permet de développer la cristallinité du produit formé et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée à la composition, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 3000C et 1000°C.
En revenant maintenant, à l'issue de la description de la composition particulière précédente, à la description plus générale de l'invention, on notera que pour les catalyseurs comprenant un autre élément choisi parmi le cobalt, le fer, le cuivre et le zinc, ceux-ci peuvent être obtenus à partir des oxydes mixtes décrits précédemment en y incorporant ledit élément par toute technique connue de dépôt en surface notamment comme l'imprégnation à sec ou l'imprégnation humide.
L'oxyde doit avoir été mis en forme pour pouvoir être utilisé comme catalyseur dans l'application de l'invention. II peut ainsi se présenter par exemple sous forme d'extrudé ou de bille. L'oxyde ainsi mis en forme peut comprendre en outre un liant. Ce liant est choisi parmi ceux que l'on utilise habituellement dans les techniques d'extrusion, comme par exemple la silice, l'alumine, la boehmite, les argiles, les silicates, les silico-aluminates, le sulfate de titane, les fibres céramiques. Ces liants sont présents dans les proportions généralement utilisées c'est à dire jusqu'à environ 30%, plus particulièrement d'au plus environ 20% en poids.
Le catalyseur peut aussi être sous forme d'un revêtement (coating) à base de l'oxyde de l'invention sur un substrat céramique ou métallique.
Compte tenu de sa stabilité le catalyseur de l'invention peut être utilisé dans une large gamme de température et surtout à des températures élevées, notamment supérieures à 10000C.
Le procédé de décomposition du N2O de l'invention peut être mis en œuvre tout particulièrement dans un procédé de préparation d'acide nitrique ou d'acide adipique.
Dans le cas particulier d'un procédé de préparation d'acide nitrique, le catalyseur peut être notamment utilisé en étant placé sous les toiles de platine du réacteur d'oxydation de l'ammoniac. Des exemples vont maintenant être donnés.
On donne dans le tableau 1 ci-dessous, les caractéristiques des catalyseurs qui sont utilisés dans les exemples qui suivent.
Le catalyseur CO est un catalyseur comparatif, les catalyseurs C1 à C4 sont des catalyseurs selon l'invention. Les catalyseurs C1 à C3 ont été préparés selon l'enseignement de EP-
0906244-A1 et par imprégnation des oxydes obtenus par une solution de cobalt. Le catalyseur C4 a été préparé de la manière suivante.
201 ,6 ml d'une solution de nitrate cérique à au moins 90% mol d'ions cérium IV et contenant 50 g de CeO2 sont neutralisés avec 5,7 ml d'une solution d'ammoniaque à 25% puis dilués avec 792,7 ml d'eau pure. Cette solution est ensuite chauffée à 1000C pendant 0,5 h. Après élimination des eaux-mères 6,1 ml d'une solution de nitrate de lanthane contenant 2,63 g de
La2O3 et 5,3 ml d'une solution de nitrate de praséodyme contenant 2,63 g de
Pr6On sont ajoutés au milieu. De l'eau pure est ajoutée pour amener le volume total de la solution à 1 litre. On procède ensuite comme dans l'exemple
1 pour obtenir une composition contenant 5% en masse de La2O3, 5% en masse de Pr6On et 90% en masse de CeO2.
L'oxyde obtenu a été imprégné par une solution de cobalt. Le traitement thermique a été effectué sous un mélange air + eau (15%) à la température et pendant la durée indiquées.
Tableau 1
Figure imgf000011_0001
MP : mélange de phases SS : solution solide
EXEMPLE 1
Cet exemple illustre les conversions en N2O obtenus sur les différents catalyseurs après un traitement thermique à 950°C dans les conditions données plus haut.
Les catalyseurs sont testés à l'état de granules dont la taille des grains est comprise entre 0,5 mm et 1 mm. Pour chaque test la masse de catalyseur est de 10,5 g (soit un volume de granule de 10 ml) et la vitesse volumique horaire est de 70000 h"1. Les conditions du test réalisé en laboratoire sont les suivantes :
Le mélange gazeux traité contient 15% en volume de H2O, 1000 ppm de N2O et le complément est de l'air. La teneur en vapeur d'eau est ajustée par un saturateur inox en température (600C).
Le N2O est analysé par infrarouge en sortie de réacteur. La conversion en N2O est mesurée à température constante égale à 850°C.
Les résultats obtenus sont donnés dans le tableau 2 ci-dessous. Tableau 2
Figure imgf000012_0001
On note une nette différence entre les taux de conversion des catalyseurs selon l'invention (au moins 95% de conversion de N2O) et celui du catalyseur comparatif (que 87% de conversion) dans les mêmes conditions expérimentales.
EXEMPLE 2
Cet exemple illustre les conversions en N2O obtenus sur les différents catalyseurs après des traitements thermiques à 10500C dans les conditions données plus haut.
La mise en forme des catalyseurs et les conditions expérimentales de leur utilisation sont identiques à celles décrites précédemment dans l'exemple 1.
Les résultats obtenus sont donnés dans le tableau 3 ci-dessous.
Tableau 3
Figure imgf000012_0002
Le tableau 3 montre que le catalyseur selon l'invention permet après traitement thermique à 1050°C, une meilleure conversion en N2O que le catalyseur comparatif. En outre, sa baisse d'activité est nettement moindre que celle du catalyseur comparatif.
EXEMPLE 3
Cet exemple illustre les conversions en N2O obtenus sur des catalyseurs après un traitement thermique à 8500C sous un mélange air + eau (15% en volume) pendant 1 mois.
La mise en forme des catalyseurs et les conditions expérimentales de leur utilisation sont identiques à celles décrites précédemment dans l'exemple 1. Les résultats obtenus sont donnés dans le tableau 4 ci-dessous.
Tableau 4
Figure imgf000013_0001

Claims

REVENDICATIONS
1- Procédé de décomposition du N2O, caractérisé en ce qu'on utilise comme catalyseur un oxyde à base de cérium et de lanthane qui comprend en outre au moins un oxyde d'un élément choisi parmi le zirconium et les terres rares autres que le cérium et le lanthane.
2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise comme catalyseur un oxyde à base de cérium, de lanthane et de zirconium et qui comprend en outre au moins un oxyde d'un élément choisi parmi les terres rares autres que le cérium et le lanthane.
3- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise un catalyseur du type précité dans lequel l'autre terre rare est le praséodyme, le néodyme, le gadolinium ou l'ytthum.
4- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur du type précité et qui après calcination sous air, en présence d'eau, à une température de 10500C et pendant 48 h se présente sous la forme d'une solution solide.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur du type précité dans lequel la proportion totale en élément lanthane et, éventuellement, terre rare autre que le cérium et le lanthane est d'au plus 15% en masse d'oxyde de cet ou de ces éléments par rapport à la masse totale du catalyseur.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur du type précité dans lequel la proportion en zirconium est d'au plus 40% en masse d'oxyde de zirconium par rapport à la masse totale du catalyseur.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur du type précité qui comprend en outre au moins un autre élément choisi parmi le cobalt, le fer, le cuivre et le zinc. 8- Procédé selon la revendication 7, caractérisé en ce qu'on utilise un catalyseur dans lequel la proportion en l'autre élément précité est d'au plus 15% en masse d'oxyde de cet élément par rapport à la masse totale du catalyseur.
9- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est mis en œuvre dans un procédé de préparation d'acide nitrique ou d'acide adipique.
PCT/EP2009/062490 2008-10-03 2009-09-28 Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane WO2010037696A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/122,424 US8444944B2 (en) 2008-10-03 2009-09-28 Method of decomposing N2O using a catalyst based on a cerium lanthanum oxide
AU2009299908A AU2009299908B2 (en) 2008-10-03 2009-09-28 Method of decomposing N2O using a catalyst based on a cerium lanthanum oxide
CN200980139763.1A CN102186563B (zh) 2008-10-03 2009-09-28 用基于铈镧氧化物的催化剂分解n2o的方法
PL09817288T PL2334408T3 (pl) 2008-10-03 2009-09-28 Sposób rozkładu N<sub>2</sub>O z zastosowaniem katalizatora na bazie tlenku ceru i lantanu
BRPI0919582-3A BRPI0919582B1 (pt) 2008-10-03 2009-09-28 processo de decomposição de n2o
JP2011529515A JP5313355B2 (ja) 2008-10-03 2009-09-28 セリウムランタン酸化物に基づく触媒を使用してn2oを分解する方法
CA2739360A CA2739360C (fr) 2008-10-03 2009-09-28 Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane
NZ592589A NZ592589A (en) 2008-10-03 2009-09-28 Process for the decomposition of N2O using catalyst based on oxides of cerium, lanthanum and other rare earth metals
EP09817288.5A EP2334408B1 (fr) 2008-10-03 2009-09-28 Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane
EG2011030498A EG26725A (en) 2008-10-03 2011-03-31 Method for the decomposition of NO2 using a catalyst based on cerium lanthenium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805481A FR2936718B1 (fr) 2008-10-03 2008-10-03 Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane.
FR08/05481 2008-10-03

Publications (1)

Publication Number Publication Date
WO2010037696A1 true WO2010037696A1 (fr) 2010-04-08

Family

ID=40452900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062490 WO2010037696A1 (fr) 2008-10-03 2009-09-28 Procede de decomposition du n2o utilisant un catalyseur a base d'un oxyde de cerium et de lanthane

Country Status (13)

Country Link
US (1) US8444944B2 (fr)
EP (1) EP2334408B1 (fr)
JP (2) JP5313355B2 (fr)
CN (1) CN102186563B (fr)
AU (1) AU2009299908B2 (fr)
BR (1) BRPI0919582B1 (fr)
CA (1) CA2739360C (fr)
EG (1) EG26725A (fr)
FR (1) FR2936718B1 (fr)
MY (1) MY169286A (fr)
NZ (1) NZ592589A (fr)
PL (1) PL2334408T3 (fr)
WO (1) WO2010037696A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964043B1 (fr) 2010-08-26 2013-03-22 Irma Procede de decomposition catalytique du n2o a haute temperature
CN103949264B (zh) * 2014-04-28 2016-02-24 四川蜀泰化工科技有限公司 一种用于高温催化分解n2o的催化剂及其制备方法
JP6393902B2 (ja) 2014-12-15 2018-09-26 パナソニックIpマネジメント株式会社 複合材料と電子機器
FR3050450A1 (fr) * 2016-04-26 2017-10-27 Rhodia Operations Oxyde mixte a base de cerium et de zirconium
US10322409B1 (en) * 2018-03-05 2019-06-18 King Fahd University Of Petroleum And Minerals Low temperature hydrothermal method for the preparation of LaCO3OH nanoparticles
KR102493409B1 (ko) * 2021-02-08 2023-01-31 주식회사 숨 아산화질소 분해 촉매 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748740A1 (fr) * 1996-05-15 1997-11-21 Rhone Poulenc Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium a haute surface specifique et a capacite elevee de stockage d'oxygene, procede de preparation et utilisation en catalyse
EP0789621B1 (fr) * 1994-11-02 1999-05-12 Anglo American Research Laboratories (Proprietary) Limited Catalyseur a support de zircone/oxyde cerique
FR2847830A1 (fr) * 2002-12-02 2004-06-04 Irma Procede de decomposition catalytique de n2o en n2 et o2 realise a haute temperature
EP1504805A1 (fr) * 2003-08-07 2005-02-09 Radici Chimica Spa Catalyseurs pour la decomposition d'oxyde nitreux
US20090041645A1 (en) * 2007-08-09 2009-02-12 Knut Wassermann Catalyst Compositions
DE102007038711A1 (de) * 2007-08-14 2009-02-19 Uhde Gmbh Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128629A1 (de) * 1991-08-29 1993-03-04 Basf Ag Silberhaltiger traegerkatalysator und verfahren zur katalytischen zersetzung von distickstoffmonoxid
JP3202411B2 (ja) * 1993-05-27 2001-08-27 三菱重工業株式会社 亜酸化窒素の処理方法
GB9626516D0 (en) 1996-12-20 1997-02-05 Ici Plc Ammonia oxidation
US6379640B1 (en) 1999-03-05 2002-04-30 E. I. Du Pont De Nemours And Company Process for the decomposition of nitrous oxide
JP2004524258A (ja) 2001-05-04 2004-08-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー アンモニア酸化方法
US20040077494A1 (en) * 2002-10-22 2004-04-22 Labarge William J. Method for depositing particles onto a catalytic support
CN100496741C (zh) * 2003-06-13 2009-06-10 亚拉国际有限公司 制备负载型氧化物催化剂的方法
FR2890577B1 (fr) * 2005-09-12 2009-02-27 Rhodia Recherches & Tech Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme
RU2397810C2 (ru) * 2006-03-10 2010-08-27 Умикоре Аг Унд Ко. Кг Катализатор и способ разложения монооксида диазота и способ и устройство для получения азотной кислоты
JP5344805B2 (ja) * 2006-06-20 2013-11-20 第一稀元素化学工業株式会社 ジルコニア系複合酸化物及びその製造方法
US7767175B2 (en) * 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
CN101612572A (zh) * 2008-06-26 2009-12-30 北京石油化工学院 一种用于分解n2o的六铝酸盐催化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789621B1 (fr) * 1994-11-02 1999-05-12 Anglo American Research Laboratories (Proprietary) Limited Catalyseur a support de zircone/oxyde cerique
FR2748740A1 (fr) * 1996-05-15 1997-11-21 Rhone Poulenc Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium a haute surface specifique et a capacite elevee de stockage d'oxygene, procede de preparation et utilisation en catalyse
FR2847830A1 (fr) * 2002-12-02 2004-06-04 Irma Procede de decomposition catalytique de n2o en n2 et o2 realise a haute temperature
EP1504805A1 (fr) * 2003-08-07 2005-02-09 Radici Chimica Spa Catalyseurs pour la decomposition d'oxyde nitreux
US20090041645A1 (en) * 2007-08-09 2009-02-12 Knut Wassermann Catalyst Compositions
DE102007038711A1 (de) * 2007-08-14 2009-02-19 Uhde Gmbh Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung

Also Published As

Publication number Publication date
US8444944B2 (en) 2013-05-21
AU2009299908A1 (en) 2010-04-08
EG26725A (en) 2014-06-18
FR2936718A1 (fr) 2010-04-09
CA2739360A1 (fr) 2010-04-08
AU2009299908A8 (en) 2011-05-12
EP2334408B1 (fr) 2017-07-19
BRPI0919582B1 (pt) 2019-10-29
NZ592589A (en) 2012-11-30
AU2009299908B2 (en) 2013-03-21
EP2334408A1 (fr) 2011-06-22
BRPI0919582A2 (pt) 2015-12-08
JP5792771B2 (ja) 2015-10-14
US20110243829A1 (en) 2011-10-06
PL2334408T3 (pl) 2019-01-31
JP5313355B2 (ja) 2013-10-09
JP2012504484A (ja) 2012-02-23
CA2739360C (fr) 2013-06-04
JP2013230471A (ja) 2013-11-14
FR2936718B1 (fr) 2010-11-19
CN102186563B (zh) 2014-08-06
CN102186563A (zh) 2011-09-14
MY169286A (en) 2019-03-21

Similar Documents

Publication Publication Date Title
EP2296782B1 (fr) Procede de traitement d&#39;un gaz pour diminuer sa teneur en dioxyde de carbone
CA2178834C (fr) Precurseur d&#39;une composition et composition a base d&#39;un oxyde mixte de cerium et de zirconium, procede de preparation et utilisation
EP2566617B1 (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
CA2553824C (fr) Composition a base d&#39;oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
CA2224409C (fr) Composition a base d&#39;oxyde de zirconium et d&#39;oxyde de cerium, procede de preparation et utilisation
EP2454196B1 (fr) Composition a base d&#39;oxyde de cerium et d&#39;oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
CA2800653C (fr) Composition a base d&#39;oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
EP1603667B1 (fr) Composition a base d oxyde de zirconium et d oxyde de c erium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
CA2489772C (fr) Composition a base d&#39;oxyde de zirconium et d&#39;oxydes de cerium, de lanthane et d&#39;une autre terre rare, son procede de preparation et son utilisation comme catalyseur
CA2519197C (fr) Composition a base d&#39;oxydes de cerium et de zirconium a surface specifique stable entre 900·c et 1000·c, son procede de preparation et son utilisation comme catalyseur
CA2739360C (fr) Procede de decomposition du n2o utilisant un catalyseur a base d&#39;un oxyde de cerium et de lanthane
FR2917646A1 (fr) Oxyde mixte a haute surface specifique de cerium et d&#39;autre terre rare, procede de preparation et utilisation en catalyse
FR2729309A1 (fr) Composition catalytique a base d&#39;oxyde de cerium et d&#39;oxyde de manganese, de fer ou de praseodyme, son procede de preparation et son utilisation en catalyse postcombustion automobile
CA2814970C (fr) Composition a base d&#39;oxyde de zirconium et d&#39;au moins un oxyde d&#39;une terre rare autre que le cerium, a porosite specifique, ses procedes de preparation et son utilisation en catalyse
EP2976300B1 (fr) Composition a base d&#39;oxydes de zirconium, de cerium, de niobium et d&#39;etain, procedes de preparation et utilisation en catalyse
WO2012041921A2 (fr) Procede de traitement d&#39;un gaz contenant des oxydes d&#39;azote (nox) utilisant comme catalyseur une composition a base d&#39;oxyde de cerium et d&#39;oxyde de niobium
CA2274013C (fr) Composition a base d&#39;oxyde de cerium ou d&#39;oxydes de cerium et de zirconium, sous forme extrudee, son procede de preparation et son utilisation comme catalyseur
EP3448812A1 (fr) Oxyde mixte a base de cérium et de zirconium
WO2011012510A2 (fr) Procédé d&#39;oxydo-réduction en boucle utilisant comme masse oxydo-réductrice une composition à base d&#39;oxyde supporté de cérium ou de cérium, de zirconium et/ou de terre rare
WO2004002247A2 (fr) Cigarette comprenant un catalyseur pour le traitement des fumees

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139763.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009299908

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2739360

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009817288

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009817288

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009299908

Country of ref document: AU

Date of ref document: 20090928

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011529515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 592589

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 13122424

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919582

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110331