WO2010035982A2 - 히트 펌프 시스템 - Google Patents

히트 펌프 시스템 Download PDF

Info

Publication number
WO2010035982A2
WO2010035982A2 PCT/KR2009/005250 KR2009005250W WO2010035982A2 WO 2010035982 A2 WO2010035982 A2 WO 2010035982A2 KR 2009005250 W KR2009005250 W KR 2009005250W WO 2010035982 A2 WO2010035982 A2 WO 2010035982A2
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
heat exchanger
conduit
refrigerant
heating
Prior art date
Application number
PCT/KR2009/005250
Other languages
English (en)
French (fr)
Other versions
WO2010035982A3 (ko
Inventor
진금수
Original Assignee
Jin Kum-Soo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jin Kum-Soo filed Critical Jin Kum-Soo
Publication of WO2010035982A2 publication Critical patent/WO2010035982A2/ko
Publication of WO2010035982A3 publication Critical patent/WO2010035982A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to a heat pump system, and more particularly, to a multifunction and heat modulus increasing structure of a heat pump system incorporating hot water heating means.
  • the heat pump system is provided with a 4-way valve in a refrigeration cycle, for example, when the air conditioner is used as an indoor heat exchanger to act as an evaporator for cooling and a condenser for heating to cool and heat the room.
  • hot water for hot water supply which is necessary for a person to live daily life when the heat pump system is installed in a place where a person lives.
  • Means, for example, gas water heaters are provided.
  • the present inventor proposes a heat pump type air-cooling and heating device which solves the installation and operation cost and the trouble of securing the installation area according to the separate installation of the hot water heating means, and is disclosed in Patent Document 1.
  • the heat pump type cooling / heating device of Patent Document 1 connects a compressor, a 4-way valve, an indoor heat exchanger, a cooling pressure reducing mechanism, a heating pressure reducing mechanism, an outdoor heat exchanger, and the 4-way valve in order with a refrigerant conduit,
  • the heat exchanger (condenser) is installed in the bypass conduit by connecting the 4-way valve and the compressor to the refrigerant intake conduit, and connecting the bypass conduit between the compressor and the 4-way valve of the refrigerant conduit.
  • a second heat exchanger is provided with a hot water heating circuit installed on one side, and a hot water heating tank (not shown) is provided on the second heat exchanger side, so that the hot water heated in the hot water heating circuit is cooled in the cold water heating tank when the room is cooled and heated. After storage, radiant heating such as floor heating or hot water for hot water is used.
  • the heat pump type cooling / heating device has the advantage of simultaneously generating hot water during cooling and heating, there is a growing need to generate only hot water separately from the cooling and heating mode, but only the hot water mode is not possible, and also the heating mode.
  • the load decreases, the condensation of the refrigerant vapor in the indoor heat exchanger is incomplete, resulting in a high pressure in the compressor and a decrease in the coefficient of performance.
  • defrost means when the heat pump system is formed into an atmospheric heat source type, if the outside air temperature drops below the dew point in the heating mode, defrost means must be installed in the outdoor heat exchanger (evaporator).
  • the defrosting method is to operate the reverse heat exchanger to act as a condenser to perform defrosting.
  • an auxiliary heater is installed in the indoor heat exchanger to use the heater as an auxiliary heat source when defrosting the outdoor heat exchanger.
  • the defrosting method has a problem that the reduction time to normal operation, that is, the equalization time of the refrigerant pressure after defrosting is long, and the auxiliary heater must be continuously used during the defrosting, which is not economical due to high power consumption and difficult heating due to lack of calories. .
  • the heat pump hot water supply machine of the said patent document 2 is a refrigeration which connected the compressor, the gas cooler, the decompression device, and the evaporator in order.
  • a heat pump hot water heater comprising: a cycle, for supplying hot water by heating water in the gas cooler, comprising a refrigerant heat exchanger for lowering a refrigerant temperature at an outlet side of the gas cooler, wherein the refrigerant heat exchanger is connected to the gas cooler.
  • An on / off valve is installed between the depressurizers and installed in parallel with the on / off valve to close the on / off valve when the temperature of the water supplied to the gas cooler is greater than or equal to a set value, and the coolant discharged from the gas cooler flows into the coolant heat exchanger to provide a coolant temperature.
  • the heat pump water heater provides the compressor with an internal medium pressure two stage compression type.
  • the defrost circuit introduces the medium pressure refrigerant compressed by the compressor into the evaporator, and includes a defrost solenoid valve and a bypass conduit to open the defrost solenoid valve during defrost operation.
  • the decompressor was completely opened to supply the refrigerant compressed by the compressor to the evaporator to defrost the evaporator.
  • Patent Document 1 KR 10-0357988 (B1)
  • Patent Document 2 JP 2003-194433 (A)
  • the heat pump water heater has a simple function by only hot water operation, and has a complicated structure by separately providing a defrost circuit, and the defrost circuit is also a reverse cycle defrost method. .
  • the present invention provides a heat pump system in which a hot water mode is formed in a heat pump type cooling / heating device in which a hot water heating circuit is installed to further diversify functions and increase the coefficient of performance.
  • the present invention is to connect the compressor, the four-way valve, the indoor heat exchanger, the cooling expansion valve, the heating expansion valve, the outdoor heat exchanger and the four-way valve in order to the refrigerant conduit,
  • a basic refrigeration cycle connecting the valve and the compressor with a refrigerant suction conduit;
  • the condenser is installed in the bypass conduit by connecting the bypass conduit between the compressor of the refrigerant conduit and the four-way valve, the endothermic heat exchanger is installed in the condenser, and the hot water heating circuit is connected to the use side heat exchanger in the endothermic heat exchanger.
  • the present invention can generate hot water at the same time as the heating and cooling of the heat pump, or can generate only the hot water alone, thereby improving the convenience and improving the convenience of the defrosting circuit. Since the defrost mode can be performed together with the hot water or the hot water and heating mixed mode, hot water is convenient and comfortable heating can be performed since there is no change in the heating temperature.
  • FIG. 1 is a block diagram of an embodiment of the present invention, which is roughly divided into a basic refrigeration cycle 10, a hot water heating circuit 20, and a recondensing means 30. As shown in FIG.
  • the basic refrigeration cycle (10) is a compressor (11), four-way valve (12), indoor heat exchanger (13), cooling expansion valve (14), heating expansion valve (15), outdoor heat exchanger (16) and the
  • the four-way valve 12 is connected in order to the refrigerant conduit 17 and the four-way valve 12 and the compressor 11 are connected to the refrigerant suction conduit 18.
  • the 4-way valve 12 is operated to flow in the arrow virtual line, and the fluid that is heat-exchanged with the indoor heat exchanger 13 in the heating or cooling mode as described above is air or water being used.
  • the basic refrigeration cycle 10 is well known in heat pump systems.
  • the hot water heating circuit 20 connects a bypass conduit 21 between the compressor 11 of the refrigerant conduit 17 and the four-way valve 12 to connect the condenser 22 to the bypass conduit 21. And an endothermic heat exchanger (23) installed at the condenser (22), and a utilization side heat exchanger (24) connected to the endothermic heat exchanger (23) with a circulation pump (26) and a circulation conduit (25).
  • the solenoid valves 27a and 27b are respectively provided between the connecting portions of both ends of the bypass conduit 21 of the refrigerant conduit 17 and the inlet portions of the bypass conduit 21, so that a programmable controller (not shown) is provided. Input the signal of each mode switch of Controller, PLC to the control part to open and close according to the set program.
  • the recondensing means 30 connects the second refrigerant conduit 31 to the outlet side of the condenser 22 of the bypass conduit 21 and the inlet side of the expansion valve 15 for heating of the refrigerant conduit 17.
  • a second condenser 32 is installed in the second refrigerant conduit 31 so as to maintain a heat transfer relationship with the outdoor heat exchanger 16, and is opened to the expansion valve 15 for heating on the outlet side of the second condenser 32.
  • a check valve 33 is provided, and solenoid valves 34a and 34b are respectively provided at a position adjacent to the connection of the second refrigerant conduit 31 of the bypass conduit 21 and an inlet of the second refrigerant conduit 31. To open and close according to the set program of the PLC.
  • the outdoor heat exchanger 16 and the second condenser 32 are formed in a fin tube type, and the heat transfer tubes of the second condenser 32 are evenly spaced between the heat transfer tubes of the outdoor heat exchanger 16. It arrange
  • a third condenser 38 is installed in the third refrigerant conduit 37 by connecting a third refrigerant conduit 37 bypassing the second condenser 32 to the second refrigerant conduit 31.
  • the solenoid valves 39a and 39b are respectively installed at the inlet side of the second condenser 32 and the inlet of the third refrigerant conduit 37 of the second refrigerant conduit 31 so that the refrigerant is discharged from the second condenser 32.
  • the solenoid valve 39a is opened. If the output value is greater than or equal to the set value, the solenoid valve 39b is also opened. You can keep it and increase your grade factor even more.
  • connection pipe 42 for bypassing the outdoor heat exchanger 16 is connected to the inlet side of the heating expansion valve 15 of the refrigerant conduit 17 and the inlet side of the second refrigerant conduit 31, Solenoid valves 43a and 43b are respectively installed at the rear of the connecting pipe 42 in the refrigerant conduit 17 and at the inlet of the connecting pipe 42 to provide an indoor heat exchanger 13 of the refrigerant conduit 17.
  • a set value eg, 23 kgf / cm 2
  • the solenoid valve 43a is closed and the solenoid valve 43b is opened to recondensate in the second condenser 32.
  • the refrigerant liquid condensed in the second condenser 32 may be expanded in the expansion valve 15 for heating and then evaporated in the outdoor heat exchanger 16 to further increase the coefficient of performance.
  • Reference numerals 19a and 19b denote check valves, 47a and 47b denote water supply and tapping pipes, 48 expansion tanks, and 49 condensation sensors.
  • the compressor 11 If only the solenoid valves 27a, 27b, 34b, 43a are opened, and the four-way valve 12 is operated so that the refrigerant flows in the solid line of the arrow, the compressor 11 is driven. A portion of the compressed high-temperature and high-pressure refrigerant vapor flows into the bypass conduit 21 to condense in the condenser 22 and heat the hot water to be heated through the endothermic heat exchanger 23 by the heat of condensation to heat the use-side heat exchanger 24. Refrigerant liquid condensed in the condenser 22 is mixed with a portion of a high temperature / high pressure refrigerant vapor compressed by the compressor 11 and discharged to the refrigerant conduit 17 side.
  • the solenoid valve 43a When operating in the basic cycle as described above, the consumption of hot water is reduced or the heating load is reduced, so that condensation of the refrigerant vapor in the condenser 22 and the indoor heat exchanger 13 is incomplete, resulting in an indoor heat exchanger 13 of the refrigerant conduit 17.
  • the solenoid valve 43a When the pressure of the refrigerant liquid flowing through the outlet side is higher than or equal to the set value, the solenoid valve 43a is closed and the solenoid valve 43b is opened so that the refrigerant liquid flows into the connecting pipe 42 and the second refrigerant conduit 31 while the second condenser ( After the recondensation at 32), an additional cycle is formed via the check valve 33, which is expanded by the expansion valve 15 for heating, evaporated in the outdoor heat exchanger 16 and sucked into the compressor 11. The coefficient is increased, and when the pressure value of the coolant liquid falls below the set value, it returns to the basic cycle.
  • the solenoid valve 39b is also opened at the same time and recondensed in the second condenser 32 and the third condenser 38 to maintain a good compression ratio of the compressor 11 and to improve the coefficient of performance.
  • the solenoid valve 39b is closed, so that only the second condenser 32 functions.
  • the hot water mode By adding the hot water mode to the prior patent of the present inventors as described above, only the hot water can be generated, so that the function is diversified and can be conveniently used. Also, all of the high-temperature / high-pressure refrigerant vapor compressed by the compressor 11 can be used. Since it can be used to generate hot water, it is possible to generate hot water at a higher temperature than before, so that it can be used in a fan coil unit or the like, thereby increasing the use value.
  • the dew condensation sensor 49 When operating in the mixed hot water and heating mode, the dew condensation sensor 49 detects that the temperature drops below the dew point and causes frost on the outdoor heat exchanger 16, thereby opening the solenoid valves 34a and 39a and opening the solenoid valve 34b. ), The high temperature and high pressure refrigerant liquid condensed in the condenser 22 is condensed in the second condenser 32, and the frost formed by heat transfer of the heat of condensation to the outdoor heat exchanger 16 is defrosted. After the condensation heat is discharged from the indoor heat exchanger 13 and the refrigerant liquid is heated, it is expanded in the expansion valve 15 for heating and then evaporated in the outdoor heat exchanger 16 to be repeated by the suction of the compressor 11.
  • the recondensing means 30 is also used as a defrost circuit while operating a mixed mode of hot water and heating as described above, the waiting time for the equalization of the refrigerant pressure after the defrost mode is omitted, compared to the defrosting by the conventional reverse cycle operation.
  • the structure of the hot water and heating can be continuously maintained even when operating in the defrost mode, and the hot water is convenient and there is no change in the heating temperature. Comfortable heating is possible.

Abstract

본 발명은 히트 펌프 시스템에 관한 것이며, 상세하게는 온수 가열수단을 결합한 히트 펌프 시스템의 다기능화 및 성적계수 증대구조에 관한 것으로서, 기능을 다양화하고 성적계수를 증대할 수 있도록 한 것이다. 본 발명은 압축기(11), 4 웨이 밸브(12), 실내 열교환기(13), 냉방용 팽창 밸브(14), 난방용 팽창 밸브(15), 실외 열교환기(16) 및 상기 4 웨이 밸브(12)를 냉매도관(17)으로 순서대로 연결하고, 상기 4 웨이 밸브(12)와 압축기(11)를 냉매 흡입도관(18)으로 연결한 기본 냉동 사이클(10)과; 상기 냉매도관(17)의 압축기(11)와 4 웨이 밸브(12) 사이에 바이패스 도관(21)을 연결하여 상기 바이패스 도관(21)에 응축기(22)를 설치하고, 상기 응축기(22)에 흡열 열교환기(23)를 설치함과 아울러 상기 흡열 열교환기(23)에 이용측 열교환기(24)를 연결한 온수 가열회로(20)와; 상기 바이패스 도관(21)의 응축기(22) 출구 측과 냉매도관(17)의 난방용 팽창밸브(15) 입구 측에 제 2 냉매도관(31)을 연결하여 상기 제 2 냉매도관(31)에 제 2 응축기(32)를 상기 실외 열교환기(16)와 열전달 관계를 유지하도록 설치하고, 상기 제 2 응축기(32)의 출구 측에 난방용 팽창 밸브(15) 측으로 개방되는 체크 밸브(33)를 설치한 재응축 수단(30)을 포함하여 구성한 것이다.

Description

히트 펌프 시스템
본 발명은 히트 펌프 시스템에 관한 것이며, 상세하게는 온수 가열수단을 결합한 히트 펌프 시스템의 다기능화 및 성적계수 증대구조에 관한 것이다.
주지하는 바와 같이, 히트 펌프 시스템은 냉동 사이클에 4 웨이 밸브를 설치하여, 예를 들어 공기 조화 장치로 이용할 때에는 실내 열교환기를 냉방시는 증발기로, 난방시는 응축기로 작용하게 하여 실내를 냉·난방하는 것임으로, 상기 히트 펌프 시스템을 사람이 거주하는 장소 등에 설치할 때 사람이 일상생활을 영위하기 위하여 반드시 필요한 목욕용 또는 급탕용 온수(이하 "급탕용 온수" 라 함)를 얻기 위하여서는 별도의 온수 가열수단, 예를 들어 가스 온수기 등을 설치하고 있다.
본 발명자는 상기한 온수 가열수단의 별도 설치에 따른 설치 및 운전비용과 설치면적의 확보 애로점 등을 해결한 히트 펌프식 냉·난방 장치를 제안하여 특허문헌 1에 개시되어 있다.
상기 특허문헌1의 히트 펌프식 냉·난방 장치는, 압축기, 4 웨이 밸브, 실내 열교환기, 냉방용 감압기구, 난방용 감압기구, 실외 열교환기 및 상기 4 웨이 밸브를 냉매도관으로 순서대로 연결하고, 상기 4 웨이 밸브와 압축기를 냉매 흡입도관으로 연결함과 아울러 상기 냉매도관의 압축기와 4 웨이 밸브 사이에 바이패스 도관을 연결하여 상기 바이패스 도관에 열교환기(응축기)를 설치하고, 상기 열교환기와 열교환 관계를 이루도록 제 2 열교환기가 일측에 설치된 온수 가열회로를 구비하며, 상기 제 2 열교환기 측에 도시하지 않은 저탕조를 설치하여서, 실내를 냉·난방할 때 온수 가열회로에서 가열된 온수를 저탕조에 저장하였다가 바닥 난방 등의 복사난방을 하거나 급탕용 온수로 사용토록 한 것이다.
상기한 히트 펌프식 냉·난방 장치는 냉·난방시 온수를 동시에 생성할 수 있는 장점은 있지만, 냉·난방 모드와 별도로 온수만을 단독 생성할 필요성이 높아지고 있으나 온수 모드만은 불가능하고, 또한 난방 모드시 부하의 감소가 커지면 실내 열교환기에서 냉매증기의 응축이 불완전 함으로 압축기에 고압이 형성되고 성적계수가 저하되는 등의 문제점이 있는 것이다.
그리고 히트 펌프 시스템을 대기 열원형으로 형성할 때, 난방 모드시 외기 온도가 노점 이하로 하강하면 실외 열교환기(증발기)에 서리가 맺힘으로 제상수단을 설치하여야 하며, 상기 제상수단 중 주지된 제상 방식은 역사이클로 운전하여 실외 열교환기를 응축기로 작용하게 하여 제상을 하는 것이나, 상기한 제상 방식은 실내 열교환기에 보조 히터를 부설하여 실외 열교환기의 제상시 히터를 보조 열원으로 이용하고 있는바, 상기 역사이클 제상방식은 정상 운전으로의 환원시간 즉 제상 후 냉매압의 균압 시간이 길고, 또한 제상시 보조 히터를 계속 사용하여야 함으로 전력 소모가 많아서 경제적이지 못할 뿐만 아니라 열량 부족으로 쾌적한 난방이 곤란한 문제점이 있는 것이다.
한편 상기한 문제점 중 성적계수가 저하되는 것을 해결한 히트 펌프 급탕기가 특허문헌 2에 개시되어 있는바, 상기 특허문헌2의 히트 펌프 급탕기는 압축기, 가스 쿨러, 감압장치, 증발기를 순서대로 접속한 냉동 사이클을 구비하고, 상기 가스 쿨러에서 물을 가열하여 온수를 공급하는 히트 펌프 급탕기에 있어서, 상기 가스 쿨러의 출구 측의 냉매 온도를 하강시키기 위한 냉매 열교환기를 구비하며, 상기 냉매 열교환기는 상기 가스 쿨러와 감압장치 사이에 개폐 밸브를 설치하여 상기 개폐 밸브와 병렬로 설치하여서, 가스 쿨러에 공급되는 물의 온도가 설정치 이상일 때 개폐 밸브를 폐쇄하고, 가스 쿨러에서 배출되는 냉매를 냉매 열교환기에 유입하여 냉매의 온도를 하강시키며, 또한 상기 히트 펌프 급탕기는 압축기를 내부 중간압 2단 압축형으로 형성하여 제상회로를 설치한바, 상기 제상회로는 압축기에서 압축된 중간압의 냉매를 증발기에 도입하고, 제상용 전자 밸브와 바이패스 도관을 구비하여서, 제상운전시 제상용 전자 밸브를 개방함과 아울러 감압장치를 완전 개방하여 압축기에서 압축된 냉매를 증발기에 공급하여 증발기를 제상토록 한 것이다.
특허문헌 1; KR 10-0357988(B1)
특허문헌 2; JP 2003-194433(A)
그러나 상기한 히트 펌프 급탕기는 급탕 운전만을 함으로 기능이 단순화되고, 또한 제상회로를 별도로 구비함으로써 구조가 복잡할 뿐 아니라 그 제상회로도 역사이클 제상 방식임으로 상기 주지된 제상방식과 같은 문제점을 해결하지 못하였다.
본 발명은 상기한 실정을 감안하여, 온수 가열 회로를 부설한 히트 펌프식 냉·난방 장치에 온수 모드를 형성하여 기능을 더욱더 다양화하고, 성적계수를 증대할 수 있도록 한 히트 펌프 시스템을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여, 본 발명은 압축기, 4 웨이 밸브, 실내 열교환기, 냉방용 팽창 밸브, 난방용 팽창 밸브, 실외 열교환기 및 상기 4 웨이 밸브를 냉매도관으로 순서대로 연결하고, 상기 4 웨이 밸브와 압축기를 냉매 흡입도관으로 연결한 기본 냉동 사이클과; 상기 냉매도관의 압축기와 4 웨이 밸브 사이에 바이패스 도관을 연결하여 상기 바이패스 도관에 응축기를 설치하고, 상기 응축기에 흡열 열교환기를 설치함과 아울러 상기 흡열 열교환기에 이용측 열교환기를 연결한 온수 가열회로와; 상기 바이패스 도관의 응축기 출구 측과 냉매도관의 난방용 팽창밸브 입구 측에 제 2 냉매도관을 연결하여 상기 제 2 냉매도관에 제 2 응축기를 상기 실외 열교환기와 열전달 관계를 유지하도록 설치하고, 상기 제 2 응축기의 출구 측에 난방용 팽창 밸브 측으로 개방되는 체크 밸브를 설치한 재응축 수단을 포함하여 구성한 것이다.
이상과 같이 본 발명은 히트 펌프에 냉·난방과 동시에 온수를 생성하거나, 온수만을 단독으로 생성할 수 있음으로 기능이 다양화되어 편의성이 향상되고, 또한 제상회로를 재응축 수단이 겸용토록 함으로 구조가 단순화되고, 제상 모드를 온수 또는 온수 및 난방 혼용 모드와 함께 실시할 수 있음으로 온수 사용이 편리하고, 난방 온도의 변화가 없기 때문에 쾌적한 난방을 할 수 있는 것이다.
그리고 압축기의 압축비를 양호하게 조절함으로써 성적계수를 증대할 수 있을 뿐만 아니라 압축기의 신뢰성을 향상할 수 있는 것이다.
도 1은 본 발명의 실시예의 구성도
도 1은 본 발명의 실시예의 구성도로서, 본 발명은 기본 냉동 사이클(10)과, 온수 가열회로(20) 및 재응축 수단(30)으로 대별된다.
상기 기본 냉동 사이클(10)은 압축기(11), 4 웨이 밸브(12), 실내 열교환기(13), 냉방용 팽창 밸브(14), 난방용 팽창 밸브(15), 실외 열교환기(16) 및 상기 4 웨이 밸브(12)를 냉매도관(17)으로 순서대로 연결하고, 상기 4 웨이 밸브(12)와 압축기(11)를 냉매 흡입도관(18)으로 연결한 것으로서, 난방 모드시는 냉매를 화살표 실선으로, 냉방 운전시는 화살표 가상선으로 흐르도록 4 웨이 밸브(12)를 조작하며, 또한 상기와 같은 난방 또는 냉방 모드시 실내 열교환기(13)와 열교환되는 유체는 공기 또는 물이 사용되는 것인바, 상기 기본 냉동 사이클(10)은 히트 펌프 시스템에서 주지된 것이다.
상기 온수 가열회로(20)는 상기 냉매도관(17)의 압축기(11)와 4 웨이 밸브(12) 사이에 바이패스 도관(21)을 연결하여 상기 바이패스 도관(21)에 응축기(22)를 연결하고, 상기 응축기(22)에 흡열 열교환기(23)를 설치함과 아울러 상기 흡열 열교환기(23)에 이용측 열교환기(24)를 순환 펌프(26) 부설 순환도관(25)으로 연결하며, 상기 냉매도관(17)의 바이패스 도관(21)의 양단 연결부 사이 및 바이패스 도관(21)의 유입부에 각각 솔레노이드 밸브(27a)(27b)를 설치하여서, 도시하지 않은 프로그래머블 콘트롤러(Programmable Logic Controller, P.L.C)의 각 모드 스위치의 신호를 제어부에 입력하여 설정된 프로그램에 따라 개폐하는 것이다.
상기 재응축 수단(30)은 상기 바이패스 도관(21)의 응축기(22)의 출구 측과 냉매도관(17)의 난방용 팽창밸브(15) 입구 측에 제 2 냉매 도관(31)을 연결하여 상기 제 2 냉매도관(31)에 제 2 응축기(32)를 상기 실외 열교환기(16)와 열전달 관계를 유지하도록 설치하고, 상기 제 2 응축기(32)의 출구 측에 난방용 팽창밸브(15) 측으로 개방되는 체크 밸브(33)를 설치하며, 상기 바이패스 도관(21)의 제 2 냉매도관(31) 연결부 인접위치 및 제 2 냉매도관(31)의 입구에 각각 솔레노이드 밸브(34a)(34b)를 설치하여 상기 PLC의 설정된 프로그램에 따라 개폐하는 것이다.
상기 실외 열교환기(16) 및 제 2 응축기(32)는 핀 튜브(fin & tube)형으로 형성하고, 제 2 응축기(32)의 전열관을 실외 열교환기(16)의 전열관 사이사이에 균등간격으로 배치하여 열전달 효율을 양호하게 하고, 또한 후술하는 제상 효율을 향상한 것이다.
그리고 상기 제 2 냉매도관(31)에, 상기 제 2 응축기(32)를 바이패스하는 제 3 냉매도관(37)을 연결하여 상기 제 3 냉매도관(37)에 제 3 응축기(38)를 설치하고, 상기 제 2 냉매도관(31)의 제 2 응축기(32) 입구 측과 상기 제 3 냉매도관(37)의 입구에 각각 솔레노이드 밸브(39a)(39b)를 설치하여 제 2 응축기(32)에서 냉매액을 재응축할 때 상기 제 2 냉매도관(31)의 입구 측에 설치한 압력센서(40)의 출력치를 제어기에 입력하여 설정된 프로그램, 예를 들어 후술하는 온수 및 냉방 혼용 모드를 제외한 모드시 압력 센서(40)의 출력치가 설정치(예; 23 kgf/㎠) 이하이면 솔레노이드 밸브(39a)만 개방하고, 설정치 이상이면 솔레노이드 밸브(39b)도 개방함으로써 압축기(11)에서 냉매증기의 압축비를 양호하게 유지할 수 있고, 성적계수를 더욱더 증대할 수 있는 것이다.
또한 상기 냉매도관(17)의 난방용 팽창밸브(15) 입구 측과 상기 제 2 냉매도관(31)의 입구 측에 상기 실외 열교환기(16)를 바이패스하는 연결관(42)을 연결하고, 상기 냉매도관(17)의 상기 연결관(42) 연결 위치 후방과 연결관(42)의 입구에 각각 솔레노이드 밸브(43a)(43b)를 설치하여 상기 냉매도관(17)의 실내 열교환기(13)의 출구 측에 설치한 압력센서(44)의 출력치가 설정치(예; 23 kgf/㎠) 이상일 때 솔레노이드 밸브(43a)는 폐쇄하고 솔레노이드 밸브(43b)는 개방하여 제 2 응축기(32)에서 재응축되는 추가 사이클을 형성하며, 제 2 응축기(32)에서 응축된 냉매액은 난방용 팽창밸브(15)에서 팽창된 후 실외 열교환기(16)에서 증발시킴으로써 성적계수를 더욱더 증대할 수 있는 것이다.
미 설명부호 19a, 19b는 체크 밸브, 47a, 47b는 급수관 및 출탕관, 48은 팽창 탱크, 49는 결로 센서이다.
이하 각 모드 별로 구분하여 그 작동을 설명한다.
1) 온수 및 난방 혼용 모드
솔레노이드 밸브(27a)(27b),(34b),(43a)만 개방하고, 4 웨이 밸브(12)를 냉매가 화살표 실선으로 흐르도록 조작한 후 압축기(11)를 구동하면, 압축기(11)에서 압축된 고온·고압의 냉매증기의 일부는 바이패스 도관(21)으로 흘러 응축기(22)에서 응축되면서 그 응축열에 의하여 흡열 열교환기(23)를 흐르는 가열하려는 온수를 가열하여 이용측 열교환기(24) 또는 급탕용 등으로 사용하고, 상기 응축기(22)에서 응축된 냉매액은, 압축기(11)에서 압축되어 냉매도관(17) 측으로 토출되는 일부의 고온·고압의 냉매증기에 혼합되어 4 웨이 밸브(12)를 경유하여 화살표 실선과 같이 흐르면서 실내 열교환기(13)에서 응축 또는 재응축되고, 그 응축열에 의하여 실내 공기 또는 난방용 온수를 가열하여 난방을 하며, 상기 응축된 냉매액은 난방용 팽창밸브(15)에서 팽창된 후 실외 열교환기(16)에서 증발되어 압축기(11)에 흡입되는 기본 사이클을 반복하는 것이다.
상기와 같이 기본 사이클로 운전될 때 온수의 소모량이 적거나 난방 부하가 감소되어 응축기(22) 및 실내 열교환기(13)에서 냉매증기의 응축이 불완전하여 냉매도관(17)의 실내 열교환기(13) 출구 측을 흐르는 냉매액의 압력이 설정치 이상일 경우 솔레노이드 밸브(43a)는 폐쇄되고 솔레노이드 밸브(43b)는 개방되어 냉매액은 연결관(42)과 제 2 냉매도관(31)으로 흐르면서 제 2 응축기(32)에서 재응축된 후 체크 밸브(33)를 경유하는 추가 사이클이 형성되면서 난방용 팽창밸브(15)에서 팽창되어 실외 열교환기(16)에서 증발되고 압축기(11)에 흡입되는 사이클을 반복함으로 성적계수를 증대하며, 상기 냉매액의 압력치가 설정치 이하로 하강되면 기본 사이클로 복귀하는 것이다.
그리고 상기와 같이 제 2 응축기(32)에서 냉매액이 재응축될 때 그 응축열을 실외 열교환기(16)에 열전달 함으로 실외 열교환기(16)에서의 냉매액의 증발이 양호하고, 또한 외기온이 하강하였을 때 실외 열교환기(16)에 서리가 맺히는 것을 억제 내지 방지함으로 이 또한 성적계수의 저하를 방지할 수 있는 것이다.
2) 온수 및 냉방 혼용 모드
솔레노이드 밸브(27a)(27b),(34b),(39a),(43a)만을 개방하고 4 웨이 밸브(12)를 냉매가 화살표 가상선으로 흐르도록 조작한 후 압축기(11)를 구동하면, 온수 가열회로(20)에서 상기 온수 및 난방 모드와 같이 온수를 생성하고, 응축기(22)에서 응축된 냉매액은, 압축기(11)에서 압축되어 냉매도관(17) 측으로 토출되는 고온·고압의 냉매증기에 혼합되어 화살표 가상선으로 흐르면서 실외 열교환기(16)에서 응축 또는 재응축된 후 냉방용 팽창밸브(14)에서 팽창되고 실내 열교환기(13)에서 증발되면서 그 증발열에 의하여 실내 공기 또는 냉방용 냉수를 냉각하여 냉방을 하며, 실내 열교환기(13)에서 증발된 냉매증기는 압축기(11)에 흡입되는 사이클을 반복하는 것이다.
3) 온수 모드
솔레노이드 밸브(27b),(34a),(39a)를 개방하고 압축기(11)를 구동하면, 압축기(11)에서 압축된 고온·고압의 냉매증기의 전부는 응축기(22)를 흐르면서 상기 온수 및 난방 혼용 모드 또는 온수 및 냉방 혼용 모드와 같이 온수 가열회로(20)에서 온수만을 생성하여 필요한 용도에 사용하고, 상기 응축기(22)에서 응축된 냉매액은 제 2 응축기(32)에서 재응축된 다음 체크 밸브(33)를 경유하여 난방용 팽창밸브(15)에서 팽창된 후 실외 열교환기(16)에서 증발되어 압축기(11)에 흡입되는 사이클을 반복하며, 상기한 사이클을 반복할 때 제 2 응축기(32)의 응축열을 실외 열교환기(16)에 열전달 함으로써 냉매액의 증발 효율을 향상할 수 있게 되어 압축기의 액백 또는 액격이 방지되어 신뢰성을 향상할 수 있는 것이다.
상기와 같이 온수 모드만으로 운전될 때 온수의 소모량이 감소되는 등의 이유로 응축기(22)에서 냉매 증기의 응축이 불완전하면 응축기(22) 출구 측에서의 냉매액의 압력이 상승하여 압력 센서(40)에서 출력되는 냉매액의 압력이 설정치 이상이 되면 솔레노이드 밸브(39b)도 동시에 개방되어 제 2 응축기(32)와 제 3 응축기(38)에서 재응축됨으로써 압축기(11)의 압축비를 양호하게 유지함과 아울러 성적계수를 향상할 수 있고, 냉매액의 압력이 설정치 이하로 하강하면 솔레노이드 밸브(39b)는 폐쇄되어 제 2 응축기(32)만 기능하는 것이다.
상기와 같이 본 발명자의 선 특허에 온수 모드를 추가하여 온수만을 생성할 수 있음으로 기능이 다양화되어 편리하게 사용할 수 있는 것이고, 또한 압축기(11)에서 압축된 고온·고압의 냉매증기의 전부를 온수 생성에 사용할 수 있어 종래보다 고온의 온수를 생성할 수 있어 팬 코일 유닛 등에도 사용할 수 있게 되기 때문에 이용가치를 증대할 수 있는 것이다.
4) 제상 모드
온수 및 난방 혼용 모드로 운전될 때 기온이 노점 이하로 하강하여 실외 열교환기(16)에 서리가 맺힌 것을 결로 센서(49)가 검출하여 솔레노이드 밸브(34a)(39a)를 개방하고 솔레노이드 밸브(34b)를 폐쇄하면, 응축기(22)에서 응축된 고온·고압의 냉매액이 제 2 응축기(32)에서 응축되면서 그 응축열을 실외 열교환기(16)에 열전달하여 맺힌 서리를 제상하고, 상기 냉매액은 실내 열교환기(13)에서 응축열을 방출하여 난방을 마친 냉매액과 함께 난방용 팽창밸브(15)에서 팽창된 후 실외 열교환기(16)에서 증발되어 압축기(11)에 흡입되는 사이클을 반복하는 것이다.
상기와 같이 온수 및 난방 혼용 모드를 운전하면서 재응축 수단(30)을 제상 회로로 겸용하면 종래 역사이클 운전에 의하여 제상을 하던 것에 비하여 제상 모드 후 냉매압의 균압을 위하여 대기하던 시간을 생략하고, 또한 제상 회로와 재응축 수단을 별개로 형성하던 것에 비하여 구조를 단순화함과 아울러 제상 모드로 운전될 때에도 계속적으로 온수 및 난방 혼용 모드를 유지할 수 있어 온수 사용이 편리하고, 난방 온도의 변화가 없기 때문에 쾌적한 난방을 할 수 있는 것이다.

Claims (4)

  1. 압축기, 4 웨이 밸브, 실내 열교환기, 냉방용 팽창 밸브, 난방용 팽창 밸브, 실외 열교환기 및 상기 4 웨이 밸브를 냉매도관으로 순서대로 연결하고, 상기 4 웨이 밸브와 압축기를 냉매 흡입도관으로 연결한 기본 냉동 사이클과; 상기 냉매도관의 압축기와 4 웨이 밸브 사이에 바이패스 도관을 연결하여 상기 바이패스 도관에 응축기를 설치하고, 상기 응축기에 흡열 열교환기를 설치함과 아울러 상기 흡열 열교환기에 이용측 열교환기를 연결한 온수 가열회로와; 상기 바이패스 도관의 응축기 출구 측과 냉매도관의 난방용 팽창밸브 입구 측에 제 2 냉매도관을 연결하여 상기 제 2 냉매도관에 제 2 응축기를 상기 실외 열교환기와 열전달 관계를 유지하도록 설치하고, 상기 제 2 응축기의 출구 측에 난방용 팽창 밸브 측으로 개방되는 체크 밸브를 설치한 재응축 수단을 포함하여 구성한 히트 펌프 시스템
  2. 제 1항에 있어서, 실외 열교환기 및 제 2 응축기는 핀 튜브형으로 형성하고, 제 2 응축기의 전열관을 실외 열교환기의 전열관 사이사이에 균등간격으로 배치한 히트 펌프 시스템
  3. 제 1항에 있어서, 제 2 냉매도관에, 제 2 응축기를 바이패스하는 제 3 냉매도관을 연결하여 상기 제 3 냉매도관에 제 3 응축기를 설치하고, 상기 제 2 냉매도관의 제 2 응축기 입구 측과 상기 제 3 냉매도관의 입구에 각각 솔레노이드 밸브를 설치한 히트 펌프 시스템
  4. 제 1항에 있어서, 냉매도관의 난방용 팽창밸브 입구 측과 제 2 냉매도관의 입구 측에 실외 열교환기를 바이패스하는 연결관을 연결하고, 상기 냉매도관의 상기 연결관 연결 후방과 연결관의 입구에 각각 솔레노이드 밸브를 설치한 히트 펌프 시스템
PCT/KR2009/005250 2008-09-26 2009-09-16 히트 펌프 시스템 WO2010035982A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080094620A KR101024879B1 (ko) 2008-09-26 2008-09-26 히트 펌프 시스템
KR10-2008-0094620 2008-09-26

Publications (2)

Publication Number Publication Date
WO2010035982A2 true WO2010035982A2 (ko) 2010-04-01
WO2010035982A3 WO2010035982A3 (ko) 2010-07-29

Family

ID=42060240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005250 WO2010035982A2 (ko) 2008-09-26 2009-09-16 히트 펌프 시스템

Country Status (2)

Country Link
KR (1) KR101024879B1 (ko)
WO (1) WO2010035982A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949617A (zh) * 2010-09-21 2011-01-19 东南大学 同时制取水和空气的高效空气源热泵装置及方法
CN102155819A (zh) * 2011-03-29 2011-08-17 海尔集团公司 空调热水系统
CN102679482A (zh) * 2012-05-25 2012-09-19 宁波奥克斯空调有限公司 基于变频空调的热回收多联系统及其控制方法
EP2381178A3 (en) * 2010-04-22 2015-04-08 Lg Electronics Inc. Heat pump type speed heating apparatus
CN111442347A (zh) * 2020-03-17 2020-07-24 海信(山东)空调有限公司 一种空调及其制冷、制热控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212894B1 (en) * 1996-03-29 2001-04-10 Waterfurnace International Inc. Microprocessor control for a heat pump water heater
JP2003194433A (ja) * 2001-12-27 2003-07-09 Sanyo Electric Co Ltd ヒートポンプ給湯機
KR20040006363A (ko) * 2002-07-12 2004-01-24 진금수 히트 펌프 시스템
KR100499077B1 (ko) * 2003-04-03 2005-07-04 진금수 냉동 사이클

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882491A (ja) * 1994-09-14 1996-03-26 Calsonic Corp ガスタービン用熱交換器
KR100769057B1 (ko) * 2006-02-24 2007-10-22 진주환 히트 펌프 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212894B1 (en) * 1996-03-29 2001-04-10 Waterfurnace International Inc. Microprocessor control for a heat pump water heater
JP2003194433A (ja) * 2001-12-27 2003-07-09 Sanyo Electric Co Ltd ヒートポンプ給湯機
KR20040006363A (ko) * 2002-07-12 2004-01-24 진금수 히트 펌프 시스템
KR100499077B1 (ko) * 2003-04-03 2005-07-04 진금수 냉동 사이클

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381178A3 (en) * 2010-04-22 2015-04-08 Lg Electronics Inc. Heat pump type speed heating apparatus
CN101949617A (zh) * 2010-09-21 2011-01-19 东南大学 同时制取水和空气的高效空气源热泵装置及方法
CN101949617B (zh) * 2010-09-21 2012-11-28 东南大学 同时制取水和空气的高效空气源热泵装置及方法
CN102155819A (zh) * 2011-03-29 2011-08-17 海尔集团公司 空调热水系统
CN102679482A (zh) * 2012-05-25 2012-09-19 宁波奥克斯空调有限公司 基于变频空调的热回收多联系统及其控制方法
CN102679482B (zh) * 2012-05-25 2014-09-17 宁波奥克斯空调有限公司 基于变频空调的热回收多联系统及其控制方法
CN111442347A (zh) * 2020-03-17 2020-07-24 海信(山东)空调有限公司 一种空调及其制冷、制热控制方法

Also Published As

Publication number Publication date
WO2010035982A3 (ko) 2010-07-29
KR20100035314A (ko) 2010-04-05
KR101024879B1 (ko) 2011-03-31

Similar Documents

Publication Publication Date Title
KR100463548B1 (ko) 공기조화기용 제상장치
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
WO2010030093A2 (ko) 히트 펌프식 냉·난방 장치
EP2045546B1 (en) Air conditioning system
US9441851B2 (en) Air-conditioning apparatus
CN101349456B (zh) 空调装置
WO2012161457A2 (ko) 히트 펌프 시스템
JP2004132647A (ja) 給湯装置、空調給湯システム、及び給湯システム
US20150369498A1 (en) Air-conditioning apparatus
US20130186126A1 (en) Air-conditioning apparatus
KR101336012B1 (ko) 지열 히트펌프장치를 이용한 냉,난방 및 급탕용 히트펌프장치
WO2006003860A1 (ja) マルチ形空気調和装置
WO2010035982A2 (ko) 히트 펌프 시스템
CN106524399A (zh) 一种空调化霜装置、空调化霜控制方法、系统和空调
CN109990499A (zh) 一种除霜不停机的燃气热泵空调系统
US10436463B2 (en) Air-conditioning apparatus
KR100712196B1 (ko) 히트펌프 시스템 및 실외기 제상 방법
EP2375187A2 (en) Heat pump apparatus and operation control method of heat pump apparatus
KR100795407B1 (ko) 항온 공조기의 냉매압 조절장치
JP2006010137A (ja) ヒートポンプシステム
WO2023173847A1 (zh) 空气源热泵热水器系统
JP2001330341A (ja) 空気調和装置
KR100987705B1 (ko) 핫가스 제상용 시스템이 적용된 냉동 사이클장치
KR100945452B1 (ko) 히트펌프장치
KR20050030245A (ko) 이원 히트펌프 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816375

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816375

Country of ref document: EP

Kind code of ref document: A2