WO2010032780A1 - Metal clad body, circuit board and electronic part - Google Patents

Metal clad body, circuit board and electronic part Download PDF

Info

Publication number
WO2010032780A1
WO2010032780A1 PCT/JP2009/066239 JP2009066239W WO2010032780A1 WO 2010032780 A1 WO2010032780 A1 WO 2010032780A1 JP 2009066239 W JP2009066239 W JP 2009066239W WO 2010032780 A1 WO2010032780 A1 WO 2010032780A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
clad laminate
film
metal layer
circuit board
Prior art date
Application number
PCT/JP2009/066239
Other languages
French (fr)
Japanese (ja)
Inventor
悟 座間
賢一 大賀
季実子 藤澤
裕二 鈴木
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2010529788A priority Critical patent/JP4805412B2/en
Publication of WO2010032780A1 publication Critical patent/WO2010032780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a metal-clad laminate, a circuit board, and an electronic component.
  • a metal-clad laminate, a circuit board, and an electronic component capable of reducing thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board formed by removing a conductor by etching and improving connection reliability About.
  • COF Chip On Film
  • the thermal expansion coefficient of a silicon chip is 3 ppm / K
  • the thermal expansion coefficient of a substrate is generally 16 to 60 ppm / K. Therefore, when the temperature is lowered to room temperature after solder heating, thermal distortion occurs due to the difference in thermal expansion. Is a big problem (see, for example, Patent Document 1).
  • the present invention has been made to solve the above problems, and reduces thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board formed by removing a conductor by etching and connection reliability.
  • An object of the present invention is to provide a metal-clad laminate, a circuit board, and an electronic component that can improve the performance.
  • a metal-clad laminate that expands by 0.05 to 0.4% in the planar direction is used, so that the solder heating when mounting the semiconductor element on the circuit board, etc. It was found that the thermal distortion due to can be reduced.
  • the heat treatment is preferably performed at a temperature higher than the temperature at which the film softens, and is soldering when the semiconductor chip is directly mounted on the circuit board.
  • the present invention has been made based on the research results described above.
  • the metal-clad laminate according to the first aspect of the present invention is a metal-clad laminate comprising a film substrate and a metal layer made of copper (Cu) or a copper alloy (Cu alloy), wherein the metal layer
  • the dimensional change rate in the planar direction of the metal-clad laminate in the heat treatment after removing at least part of the film by etching is 0.05 to 0.4%.
  • the metal-clad laminate according to the second aspect of the present invention is the metal-clad laminate according to the first aspect of the present invention, wherein the film substrate has a linear expansion coefficient in the plane direction of 13 to 60 ppm / K. It is characterized by.
  • the metal-clad laminate according to the third aspect of the present invention is the metal-clad laminate according to the first or second aspect of the present invention, wherein a base metal layer is formed between the film substrate and the metal layer. It is characterized by being.
  • a metal-clad laminate according to a fourth aspect of the present invention is the metal-clad laminate according to the third aspect of the present invention, wherein the base metal layer is nickel (Ni), nickel alloy (Ni alloy), copper (Cu ) And a copper alloy (Cu alloy).
  • the metal-clad laminate according to the fifth aspect of the present invention is the metal-clad laminate according to any one of the first to fourth aspects of the present invention, wherein the film substrate is a thermoplastic film.
  • a metal-clad laminate according to a sixth aspect of the present invention is the polymer-clad laminate according to the fifth aspect of the present invention, wherein the film base material is capable of forming an optically anisotropic melt phase. Characterized in that it comprises any one selected from the group consisting of a thermoplastic polyimide resin, a polyether ether ketone (PEEK) resin, a polyethylene terephthalate (PET) resin, and a polyethylene naphthalate (PEN) resin. To do.
  • a thermoplastic polyimide resin a polyether ether ketone (PEEK) resin
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a metal-clad laminate according to a seventh aspect of the present invention is the metal-clad laminate according to any one of the first to fourth aspects of the present invention, wherein the film substrate is formed of a non-thermoplastic polyimide resin. It is characterized by being.
  • the circuit board according to the first aspect of the present invention is characterized in that a circuit is formed using the metal-clad laminate according to any one of the first to seventh aspects of the present invention.
  • the electronic component according to the first aspect of the present invention is characterized in that a semiconductor element is directly mounted on the circuit board according to the first aspect of the present invention.
  • the electronic component according to the second aspect of the present invention is the electronic component according to the first aspect of the present invention, characterized in that the electrodes of the semiconductor element are connected to the circuit board by bumps.
  • the “dimensional change rate” is positive on the side where the dimension becomes larger and negative on the side where the dimension becomes smaller.
  • the dimensional change rate in the planar direction of the metal-clad laminate in the heat treatment after removing the metal layer by etching is 0.05 to 0.4% (expands by the heat treatment).
  • connection reliability in case a film base material is PET and PEN. It is the graph which showed the connection reliability in case a film base material is a thermoplastic polyimide. It is the graph which showed the connection reliability in case a film base material is a non-thermoplastic polyimide.
  • FIG. 1 is a cross-sectional view showing a metal-clad laminate according to the first embodiment of the present invention.
  • the metal-clad laminate 10 according to the first embodiment of the present invention includes a film base 11 and a metal layer 12 formed on the surface 11 a of the film base 11.
  • the metal-clad laminate 10 has the following characteristics.
  • the metal-clad laminate 10 has a dimensional change rate in the plane direction of the metal-clad laminate 10 of 0.05 to 0.4% in the heat treatment after removing at least a part of the metal layer 12 by etching. Further, the linear expansion coefficient in the plane direction of the film substrate 11 is 13 to 60 ppm / K.
  • the metal-clad laminate 10 to which the present invention having the above-described characteristics can be applied, thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board can be reduced.
  • a highly reliable circuit board and electronic component can be manufactured.
  • FIG. 2 is a cross-sectional view showing a metal-clad laminate according to the second embodiment of the present invention.
  • the metal-clad laminate 20 according to the second embodiment of the present invention includes a film base 11, a metal layer 12 and a metal formed on both surfaces 11 a and 11 b of the film base 11, respectively.
  • the difference between the metal-clad laminate 20 and the metal-clad laminate 10 is that the metal-clad laminate 10 has a two-layer structure in which the film substrate 11 and the metal layer 12 are laminated in this order, whereas the metal-clad laminate 10
  • the body 20 has a three-layer structure in which a metal layer 12 ', a film base material 11, and a metal layer 12 are laminated in this order.
  • the metal-clad laminate 20 according to the second embodiment of the present invention has the same features and effects as the metal-clad laminate 10 described above.
  • FIG. 3 is a cross-sectional view showing a metal-clad laminate according to the third embodiment of the present invention.
  • the metal-clad laminate 30 according to the third embodiment of the present invention includes a film base 11, a base metal layer 13 formed on the surface 11 a of the film base 11, and a base metal. And a metal layer 12 formed on the surface 13 a of the layer 13.
  • the difference between the metal-clad laminate 30 and the metal-clad laminate 10 is that the metal-clad laminate 10 has a two-layer structure in which the film substrate 11 and the metal layer 12 are laminated in this order, whereas the metal-clad laminate 10
  • the body 30 has a three-layer structure in which the film substrate 11, the base metal layer 13, and the metal layer 12 are laminated in this order.
  • the metal-clad laminate 30 according to the third embodiment of the present invention has the same features and effects as the metal-clad laminate 10 described above.
  • the base metal layer 13 is formed only on one surface of the film base material 11 and then the metal layer 12 is formed on the base metal layer 13 is described.
  • the base metal layer 13 is formed on the base metal layer 13 and the metal layer 12 is subsequently formed on the base metal layer 13.
  • the metal layer 12, the base metal layer 13, the film substrate 11, the base metal layer 13, and the metal layer 12 May be a five-layer structure laminated in this order.
  • the metal layers 12, 12 ′ of the metal-clad laminates 10, 20, 30 to which the present invention is applicable are made of copper (Cu) or a copper alloy (Cu alloy).
  • the base metal layer 13 of the metal-clad laminate 30 to which the present invention can be applied any one of nickel (Ni), nickel alloy (Ni alloy), copper (Cu), and copper alloy (Cu alloy) can be used. It is desirable to become.
  • the thickness of the base metal layer 13 is preferably in the range of 0.05 to 0.5 microns.
  • a non-thermoplastic polyimide base material having excellent heat resistance is often used, but as the film base material 11 of the metal-clad laminate 10, 20, 30 to which the present invention can be applied, It is better to use a thermoplastic resin that can easily soften the flexible circuit board at a high temperature. This is because, after copper etching, expansion is likely to occur due to heat.
  • a liquid crystal polymer film a polyether ether ketone film (PEEK), a thermoplastic polyimide film, a polyester film, or the like can be applied.
  • polyester films polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) are applicable, although the heat resistance is relatively low.
  • liquid crystal polyester, PEEK, and thermoplastic polyimide are preferable because of their high heat resistance.
  • the metal-clad laminate 30 is produced by a method in which a metal is directly plated on the film substrate 11 without using an adhesive. At that time, a stress is left on the plating film, and a metal-clad laminate 30 that is contracted by a certain amount in the plane direction in advance is produced by subsequent heat treatment.
  • the film is prepared with a plating solution and plating conditions that cause the plating film to have a tensile stress.
  • the film is softened by heating to the softening temperature of the film, and the metal-clad laminate 30 is contracted in the plane direction by the stress of the plating film.
  • the stress of the plating film is removed by removing a part of the metal layer 12 by etching. Therefore, the shrinkage amount of the film base 11 is released by heating again. That is, it is possible to obtain the metal-clad laminate 30 that expands when the solder is heated.
  • a roughening process is performed on the surface of the film substrate 11 before plating (surface roughening process).
  • electroless plating is performed to form a metal layer base layer (base metal layer or base plating layer) 13 (base metal layer forming process).
  • base metal layer 13 base metal layer forming process.
  • an electroless nickel-phosphorous plating solution in which the pH of the plating bath is weakly acidic to neutral and is practically deposited at a high temperature of 60 ° C. or higher is suitable. Also, the phosphorus concentration of the deposited metal film is low concentration phosphorus of 5% or less, and the medium concentration phosphorus film of about 5 to 10% is suitable.
  • the stress of the plating film (here, the underlying metal layer 13) is tensile stress or compressive stress is determined by plating only one surface of the film substrate 11 and the direction of warping of the metal-clad laminate after plating. Can be determined by looking at That is, when the plating film is placed on the upper side, if it becomes concave, the plating film shows tensile stress, and if it becomes convex, the plating film shows compressive stress.
  • the plating film generates a contracting force with respect to the film substrate 11, and therefore, when the film substrate softens in the subsequent heat treatment, the metal-clad laminate 30 contracts in the plane direction due to the stress of the plating film. become.
  • an electroless nickel-phosphorous plating solution, an electroless copper plating solution, or the like is used as the base plating on the surface of the film substrate 11.
  • a base metal layer 13 is deposited.
  • heat treatment is performed (heat treatment).
  • the heat treatment it is desirable that the heat treatment be performed in a state where a tension is applied so that the metal-clad laminate 30 can maintain a flat shape, or in a state where a film can be maintained in a stationary state in order to prevent significant deformation. . That is, it is desirable to heat a plurality of films stacked on a flat support plate, or to heat in a state of being wound into a roll.
  • the metal-clad laminate 30 may be continuously heated by applying a tension to the metal-clad laminate 30 so that the metal-clad laminate 30 can maintain a flat shape from heating to cooling.
  • the film is softened by this heat treatment, and the metal-clad laminate 30 contracts in the plane direction due to the stress of the plating film.
  • the upper metal layer 12 having a thickness of 1 to 20 microns as a conductor is formed on the base plating by electrolytic copper plating (formation process of the upper metal layer), and the metal-clad laminate 30 is manufactured.
  • the base metal layer 13 is formed, heat treatment is performed, and finally the upper metal layer 12 is formed.
  • the upper metal layer 12 may be formed and finally heat treatment may be performed.
  • the shrinkage amount is set to be large, it is better to perform the heat treatment after forming only the base metal layer 13. This is because only the electroless plating film has a higher tensile stress.
  • FIG. 4 is a cross-sectional view showing a circuit board according to an embodiment of the present invention.
  • a circuit board formed with a circuit using the metal-clad laminate 10 shown in FIG. 1 will be described as an example.
  • the circuit board 40 includes a film base 11 and a circuit metal layer 15 on which a circuit is formed that is laminated on the surface 11 a of the film base 11.
  • As a method for forming the circuit metal layer 15 of the circuit board 40 for example, an unnecessary metal portion of the metal layer 12 of the metal-clad laminate 10 shown in FIG.
  • the circuit metal layer 15 having a desired wiring pattern is formed by etching.
  • FIG. 5 is a cross-sectional view showing an electronic component according to an embodiment of the present invention.
  • an electronic component using the circuit board 40 shown in FIG. 4 will be described as an example.
  • the electronic component 50 is coated with the solder resist 17 on the surface of the circuit board 40 shown in FIG. 4, leaving the mounting portion of the semiconductor element 16, and the circuit metal layer 15 of the circuit board 40.
  • the electrodes of the semiconductor element 16 are connected by bumps 18.
  • the thermal distortion due to solder heating or the like when the semiconductor element 16 is mounted on the circuit board 40 can be reduced. Therefore, the circuit board 40 and the electronic component 50 with high reliability can be manufactured.
  • An example of connection reliability between the substrate and the semiconductor chip will be described.
  • Examples and comparative examples of liquid crystal polymer films The case where a polymer film (liquid crystal polymer film) capable of forming an optically anisotropic melt phase is used as the film substrate 11 will be described.
  • a case where Vecster CT manufactured by Kuraray Co., Ltd. is used as the polymer film (liquid crystal polymer film) will be described.
  • the film thickness was 50 microns.
  • a metal-clad laminate 30 (film metal-clad laminate) to which the present invention can be applied was manufactured by sequentially performing a conditioner treatment, a nickel alloy electroless plating treatment, a heat treatment, and a copper electroplating treatment.
  • the surface of the polymer film was washed with an OPC-350 conditioner manufactured by Okuno Pharmaceutical Co., Ltd.
  • an OPC-80 catalyst manufactured by Okuno Pharmaceutical Co., Ltd. was used as a catalyst-providing liquid containing palladium, and an OPC-500 accelerator was used as an activator.
  • nickel-phosphorous plating was performed on both sides of the film.
  • Top Nicolon LPH-LF manufactured by Okuno Pharmaceutical Co., Ltd. was used as a commercially available nickel-phosphorous plating solution.
  • the film stress was changed by changing the bath temperature, pH, the ratio of hypophosphorous acid and metallic nickel, and the like, and a film metal-clad laminate 30 composed of different base plating films (base metal layer 13) was produced (implemented from Example 1). 10 types of Example 10).
  • the pH was in the range of 5.6 to 6.3, and a base plating layer (base metal layer 13) having a thickness of 0.1 microns was formed on both sides.
  • the film metal-clad laminate was placed in a heat treatment tank, and the heat treatment temperature was maintained at 200 to 250 ° C. for 10 minutes.
  • copper metal layer 12
  • the conductor thickness thickness of the metal layer 12
  • the following copper electroplating solution was used.
  • Cubelite TH-RIII manufactured by Sugawara Eugleite Co., Ltd. was used as an additive.
  • a conductor metal layer 12 was formed on both sides.
  • Comparative Example 1 to Comparative Example 6 the same film base material 11 as in Example 1 to Example 10 was used, and the surface was similarly roughened with an alkaline solution.
  • Comparative Example 1 Top Nicolo LPH-LF was used as the electroless plating solution. Further, the pH was set to 6.9, and a nickel-phosphorus base plating layer having a thickness of 0.1 microns was formed. In the subsequent heat treatment, the heat treatment temperature was 160 ° C. for 10 minutes. Then, copper electroplating process formed copper so that a conductor thickness might be set to 8 microns.
  • IPC-TM-650 The rate of change in the planar direction was determined by a method similar to the dimensional stability measurement method described in 2.2.4.
  • a score line is formed at the four corners of a 270 mm x 290 mm film metal-clad laminate, and four grades A, B, C, and D are prepared, and the grades between AB, BC, CD, and DA are the initial values. The distance was measured.
  • the dimensional change rate (expansion rate) in the planar direction of Examples 1 to 10 was 0.06 to 0.38%. Further, the dimensional change rate (expansion coefficient) in the planar direction of Comparative Examples 1 to 3 was ⁇ 0.1 to 0.04%. Further, the dimensional change rate (expansion rate) in the planar direction of Comparative Examples 4 to 6 was 0.41 to 0.48%.
  • JTEG Phase 6_50 was used from Hitachi VLSI Systems, and a wiring board suitable for it was produced.
  • the specification of JTEG Phase 6_50 is as follows.
  • Chip size 1.6 mm x 15.1 mm x 15.1 mm
  • Pad pitch 50 microns
  • Number of pads 479 pads
  • Bump size 30 microns x 100 microns
  • Bump Gold plating height 10 microns
  • connection between the circuit board and the chip was carried out by aligning the bumps of the chip with the circuit board using a flip chip bonder, and heating the solder to a melting temperature of Sn or higher to bond the chip and the circuit board.
  • a temperature cycle test was conducted as a reliability test. As temperature cycle test conditions, the temperature was held at ⁇ 55 ° C. for 10 minutes, then the temperature was raised to 125 ° C., held for 10 minutes, and further lowered to ⁇ 55 ° C. As the connection resistance, the connection resistance between the chip and the circuit board was measured every 100 cycles, and when it increased by 20% from the initial resistance, it was regarded as a fracture. Table 2 and FIG. 6 show the number of cycles until breakage measured by the temperature cycle test.
  • the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%.
  • the number of cycles until breakage was large. That is, in Example 1 to Example 10 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at a heating temperature of 240 ° C. for 1 minute is particularly high in Examples 3 to 8 in which 0.1 to 0.3%. It was found that it showed connection reliability.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 1 to 3, and the heating temperature is 240 ° C.
  • Comparative Example 4 to Comparative Example 6 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more the number of cycles to break is small, and the connection reliability is low. I found out that
  • thermoplastic polyimide PET, PEN, or non-thermoplastic polyimide is used as the other film substrate.
  • PEEK is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 15 to 30 minutes to melt the surface and form irregularities.
  • a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
  • a base plating layer having a thickness of 0.1 ⁇ m was formed with the plating solution shown in Table 3, and heat treatment was performed at the heat treatment temperature shown in Table 3 for 10 minutes.
  • the copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
  • the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%.
  • rupture is large. That is, in Example 11 to Example 20 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 7 to 9 and the heating temperature is 240 ° C.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low.
  • PET and PEN are used as the film substrate.
  • Tetron HSL manufactured by Teijin DuPont Films Ltd. is used as PET will be described.
  • the film thickness was 50 microns.
  • Teonex Q83 manufactured by Teijin DuPont Films is used as PEN will be described.
  • the film thickness was 50 microns.
  • a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
  • a base plating layer having a thickness of 0.1 ⁇ m was formed with the plating solution shown in Table 4, and heat treatment was performed for 10 minutes at the heat treatment temperature shown in Table 4.
  • the copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
  • the conductor was removed as in the case of the polymer film (liquid crystal polymer film).
  • the dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured. Further, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was produced and a temperature cycle test was performed.
  • PET and PEN have low heat resistance
  • the conductor in the measurement of the dimensional change rate (expansion coefficient) in the planar direction is removed and the subsequent heating is performed at 170 ° C. for 1 minute in the case of PET and in the case of PEN.
  • Heat treatment was performed at 200 ° C. for 1 minute.
  • PET and PEN films have low heat resistance, Sn plating and Bi plating were performed. The connection with the chip was performed by heating at about 150 ° C.
  • Table 4 and FIG. 8 show the measurement result of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement result of the number of cycles until breakage measured by the temperature cycle test.
  • Example 21 to Example 30 As shown in Table 4 and FIG. 8, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 170 ° C. or 200 ° C. for 1 minute is 0.05% to 0.00%.
  • Example 21 to Example 30 which is 4%, it was found that the number of cycles until breakage was large. That is, in Example 21 to Example 30 in which the dimensional change rate (expansion coefficient) in the planar direction after heat treatment at 170 ° C. or 200 ° C. for 1 minute is 0.05% to 0.4%. It shows that it shows high connection reliability.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 170 ° C. for 1 minute is less than 0.05% of Comparative Examples 13 to 15 and the heating temperature is 200 ° C.
  • Comparative Example 16 to Comparative Example 18 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low. I found out that
  • thermoplastic polyimide (Examples and comparative examples of thermoplastic polyimide) The case where a thermoplastic polyimide is used as the film substrate will be described. Here, the case where AURUM of Mitsui Chemicals is used as the thermoplastic polyimide will be described. The film thickness was 25 microns.
  • thermoplastic polyimide is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 5 to 15 minutes to melt the surface and form irregularities.
  • a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
  • a base plating layer having a thickness of 0.1 ⁇ m was formed with the plating solution shown in Table 5, and heat treatment was performed at the heat treatment temperature shown in Table 5 for 10 minutes.
  • the copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
  • the conductor was removed in the same manner as in the case of the polymer film (liquid crystal polymer film).
  • the dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured.
  • a COF substrate was produced and a temperature cycle test was performed.
  • Table 5 and FIG. 9 show the measurement results of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement results of the number of cycles until breakage measured by the temperature cycle test.
  • the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%.
  • the number of cycles until breakage was large. That is, in Example 31 to Example 40 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 22 to 24, and the heating temperature is 240 ° C.
  • the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low.
  • non-thermoplastic polyimide (Examples and comparative examples of non-thermoplastic polyimide) The case where non-thermoplastic polyimide is used as a film base material is demonstrated. Here, a case where Kapton 100EN manufactured by Toray DuPont Co., Ltd. is used as the non-thermoplastic polyimide will be described.
  • a non-thermoplastic polyimide is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 5 to 15 minutes to melt the surface and form irregularities.
  • a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
  • a base plating layer having a thickness of 0.1 ⁇ m was formed using the plating solution shown in Table 6, and heat treatment was performed for 10 minutes at the heat treatment temperature shown in Table 6.
  • the copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
  • the conductor was removed as in the case of the polymer film (liquid crystal polymer film).
  • the dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured.
  • a COF substrate was produced and a temperature cycle test was performed.
  • Table 6 and FIG. 10 show the measurement result of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement result of the cycle number until the fracture measured by the temperature cycle test.
  • the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%.
  • the number of cycles until breakage was large. That is, in Example 41 to Example 46 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
  • a semiconductor chip is directly mounted on a circuit board using a metal-clad laminate that expands by 0.05% to 0.4% in the planar direction by heat treatment after removing the metal layer by etching (for example, By connecting the electrodes of the circuit board and the semiconductor chip by the bumps), an electronic component with high connection reliability can be manufactured.
  • Metal-clad laminate 11 Film substrate 12, 12 ': Metal layer 13: Underlying metal layer 15: Circuit metal layer 16: Semiconductor element 17: Solder resist 18: Bump 40: Circuit board 50: Electronics parts

Abstract

Provided are a metal clad body, circuit board and electronic part with which there is a reduction in thermal strain caused by the soldering heat when a semiconductor element is fitted to a circuit board formed by removing conductors by etching, and connection reliability is improved. The metal clad body has a film base and a metal layer comprising copper (Cu) or copper alloy (Cu alloy), and the thermal strain caused by the soldering heat when a semiconductor element is fitted to a circuit board can be reduced by using a metal clad body expanded by from 0.05 to 0.4% in the planar direction with heat treatment following removal of the metal layer by etching.  Highly reliable circuit boards and electronic parts can be produced using such a metal clad body.

Description

金属張積層体、回路基板及び電子部品Metal-clad laminate, circuit board and electronic component
 本発明は、金属張積層体、回路基板及び電子部品に関する。特に、導体をエッチングによって除去し形成した回路基板に半導体素子を実装する際の半田加熱等による熱歪みを小さくするとともに接続信頼性を向上させることが可能な金属張積層体、回路基板及び電子部品に関する。 The present invention relates to a metal-clad laminate, a circuit board, and an electronic component. In particular, a metal-clad laminate, a circuit board, and an electronic component capable of reducing thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board formed by removing a conductor by etching and improving connection reliability About.
 近年、COF(Chip On Film)といわれる半導体チップをフィルム配線板に直接搭載する方法が用いられている。このような実装形式は、液晶画面のICドライバーの基板接続法としてよく用いられるが、信号配線の微細化、半導体チップの大型化から、実装時に発生する熱歪みが大きくなり、半導体チップと基板との接続信頼性が大きな問題になっている。 Recently, a method of directly mounting a semiconductor chip called COF (Chip On Film) on a film wiring board is used. Such a mounting format is often used as a substrate connection method for an IC driver of a liquid crystal screen. However, due to miniaturization of signal wiring and an increase in size of a semiconductor chip, thermal distortion generated during mounting increases, and the semiconductor chip and the substrate Connection reliability is a big problem.
 例えば、シリコンチップの熱膨張係数は3ppm/Kに対し、一般に基板の熱膨張係数は16~60ppm/Kであるため、半田加熱後に室温まで下げた際、熱膨張差によって熱歪みが発生することが大きな問題となっている(例えば、特許文献1を参照)。 For example, the thermal expansion coefficient of a silicon chip is 3 ppm / K, and the thermal expansion coefficient of a substrate is generally 16 to 60 ppm / K. Therefore, when the temperature is lowered to room temperature after solder heating, thermal distortion occurs due to the difference in thermal expansion. Is a big problem (see, for example, Patent Document 1).
特開2007-262563号公報JP 2007-262563 A
 この熱歪みを小さくする方法として、例えば、低熱膨張係数の基板を用いる方法がある。しかしながら、回路基板は導体として銅を用いるため、フィルム基材の熱膨張係数を小さくすると、銅との熱膨張係数(16ppm/K)の違いから基板の反り等が発生してしまうという問題があり、本質的な解決にはならない。 As a method for reducing the thermal strain, for example, there is a method using a substrate having a low thermal expansion coefficient. However, since the circuit board uses copper as a conductor, if the thermal expansion coefficient of the film base material is reduced, there is a problem that warpage of the board occurs due to the difference in thermal expansion coefficient (16 ppm / K) from copper. This is not an essential solution.
 本発明は、以上のような問題点を解決するためになされたもので、導体をエッチングによって除去し形成した回路基板に半導体素子を実装する際の半田加熱等による熱歪みを小さくするとともに接続信頼性を向上させることが可能な金属張積層体、回路基板及び電子部品を提供することを目的とする。 The present invention has been made to solve the above problems, and reduces thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board formed by removing a conductor by etching and connection reliability. An object of the present invention is to provide a metal-clad laminate, a circuit board, and an electronic component that can improve the performance.
 発明者は上述した従来の問題点について鋭意研究を重ねた。その結果、金属層をエッチングで除去した後の熱処理において、平面方向に0.05~0.4%膨張する金属張積層体を用いることにより、回路基板に半導体素子を実装する際の半田加熱等による熱歪みを小さくできることが判明した。尚、熱処理は、フィルムが軟化する温度以上が望ましく、回路基板に半導体チップを直接搭載するときの半田付けである。
 この発明は、上述した研究成果によってなされたものである。
The inventor conducted extensive research on the above-described conventional problems. As a result, in the heat treatment after removing the metal layer by etching, a metal-clad laminate that expands by 0.05 to 0.4% in the planar direction is used, so that the solder heating when mounting the semiconductor element on the circuit board, etc. It was found that the thermal distortion due to can be reduced. The heat treatment is preferably performed at a temperature higher than the temperature at which the film softens, and is soldering when the semiconductor chip is directly mounted on the circuit board.
The present invention has been made based on the research results described above.
 本発明の第1の態様にかかる金属張積層体は、フィルム基材と、銅(Cu)または銅合金(Cu合金)からなる金属層と、を有する金属張積層体であって、前記金属層の少なくとも一部をエッチングで除去した後の熱処理における前記金属張積層体の平面方向の寸法変化率が、0.05~0.4%であることを特徴とする。 The metal-clad laminate according to the first aspect of the present invention is a metal-clad laminate comprising a film substrate and a metal layer made of copper (Cu) or a copper alloy (Cu alloy), wherein the metal layer The dimensional change rate in the planar direction of the metal-clad laminate in the heat treatment after removing at least part of the film by etching is 0.05 to 0.4%.
 本発明の第2の態様にかかる金属張積層体は、本発明の第1の態様にかかる金属張積層体において、前記フィルム基材の平面方向の線膨張係数が13~60ppm/Kであることを特徴とする。 The metal-clad laminate according to the second aspect of the present invention is the metal-clad laminate according to the first aspect of the present invention, wherein the film substrate has a linear expansion coefficient in the plane direction of 13 to 60 ppm / K. It is characterized by.
 本発明の第3の態様にかかる金属張積層体は、本発明の第1または2の態様にかかる金属張積層体において、前記フィルム基材と前記金属層との間に、下地金属層が形成されていることを特徴とする。 The metal-clad laminate according to the third aspect of the present invention is the metal-clad laminate according to the first or second aspect of the present invention, wherein a base metal layer is formed between the film substrate and the metal layer. It is characterized by being.
 本発明の第4の態様にかかる金属張積層体は、本発明の第3の態様にかかる金属張積層体において、前記下地金属層がニッケル(Ni)、ニッケル合金(Ni合金)、銅(Cu)、銅合金(Cu合金)のいずれか1種からなることを特徴とする。 A metal-clad laminate according to a fourth aspect of the present invention is the metal-clad laminate according to the third aspect of the present invention, wherein the base metal layer is nickel (Ni), nickel alloy (Ni alloy), copper (Cu ) And a copper alloy (Cu alloy).
 本発明の第5の態様にかかる金属張積層体は、本発明の第1から4のいずれか1つの態様にかかる金属張積層体において、前記フィルム基材が、熱可塑性フィルムであることを特徴とする。 The metal-clad laminate according to the fifth aspect of the present invention is the metal-clad laminate according to any one of the first to fourth aspects of the present invention, wherein the film substrate is a thermoplastic film. And
 本発明の第6の態様にかかる金属張積層体は、本発明の第5の態様にかかる金属張積層体において、前記フィルム基材が、光学的異方性の溶融相を形成しうる高分子、熱可塑性のポリイミド樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエチレンテレフタラート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂からなる群の中から選択されたいずれか1種類からなることを特徴とする。 A metal-clad laminate according to a sixth aspect of the present invention is the polymer-clad laminate according to the fifth aspect of the present invention, wherein the film base material is capable of forming an optically anisotropic melt phase. Characterized in that it comprises any one selected from the group consisting of a thermoplastic polyimide resin, a polyether ether ketone (PEEK) resin, a polyethylene terephthalate (PET) resin, and a polyethylene naphthalate (PEN) resin. To do.
 本発明の第7の態様にかかる金属張積層体は、本発明の第1から4のいずれか1つの態様にかかる金属張積層体において、前記フィルム基材が、非熱可塑性のポリイミド樹脂で形成されていることを特徴とする。 A metal-clad laminate according to a seventh aspect of the present invention is the metal-clad laminate according to any one of the first to fourth aspects of the present invention, wherein the film substrate is formed of a non-thermoplastic polyimide resin. It is characterized by being.
 本発明の第1の態様にかかる回路基板は、本発明の第1から7のいずれか1つの態様にかかる金属張積層体を用いて回路形成されていることを特徴とする。 The circuit board according to the first aspect of the present invention is characterized in that a circuit is formed using the metal-clad laminate according to any one of the first to seventh aspects of the present invention.
 本発明の第1の態様にかかる電子部品は、本発明の第1の態様にかかる回路基板上に半導体素子が直接搭載されていることを特徴とする。 The electronic component according to the first aspect of the present invention is characterized in that a semiconductor element is directly mounted on the circuit board according to the first aspect of the present invention.
 本発明の第2の態様にかかる電子部品は、本発明の第1の態様にかかる電子部品において、前記半導体素子の電極がバンプによって前記回路基板に接続されていることを特徴とする。 The electronic component according to the second aspect of the present invention is the electronic component according to the first aspect of the present invention, characterized in that the electrodes of the semiconductor element are connected to the circuit board by bumps.
 なお、本明細書において、「寸法変化率」は、寸法が大きくなる側をプラス、寸法が小さくなる側をマイナスとする。 In the present specification, the “dimensional change rate” is positive on the side where the dimension becomes larger and negative on the side where the dimension becomes smaller.
 本発明によれば、金属層をエッチングで除去した後の熱処理における金属張積層体の平面方向の寸法変化率が、0.05~0.4%である(熱処理により膨張する)金属張積層体を用いることにより、回路基板に半導体素子を実装する際の半田加熱等による熱歪みを小さくすることができる。また、このような金属張積層体を用いることにより、信頼性の高い回路基板及び電子部品を作製することができる。 According to the present invention, the dimensional change rate in the planar direction of the metal-clad laminate in the heat treatment after removing the metal layer by etching is 0.05 to 0.4% (expands by the heat treatment). By using, thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board can be reduced. Further, by using such a metal-clad laminate, a highly reliable circuit board and electronic component can be manufactured.
本発明の第1の実施形態に係る金属張積層体を示す断面図である。It is sectional drawing which shows the metal-clad laminated body which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る金属張積層体を示す断面図である。It is sectional drawing which shows the metal-clad laminated body which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る金属張積層体を示す断面図である。It is sectional drawing which shows the metal-clad laminated body which concerns on the 3rd Embodiment of this invention. 本発明の一実施形態に係る回路基板を示す断面図である。It is sectional drawing which shows the circuit board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子部品を示す断面図である。It is sectional drawing which shows the electronic component which concerns on one Embodiment of this invention. フィルム基材が高分子フィルム(液晶ポリマーフィルム)である場合の接続信頼性を示したグラフである。It is the graph which showed connection reliability in case a film base material is a polymer film (liquid crystal polymer film). フィルム基材がPEEKである場合の接続信頼性を示したグラフである。It is the graph which showed connection reliability in case a film base material is PEEK. フィルム基材がPET、PENである場合の接続信頼性を示したグラフである。It is the graph which showed connection reliability in case a film base material is PET and PEN. フィルム基材が熱可塑性ポリイミドである場合の接続信頼性を示したグラフである。It is the graph which showed the connection reliability in case a film base material is a thermoplastic polyimide. フィルム基材が非熱可塑性ポリイミドである場合の接続信頼性を示したグラフである。It is the graph which showed the connection reliability in case a film base material is a non-thermoplastic polyimide.
 この発明の一実施形態を、図面を参照しながら説明する。なお、以下に説明する実施形態は説明のためのものであり、本発明の範囲を制限するものではない。したがって、当業者であればこれらの各要素もしくは全要素をこれと均等なもので置換した実施形態を採用することが可能であるが、これらの実施形態も本発明の範囲に含まれる。 An embodiment of the present invention will be described with reference to the drawings. In addition, embodiment described below is for description and does not limit the scope of the present invention. Therefore, those skilled in the art can employ embodiments in which each or all of these elements are replaced by equivalents thereof, and these embodiments are also included in the scope of the present invention.
 まず、本発明を適用可能な金属張積層体について説明する。図1は、本発明の第1の実施形態に係る金属張積層体を示す断面図である。
 図1に示したように、本発明の第1の実施形態に係る金属張積層体10は、フィルム基材11と、フィルム基材11の面11a上に形成された金属層12とを有する。
First, a metal-clad laminate to which the present invention can be applied will be described. FIG. 1 is a cross-sectional view showing a metal-clad laminate according to the first embodiment of the present invention.
As shown in FIG. 1, the metal-clad laminate 10 according to the first embodiment of the present invention includes a film base 11 and a metal layer 12 formed on the surface 11 a of the film base 11.
 本実施形態に係る金属張積層体10は、以下のような特徴が有する。
 金属張積層体10は、金属層12の少なくとも一部をエッチングで除去した後の熱処理における金属張積層体10の平面方向の寸法変化率が、0.05~0.4%である。また、フィルム基材11の平面方向の線膨張係数が13~60ppm/Kである。
The metal-clad laminate 10 according to the present embodiment has the following characteristics.
The metal-clad laminate 10 has a dimensional change rate in the plane direction of the metal-clad laminate 10 of 0.05 to 0.4% in the heat treatment after removing at least a part of the metal layer 12 by etching. Further, the linear expansion coefficient in the plane direction of the film substrate 11 is 13 to 60 ppm / K.
 上記の特徴を有する本発明を適用可能な金属張積層体10を用いることにより、回路基板に半導体素子を実装する際の半田加熱等による熱歪みを小さくすることができる。また、このような金属張積層体10を用いることにより、信頼性の高い回路基板及び電子部品を作製することができる。 By using the metal-clad laminate 10 to which the present invention having the above-described characteristics can be applied, thermal distortion due to solder heating or the like when mounting a semiconductor element on a circuit board can be reduced. In addition, by using such a metal-clad laminate 10, a highly reliable circuit board and electronic component can be manufactured.
 次に、本発明の別の実施形態に係る金属張積層体について説明する。
 図2は、本発明の第2の実施形態に係る金属張積層体を示す断面図である。図2に示すように、本発明の第2の実施形態に係る金属張積層体20は、フィルム基材11と、フィルム基材11の両面11a、11b上にそれぞれ形成された金属層12及び金属層12´とを有する。金属張積層体20と金属張積層体10の相違点は、金属張積層体10がフィルム基材11と金属層12とがこの順に積層された2層構造であるのに対して、金属張積層体20は金属層12´とフィルム基材11と金属層12とがこの順に積層された3層構造である。また、本発明の第2の実施形態に係る金属張積層体20は、上述した金属張積層体10と同様の特徴と効果を有する。
Next, a metal-clad laminate according to another embodiment of the present invention will be described.
FIG. 2 is a cross-sectional view showing a metal-clad laminate according to the second embodiment of the present invention. As shown in FIG. 2, the metal-clad laminate 20 according to the second embodiment of the present invention includes a film base 11, a metal layer 12 and a metal formed on both surfaces 11 a and 11 b of the film base 11, respectively. Layer 12 '. The difference between the metal-clad laminate 20 and the metal-clad laminate 10 is that the metal-clad laminate 10 has a two-layer structure in which the film substrate 11 and the metal layer 12 are laminated in this order, whereas the metal-clad laminate 10 The body 20 has a three-layer structure in which a metal layer 12 ', a film base material 11, and a metal layer 12 are laminated in this order. The metal-clad laminate 20 according to the second embodiment of the present invention has the same features and effects as the metal-clad laminate 10 described above.
 図3は、本発明の第3の実施形態に係る金属張積層体を示す断面図である。図3に示すように、本発明の第3の実施形態に係る金属張積層体30は、フィルム基材11と、フィルム基材11の面11a上に形成された下地金属層13と、下地金属層13の面13a上に形成された金属層12とを有する。金属張積層体30と金属張積層体10の相違点は、金属張積層体10がフィルム基材11と金属層12とがこの順に積層された2層構造であるのに対して、金属張積層体30はフィルム基材11と下地金属層13と金属層12とがこの順に積層された3層構造である。また、本発明の第3の実施形態に係る金属張積層体30は、上述した金属張積層体10と同様の特徴と効果を有する。 FIG. 3 is a cross-sectional view showing a metal-clad laminate according to the third embodiment of the present invention. As shown in FIG. 3, the metal-clad laminate 30 according to the third embodiment of the present invention includes a film base 11, a base metal layer 13 formed on the surface 11 a of the film base 11, and a base metal. And a metal layer 12 formed on the surface 13 a of the layer 13. The difference between the metal-clad laminate 30 and the metal-clad laminate 10 is that the metal-clad laminate 10 has a two-layer structure in which the film substrate 11 and the metal layer 12 are laminated in this order, whereas the metal-clad laminate 10 The body 30 has a three-layer structure in which the film substrate 11, the base metal layer 13, and the metal layer 12 are laminated in this order. The metal-clad laminate 30 according to the third embodiment of the present invention has the same features and effects as the metal-clad laminate 10 described above.
 尚、図3では、フィルム基材11の片面上にのみ下地金属層13を形成し、続いて下地金属層13上に金属層12を形成した場合を説明したが、フィルム基材11の両面上にそれぞれ下地金属層13を形成し、続いてそれぞれの下地金属層13上に金属層12を形成した、金属層12と下地金属層13とフィルム基材11と下地金属層13と金属層12とがこの順に積層された5層構造であっても良い。 In FIG. 3, the case where the base metal layer 13 is formed only on one surface of the film base material 11 and then the metal layer 12 is formed on the base metal layer 13 is described. The base metal layer 13 is formed on the base metal layer 13 and the metal layer 12 is subsequently formed on the base metal layer 13. The metal layer 12, the base metal layer 13, the film substrate 11, the base metal layer 13, and the metal layer 12 May be a five-layer structure laminated in this order.
 次に、本発明を適用可能な金属張積層体の金属層、下地金属層、フィルム基材について説明する。本発明を適用可能な金属張積層体10、20、30の金属層12、12´は、銅(Cu)または銅合金(Cu合金)からなる。 Next, the metal layer, base metal layer, and film substrate of the metal-clad laminate to which the present invention can be applied will be described. The metal layers 12, 12 ′ of the metal-clad laminates 10, 20, 30 to which the present invention is applicable are made of copper (Cu) or a copper alloy (Cu alloy).
 また、本発明を適用可能な金属張積層体30の下地金属層13としては、ニッケル(Ni)、ニッケル合金(Ni合金)、銅(Cu)、銅合金(Cu合金)のいずれか1種からなることが望ましい。また、下地金属層13の厚さは、0.05から0.5ミクロン厚の範囲が望ましい。 Moreover, as the base metal layer 13 of the metal-clad laminate 30 to which the present invention can be applied, any one of nickel (Ni), nickel alloy (Ni alloy), copper (Cu), and copper alloy (Cu alloy) can be used. It is desirable to become. The thickness of the base metal layer 13 is preferably in the range of 0.05 to 0.5 microns.
 フレキシブル回路基板には、耐熱性に優れた非熱可塑性ポリイミド基材が用いられることが多いが、本発明を適用可能な金属張積層体10、20、30のフィルム基材11としては、比較的高温でフレキシブル回路基板が軟化しやすい熱可塑性樹脂を用いる方が良い。これは、銅エッチング後、熱によって膨張を起こしやすいためである。 For the flexible circuit board, a non-thermoplastic polyimide base material having excellent heat resistance is often used, but as the film base material 11 of the metal-clad laminate 10, 20, 30 to which the present invention can be applied, It is better to use a thermoplastic resin that can easily soften the flexible circuit board at a high temperature. This is because, after copper etching, expansion is likely to occur due to heat.
 具体的には、液晶ポリマーフィルム、ポリエーテルエーテルケトンフィルム(PEEK)、熱可塑性ポリイミドフィルム、ポリエステルフィルムなどが適用できる。また、ポリエステルフィルムの中では、比較的耐熱性が低いものの、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)が適応できる。 Specifically, a liquid crystal polymer film, a polyether ether ketone film (PEEK), a thermoplastic polyimide film, a polyester film, or the like can be applied. Among polyester films, polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) are applicable, although the heat resistance is relatively low.
 実際のSn、SnAg系の半田付けを行う場合、液晶ポリエステル、PEEK、熱可塑性ポリイミドは耐熱性が高く好適である。 When actual Sn or SnAg soldering is performed, liquid crystal polyester, PEEK, and thermoplastic polyimide are preferable because of their high heat resistance.
 次に、本発明を適用可能な金属張積層体を用いた回路基板(配線基板)が、金属層をエッチング除去した後の熱処理により膨張するメカニズムについて、金属張積層体30を例に挙げて説明する。 Next, the mechanism by which the circuit board (wiring board) using the metal-clad laminate to which the present invention can be applied expands by the heat treatment after removing the metal layer by etching will be described by taking the metal-clad laminate 30 as an example. To do.
 金属張積層体30の作製には、接着剤を使用せず、フィルム基材11に直接金属をめっきする方法で作製する。その際、めっき皮膜に応力を残し、その後の熱処理によって、あらかじめ平面方向に一定量収縮させた金属張積層体30を作製する。 The metal-clad laminate 30 is produced by a method in which a metal is directly plated on the film substrate 11 without using an adhesive. At that time, a stress is left on the plating film, and a metal-clad laminate 30 that is contracted by a certain amount in the plane direction in advance is produced by subsequent heat treatment.
 即ち、無電解めっき法により下地金属層13を形成する際、めっき皮膜が引張応力になるようなめっき液、めっき条件にて皮膜を作製する。次に、フィルムの軟化温度まで加熱することにより、フィルムを軟化させ、めっき皮膜の応力により金属張積層体30を平面方向に収縮させる。 That is, when the base metal layer 13 is formed by the electroless plating method, the film is prepared with a plating solution and plating conditions that cause the plating film to have a tensile stress. Next, the film is softened by heating to the softening temperature of the film, and the metal-clad laminate 30 is contracted in the plane direction by the stress of the plating film.
 配線基板を作製する際、エッチングによって一部の金属層12を除去することにより、めっき皮膜の応力が除去される。したがって、再度加熱することによりフィルム基材11の収縮量が解放される。即ち、半田加熱時に膨張する金属張積層体30を得ることが可能となる。 When producing the wiring board, the stress of the plating film is removed by removing a part of the metal layer 12 by etching. Therefore, the shrinkage amount of the film base 11 is released by heating again. That is, it is possible to obtain the metal-clad laminate 30 that expands when the solder is heated.
 次に、本発明を適用可能な金属張積層体の一製造方法について説明する。ここでは、フィルム基材11に直接金属をめっきして金属張積層体30を作製する方法を例に挙げて説明する。 Next, a method for manufacturing a metal-clad laminate to which the present invention is applicable will be described. Here, a method for producing a metal-clad laminate 30 by directly plating a metal on the film substrate 11 will be described as an example.
 まず、めっき前にフィルム基材11の表面に粗化処理を行う(表面の粗化処理)。次に、無電解めっきを行い金属層の下地層(下地金属層、または、下地めっき層)13を形成する(下地金属層の形成処理)。下地金属層13を形成する際には、めっき皮膜の応力が引張応力となるようにめっきを行う。 First, a roughening process is performed on the surface of the film substrate 11 before plating (surface roughening process). Next, electroless plating is performed to form a metal layer base layer (base metal layer or base plating layer) 13 (base metal layer forming process). When the base metal layer 13 is formed, plating is performed so that the stress of the plating film becomes a tensile stress.
 引張応力をもつ下地金属層13を形成するには、めっき浴のpHが弱酸性から中性であり、60℃以上の高温で実用的に析出される無電解ニッケル-リンめっき液が適する。また、析出した金属皮膜のリン濃度は5%以下である低濃度リン、5~10%程度の中濃度リン皮膜が適する。 In order to form the base metal layer 13 having a tensile stress, an electroless nickel-phosphorous plating solution in which the pH of the plating bath is weakly acidic to neutral and is practically deposited at a high temperature of 60 ° C. or higher is suitable. Also, the phosphorus concentration of the deposited metal film is low concentration phosphorus of 5% or less, and the medium concentration phosphorus film of about 5 to 10% is suitable.
 めっき皮膜(ここでは、下地金属層13である)の応力が引張応力か、圧縮応力かの判定は、フィルム基材11の片面のみにめっきを行い、めっき後の金属張積層体の反りの方向をみて判定できる。即ち、めっき皮膜が上になるように置いたとき、凹状になれば、めっき皮膜は引張応力を示し、凸状になれば、めっき皮膜は圧縮応力を示す。 Whether the stress of the plating film (here, the underlying metal layer 13) is tensile stress or compressive stress is determined by plating only one surface of the film substrate 11 and the direction of warping of the metal-clad laminate after plating. Can be determined by looking at That is, when the plating film is placed on the upper side, if it becomes concave, the plating film shows tensile stress, and if it becomes convex, the plating film shows compressive stress.
 これにより、めっき皮膜は、フィルム基材11に対して収縮する力が発生するので、その後の熱処理においてフィルム基材が軟化すると、めっき皮膜の応力により金属張積層体30は平面方向に収縮することになる。 As a result, the plating film generates a contracting force with respect to the film substrate 11, and therefore, when the film substrate softens in the subsequent heat treatment, the metal-clad laminate 30 contracts in the plane direction due to the stress of the plating film. become.
 したがって、めっき液の選定、めっき条件によってめっき皮膜の応力を制御し、熱処理によってフィルム基材11を軟化させることによって、あらかじめ平面方向に収縮させた金属張積層体30を作製することが可能である。 Therefore, by controlling the stress of the plating film according to the selection of plating solution and plating conditions and softening the film substrate 11 by heat treatment, it is possible to produce the metal-clad laminate 30 that has been contracted in the plane direction in advance. .
 フィルム基材11の表面への下地めっきとしては、無電解ニッケル-リンめっき液、無電解銅めっき液などを用いて、フィルム基材11の表面に0.05から0.5ミクロン厚の範囲で下地金属層13を析出させる。 As the base plating on the surface of the film substrate 11, an electroless nickel-phosphorous plating solution, an electroless copper plating solution, or the like is used. A base metal layer 13 is deposited.
 次に、熱処理を行う(熱処理)。ここで、熱処理は、金属張積層体30が平坦形状を維持できるように張力を負荷した状態で行うこと、または、著しい変形を防ぐためにフィルムを重ねた静止状態を維持できる状態で行うことが望ましい。即ち、平坦な支持板にフィルムを複数枚重ねて加熱を行うこと、または、ロール状に巻き取った状態で加熱を行うことが望ましい。または、加熱から冷却まで一貫して金属張積層体30が平坦形状を維持できるように、金属張積層体30に張力を負荷して連続的に加熱しても良い。 Next, heat treatment is performed (heat treatment). Here, it is desirable that the heat treatment be performed in a state where a tension is applied so that the metal-clad laminate 30 can maintain a flat shape, or in a state where a film can be maintained in a stationary state in order to prevent significant deformation. . That is, it is desirable to heat a plurality of films stacked on a flat support plate, or to heat in a state of being wound into a roll. Alternatively, the metal-clad laminate 30 may be continuously heated by applying a tension to the metal-clad laminate 30 so that the metal-clad laminate 30 can maintain a flat shape from heating to cooling.
 この熱処理によってフィルムが軟化し、めっき皮膜の応力によって金属張積層体30は平面方向に収縮する。収縮量が大きいほど、銅エッチング後の半田加熱時の膨張量が大きくなる。 The film is softened by this heat treatment, and the metal-clad laminate 30 contracts in the plane direction due to the stress of the plating film. The greater the shrinkage, the greater the expansion during solder heating after copper etching.
 最後に、下地めっき上に、電気銅めっきにて、導体として1ミクロンから20ミクロン厚の上部金属層12を形成し(上部金属層の形成処理)、金属張積層体30を作製する。 Finally, the upper metal layer 12 having a thickness of 1 to 20 microns as a conductor is formed on the base plating by electrolytic copper plating (formation process of the upper metal layer), and the metal-clad laminate 30 is manufactured.
 上述した金属張積層体30の作製方法においては、下地金属層13を形成した後に、熱処理を行い、最後に上部金属層12を形成しているが、下地金属層13を形成した後に、続けて上部金属層12を形成し、最後に熱処理を行うようにしても良い。
 収縮量を大きめに設定したときは、下地金属層13のみを形成した後に熱処理を行った方が良い。無電解めっき皮膜のみの方が、引張応力が大きいためである。
In the manufacturing method of the metal-clad laminate 30 described above, after the base metal layer 13 is formed, heat treatment is performed, and finally the upper metal layer 12 is formed. After the base metal layer 13 is formed, The upper metal layer 12 may be formed and finally heat treatment may be performed.
When the shrinkage amount is set to be large, it is better to perform the heat treatment after forming only the base metal layer 13. This is because only the electroless plating film has a higher tensile stress.
 次に、本発明を適用可能な回路基板及び電子部品について説明する。図4は、本発明の一実施形態に係る回路基板を示す断面図である。ここでは、図1に示した金属張積層体10を用いて回路形成された回路基板を例に挙げて説明する。
 図4に示すように、回路基板40は、フィルム基材11と、フィルム基材11の面11a上に積層された回路形成された回路金属層15とを有している。この回路基板40の回路金属層15の形成方法としては、例えば、サブトラクト法により、所望の配線パターンとなるように、図1に示した金属張積層体10の金属層12の不要な金属部分をエッチングにて取り除き、所望の配線パターンを有する回路金属層15を形成する。
Next, circuit boards and electronic components to which the present invention can be applied will be described. FIG. 4 is a cross-sectional view showing a circuit board according to an embodiment of the present invention. Here, a circuit board formed with a circuit using the metal-clad laminate 10 shown in FIG. 1 will be described as an example.
As shown in FIG. 4, the circuit board 40 includes a film base 11 and a circuit metal layer 15 on which a circuit is formed that is laminated on the surface 11 a of the film base 11. As a method for forming the circuit metal layer 15 of the circuit board 40, for example, an unnecessary metal portion of the metal layer 12 of the metal-clad laminate 10 shown in FIG. The circuit metal layer 15 having a desired wiring pattern is formed by etching.
 図5は、本発明の一実施形態に係る電子部品を示す断面図である。ここでは、図4に示した回路基板40を用いた電子部品を例に挙げて説明する。
 図5に示すように、電子部品50は、図4に示した回路基板40の表面に半導体素子16の実装部分を残してソルダーレジスト17が塗布されており、回路基板40の回路金属層15と半導体素子16の電極とがバンプ18によって接続されている。
FIG. 5 is a cross-sectional view showing an electronic component according to an embodiment of the present invention. Here, an electronic component using the circuit board 40 shown in FIG. 4 will be described as an example.
As shown in FIG. 5, the electronic component 50 is coated with the solder resist 17 on the surface of the circuit board 40 shown in FIG. 4, leaving the mounting portion of the semiconductor element 16, and the circuit metal layer 15 of the circuit board 40. The electrodes of the semiconductor element 16 are connected by bumps 18.
 上述した本発明を適用可能な金属張積層体10を用いることにより、回路基板40に半導体素子16を実装する際の半田加熱等による熱歪みを小さくすることができる。従って、信頼性の高い回路基板40及び電子部品50を作製することができる。 By using the metal-clad laminate 10 to which the present invention can be applied, the thermal distortion due to solder heating or the like when the semiconductor element 16 is mounted on the circuit board 40 can be reduced. Therefore, the circuit board 40 and the electronic component 50 with high reliability can be manufactured.
 次に、本発明に好適ないくつかの実施例を説明する。ここでは、銅エッチング後の熱処理による本発明を適用可能な金属張積層体の平面方向の寸法変化率(膨張率)の測定結果、及び、本発明を適用可能な金属張積層体を用いた回路基板と半導体チップとの接続信頼性についての実施例を説明する。 Next, some examples suitable for the present invention will be described. Here, the measurement result of the dimensional change rate (expansion coefficient) of the metal-clad laminate to which the present invention can be applied by heat treatment after copper etching, and a circuit using the metal-clad laminate to which the present invention can be applied. An example of connection reliability between the substrate and the semiconductor chip will be described.
 (液晶ポリマーフィルムの実施例及び比較例)
 フィルム基材11として光学的異方性の溶融相を形成し得る高分子フィルム(液晶ポリマーフィルム)を使用した場合について説明する。ここでは、高分子フィルム(液晶ポリマーフィルム)として、(株)クラレ製のVecsterCTを使用した場合について説明する。尚、フィルム厚は50ミクロン厚を用いた。
(Examples and comparative examples of liquid crystal polymer films)
The case where a polymer film (liquid crystal polymer film) capable of forming an optically anisotropic melt phase is used as the film substrate 11 will be described. Here, a case where Vecster CT manufactured by Kuraray Co., Ltd. is used as the polymer film (liquid crystal polymer film) will be described. The film thickness was 50 microns.
 まず、高分子フィルムを、10規定の水酸化カリウム溶液に80℃で15~30分間浸して、表面を溶かし凸凹を形成する。次に、コンディショナー処理、ニッケル合金の無電解めっき処理、熱処理、銅の電気めっき処理の各処理を順に施して本発明を適用可能な金属張積層体30(フィルム金属張積層体)を製造した。 First, the polymer film is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 15 to 30 minutes to melt the surface and form irregularities. Next, a metal-clad laminate 30 (film metal-clad laminate) to which the present invention can be applied was manufactured by sequentially performing a conditioner treatment, a nickel alloy electroless plating treatment, a heat treatment, and a copper electroplating treatment.
 コンディショナー処理は、奥野製薬工業(株)製のOPC-350コンディショナーにより、高分子フィルムの表面を洗浄した。ここで、パラジウムを含む触媒付与液として奥野製薬工業(株)のOPC-80キャタリスト、活性化剤としてOPC-500アクセラレーターを用いた。 In the conditioner treatment, the surface of the polymer film was washed with an OPC-350 conditioner manufactured by Okuno Pharmaceutical Co., Ltd. Here, an OPC-80 catalyst manufactured by Okuno Pharmaceutical Co., Ltd. was used as a catalyst-providing liquid containing palladium, and an OPC-500 accelerator was used as an activator.
 ニッケル合金の無電解めっき処理は、フィルム両面にニッケル-リンめっきを行った。市販のニッケル-リンめっき液として、奥野製薬工業(株)製のトップニコロン LPH-LFを使用した。 In the electroless plating treatment of nickel alloy, nickel-phosphorous plating was performed on both sides of the film. As a commercially available nickel-phosphorous plating solution, Top Nicolon LPH-LF manufactured by Okuno Pharmaceutical Co., Ltd. was used.
 皮膜応力は、浴温度、pH、次亜リン酸と金属ニッケルの比率等を変更させ、異なる下地めっき皮膜(下地金属層13)からなるフィルム金属張積層体30を作製した(実施例1から実施例10の10種類)。pHは5.6から6.3の範囲とし、0.1ミクロン厚の下地めっき層(下地金属層13)を両面に形成した。 The film stress was changed by changing the bath temperature, pH, the ratio of hypophosphorous acid and metallic nickel, and the like, and a film metal-clad laminate 30 composed of different base plating films (base metal layer 13) was produced (implemented from Example 1). 10 types of Example 10). The pH was in the range of 5.6 to 6.3, and a base plating layer (base metal layer 13) having a thickness of 0.1 microns was formed on both sides.
 めっき皮膜(下地金属層13)の応力の判定には、片面のみめっきを行い、めっき後に発生する反りの方向をみて、引張応力か、圧縮応力かを判断した。尚、めっき後にめっき皮膜側が凹となる場合に引張応力、凸となる場合に圧縮応力と判断した。 For the determination of the stress of the plating film (underlying metal layer 13), only one surface was plated, and the direction of the warp generated after plating was seen to determine whether it was a tensile stress or a compressive stress. In addition, it was judged that it was a compressive stress when it became a tensile stress and the convexity when the plating film side became concave after plating.
 熱処理は、フィルム金属張積層体を熱処理槽に入れ、熱処理温度を200℃から250℃にて10分保持した。 In the heat treatment, the film metal-clad laminate was placed in a heat treatment tank, and the heat treatment temperature was maintained at 200 to 250 ° C. for 10 minutes.
 銅の電気めっき処理は、導体厚(金属層12の厚さ)が8ミクロンになるように銅(金属層12)を形成した。銅電気めっき液は下記を用いた。尚、添加剤として、荏原ユージライト(株)製のキューブライトTH-RIIIを使用した。尚、全ての実施例では両面に導体(金属層12)を形成した。 In the copper electroplating treatment, copper (metal layer 12) was formed so that the conductor thickness (thickness of the metal layer 12) was 8 microns. The following copper electroplating solution was used. As an additive, Cubelite TH-RIII manufactured by Sugawara Eugleite Co., Ltd. was used. In all examples, a conductor (metal layer 12) was formed on both sides.
 硫酸銅 120 g/L
 硫酸  150 g/L
 濃塩酸 0.125 mL/L(塩素イオンとして)
 なお、実施例9、実施例10は電気銅めっき後、80℃で30分の乾燥を行った後、200℃以上の熱処理をした。この場合のめっき皮膜の応力の判定は、片面のみ導体まで形成した状態での凹凸を見て、引張応力か、圧縮応力かの判断をした。
Copper sulfate 120 g / L
Sulfuric acid 150 g / L
Concentrated hydrochloric acid 0.125 mL / L (as chloride ion)
In Examples 9 and 10, after electrolytic copper plating, drying was performed at 80 ° C. for 30 minutes, and then heat treatment was performed at 200 ° C. or higher. In this case, the determination of the stress of the plating film was made by judging whether it was tensile stress or compressive stress by looking at the unevenness in the state where the conductor was formed only on one side.
 また、比較例1から比較例6として、実施例1から実施例10と同様のフィルム基材11を用い、同様にアルカリ溶液にて表面を粗化した。 Moreover, as Comparative Example 1 to Comparative Example 6, the same film base material 11 as in Example 1 to Example 10 was used, and the surface was similarly roughened with an alkaline solution.
 比較例1では、無電解めっき液としてトップニコロンLPH-LFを用いた。また、pHを6.9とし、0.1ミクロン厚のニッケル-リンの下地めっき層を形成した。その後の熱処理は、熱処理温度を160℃で10分とした。その後、銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。 In Comparative Example 1, Top Nicolo LPH-LF was used as the electroless plating solution. Further, the pH was set to 6.9, and a nickel-phosphorus base plating layer having a thickness of 0.1 microns was formed. In the subsequent heat treatment, the heat treatment temperature was 160 ° C. for 10 minutes. Then, copper electroplating process formed copper so that a conductor thickness might be set to 8 microns.
 比較例2では、無電解めっき液として、米国ローム・アンド・ハース社製のオムニシールド1580を用いた。pHを9とし、0.1ミクロン厚のニッケル-リンの下地めっき層を形成した。その後の熱処理は、熱処理温度を230℃で10分とした。その後、銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。 In Comparative Example 2, Omnishield 1580 manufactured by Rohm & Haas, USA was used as the electroless plating solution. The pH was set to 9, and a nickel-phosphorus underplating layer having a thickness of 0.1 micron was formed. In the subsequent heat treatment, the heat treatment temperature was 230 ° C. for 10 minutes. Then, copper electroplating process formed copper so that a conductor thickness might be set to 8 microns.
 比較例3では、無電解めっき液として、米国ローム・アンド・ハース社製のオムニシールド1580を用いた。pHを9とし、ニッケル-リン皮膜を0.1ミクロン厚形成した。その後、80℃で30分の乾燥をした後、電気銅めっきを行い、続いて熱処理をした。 In Comparative Example 3, Omnishield 1580 manufactured by Rohm & Haas, USA was used as the electroless plating solution. The pH was 9 and a nickel-phosphorus film was formed to a thickness of 0.1 microns. Then, after drying for 30 minutes at 80 ° C., electrolytic copper plating was performed, followed by heat treatment.
 比較例4から比較例6では、無電解めっき液として、奥野製薬工業(株)製のトップニコロンNACを用いた。pHを4.6とし、0.1ミクロン厚のニッケル-リンの下地めっき層を形成した。その後の熱処理は、熱処理温度を比較例4では240℃で、比較例5では250℃で、比較例6では260℃で、それぞれ10分とした。その後、銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。 In Comparative Examples 4 to 6, Top Nicolon NAC manufactured by Okuno Pharmaceutical Co., Ltd. was used as the electroless plating solution. The pH was 4.6, and a nickel-phosphorus underplating layer having a thickness of 0.1 micron was formed. In the subsequent heat treatment, the heat treatment temperature was 240 ° C. in Comparative Example 4, 250 ° C. in Comparative Example 5, 260 ° C. in Comparative Example 6, and 10 minutes. Then, copper electroplating process formed copper so that a conductor thickness might be set to 8 microns.
 以上のような条件で作製した実施例1から実施例10及び比較例1から比較例6のフィルム金属張積層体について、導体を除去した後、加熱による平面方向の寸法変化率(膨張率)を、次の方法によって測定した。 About the film metal-clad laminates of Examples 1 to 10 and Comparative Examples 1 to 6 produced under the conditions as described above, after removing the conductor, the dimensional change rate (expansion coefficient) in the plane direction due to heating was determined. Measured by the following method.
 IPC-TM-650 2.2.4に記載の寸法安定性の測定方法に類似した方法にて平面方向の変化率を求めた。270mm×290mmのフィルム金属張積層体の四隅にけがき線を形成し、4つの評点A、B、C、Dを作製し、初期値として、AB間、BC間、CD間、DA間の評点距離を測定した。 IPC-TM-650 The rate of change in the planar direction was determined by a method similar to the dimensional stability measurement method described in 2.2.4. A score line is formed at the four corners of a 270 mm x 290 mm film metal-clad laminate, and four grades A, B, C, and D are prepared, and the grades between AB, BC, CD, and DA are the initial values. The distance was measured.
 次に、評点エリアを除く部分の金属をすべてエッチングにより除去した。エッチングには塩化銅を用いた。その後、半田加熱温度を想定した240℃で1分の熱処理を行った。熱処理中はフィルムに高温槽の熱風の影響がでないようにするため、フィルムを金属製の箱に入れ、無負荷状態にて熱処理を行った。 Next, all the metal except the score area was removed by etching. Copper chloride was used for etching. Thereafter, heat treatment was performed at 240 ° C. for 1 minute assuming a solder heating temperature. During the heat treatment, the film was placed in a metal box and heat-treated in an unloaded state so that the film was not affected by the hot air from the high-temperature bath.
 熱処理後に再度、AB間、BC間、CD間、DA間の評点距離を測定し、初期値からの変化量をもとめ、フィルム金属張積層体の長手方向、幅方向のもとめた変化量の平均を平面方向の寸法変化率(膨張率)とした。表1に、銅エッチング後の熱処理による平面方向の寸法変化率(膨張率)の測定結果を示す。 After heat treatment, measure the distance between AB, BC, CD, and DA again, determine the amount of change from the initial value, and calculate the average amount of change in the longitudinal and width directions of the film metal-clad laminate. The dimensional change rate (expansion coefficient) in the plane direction was used. Table 1 shows the measurement results of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1から実施例10の平面方向の寸法変化率(膨張率)は、0.06~0.38%であった。また、比較例1から比較例3の平面方向の寸法変化率(膨張率)は、-0.1~0.04%であった。また、比較例4から比較例6の平面方向の寸法変化率(膨張率)は、0.41~0.48%であった。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, the dimensional change rate (expansion rate) in the planar direction of Examples 1 to 10 was 0.06 to 0.38%. Further, the dimensional change rate (expansion coefficient) in the planar direction of Comparative Examples 1 to 3 was −0.1 to 0.04%. Further, the dimensional change rate (expansion rate) in the planar direction of Comparative Examples 4 to 6 was 0.41 to 0.48%.
 次に、半導体チップの基板との接続信頼性を試験するため、COF基板を作製して、温度サイクル試験を行った。 Next, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was prepared and subjected to a temperature cycle test.
 金属をエッチングにより除去した回路基板を作製し、フリップチップボンダーを用いてTEGチップに接続して電子部品を作製した。ここで、実施例1から実施例10及び比較例1から比較例6で作製した両面基板のフィルム金属張積層体を用いて片面パターンを作製した。TEGチップとして、日立超LSIシステムズよりJTEG Phase6_50を使用し、それに適合する配線基板を作製した。尚、JTEG Phase6_50の仕様は下記である。 A circuit board from which metal was removed by etching was produced, and an electronic component was produced by connecting to a TEG chip using a flip chip bonder. Here, the single-sided pattern was produced using the film metal-clad laminate of the double-sided board produced in Examples 1 to 10 and Comparative Examples 1 to 6. As a TEG chip, JTEG Phase 6_50 was used from Hitachi VLSI Systems, and a wiring board suitable for it was produced. The specification of JTEG Phase 6_50 is as follows.
 チップサイズ : 1.6mm×15.1mm×15.1mm
 パッドピッチ : 50ミクロン
 パッド数 : 479パッド
 バンプサイズ : 30ミクロン×100ミクロン
 バンプ : 金めっき 高さ10ミクロン
 回路基板を作製するため、フィルム金属張積層体をサブトラクト法によってエッチングした後、Snめっきを0.5ミクロン厚になるように、置換めっきによって銅表面に析出させた。その後、ソルダーレジストを塗布して回路基板を作製した。
Chip size: 1.6 mm x 15.1 mm x 15.1 mm
Pad pitch: 50 microns Number of pads: 479 pads Bump size: 30 microns x 100 microns Bump: Gold plating height 10 microns To fabricate a circuit board, the film metal-clad laminate is etched by the subtract method, and then Sn plating is 0 It was deposited on the copper surface by displacement plating to a thickness of 5 microns. Thereafter, a solder resist was applied to produce a circuit board.
 回路基板とチップとの接続は、フリップチップボンダーにてチップのバンプと回路基板との位置合わせを行い、Snの溶融温度以上に加熱してチップと回路基板の接合を行った。 The connection between the circuit board and the chip was carried out by aligning the bumps of the chip with the circuit board using a flip chip bonder, and heating the solder to a melting temperature of Sn or higher to bond the chip and the circuit board.
 信頼性試験として、温度サイクル試験を行った。温度サイクル試験条件として、-55℃で10分間保持した後、125℃まで昇温して10分間保持、さらに-55℃への降温を繰り返した。接続抵抗として、チップと回路基板との接続抵抗を100サイクル毎に測定し、初期抵抗から20%増加したところで、破断とみなした。温度サイクル試験によって測定した破断までのサイクル数を、表2及び図6に示す。 A temperature cycle test was conducted as a reliability test. As temperature cycle test conditions, the temperature was held at −55 ° C. for 10 minutes, then the temperature was raised to 125 ° C., held for 10 minutes, and further lowered to −55 ° C. As the connection resistance, the connection resistance between the chip and the circuit board was measured every 100 cycles, and when it increased by 20% from the initial resistance, it was regarded as a fracture. Table 2 and FIG. 6 show the number of cycles until breakage measured by the temperature cycle test.
Figure JPOXMLDOC01-appb-T000002
 表2及び図6に示すように、銅エッチング後に、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例1から実施例10において、破断までのサイクル数が大きいことがわかった。即ち、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例1から実施例10において、高い接続信頼性を示していることがわかった。また、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.1~0.3%のである実施例3から実施例8において、特に、高い接続信頼性を示していることがわかった。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2 and FIG. 6, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%. In certain Examples 1 to 10, it was found that the number of cycles until breakage was large. That is, in Example 1 to Example 10 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability. Further, the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at a heating temperature of 240 ° C. for 1 minute is particularly high in Examples 3 to 8 in which 0.1 to 0.3%. It was found that it showed connection reliability.
 一方、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%未満の比較例1から比較例3、及び、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.4%以上の比較例4から比較例6において、破断までのサイクル数が小さく、接続信頼性が低いことを示していることがわかった。 On the other hand, the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 1 to 3, and the heating temperature is 240 ° C. In Comparative Example 4 to Comparative Example 6 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles to break is small, and the connection reliability is low. I found out that
 次に、その他のフィルム基材として、PEEK、熱可塑性ポリイミド、PET、PEN、非熱可塑性ポリイミドを用いた場合について説明する。 Next, the case where PEEK, thermoplastic polyimide, PET, PEN, or non-thermoplastic polyimide is used as the other film substrate will be described.
 (PEEKの実施例及び比較例)
 フィルム基材としてPEEKを使用した場合について説明する。ここでは、PEEKとして、三菱樹脂(株)製のIBUKIを使用した場合について説明する。尚、フィルム厚は50ミクロン厚を用いた。
(Examples and comparative examples of PEEK)
The case where PEEK is used as the film substrate will be described. Here, the case where IBUKI made by Mitsubishi Plastics Co., Ltd. is used as PEEK will be described. The film thickness was 50 microns.
 まず、PEEKを、10規定の水酸化カリウム溶液に80℃で15~30分間浸して、表面を溶かし凸凹を形成する。次に、コンディショナー処理、ニッケル合金の無電解めっき処理、熱処理、銅の電気めっき処理の各処理を順に施してフィルム金属張積層体を製造した。 First, PEEK is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 15 to 30 minutes to melt the surface and form irregularities. Next, a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
 表3に示すめっき液にて、0.1ミクロン厚の下地めっき層を形成し、表3に示す熱処理温度にて10分間の熱処理を行った。
 銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。尚、全ての実施例では両面に導体を形成した。
A base plating layer having a thickness of 0.1 μm was formed with the plating solution shown in Table 3, and heat treatment was performed at the heat treatment temperature shown in Table 3 for 10 minutes.
The copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
 以上のような条件で作製した実施例11から実施例20及び比較例7から比較例12のフィルム金属張積層体について、高分子フィルム(液晶ポリマーフィルム)の場合と同様に、導体を除去して後の加熱による平面方向の寸法変化率(膨張率)を測定した。また、半導体チップの基板との接続信頼性を試験するため、COF基板を作製して、温度サイクル試験を行った。表3及び図7は、銅エッチング後の熱処理による平面方向の寸法変化率(膨張率)の測定結果及び温度サイクル試験によって測定した破断までのサイクル数の測定結果を示したものである。 For the film metal-clad laminates of Examples 11 to 20 and Comparative Examples 7 to 12 produced under the conditions as described above, the conductor was removed as in the case of the polymer film (liquid crystal polymer film). The dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured. Further, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was produced and a temperature cycle test was performed. Table 3 and FIG. 7 show the measurement result of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement result of the cycle number until the fracture measured by the temperature cycle test.
Figure JPOXMLDOC01-appb-T000003
 表3及び図7に示すように、銅エッチング後に、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例11から実施例20において、破断までのサイクル数が大きいことがわかった。即ち、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例11から実施例20において、高い接続信頼性を示していることがわかった。
Figure JPOXMLDOC01-appb-T000003
As shown in Table 3 and FIG. 7, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%. In a certain example 11 to example 20, it turned out that the cycle number until a fracture | rupture is large. That is, in Example 11 to Example 20 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
 一方、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%未満の比較例7から比較例9、及び、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.4%以上の比較例10から比較例12において、破断までのサイクル数が小さく、接続信頼性が低いことを示していることがわかった。 On the other hand, the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 7 to 9 and the heating temperature is 240 ° C. In Comparative Example 10 to Comparative Example 12 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low. I found out that
 (PET、PENの実施例及び比較例)
 フィルム基材としてPET、PENを使用した場合について説明する。ここでは、PETとして、帝人デュポンフィルム(株)製のテトロン HSLを使用した場合について説明する。尚、フィルム厚は50ミクロン厚を用いた。また、PENとして、帝人デュポンフィルム(株)製のテオネックス Q83を使用した場合について説明する。尚、フィルム厚は50ミクロン厚を用いた。
(Examples and comparative examples of PET and PEN)
The case where PET and PEN are used as the film substrate will be described. Here, a case where Tetron HSL manufactured by Teijin DuPont Films Ltd. is used as PET will be described. The film thickness was 50 microns. The case where Teonex Q83 manufactured by Teijin DuPont Films is used as PEN will be described. The film thickness was 50 microns.
 まず、フィルムの粗化として、ブラスト処理を行い、サンドマット加工を施し、フィルム表面に凸凹を形成した。次に、コンディショナー処理、ニッケル合金の無電解めっき処理、熱処理、銅の電気めっき処理の各処理を順に施してフィルム金属張積層体を製造した。 First, as roughening of the film, blasting was performed, sand mat processing was performed, and irregularities were formed on the film surface. Next, a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
 表4に示すめっき液にて、0.1ミクロン厚の下地めっき層を形成し、表4に示す熱処理温度にて10分間の熱処理を行った。
 銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。尚、全ての実施例では両面に導体を形成した。
A base plating layer having a thickness of 0.1 μm was formed with the plating solution shown in Table 4, and heat treatment was performed for 10 minutes at the heat treatment temperature shown in Table 4.
The copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
 以上のような条件で作製した実施例21から実施例30及び比較例13から比較例18のフィルム金属張積層体について、高分子フィルム(液晶ポリマーフィルム)の場合と同様に、導体を除去して後の加熱による平面方向の寸法変化率(膨張率)を測定した。また、半導体チップの基板との接続信頼性を試験するため、COF基板を作製して、温度サイクル試験を行った。 For the film metal-clad laminates of Examples 21 to 30 and Comparative Examples 13 to 18 produced under the conditions as described above, the conductor was removed as in the case of the polymer film (liquid crystal polymer film). The dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured. Further, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was produced and a temperature cycle test was performed.
 ここで、PET、PENは耐熱性が低いため、平面方向の寸法変化率(膨張率)の測定における導体を除去して後の加熱では、PETの場合は170℃で1分、PENの場合は200℃で1分の加熱処理とした。また、PET、PENフィルムは、耐熱性が低いため、SnめっきとBiめっきを行った。また、チップとの接続は約150℃の加熱にて実施した。 Here, since PET and PEN have low heat resistance, the conductor in the measurement of the dimensional change rate (expansion coefficient) in the planar direction is removed and the subsequent heating is performed at 170 ° C. for 1 minute in the case of PET and in the case of PEN. Heat treatment was performed at 200 ° C. for 1 minute. Moreover, since PET and PEN films have low heat resistance, Sn plating and Bi plating were performed. The connection with the chip was performed by heating at about 150 ° C.
 表4及び図8は、銅エッチング後の熱処理による平面方向の寸法変化率(膨張率)の測定結果及び温度サイクル試験によって測定した破断までのサイクル数の測定結果を示したものである。 Table 4 and FIG. 8 show the measurement result of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement result of the number of cycles until breakage measured by the temperature cycle test.
Figure JPOXMLDOC01-appb-T000004
 表4及び図8に示すように、銅エッチング後に、加熱温度が170℃または200℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例21から実施例30において、破断までのサイクル数が大きいことがわかった。即ち、加熱温度が170℃または200℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例21から実施例30において、高い接続信頼性を示していることがわかった。
Figure JPOXMLDOC01-appb-T000004
As shown in Table 4 and FIG. 8, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 170 ° C. or 200 ° C. for 1 minute is 0.05% to 0.00%. In Example 21 to Example 30, which is 4%, it was found that the number of cycles until breakage was large. That is, in Example 21 to Example 30 in which the dimensional change rate (expansion coefficient) in the planar direction after heat treatment at 170 ° C. or 200 ° C. for 1 minute is 0.05% to 0.4%. It shows that it shows high connection reliability.
 一方、加熱温度が170℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%未満の比較例13から比較例15、及び、加熱温度が200℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.4%以上の比較例16から比較例18において、破断までのサイクル数が小さく、接続信頼性が低いことを示していることがわかった。 On the other hand, the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 170 ° C. for 1 minute is less than 0.05% of Comparative Examples 13 to 15 and the heating temperature is 200 ° C. In Comparative Example 16 to Comparative Example 18 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low. I found out that
 (熱可塑性ポリイミドの実施例及び比較例)
 フィルム基材として熱可塑性ポリイミドを使用した場合について説明する。ここでは、熱可塑性ポリイミドとして、三井化学のAURUMを使用した場合について説明する。尚、フィルム厚は25ミクロン厚を用いた。
(Examples and comparative examples of thermoplastic polyimide)
The case where a thermoplastic polyimide is used as the film substrate will be described. Here, the case where AURUM of Mitsui Chemicals is used as the thermoplastic polyimide will be described. The film thickness was 25 microns.
 まず、熱可塑性ポリイミドを、10規定の水酸化カリウム溶液に80℃で5~15分間浸して、表面を溶かし凸凹を形成する。次に、コンディショナー処理、ニッケル合金の無電解めっき処理、熱処理、銅の電気めっき処理の各処理を順に施してフィルム金属張積層体を製造した。 First, a thermoplastic polyimide is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 5 to 15 minutes to melt the surface and form irregularities. Next, a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
 表5に示すめっき液にて、0.1ミクロン厚の下地めっき層を形成し、表5に示す熱処理温度にて10分間の熱処理を行った。
 銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。尚、全ての実施例では両面に導体を形成した。
A base plating layer having a thickness of 0.1 μm was formed with the plating solution shown in Table 5, and heat treatment was performed at the heat treatment temperature shown in Table 5 for 10 minutes.
The copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
 以上のような条件で作製した実施例31から実施例40及び比較例19から比較例24のフィルム金属張積層体について、高分子フィルム(液晶ポリマーフィルム)の場合と同様に、導体を除去して後の加熱による平面方向の寸法変化率(膨張率)を測定した。また、半導体チップの基板との接続信頼性を試験するため、COF基板を作製して、温度サイクル試験を行った。表5及び図9は、銅エッチング後の熱処理による平面方向の寸法変化率(膨張率)の測定結果及び温度サイクル試験によって測定した破断までのサイクル数の測定結果を示したものである。 For the film metal-clad laminates of Examples 31 to 40 and Comparative Examples 19 to 24 produced under the conditions as described above, the conductor was removed in the same manner as in the case of the polymer film (liquid crystal polymer film). The dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured. Further, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was produced and a temperature cycle test was performed. Table 5 and FIG. 9 show the measurement results of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement results of the number of cycles until breakage measured by the temperature cycle test.
Figure JPOXMLDOC01-appb-T000005
 表5及び図9に示すように、銅エッチング後に、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例31から実施例40において、破断までのサイクル数が大きいことがわかった。即ち、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例31から実施例40において、高い接続信頼性を示していることがわかった。
Figure JPOXMLDOC01-appb-T000005
As shown in Table 5 and FIG. 9, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%. In a certain example 31 to example 40, it was found that the number of cycles until breakage was large. That is, in Example 31 to Example 40 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
 一方、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%未満の比較例22から比較例24、及び、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.4%以上の比較例19から比較例21において、破断までのサイクル数が小さく、接続信頼性が低いことを示していることがわかった。 On the other hand, the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05% in Comparative Examples 22 to 24, and the heating temperature is 240 ° C. In Comparative Example 19 to Comparative Example 21 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment for 1 minute is 0.4% or more, the number of cycles until fracture is small, and the connection reliability is low. I found out that
 (非熱可塑性ポリイミドの実施例及び比較例)
 フィルム基材として非熱可塑性ポリイミドを使用した場合について説明する。ここでは、非熱可塑性ポリイミドとして、東レ・デュポン(株)製のカプトン100ENを使用した場合について説明する。
(Examples and comparative examples of non-thermoplastic polyimide)
The case where non-thermoplastic polyimide is used as a film base material is demonstrated. Here, a case where Kapton 100EN manufactured by Toray DuPont Co., Ltd. is used as the non-thermoplastic polyimide will be described.
 まず、非熱可塑性ポリイミドを、10規定の水酸化カリウム溶液に80℃で5~15分間浸して、表面を溶かし凸凹を形成する。次に、コンディショナー処理、ニッケル合金の無電解めっき処理、熱処理、銅の電気めっき処理の各処理を順に施してフィルム金属張積層体を製造した。 First, a non-thermoplastic polyimide is immersed in a 10 N potassium hydroxide solution at 80 ° C. for 5 to 15 minutes to melt the surface and form irregularities. Next, a film metal-clad laminate was manufactured by sequentially performing a conditioner treatment, an electroless plating treatment of a nickel alloy, a heat treatment, and an electroplating treatment of copper.
 表6に示すめっき液にて、0.1ミクロン厚の下地めっき層を形成し、表6に示す熱処理温度にて10分間の熱処理を行った。
 銅の電気めっき処理は、導体厚が8ミクロンになるように銅を形成した。尚、全ての実施例では両面に導体を形成した。
A base plating layer having a thickness of 0.1 μm was formed using the plating solution shown in Table 6, and heat treatment was performed for 10 minutes at the heat treatment temperature shown in Table 6.
The copper electroplating process formed copper so that the conductor thickness would be 8 microns. In all examples, conductors were formed on both sides.
 以上のような条件で作製した実施例41から実施例46及び比較例25から比較例28のフィルム金属張積層体について、高分子フィルム(液晶ポリマーフィルム)の場合と同様に、導体を除去して後の加熱による平面方向の寸法変化率(膨張率)を測定した。また、半導体チップの基板との接続信頼性を試験するため、COF基板を作製して、温度サイクル試験を行った。表6及び図10は、銅エッチング後の熱処理による平面方向の寸法変化率(膨張率)の測定結果及び温度サイクル試験によって測定した破断までのサイクル数の測定結果を示したものである。 For the film metal-clad laminates of Examples 41 to 46 and Comparative Examples 25 to 28 produced under the conditions as described above, the conductor was removed as in the case of the polymer film (liquid crystal polymer film). The dimensional change rate (expansion coefficient) in the planar direction due to subsequent heating was measured. Further, in order to test the connection reliability of the semiconductor chip with the substrate, a COF substrate was produced and a temperature cycle test was performed. Table 6 and FIG. 10 show the measurement result of the dimensional change rate (expansion coefficient) in the planar direction by the heat treatment after copper etching and the measurement result of the cycle number until the fracture measured by the temperature cycle test.
Figure JPOXMLDOC01-appb-T000006
 表6及び図10に示すように、銅エッチング後に、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例41から実施例46において、破断までのサイクル数が大きいことがわかった。即ち、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%~0.4%である実施例41から実施例46において、高い接続信頼性を示していることがわかった。
Figure JPOXMLDOC01-appb-T000006
As shown in Table 6 and FIG. 10, the dimensional change rate (expansion coefficient) in the planar direction after the copper etching and after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%. In certain Examples 41 to 46, it was found that the number of cycles until breakage was large. That is, in Example 41 to Example 46 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is 0.05% to 0.4%, the high connection It turns out that it shows reliability.
 一方、加熱温度が240℃で1分の加熱処理した後の平面方向の寸法変化率(膨張率)が、0.05%未満の比較例25から比較例28において、破断までのサイクル数が小さく、接続信頼性が低いことを示していることがわかった。 On the other hand, in Comparative Example 25 to Comparative Example 28 in which the dimensional change rate (expansion coefficient) in the planar direction after the heat treatment at 240 ° C. for 1 minute is less than 0.05%, the number of cycles to break is small. , Found that the connection reliability is low.
 上述した表1から表6及び図6から図10に示したように、銅エッチング後の加熱による平面方向の寸法変化率(膨張率)が0.05~0.4%であると接続信頼性が高いことがわかった。また、通常の回路基板で用いられるSn、SnAg系の半田付けを行う場合、フィルム基材としては、液晶ポリエステル(液晶ポリマー)、PEEKにて高い接続信頼性が得られることがわかった。また、耐熱性が要求されない場合には、PET、PENを用いることができることもわかった。 As shown in Tables 1 to 6 and FIGS. 6 to 10, the reliability of connection when the dimensional change rate (expansion coefficient) in the plane direction due to heating after copper etching is 0.05 to 0.4%. Was found to be expensive. Further, it was found that when Sn or SnAg soldering used in a normal circuit board is performed, high connection reliability can be obtained with liquid crystal polyester (liquid crystal polymer) or PEEK as a film base material. It was also found that PET and PEN can be used when heat resistance is not required.
 以上のことから、金属層をエッチングにより除去した後の熱処理により、平面方向に0.05%~0.4%膨張する金属張積層体を用いた回路基板に半導体チップを直接搭載する(例えば、バンプによって回路基板の電極と半導体チップとを接続する)ことにより接続信頼性の高い電子部品を製造することができる。 From the above, a semiconductor chip is directly mounted on a circuit board using a metal-clad laminate that expands by 0.05% to 0.4% in the planar direction by heat treatment after removing the metal layer by etching (for example, By connecting the electrodes of the circuit board and the semiconductor chip by the bumps), an electronic component with high connection reliability can be manufactured.
10,20,30:金属張積層体
11:フィルム基材
12,12´:金属層
13:下地金属層
15:回路金属層
16:半導体素子
17:ソルダーレジスト
18:バンプ
40:回路基板
50:電子部品
10, 20, 30: Metal-clad laminate 11: Film substrate 12, 12 ': Metal layer 13: Underlying metal layer 15: Circuit metal layer 16: Semiconductor element 17: Solder resist 18: Bump 40: Circuit board 50: Electronics parts

Claims (10)

  1.  フィルム基材と、銅(Cu)または銅合金(Cu合金)からなる金属層と、を有する金属張積層体であって、
     前記金属層の少なくとも一部をエッチングで除去した後の熱処理における前記金属張積層体の平面方向の寸法変化率が、0.05~0.4%であることを特徴とする金属張積層体。
    A metal-clad laminate having a film substrate and a metal layer made of copper (Cu) or a copper alloy (Cu alloy),
    A metal-clad laminate, wherein a dimensional change rate in a planar direction of the metal-clad laminate in a heat treatment after removing at least a part of the metal layer by etching is 0.05 to 0.4%.
  2.  前記フィルム基材の平面方向の線膨張係数が13~60ppm/Kであることを特徴とする請求項1に記載の金属張積層体。 The metal-clad laminate according to claim 1, wherein a linear expansion coefficient of the film base material in a plane direction is 13 to 60 ppm / K.
  3.  前記フィルム基材と前記金属層との間に、下地金属層が形成されていることを特徴とする請求項1または請求項2に記載の金属張積層体。 The metal-clad laminate according to claim 1 or 2, wherein a base metal layer is formed between the film base and the metal layer.
  4.  前記下地金属層がニッケル(Ni)、ニッケル合金(Ni合金)、銅(Cu)、銅合金(Cu合金)のいずれか1種からなることを特徴とする請求項3に記載の金属張積層体。 The metal-clad laminate according to claim 3, wherein the base metal layer is made of any one of nickel (Ni), nickel alloy (Ni alloy), copper (Cu), and copper alloy (Cu alloy). .
  5.  前記フィルム基材は、熱可塑性フィルムであることを特徴とする請求項1から請求項4のいずれか1項に記載の金属張積層体。 The metal-clad laminate according to any one of claims 1 to 4, wherein the film substrate is a thermoplastic film.
  6.  前記フィルム基材は、光学的異方性の溶融相を形成しうる高分子、熱可塑性のポリイミド樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエチレンテレフタラート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂からなる群の中から選択されたいずれか1種類からなることを特徴とする請求項5に記載の金属張積層体。 The film base material is a polymer capable of forming an optically anisotropic melt phase, thermoplastic polyimide resin, polyether ether ketone (PEEK) resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN). The metal-clad laminate according to claim 5, wherein the metal-clad laminate is any one selected from the group consisting of resins.
  7.  前記フィルム基材は、非熱可塑性のポリイミド樹脂で形成されていることを特徴とする請求項1から請求項4のいずれか1項に記載の金属張積層体。 The metal-clad laminate according to any one of claims 1 to 4, wherein the film base is formed of a non-thermoplastic polyimide resin.
  8.  請求項1から請求項7のいずれか1項に記載の金属張積層体を用いて回路形成されていることを特徴とする回路基板。 A circuit board, wherein a circuit is formed using the metal-clad laminate according to any one of claims 1 to 7.
  9.  請求項8に記載の回路基板上に半導体素子が直接搭載されていることを特徴とする電子部品。 An electronic component, wherein a semiconductor element is directly mounted on the circuit board according to claim 8.
  10.  前記半導体素子の電極がバンプによって前記回路基板に接続されていることを特徴とする請求項9に記載の電子部品。 10. The electronic component according to claim 9, wherein the electrode of the semiconductor element is connected to the circuit board by a bump.
PCT/JP2009/066239 2008-09-18 2009-09-17 Metal clad body, circuit board and electronic part WO2010032780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529788A JP4805412B2 (en) 2008-09-18 2009-09-17 Metal-clad laminate, circuit board and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008239801 2008-09-18
JP2008-239801 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032780A1 true WO2010032780A1 (en) 2010-03-25

Family

ID=42039602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066239 WO2010032780A1 (en) 2008-09-18 2009-09-17 Metal clad body, circuit board and electronic part

Country Status (3)

Country Link
JP (1) JP4805412B2 (en)
TW (1) TW201028287A (en)
WO (1) WO2010032780A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583448B2 (en) 2013-04-15 2017-02-28 Samsung Display Co., Ltd. Chip on film and display device having the same
JP2018157173A (en) * 2016-09-29 2018-10-04 株式会社クオルテック Method for manufacturing power module, power module, method for manufacturing electronic component, and electronic component
JPWO2018225760A1 (en) * 2017-06-07 2020-04-09 株式会社旭電化研究所 Flexible composite film, flexible circuit film using the same
JP2022507287A (en) * 2019-04-30 2022-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド A flexible metal leaf laminated film, an article containing the same, and a method for manufacturing the flexible metal foil laminated film.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270034A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2005199481A (en) * 2004-01-13 2005-07-28 Kaneka Corp Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
JP2005205806A (en) * 2004-01-23 2005-08-04 Kaneka Corp Adhesive film, flexible metal-clad laminate improved in dimensional stability obtained from the film, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270034A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2005199481A (en) * 2004-01-13 2005-07-28 Kaneka Corp Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
JP2005205806A (en) * 2004-01-23 2005-08-04 Kaneka Corp Adhesive film, flexible metal-clad laminate improved in dimensional stability obtained from the film, and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583448B2 (en) 2013-04-15 2017-02-28 Samsung Display Co., Ltd. Chip on film and display device having the same
JP2018157173A (en) * 2016-09-29 2018-10-04 株式会社クオルテック Method for manufacturing power module, power module, method for manufacturing electronic component, and electronic component
JP7117747B2 (en) 2016-09-29 2022-08-15 株式会社クオルテック Electronic component manufacturing method
JPWO2018225760A1 (en) * 2017-06-07 2020-04-09 株式会社旭電化研究所 Flexible composite film, flexible circuit film using the same
JP7312419B2 (en) 2017-06-07 2023-07-21 株式会社旭電化研究所 Method for manufacturing flexible circuit film
JP2022507287A (en) * 2019-04-30 2022-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド A flexible metal leaf laminated film, an article containing the same, and a method for manufacturing the flexible metal foil laminated film.
JP7203969B2 (en) 2019-04-30 2023-01-13 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド Flexible metal foil laminated film, article containing the same, and method for producing the flexible metal foil laminated film

Also Published As

Publication number Publication date
JP4805412B2 (en) 2011-11-02
TW201028287A (en) 2010-08-01
JPWO2010032780A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US8146243B2 (en) Method of manufacturing a device incorporated substrate and method of manufacturing a printed circuit board
JP4876272B2 (en) Printed circuit board and manufacturing method thereof
JPWO2007046459A1 (en) Multilayer printed wiring board and manufacturing method thereof
JP2008120081A (en) Flexible metal-laminated film and its manufacturing method
JP4805412B2 (en) Metal-clad laminate, circuit board and electronic component
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
JP4449975B2 (en) Connection board, multilayer wiring board using the connection board, and methods of manufacturing the same
JP5064035B2 (en) Manufacturing method of laminate for COF substrate
JP2001036246A (en) Wiring board and multilayer wiring board using the same
JP2009141129A (en) Flexible printed wiring board and method of manufacturing the same
JP2005045187A (en) Circuit board, method for manufacturing the same, and multi-layered circuit board
JP2010010217A (en) Multilayer printed wiring board and method of manufacturing the same
JP3304061B2 (en) Manufacturing method of printed wiring board
JP3543348B2 (en) Manufacturing method of multilayer wiring board
JP2007223111A (en) Flexible copper clad laminate
JP2008235346A (en) Flexible printed wiring board
JP2010199530A (en) Printed circuit board, and manufacturing method thereof
JP2007273648A (en) Printed wiring board and its manufacturing method
JPWO2007037075A1 (en) Wiring board manufacturing method and wiring board
US20140313683A1 (en) Tape carrier package and method of manufacturing the same
WO2012070471A1 (en) Rolled copper foil for flexible printed wiring board, copper-clad laminated board, flexible wiring board, and electronic device
WO2012164719A1 (en) Substrate with built-in component, and method for producing said substrate
WO2010021278A1 (en) Multilayer laminated circuit board wherein resin films having different thermal expansion coefficients are laminated
JP2021072369A (en) Semiconductor package and method for manufacturing the same
JP2005153357A (en) Resin film with metal foil, its production method, wiring board, and its production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010529788

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814624

Country of ref document: EP

Kind code of ref document: A1