WO2010037383A2 - Procédé et dispositif de connexion d'une cellule solaire avec un connecteur de cellule - Google Patents
Procédé et dispositif de connexion d'une cellule solaire avec un connecteur de cellule Download PDFInfo
- Publication number
- WO2010037383A2 WO2010037383A2 PCT/DE2009/075055 DE2009075055W WO2010037383A2 WO 2010037383 A2 WO2010037383 A2 WO 2010037383A2 DE 2009075055 W DE2009075055 W DE 2009075055W WO 2010037383 A2 WO2010037383 A2 WO 2010037383A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- temperature
- cell
- connection region
- solder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910000679 solder Inorganic materials 0.000 claims abstract description 35
- 238000007711 solidification Methods 0.000 claims abstract description 18
- 230000008023 solidification Effects 0.000 claims abstract description 18
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- 238000005476 soldering Methods 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000017525 heat dissipation Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1876—Particular processes or apparatus for batch treatment of the devices
- H01L31/188—Apparatus specially adapted for automatic interconnection of solar cells in a module
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a method and a device for connecting a solar cell to a cell connector.
- the invention relates to the soldering of a generally rod or ribbon-shaped cell connector with a substantially plate-shaped solar cell.
- Soldering the cell connectors to solar cells is a quality-determining process in the production of solar modules.
- the cell connectors are tinned and fluxed.
- the cell connectors are pressed onto the solar cell with hold-downs and heated until the tin melts the cell connector. Thereafter, the solar cell cools down again.
- the heating is usually done with halogen lamps, but also soldering dies, hot air blowers, RF inducers or lasers are used.
- Fig. 1A shows a halogen band radiator for soldering cell connectors to solar cells.
- a cell connector ZV On a solar cell SZ a cell connector ZV is attached.
- a band radiator BS generates the temperature required for soldering within the connection region between the solar cell SZ and the cell connector ZV.
- a heating plate HP Below the solar cell is a heating plate HP, which can be set to a temperature Th.
- the connection region between the solar cell SZ and the cell connector ZV is subjected to a power Pm in the central region and to a power Pa in the outer region.
- the cell connector ZV becomes hotter in the middle (i.e., the area to which the power Pm is applied) than at the edge (i.e., in the area applied with the power Pa).
- the cell connector ZV cools faster on the edge again.
- the temperature distribution which occurs in a conventional solder joint along the connection region is shown in FIG. 1B.
- the solder therefore solidifies on the edge first, as shown in Fig. 1 C.
- the solar cell SZ cools (with the cell connector ZV) and the cell connector ZV contracts again, so that a voltage between the two outer points arises.
- FIGS. 2A to 2C show the different extents occurring in the solar cell and in the cell connector when both are not soldered.
- Fig. 2A shows the length of the cell connector ZV and the solar cell SZ before soldering, ie at room temperature of 20 ° C. Have before soldering Cell connector ZV and solar cell SZ at room temperature.
- the length of the solar cell SZ is LZ-k and the length of the cell connector ZV is LV-k.
- Fig. 2B shows the length of the cell connector ZV and the solar cell SZ during soldering, i. at a brazing temperature of approx. 220 - 240 ° C.
- Heating solar cell SZ and cell connector ZV expand.
- the expansion of the cell connector ZV with (LV-h-LV-k) is significantly greater than the extent of the solar cell with (LS-h-LS-k).
- Fig. 2C shows the length of the cell connector ZV and the solar cell SZ after soldering and after cooling to room temperature. After cooling, cell connectors ZV and solar cell SZ have the original length again.
- microcracks can be generated very quickly at the crystal boundaries.
- the invention has for its object to provide a method and apparatus for low-voltage connection of a solar cell with a cell connector available.
- the cell connector which is connected to at least one of the cell connectors
- solder layer positioned parallel to a main side of a plate-shaped solar cell.
- the solder layer may be, for example, a solder paste, for example a solder paste made of tin solder, which has already been enriched with a corresponding flux.
- connection area The area in which the cell connector and the solar cell touch each other and which provides for the bonding connection between the solar cell and the cell connector after the connection process is referred to below as the connection area.
- melting point of the solder is meant the temperature at which a liquid solder bath is formed.
- the temperature in at least one of the heated above the melting point of the solder portions of the connection region is lowered to a temperature below the solidification point of the solder.
- the solidification point of the solder here means the temperature at which the liquid solder bath solidifies.
- the solidification of the solder can be influenced exactly. It is particularly possible to influence the solidification such that a low-voltage connection between the solar cell and the cell connector is formed.
- the solar cell (and the cell connector) is thus heated or soldered so that the solidification is controlled locally. For example, it starts on one end side and travels along the cell connector to the other end side of the linear connection area.
- 3A is a schematic representation of a first embodiment of the device
- FIG. 3B is a schematic representation of another embodiment of the device;
- Fig. 3C is a schematic representation of another
- FIG. 3D a schematic illustration of a further embodiment of the device
- Fig. 4A is a schematic representation of another
- 4B shows a schematic temperature profile during soldering of a
- Fig. 3A shows an embodiment of this invention, in which the heating takes place selectively with a soldering iron LK. This is placed on the one side on the cell connector ZV and moved along the cell connector ZV.
- the Z-stroke ZH ensures a relative movement of the soldering iron LK in a direction perpendicular to the cell connector ZV or to the solar cell SZ.
- IR infrared
- band radiator infrared radiator
- laser hot air jet or induction
- contactless heat sources may advantageously be a hold-down, as shown for example in Fig. 3B as hold-down NH1.
- Fig. 3B shows the light soldering by a spotlight PS with a stationary hold NHL
- a movable hold-down NH2 is shown, which is with the heat source, ie with the spotlight PS, is moved.
- FIG. 3D shows a device in which two soldering irons LK each start soldering in the middle of the solar cell SZ and are then moved to the right or left edge.
- this soldering can be done synchronously below the solar cell SZ and thus minimizes the tension again considerably.
- Fig. 4A shows an IR strip radiator BS, which was designed so that the energy density in the middle is lower than at the edge. This can be achieved, for example, by the reflector geometry, by diaphragms or by corresponding light sources.
- the solar cell SZ is hotter at the edge than in the middle, as illustrated by the temperature profile over the connection region illustrated in FIG. 4B.
- the solder solidifies first in the middle and the solidification zone migrates from the middle to the edge.
- FIG. 4C shows the voltages caused by the different changes in length of solar cell SZ and cell connector ZV are reduced or completely avoided.
- the solar cell SZ is heated on both sides.
- the solar cell SZ is arranged on a heating plate HP having a plurality of zones around one Temperature distribution with maximum at the edge to achieve.
- the temperatures of the individual zones of the heating plate HP are denoted by Th 1, Th 2 and Th 3 in FIG. 4A.
- Further advantages are achieved if the IR soldering source is also mounted below the solar cell SZ.
- solidification can also be controlled by controlled cooling.
- the middle region of the connection region can be cooled more quickly, so that the solidification begins in the middle. It is advantageous to work with several air nozzles and adjust air flow or temperature so that in the middle of a higher cooling effect.
- a larger amount of air is blown into the air nozzle LD2, which is located in the middle region of the solar cell SZ, than in the two air nozzles LD1, which are located in edge regions of the solar cell SZ. This increases the cooling capacity in the middle area.
- a protective gas e.g. Nitrogen
- hold-down devices NH are designed or even cooled such that the heat dissipation of the hold-down devices NH, which are located in the middle section of the connection region, is higher and therefore the solidification process begins in the middle.
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
L'invention concerne un procédé de connexion d'une cellule solaire avec un connecteur de cellule, comprenant les étapes suivantes : (a) positionnement d'un connecteur de cellule qui est garni, sur au moins une surface, d'une couche de brasure, parallèlement à une face principale d'une cellule solaire en forme de plaque; (b) mise en contact, dans une zone de liaison, d'une surface garnie de la couche de brasure du connecteur de cellule, avec la face principale de la cellule solaire;(c) élévation de la température d'une ou de plusieurs parties de la zone de liaison, à une température supérieure au point de fusion de la brasure; (d) abaissement de la température dans au moins l'une des parties de la zone de liaison, chauffée dans l'étape (c), au-dessus du point de fusion de la brasure, à une températrue inférieure au point de solidification de la brasure. L'invention concerne en outre un dispositif pour la mise en oeuvre de ce procédé.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09748960A EP2335291A2 (fr) | 2008-09-30 | 2009-09-25 | Procédé et dispositif de connexion d'une cellule solaire avec un connecteur de cellule |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008037403.2 | 2008-09-30 | ||
DE200810037403 DE102008037403A1 (de) | 2008-09-30 | 2008-09-30 | Verfahren und Vorrichtung zum Verbinden einer Solarzelle mit einem Zellverbinder |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010037383A2 true WO2010037383A2 (fr) | 2010-04-08 |
WO2010037383A3 WO2010037383A3 (fr) | 2010-10-21 |
Family
ID=41719575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2009/075055 WO2010037383A2 (fr) | 2008-09-30 | 2009-09-25 | Procédé et dispositif de connexion d'une cellule solaire avec un connecteur de cellule |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2335291A2 (fr) |
DE (1) | DE102008037403A1 (fr) |
WO (1) | WO2010037383A2 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115576A (ja) * | 1982-12-22 | 1984-07-04 | Sharp Corp | 太陽電池の配線方法 |
WO2003098704A1 (fr) * | 2002-05-21 | 2003-11-27 | Otb Group B.V. | Procede et poste de pose de languettes permettant de fixer des languettes sur une pile solaire, ainsi que procede et appareil permettant de fabriquer un panneau solaire |
JP2004134654A (ja) * | 2002-10-11 | 2004-04-30 | Sharp Corp | 太陽電池モジュールの製造方法 |
EP1748495A1 (fr) * | 2005-07-26 | 2007-01-31 | Somont GmbH | Procédé et dispositif pour fabriquer une suite de cellules solaires par brasage par induction |
EP1909333A1 (fr) * | 2005-07-28 | 2008-04-09 | Kyocera Corporation | Module de cellules solaires |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS604270A (ja) * | 1983-06-22 | 1985-01-10 | Hitachi Ltd | 太陽電池の製造方法 |
EP1783837A4 (fr) * | 2004-05-28 | 2007-09-26 | Mech Corp | Appareil de fabrication de cellule de batterie solaire |
JP3978203B2 (ja) * | 2004-08-26 | 2007-09-19 | 有限会社エコ&エンジニアリング | 太陽電池素子の接続方法 |
JP4378340B2 (ja) * | 2005-12-13 | 2009-12-02 | 有限会社エコ&エンジニアリング | 太陽電池素子の接続方法 |
JP2008258267A (ja) * | 2007-04-02 | 2008-10-23 | Nisshinbo Ind Inc | 太陽電池セルへのタブリードのハンダ付け方法 |
-
2008
- 2008-09-30 DE DE200810037403 patent/DE102008037403A1/de not_active Withdrawn
-
2009
- 2009-09-25 EP EP09748960A patent/EP2335291A2/fr not_active Withdrawn
- 2009-09-25 WO PCT/DE2009/075055 patent/WO2010037383A2/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115576A (ja) * | 1982-12-22 | 1984-07-04 | Sharp Corp | 太陽電池の配線方法 |
WO2003098704A1 (fr) * | 2002-05-21 | 2003-11-27 | Otb Group B.V. | Procede et poste de pose de languettes permettant de fixer des languettes sur une pile solaire, ainsi que procede et appareil permettant de fabriquer un panneau solaire |
JP2004134654A (ja) * | 2002-10-11 | 2004-04-30 | Sharp Corp | 太陽電池モジュールの製造方法 |
EP1748495A1 (fr) * | 2005-07-26 | 2007-01-31 | Somont GmbH | Procédé et dispositif pour fabriquer une suite de cellules solaires par brasage par induction |
EP1909333A1 (fr) * | 2005-07-28 | 2008-04-09 | Kyocera Corporation | Module de cellules solaires |
Also Published As
Publication number | Publication date |
---|---|
EP2335291A2 (fr) | 2011-06-22 |
WO2010037383A3 (fr) | 2010-10-21 |
DE102008037403A1 (de) | 2010-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112010004460B4 (de) | Laserdichtvorrichtung für Glassubstrate | |
DE3423172C2 (de) | Verfahren zum Herstellen einer Solarbatterie | |
DE102007042082A1 (de) | Vorrichtung und Verfahren zum Löten von Solarzellen | |
DE102006035626A1 (de) | Verfahren zum Anbringen eines Verbindungsleiters an einer photovoltaischen Solarzelle | |
DE102008046330A1 (de) | Verfahren zum Löten von Kontaktdrähten an Solarzellen | |
DE2040825B2 (de) | Verfahren und Vorrichtung zum Löten von Wärmetauscherblöcken aus Aluminium | |
EP3417513B2 (fr) | Procédé et dispositif d'étanchéification de points de contact sur des connexions de lignes électriques | |
DE102016101945B4 (de) | Heißnietstempel und Heißnietvorrichtung | |
DE102007062689A1 (de) | Ausbildung von Kontaktierungs- und Stromsammelelektroden für Solarzellen | |
DE10350699B3 (de) | Verfahren und Vorrichtung zum Aufschmelzlöten mit Volumenstromsteuerung | |
DE69203655T2 (de) | Verfahren zum Schweissen von Kupferteilen. | |
EP3045252A1 (fr) | Procédé de soudage inductif et dispositif | |
DE20020148U1 (de) | Strahlungsquelle und Bestrahlungsanordnung | |
DE102008002910A1 (de) | Verfahren und Vorrichtung zum Verbinden von Bauteilen mittels Laserstrahlung | |
DE102015106298B4 (de) | Vorrichtung, Verfahren und Anlage zur inhomogenen Abkühlung eines flächigen Gegenstandes | |
DE102011081606B4 (de) | Kühlvorrichtung und Lötanlage | |
WO2010037383A2 (fr) | Procédé et dispositif de connexion d'une cellule solaire avec un connecteur de cellule | |
DE10133217A1 (de) | Verfahren und Vorrichtung zum Verlöten von elektrischen Bauteilen auf Kunststofffolie | |
WO2002023591A1 (fr) | Source de rayonnement et dispositif de rayonnement | |
DE10138583A1 (de) | Flachleiter und Verfahren zur Herstellung einer Lötverbindung mit demselben | |
DE19705934C2 (de) | Verfahren und Vorrichtung zum Einbringen von drahtförmigen Leiterdrähten in ein Substrat | |
DE3831394A1 (de) | Verfahren und vorrichtung zum kontaktieren eines elektrischen leitungsdrahtes mit kontaktstellen auf einer leiterplatte | |
DE4221564A1 (de) | Verfahren zur Herstellung einer Lötverbindung zwischen Chips und flächigen Kupferteilen | |
DE102014220771A1 (de) | Verfahren und Vorrichtung zum Herstellen einer elektrisch leitenden Pressverbindung zwischen einem Leiter und einem Kontaktelement sowie Anordnung umfassend einen Leiter und ein Kontaktelement | |
AT504925B1 (de) | Punktschweisselektrode und punktschweissverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09748960 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009748960 Country of ref document: EP |