WO2010032745A1 - Temperature adjustment mechanism, and plasma treatment apparatus - Google Patents

Temperature adjustment mechanism, and plasma treatment apparatus Download PDF

Info

Publication number
WO2010032745A1
WO2010032745A1 PCT/JP2009/066141 JP2009066141W WO2010032745A1 WO 2010032745 A1 WO2010032745 A1 WO 2010032745A1 JP 2009066141 W JP2009066141 W JP 2009066141W WO 2010032745 A1 WO2010032745 A1 WO 2010032745A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric window
temperature
heat medium
cooling
flow path
Prior art date
Application number
PCT/JP2009/066141
Other languages
French (fr)
Japanese (ja)
Inventor
伸也 西本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010032745A1 publication Critical patent/WO2010032745A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Definitions

  • the present invention relates to a temperature control mechanism and a plasma processing apparatus including the temperature control mechanism.
  • a microwave plasma processing apparatus having a window (hereinafter referred to as a dielectric window) formed of a dielectric in a plasma processing container is widely used.
  • microwaves pass through the dielectric window and are irradiated inside the plasma processing container.
  • Microwaves excite gas molecules in the plasma processing vessel and generate plasma.
  • This type of device tends to accumulate heat in the dielectric window during plasma processing. Accumulation of heat in the dielectric window can lead to undesirable results such as reduced plasma excitation efficiency, device distortion due to partial thermal expansion, and non-uniform plasma processing. In order to stabilize the plasma generation conditions and perform uniform plasma processing on the entire surface of the substrate to be processed, it is necessary to maintain the temperature distribution of the dielectric window in an appropriate state.
  • the dielectric window also has a function as a shower plate for uniformly supplying the process gas into the plasma processing container. In this case, if a part or all of the dielectric window is overheated, a process gas having a low decomposition temperature is decomposed before being introduced into the plasma processing vessel, and thus cannot be used. obtain.
  • Patent Document 1 discloses improvement of cooling efficiency and optimization of excitation efficiency of a microwave plasma processing apparatus including a radial line slot antenna (RLSA).
  • a microwave plasma processing apparatus disclosed in Patent Document 1 includes a cover plate arranged in close contact with a radiation surface of a slot plate and a shower plate (dielectric window) and constituting a part of an outer wall of the processing chamber, and a slot A cooler that is disposed on the plate and absorbs a heat flow flowing in the thickness direction in the outer wall of the processing chamber. The heat accumulated in the dielectric window is absorbed through the cover plate and the antenna, and overheating of the dielectric window is prevented.
  • Patent Literature 2 discloses a control unit, a tank for storing a heat medium, a flow path and a pump for supplying and circulating the heat medium to an object to be cooled, and a cooling device for cooling the heat medium to a predetermined temperature or lower.
  • a heating means for heating the heat medium to a set temperature, and a temperature adjustment mechanism configured to supply high-temperature water discharged from the cooling device to the heating means is disclosed. It is described that according to this temperature control mechanism, energy consumption can be reduced and the entire apparatus can be miniaturized when cooling a semiconductor device or a liquid crystal device manufacturing apparatus.
  • Patent Document 3 discloses an exhaust heat utilization system that reuses warmed cooling water discharged from a semiconductor device manufacturing apparatus as a heating source.
  • a semiconductor element manufacturing facility having a plurality of semiconductor element manufacturing apparatuses
  • intermediate temperature cooling water having a temperature higher than room temperature discharged from the semiconductor element manufacturing apparatus passes through the intermediate temperature cooling water supply line. Supplied to the device manufacturing apparatus. Further, high-temperature cooling water having a temperature higher than that of the medium-temperature cooling water discharged from the second semiconductor element manufacturing apparatus is supplied to the third semiconductor element manufacturing apparatus as a heating source. According to this system, it is described that energy saving of a semiconductor device manufacturing facility can be realized.
  • Patent Document 1 does not specifically disclose the temperature control of the side surface portion of the dielectric window. If the temperature control of the side surface portion of the dielectric window is performed using the heat medium used for the temperature control of the upper surface portion of the dielectric window, it is possible to precisely control the temperature of the side surface portion of the dielectric window. difficult.
  • the upper surface portion of the dielectric window also has a problem that the temperature control by the change in the flow rate of the heat medium, which is generally performed conventionally, is not sufficiently responsive. For example, when the temperature of the dielectric window continues to change, it is difficult to quickly and accurately control the temperature distribution of the dielectric window only by changing the flow rate of the heat medium.
  • an operator may directly operate the microwave plasma processing apparatus in order to control or adjust the plasma generation conditions. In this case, if a part of the microwave plasma processing apparatus is overheated, there is a risk that the operator may be burned. From the viewpoint of ensuring safety, it is preferable that the temperature of at least the portion facing the outside of the microwave plasma processing apparatus is kept as low as possible within a range where the plasma processing is appropriately performed.
  • the present invention has been made in view of the above circumstances, and realizes good plasma processing by controlling the temperature of the dielectric window used for plasma processing, and also efficiently controls the temperature of the entire apparatus, thereby ensuring work safety. It is an object of the present invention to provide a temperature control mechanism and a plasma processing apparatus including the temperature control mechanism.
  • a temperature adjustment mechanism includes: A processing vessel having a dielectric window formed of a dielectric material and capable of reducing the pressure inside; An external device disposed outside the processing vessel and at least a portion of which is in contact with the processing vessel and conducts heat of the processing vessel; A temperature control mechanism of a plasma processing apparatus comprising: An external device cooling flow path for circulating a heat medium in the external device; A dielectric window cooling flow path that is arranged so that at least a portion thereof can exchange heat with the dielectric window and circulates a heat medium in the vicinity of the dielectric window; A cooling device for adjusting the heat medium to a predetermined temperature; Heating means for heating the heat medium flowing into the dielectric window cooling channel to a predetermined temperature in advance, The heat medium flowing out from the external device cooling channel is configured to be adjusted to a predetermined temperature by the cooling device and / or the heating means before flowing into the dielectric window cooling channel, It is characterized by that.
  • the temperature adjustment mechanism includes: A portion of the dielectric window cooling flow path where the heat medium flowing out of the cooling device is directed to the heating means; Of the external device cooling flow path, the heat medium flowing out from the external device is directed to the cooling device, or the heat medium flowing out of the dielectric window cooling flow path from the portion in contact with the dielectric window is A portion toward the cooling device, or both, A heat exchanger for exchanging heat between the two.
  • the dielectric window cooling channel is An upper surface cooling channel for circulating the heat medium in the vicinity of a surface of the dielectric window located outside the processing container;
  • a side surface cooling channel that circulates a heat medium in a portion of the processing vessel located in the extending direction of the main surface of the dielectric window;
  • the heat medium flowing out from the upper surface cooling channel is configured to be temperature-controlled by the cooling device and / or the heating means before flowing into the side surface cooling channel.
  • the dielectric window cooling channel includes a first heating unit that heats the heating medium to a first temperature before the heating medium flows into the upper surface cooling channel.
  • the temperature of the dielectric window used for the plasma processing is controlled to achieve good plasma processing characteristics, and the temperature of the entire apparatus can be controlled efficiently. , Work safety can be ensured.
  • the plasma processing apparatus 1 includes a processing vessel (chamber) 8, an antenna 9, a waveguide 15, a cooling jacket 6, a stage 7, an exhaust chamber 11, a temperature sensor 16, a chiller 20, and a heater 25. ing.
  • the processing container 8 includes a dielectric window 8a, a holding ring 8b, and a lower container 8c.
  • Processing container 8 is configured to be sealable. By sealing the processing container 8, the pressure inside the processing container 8 can be maintained at a predetermined value. Further, by sealing the processing container 8, it is possible to seal the plasma generated inside the processing container 8 inside the processing container 8.
  • the dielectric window 8a is made of a dielectric material that transmits microwaves, such as SiO 2 or Al 2 O 3 .
  • the dielectric window 8 a transmits the microwave supplied from the antenna 9 into the processing container 8. Further, the dielectric window 8a is fitted into the holding ring 8b and also serves as a lid for the processing vessel 8. Furthermore, the dielectric window 8a functions as a shower plate. A gas supplied from a gas supply means (not shown) is uniformly supplied to the space S through the dielectric window 8a.
  • the holding ring 8b is made of a metal such as aluminum (Al).
  • a protective film made of aluminum oxide or the like is formed on the inner wall surface by, for example, oxidation treatment.
  • the holding ring 8b is assembled on the lower container 8c.
  • the holding ring 8 b has a concentric step whose ring diameter (inner diameter) increases toward the ceiling side of the processing container 8. This step supports the peripheral edge of the lower surface of the dielectric window 8a.
  • the holding ring 8b includes means for cooling the side surface of the dielectric window 8a.
  • the holding ring 8b includes a cooling flow path 22 for circulating the heat medium supplied from the chiller 20 therein.
  • the side surface portion of the dielectric window 8 a is cooled as the heat medium adjusted to a predetermined temperature by the chiller 20 flows through the cooling flow path 22.
  • the lower container 8c is made of a metal such as Al.
  • a protective film made of aluminum oxide or the like is formed on the inner wall surface by, for example, oxidation treatment.
  • An exhaust chamber 11 is assembled at the bottom of the lower container 8c.
  • the antenna 9 is an RLSA (Radial Line Slot Antenna) and includes a waveguide portion 9a, a slot plate 9b, and a slow wave plate 9c.
  • the antenna 9 is disposed in close contact with the dielectric window 8a.
  • the waveguide portion 9a is composed of a shield member that does not transmit microwaves.
  • the slow wave plate 9c is made of a dielectric material such as SiO 2 or Al 2 O 3 .
  • the slow wave plate 9c is disposed between the waveguide portion 9a and the slot plate 9b.
  • the slow wave plate 9c has a role of compressing the wavelength of the microwave.
  • the waveguide 15 is connected to the antenna 9.
  • the waveguide 15 is a coaxial waveguide composed of an outer waveguide 15a and an inner waveguide 15b.
  • the outer waveguide 15 a is connected to the waveguide portion 9 a of the antenna 9.
  • the inner waveguide 15b is connected to the slot plate 9b.
  • the cooling jacket 6 is arranged in close contact with the antenna 9.
  • the cooling jacket 6 is made of a material having a high thermal diffusivity such as aluminum (Al).
  • the cooling jacket 6 includes a cooling channel 21 inside.
  • the cooling flow path 21 is formed so that the heat medium spreads over the entire interior of the cooling jacket 6.
  • the antenna 9 and the upper surface portion of the dielectric window 8 a are cooled by the heat medium supplied by the chiller 20 flowing through the cooling flow path 21.
  • the stage 7 is disposed inside the processing container 8.
  • the stage 7 has a role of fixing the substrate W to be processed.
  • a heater (not shown) is assembled to the stage 7.
  • the heater has a role of heating the substrate W to be processed as necessary and adjusting the substrate W to an appropriate temperature.
  • the exhaust chamber 11 is disposed in close contact with the lower surface of the processing container 8. As shown in FIG. 1, the exhaust chamber 11 and the processing container 8 are communicated with each other through a communication hole 11a. When the inside of the processing container 8 is depressurized, the gas inside the processing container 8 is exhausted through the communication hole 11a. Further, as shown in FIG. 1, the exhaust chamber 11 includes a cooling flow path 23 therein. The exhaust chamber 11 is cooled as the heat medium adjusted to a predetermined temperature by the chiller 20 flows through the cooling flow path 23.
  • the support shaft 7 a is disposed through the communication hole 11 a and supports the stage 7.
  • the lower end of the support shaft 7a is in contact with the inner wall of the exhaust chamber 11 as shown in FIG.
  • a gap is formed between the support shaft 7a and the inner wall of the communication hole 11a as shown in FIG.
  • the inside of the processing container 8 is exhausted through this gap.
  • the support base 12 is assembled to the outer wall of the exhaust chamber 11 to fix the support shaft 7a.
  • the support base 12 includes a cooling flow path 24 therein.
  • the support 12 is cooled by the heat medium adjusted to a predetermined temperature by the chiller 20 flowing through the cooling flow path 24.
  • the required number of the temperature sensors 16 including the periphery of the waveguide 15 is arranged (in FIG. 1, only one temperature sensor 16 is illustrated, and the other temperature sensors 16 are omitted).
  • the temperature sensor 16 detects the temperature of the dielectric window 8a, the antenna 9, and the like.
  • the temperature sensor 16 is composed of, for example, a fiber sensor.
  • the chiller 20 adjusts the heat medium to a predetermined temperature and supplies it to each cooling flow path provided in the plasma processing apparatus 1.
  • a liquid such as silicone oil, fluorine-based liquid, or ethylene glycol can be used.
  • the heater 25 is disposed between the chiller 20 and the cooling channels 21 and 22.
  • the heater 25 includes a heater 25 a that heats the heat medium supplied to the cooling flow path 21 and a heater 25 b that heats the heat medium supplied to the cooling flow path 22.
  • the heater 25 heats the heat medium supplied from the chiller 20 as necessary.
  • the heaters 25a and 25b can heat the heat medium with a calorific value set independently.
  • the inside of the processing container 8 is depressurized by a vacuum pump.
  • a substrate to be processed W is fixed on the upper surface of the stage 7.
  • An inert gas such as argon (Ar) or xenon (Xe) and nitrogen (N 2 ), and a process gas such as hydrogen or C5F8, for example, from the gas supply means to the space S through the dielectric window 8a. Supplied with.
  • the microwave is supplied from the microwave source through the waveguide 15.
  • the supplied microwave spreads in the radial direction of the processing container 8 between the waveguide portion 9a and the slot plate 9b, and is radiated from a slot (opening) formed in the slot plate 9b.
  • the microwave forms a circularly polarized wave.
  • Supplied microwaves ionize gas molecules existing in the space S and generate plasma.
  • the plasma processing is performed on the target surface of the target substrate W placed on the stage 7.
  • Examples of the process performed using the plasma processing apparatus 1 include film formation of an insulating film by so-called CVD (Chemical Vapor Deposition) and etching by so-called RIE (Reactive Ion Etching).
  • CVD Chemical Vapor Deposition
  • RIE Reactive Ion Etching
  • the chiller 20 supplies a heat medium adjusted to a predetermined temperature to the cooling flow path 21 provided inside the cooling jacket 6. Since the cooling jacket 6 is disposed in close contact with the antenna 9, the upper surface of the antenna 9 and the dielectric window 8a can be efficiently cooled. In this way, overheating of the dielectric window 8a and the antenna 9 is prevented. In addition, since the cooling jacket 6 is disposed in close contact with the antenna 9, the temperature of the portions other than the antenna 9 and the dielectric window 8a is hardly affected. For this reason, the temperature distribution of the whole plasma processing apparatus 1 can be controlled precisely.
  • the chiller 20 also supplies a heat medium to the cooling flow path 22 provided inside the holding ring 8b.
  • the heat medium that circulates inside the cooling flow path 22 cools the side surface of the dielectric window 8a.
  • the dielectric window 8a can be cooled more efficiently as compared with the case where it directly flows into the heater 22.
  • the temperature difference between the central portion and the peripheral portion of the dielectric window 8a may be lower than the temperature of the central portion. In this case, there is a problem that the apparatus is distorted due to local thermal expansion or the uniformity of the generated plasma is impaired.
  • the plasma processing apparatus 1 includes a heater 25 between the chiller 20 and the cooling channels 21 and 22.
  • the control unit (the control unit is omitted in the drawing for easy understanding of the structure of the plasma processing apparatus 1) detects a temperature difference between the central portion and the peripheral portion of the dielectric window 8a through the temperature sensor 16.
  • the control unit controls the heaters 25a and 25b independently to heat the heat medium supplied to the cooling flow path 21 and the heat medium supplied to the cooling flow path 22 with different calorific values. To do. For example, when the temperature of the peripheral portion of the dielectric window 8a is lower than the center portion, the control unit controls the heater 25 so that the heater 25b heats the heat medium with a larger amount of heat generation than the heater 25a.
  • the temperature of the dielectric window 8a can be controlled quickly and precisely.
  • the uniformity of the temperature distribution of the dielectric window 8a is maintained, and a more uniform plasma process can be performed on the entire surface to be processed of the substrate W to be processed.
  • the control unit controls only the heat generation amount of the heater 25 is shown, but the control unit controls the heat generation amount of the heater 25 and controls the chiller 20 to supply heat to the cooling flow path 22.
  • the flow rate of the medium may be set to be smaller than the flow rate of the heat medium supplied to the cooling flow path 21.
  • cooling channels 21 and 22 are provided in the upper surface portion and the side surface portion of the dielectric window 8a, respectively, but the corresponding cooling flow is provided in either the upper surface portion or the side surface portion of the dielectric window 8a. Only one of the paths 21 or 22 may be provided. Also in this case, since the plasma processing apparatus 1 includes the heater 25, the temperature of the dielectric window 8a can be controlled more precisely. Furthermore, compared with the case where only the flow rate of the heat medium is changed, the responsiveness to the temperature change is high, so the time required for temperature control can be shortened.
  • the heaters 25a and 25b are provided in both the cooling channels 21 and 22, respectively. However, one heater 25 may be shared by the cooling channels 21 and 22. When the temperature difference between the central portion and the peripheral portion of the dielectric window 8a is not so large, the configuration of the entire apparatus can be simplified by doing so.
  • the exhaust chamber 11 and the support 12 on the outside of the processing container 8 are at a high temperature as the heat of the processing container 8 is conducted.
  • the support base 12 that supports the stage 7 via the support shaft 7a tends to be hot. This is because a heater (not shown) for heating the substrate to be processed W is assembled to the stage 7. Since the heat of the heater is conducted through the support shaft 7a, the support base 12 is likely to be particularly hot.
  • the plasma processing apparatus 1 may be directly operated by an operator in order to adjust or control plasma processing conditions. At this time, if the temperature of the exhaust chamber 11 or the support base 12 is high, there is a possibility that the operator may be burned or the like when in contact with the worker. In order to ensure the safety of workers during work, the exhaust chamber 11 and the support base 12 need to be cooled to some extent. However, when the temperature is too low, there is a problem that deposits adhere to the plasma processing apparatus 1, resulting in a decrease in productivity and malfunction of the apparatus.
  • the plasma processing apparatus 1 includes cooling flow paths 23 and 24 inside the exhaust chamber 11 and inside the support base 12, respectively.
  • the heat medium supplied from the chiller 20 flows through the cooling flow paths 23 and 24, the exhaust chamber 11 and the support 12 are cooled to the extent that they do not get burned even when the operator comes into contact with them. . In this way, safety during work can be ensured.
  • the temperatures of the exhaust chamber 11 and the support 12 can be secured during operation, and deposits in the plasma processing apparatus 1 can be secured. It can control to the range which can suppress adhesion. As a result, the plasma generation conditions in the plasma processing apparatus 1 can be stabilized, and uniform plasma processing can be performed on the entire surface to be processed of the substrate to be processed.
  • the flow rate of the heat medium supplied to the cooling channels 23 and 24 may be designed so that it can be controlled independently of the cooling channels 21 and 22 for cooling the dielectric window 8a. . By doing in this way, the temperature of the exhaust chamber 11 and the support stand 12 can be controlled more quickly in response to the temperature change.
  • the kind of the heat medium supplied to the cooling channels 23 and 24 can be the same type as the heat medium supplied to the cooling channels 21 and 22.
  • one chiller 20 can be shared by a plurality of channels. As a result, there is no need to provide a plurality of chillers 20, and the plasma processing apparatus 1 can be downsized.
  • the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be kept at the lowest temperature among the heat medium supplied to each cooling flow path.
  • the temperatures of the exhaust chamber 11 and the support 12 are preferably kept lower than the dielectric window 8a in order to ensure safety during work.
  • the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the cooling flow path 23 of the exhaust chamber 11 and the cooling flow path 24 of the support 12.
  • the heat medium supplied to the cooling channels 21 and 22 of the dielectric window 8a is preheated by the heaters 25a and 25b as necessary.
  • the plasma processing apparatus 1 includes the heaters 25a and 25b, so that each cooling flow path has heat adjusted to an appropriate temperature. Media can be supplied. As a result, the temperature distribution of the plasma processing apparatus 1 can be controlled more precisely.
  • the plasma processing apparatus 1 includes a portion until the heat medium supplied from the chiller 20 flows into the heaters 25a and 25b, and the heat medium from each cooling channel to the chiller 20. You may provide a heat exchanger between the parts until it returns. By providing a heat exchanger in this portion, the heat medium returning to the chiller 20 can be cooled, and the heat medium flowing into the heaters 25a and 25b can be heated. As a result, the load on the chiller 20 and the heaters 25a and 25b is reduced, and the energy required for temperature adjustment of the plasma processing apparatus 1 can be reduced.
  • the exhaust chamber 11 and the support 12 are collectively referred to as the external mechanism 10.
  • the cooling channels 23 and 24 provided inside each are collectively referred to as an external cooling channel 27. 2 to 5, some components are omitted for easy understanding of the invention. The omitted components are the same as those of the plasma processing apparatus 1 according to the first embodiment of the present invention.
  • the plasma processing apparatus 2 includes a chiller 20, a cooling channel 21 for cooling the dielectric window 8a, a heater 25, and an external cooling channel 27 for cooling the external mechanism 10. And heat exchangers 26a and 26b.
  • the portions surrounded by the broken lines are portions (cooled portions) that are cooled by the heat medium flowing inside the cooling flow path 21 and the external cooling flow path 27, respectively.
  • the portions to be cooled are the dielectric window 8a and the external mechanism 10, respectively.
  • the cooling channel 21 is disposed in contact with the upper surface of the dielectric window 8a.
  • the cooling channel 21 is disposed so as to cover the entire top surface of the antenna 9 (the antenna 9 is omitted in FIG. 2).
  • the external cooling flow path 27 is provided inside the external mechanism 10.
  • the chiller 20 is shared by the cooling channel 21 and the external cooling channel 27. For this reason, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the cooled part where the temperature to be cooled is lower. Here, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the external cooling flow path 27.
  • the heat medium whose temperature is adjusted by the chiller 20 flows in the direction of the arrow drawn by a solid line in FIG.
  • the heat medium that has cooled the portion to be cooled flows in the direction of the arrow drawn by the broken line and returns to the chiller 20.
  • the flow paths through which the heat medium supplied by the chiller 20 heads to each cooled part are referred to as forward paths 21a and 27a, respectively.
  • the flow paths in which the heat medium returns from each cooled part to the chiller 20 are referred to as return paths 21b and 27b, respectively.
  • the external mechanism 10 is disposed outside the sealed processing container 8. A part of the external mechanism 10 is in contact with the processing container 8, and the temperature of the external mechanism 10 becomes high when heat from the processing container 8 is transmitted. If the external mechanism 10 is in an overheated state, there is a risk of the operator being burned if the operator touches the external mechanism 10 for adjustment or control of the apparatus or accidentally. For example, such an accident may occur when a sufficient space cannot be secured between devices in a semiconductor element manufacturing factory. For this reason, it is preferable that the external mechanism 10 is set to a temperature that does not cause burns or the like even if an operator touches it by mistake. However, if the temperature of the external mechanism 10 is too low, deposits may adhere to the inside of the processing container 8 and cause a problem. For this reason, it is preferable that the temperature of the heat medium supplied to the external cooling flow path 27 is set to about 80 ° C., for example.
  • the temperature of the dielectric window 8a greatly affects the plasma generation conditions, it must be strictly controlled according to each stage.
  • the plasma processing apparatus 2 is activated and supplied to the cooling channel 21 from a state in which the plasma processing apparatus 2 is ready to be ready for plasma processing (a so-called idling state) until the plasma is stably generated.
  • the temperature of the heating medium is preferably set to 100 ° C., for example.
  • the plasma processing apparatus 2 includes a heater 25 for heating the heat medium supplied to the cooling flow path 21. Since the cooling flow path 21 and the external cooling flow path 27 are independent of each other, heat media adjusted to different predetermined temperatures are supplied to the respective cooling flow paths.
  • the external cooling flow path 27 is supplied with a heat medium adjusted to 80 ° C. by the chiller 20.
  • a heat medium heated to 100 ° C. by the heater 25 after being adjusted to 80 ° C. by the chiller 20 is supplied to the cooling channel 21.
  • the temperature of the external mechanism 10 and the temperature of the dielectric window 8a are controlled within appropriate ranges. . As a result, safety during operation can be ensured and adhesion of deposits to the inside of the plasma processing apparatus 2 can be suppressed.
  • the amount of heat generated by the heater 25 is controlled in consideration of the amount of heat generated by the generation of plasma.
  • the temperature of the heat medium supplied to the cooling flow path 21 being adjusted to an appropriate range according to each stage, the temperature of the dielectric window 8a is always maintained within an appropriate range. In this way, plasma generation conditions are stabilized, and uniform plasma processing can be performed on the entire surface of the substrate to be processed.
  • the temperature control of the dielectric window 8a is performed by controlling the amount of heat generated by the heater 25 while the amount of the heat medium flowing through the cooling flow path 21 is constant. Compared with the method of changing the flow rate of the heat medium, the temperature control by the method of changing the heat generation amount of the heater 25 has high responsiveness. By this method, the temperature of each part of the plasma processing apparatus 2 is controlled within a predetermined range in a shorter time. Alternatively, the temperature control of the dielectric window 8a may be performed by changing the flow rate of the heat medium supplied to each flow path in conjunction with the control of the heat generation amount of the heater 25.
  • the heat medium that has cooled the dielectric window 8a returns to the chiller 20 through the return path 21a.
  • the heat medium that has cooled the external mechanism 10 returns to the chiller 20 through the return path 27b.
  • the temperature of the heat medium flowing in the return paths 21b and 27b is higher than the temperature of the heat medium flowing in the corresponding forward paths 21a and 27a as a result of taking heat from the cooled part.
  • the chiller 20 cools the temperature of the heat medium again to the set temperature of 80 ° C.
  • the heat medium adjusted to 80 ° C. is supplied again to the cooling flow path 21 and the external cooling flow path 27.
  • the heat medium supplied to the cooling flow path 21 is heated by the heater 25 to 100 ° C. or a temperature set in consideration of the amount of heat generated by the generation of plasma.
  • the plasma processing apparatus 2 includes a heat exchanger 26 a between a portion between the chiller 20 and the heater 25 in the forward path 21 a of the cooling flow path 21 and the return path 21 b.
  • the temperature of the heat medium flowing through the return path 21b is higher than that of the heat medium flowing through the forward path 21a.
  • the heat medium flowing in the forward path 21a receives heat from the heat medium flowing in the return path 21b via the heat exchanger 26a.
  • the amount of heat to be given by the heater 25 can be reduced, and the energy consumption can be reduced.
  • the amount of heat applied to the heat medium flowing in the forward path 21a decreases the temperature of the heat medium flowing in the return path 21b. As a result, the load on the chiller 20 is reduced, and the energy consumption can be further reduced.
  • the plasma processing apparatus 2 exchanges heat between the return path 27 b of the external cooling flow path 27 and the portion between the chiller 20 and the heater 25 in the forward path 21 a of the cooling flow path 21.
  • a container 26b is provided. As described above, the temperature of the heat medium flowing through the return path 27 b is higher than the temperature of the heat medium flowing through the forward path 21 a of the cooling flow path 21. By providing the heat exchanger 26b, energy consumption can be further reduced.
  • connection part between the heat exchanger 26a and the forward path 21a is disposed at a position closer to the heater 25 than the connection part between the heat exchanger 26b and the forward path 21a. Because the temperature control of the dielectric window 8a is performed at a temperature higher than the temperature control of the external mechanism 10, the temperature of the heat medium flowing through the return path 21b is higher than the temperature of the heat medium flowing through the forward path 27b. It is. By disposing the two heat exchangers 26a and 26b in this way, the temperature difference between each forward path and each return path is effectively used, and heat exchange is performed more efficiently.
  • the plasma processing apparatus 2 is provided with the heat exchangers 26a and 26b has been described. However, either one of the heat exchangers provided in the plasma processing apparatus 2 may be provided.
  • the cooling flow path 21 shows the example arrange
  • the cooling flow path 21 cools the side part of the dielectric material window 8a.
  • the processing container 8 may be disposed in a portion located in the extending direction of the main surface of the dielectric window 8a.
  • the cooling flow path 21 is disposed so as to cool the side surface portion of the dielectric window 8a after the heat medium supplied from the chiller 20 cools the upper surface portion of the dielectric window 8a.
  • FIG. 3 a temperature adjustment mechanism of the plasma processing apparatus 3 according to the third embodiment of the present invention will be described with reference to FIG.
  • the difference between the plasma processing apparatus 3 and the plasma processing apparatus 2 according to the second embodiment is that, as shown in FIG. 3, the cooling flow paths for cooling the dielectric window 8 a are the cooling flow paths 21 and 22.
  • the heaters 25a and 25b and the heat exchangers 26a and 26b are provided respectively.
  • portions surrounded by broken lines indicate portions (cooled portions) that are cooled by the heat medium flowing through the respective cooling flow paths.
  • the cooling channel 21 is disposed so as to cover the entire top surface of the dielectric window 8a, as in the plasma processing apparatus 2 according to the second embodiment.
  • the cooling flow path 22 is disposed so as to cover the entire circumference of the side surface of the dielectric window 8a (in order to facilitate understanding of the drawing, on the left side of the dielectric window 8a in FIG. 3).
  • the arranged cooling flow path 22 is omitted).
  • the upper surface portion and the side surface portion of the dielectric window 8a are cooled by independent cooling channels. For this reason, the cooling efficiency of the dielectric window 8a is higher than that of the plasma processing apparatus 2.
  • the plasma processing apparatus 3 includes a heater 25 a in the forward path 21 a of the cooling flow path 21.
  • the forward path 22a of the cooling flow path 22 is provided with a heater 25b.
  • the temperature of the heat medium supplied by the chiller 20 is adjusted to a temperature suitable for cooling the external mechanism 10.
  • the heaters 25a and 25b heat the heat medium supplied by the chiller 20 to a predetermined temperature suitable for cooling the dielectric window 8a as necessary.
  • a heat medium having a temperature suitable for temperature control of each cooled part is supplied to each cooling channel.
  • the temperature of the external mechanism 10 is maintained within a temperature range in which the safety during operation can be ensured by the heat medium supplied from the chiller 20 and adhesion of deposits to the inside of the plasma processing apparatus 3 can be suppressed.
  • the temperature of the dielectric window 8a is controlled to a temperature range suitable for plasma processing by a heat medium heated to a predetermined temperature by the heaters 25a and 25b.
  • the heater 25a is controlled such that the amount of heat generated is smaller than the amount of heat generated by the heater 25b.
  • the temperature distribution of the dielectric window 8a is made uniform, and plasma with high uniformity can be generated in the entire space S in the processing container 8. As a result, uniform plasma processing can be performed on the entire surface of the substrate to be processed.
  • the plasma processing apparatus 3 includes a heat exchanger 26a between the forward path 21a and the return path 21b, and a heat exchanger 26b between the forward path 22a and the return path 22b. Similar to the plasma processing apparatus 2 according to the second embodiment, energy exchange can be reduced by performing heat exchange between the heat medium flowing in the forward path and the heat medium flowing in the return path. Note that only one of the heat exchangers 26a and 26b may be provided. Alternatively, similarly to the plasma processing apparatus 2 according to the second embodiment, in addition to the heat exchangers 26a and 26b, between the forward path 21a and the return path 27b, between the forward path 22a and the return path 27b, or both, A heat exchanger may be provided.
  • the additionally provided heat exchanger is connected to a position closer to the chiller 20 than the heat exchangers 26 a and 26 b of the plasma processing apparatus 3, similarly to the heat exchanger 26 b of the plasma processing apparatus 2. .
  • the temperature difference of the heat medium which flows through the inside of each flow path can be used more effectively.
  • the temperature difference between the heat medium supplied to the cooling channel 21 and the heat medium supplied to the cooling channel 22 is the heat supplied to the cooling channel 21 or 22 and the heat supplied to the external cooling channel 27. Since it is smaller than the temperature difference with the medium, there is no problem in temperature control by the heaters 25a and 25b even if the plasma processing apparatus 4 is configured.
  • one end of the heat exchanger 26 may be connected to the return path 27 b of the external cooling flow path 27 instead of being connected to the return paths 21 b and 22 b of the cooling flow paths 21 and 22.
  • the part where the outward paths 21a and 22a of the cooling flow paths 21 and 22 are aggregated and the return path 27b of the external cooling flow path 27 A heat exchanger may be further provided between them.
  • the other heat exchanger is preferably disposed at a position closer to the chiller 20 than the heat exchanger 26.
  • FIG. 5 a plasma processing apparatus 5 according to Modification 2 of the third embodiment will be described with reference to FIG.
  • the difference from the plasma processing apparatus 4 is that the forward paths 21a, 22a and 27a of the cooling channels 21 and 22 and the external cooling channel 27 are integrated into one, and the return paths 21b, 22b and 27b are also integrated into one. It is a point.
  • the forward path 27 a of the external cooling flow path 27 is separated from one flow path (outward path) extending from the chiller 20.
  • the one flow path is divided into two, which become the forward paths 21a and 22a of the cooling flow paths 21 and 22, respectively.
  • the heat exchanger 26 includes a part after the forward path 27a of the external cooling flow path 27 is separated from one forward path and before the forward paths 21a and 22a of the cooling flow paths 21 and 22 are separated. , And after the return paths 21b and 22b merge and before the merge with the return path 27b of the external cooling flow path 27.
  • the heat exchanger 26 can be made one, and the configuration of the apparatus is simplified as compared with the plasma processing apparatuses 2 and 3. Note that one end of the heat exchanger 26 may be connected to the return path 27b instead of being connected to the return paths 21b and 22b.
  • another heat exchanger is provided after the forward path 27 a of the external cooling flow path 27 is separated from one forward path and the forward paths 21 a and 22 a of the cooling flow paths 21 and 22. May be provided between the part before the separation and the return path 27b.
  • the other heat exchanger is preferably disposed at a position closer to the chiller 20 than the heat exchanger 26.
  • the temperature control mechanism of the present invention and the plasma processing apparatus including the temperature control mechanism have been described with reference to the embodiments and modifications thereof. However, these are merely examples, and the embodiments of the present invention are not limited thereto. Various patterns can be considered for the arrangement of the flow path, the heater, and the heat exchanger.
  • the temperature adjustment mechanism of the present invention is preferably designed in accordance with the shape and size of the plasma processing apparatus.
  • the plasma processing method, the gas used for the plasma processing, the type and size of the substrate to be processed, the number of temperature sensors, and the like can be implemented in various forms.
  • plasma processing examples include plasma oxidation processing, plasma nitriding processing, plasma oxynitriding processing, plasma CVD processing, and plasma etching processing.
  • the heater is preferably arranged as close as possible to the part to be cooled.
  • the heater By disposing the heater close to the part to be cooled, heat loss is reduced, the responsiveness of temperature control is further improved, and the energy consumption can be further reduced.
  • Plasma processing apparatus Cooling jacket 7 Stage 7a Support shaft 8 Processing vessel (chamber) 8a Dielectric window 8b Retaining ring 8c Lower container 9 Antenna 9a Waveguide 9b Slot plate 9c Slow wave plate 10 External mechanism 11 Exhaust chamber 11a Communication hole 12 Support base 15 Waveguide 15a Outer waveguide 15b Inner waveguide 16 Temperature sensor 20 Chillers 21, 22, 23, 24 Cooling flow path 21a, 22a Outward path 21b, 22b Return path 25, 25a, 25b Heater 26, 26a, 26b Heat exchanger 27 External cooling path 27a Outbound path 27b Return path

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a temperature adjustment mechanism capable of controlling the temperature of a dielectric window (8a) to be used for a plasma treatment to realize an excellent plasma treatment and controlling the temperature of the entirety of a plasma treatment apparatus (1) efficiently to ensure the safety of operations. Also provided is the plasma treatment apparatus (1) equipped with the temperature adjustment mechanism. The temperature adjustment mechanism of the plasma treatment apparatus (1) comprises a treatment container (8) equipped with the dielectric window (8a) which is formed of a dielectric material and which can be internally reduced in pressure, and external devices (11 and 12) which are arranged outside of the treatment container (8) and at least a part of which is in contact with the treatment container (8) so that the heat of the treatment container (8) is conducted thereto. The plasma treatment apparatus (1) is equipped with external device cooling passages (23 and 24) for circulating a heating medium to the external devices (11 and 12), dielectric window cooling passages (21 and 22) arranged in a manner that at least a part thereof is thermally conductive with the dielectric window (8a) and circulating the heating medium to the vicinity of the dielectric window (8a), a cooling device (20) for adjusting the heating medium to a predetermined temperature, and a heating means (25) for heating the heating medium which is to flow into the dielectric window cooling passages (21 and 22) to a predetermined temperature in advance. The heating medium having flown out of the external device cooling passages (23 and 24) is adjusted, before flowing into the dielectric window cooling passages (21 and 22), to the predetermined temperature by the cooling device (20) and/or the heating means (25).

Description

温度調節機構およびプラズマ処理装置Temperature control mechanism and plasma processing apparatus
 本発明は、温度調節機構および温度調節機構を備えるプラズマ処理装置に関する。 The present invention relates to a temperature control mechanism and a plasma processing apparatus including the temperature control mechanism.
 半導体素子の製造プロセスでは、基板への薄膜の堆積やエッチング等を目的としたプラズマ処理が広く行われている。高性能かつ高機能な半導体素子を得るためには、清浄度の高い空間内で、被処理基板の被処理面全面に対し、均一なプラズマ処理を行うことが要求される。この要求は、基板の大径化や半導体素子の微細化に伴いますます強まっている。 In the manufacturing process of semiconductor elements, plasma treatment for the purpose of depositing a thin film on a substrate or etching is widely performed. In order to obtain a high-performance and high-performance semiconductor element, it is required to perform uniform plasma treatment on the entire surface of the substrate to be processed in a highly clean space. This demand is increasing with the increase in the substrate diameter and the miniaturization of semiconductor elements.
 現在、プラズマ処理装置として、プラズマ処理容器に誘電体で形成された窓(以下、誘電体窓と呼称する。)を備えるマイクロ波プラズマ処理装置が広く用いられている。この装置では、マイクロ波が誘電体窓を透過してプラズマ処理容器の内部に照射される。マイクロ波はプラズマ処理容器内のガス分子を励起させ、プラズマを発生させる。 At present, as a plasma processing apparatus, a microwave plasma processing apparatus having a window (hereinafter referred to as a dielectric window) formed of a dielectric in a plasma processing container is widely used. In this apparatus, microwaves pass through the dielectric window and are irradiated inside the plasma processing container. Microwaves excite gas molecules in the plasma processing vessel and generate plasma.
 このタイプの装置は、プラズマ処理中に誘電体窓に熱が蓄積しやすい。誘電体窓への熱の蓄積は、プラズマ励起効率の低下、部分的な熱膨張による装置の歪み、プラズマ処理の不均一化等の好ましくない結果を招き得る。プラズマ発生条件を安定させ、被処理基板の被処理面全面に対して均一なプラズマ処理を行うためには、誘電体窓の温度分布を適切な状態に維持する必要がある。 This type of device tends to accumulate heat in the dielectric window during plasma processing. Accumulation of heat in the dielectric window can lead to undesirable results such as reduced plasma excitation efficiency, device distortion due to partial thermal expansion, and non-uniform plasma processing. In order to stabilize the plasma generation conditions and perform uniform plasma processing on the entire surface of the substrate to be processed, it is necessary to maintain the temperature distribution of the dielectric window in an appropriate state.
 また、誘電体窓は、プラズマ処理容器内にプロセスガスを均一に供給するためのシャワープレートとしての機能を兼ね備えている場合がある。この場合において、誘電体窓の一部又は全部が過熱された状態にあると、低い分解温度を有するプロセスガスはプラズマ処理容器内に導入される前に分解してしまうため使用できないという問題も生じ得る。 In some cases, the dielectric window also has a function as a shower plate for uniformly supplying the process gas into the plasma processing container. In this case, if a part or all of the dielectric window is overheated, a process gas having a low decomposition temperature is decomposed before being introduced into the plasma processing vessel, and thus cannot be used. obtain.
 特許文献1は、ラジアルラインスロットアンテナ(Radial Line Slot Antenna:RLSA)を備えるマイクロ波プラズマ処理装置の冷却効率の向上及び励起効率の最適化について開示している。特許文献1に開示されているマイクロ波プラズマ処理装置は、スロット板の放射面及びシャワープレート(誘電体窓)と密接して配置され処理室外壁の一部を構成しているカバープレートと、スロット板上に配置され処理室外壁中を厚さ方向に流れる熱流を吸収する冷却器と、を備えている。誘電体窓に蓄積した熱は、カバープレート及びアンテナを介して吸収され、誘電体窓の過熱が防がれる。 Patent Document 1 discloses improvement of cooling efficiency and optimization of excitation efficiency of a microwave plasma processing apparatus including a radial line slot antenna (RLSA). A microwave plasma processing apparatus disclosed in Patent Document 1 includes a cover plate arranged in close contact with a radiation surface of a slot plate and a shower plate (dielectric window) and constituting a part of an outer wall of the processing chamber, and a slot A cooler that is disposed on the plate and absorbs a heat flow flowing in the thickness direction in the outer wall of the processing chamber. The heat accumulated in the dielectric window is absorbed through the cover plate and the antenna, and overheating of the dielectric window is prevented.
 一方、半導体素子の製造プロセスにおいても、製造コスト削減、環境負荷低減の観点から、省エネルギー化に対する要求はますます強まっている。上で述べたような温度調節に関する装置やシステムは、工業的生産プロセスの中でも大きなエネルギーを消費する。このため、半導体素子製造装置に備えられる温度調節機構の省エネルギー化についても、複数の先行技術が存在する。例えば、特許文献2には、制御手段と、熱媒体を蓄えるタンクと、熱媒体を被冷却物に供給し循環させるための流路及びポンプと、熱媒体をある設定温度以下に冷却する冷却装置と、熱媒体を設定温度に加熱する加熱手段と、を備え、冷却装置から排出される高温の水が加熱手段に供給されるよう構成された温度調節機構が開示されている。この温度調節機構によれば、半導体素子や液晶デバイスの製造装置の冷却に際して、エネルギー消費量を少なくすることができ、さらに装置全体を小型化できることが記載されている。 On the other hand, in the manufacturing process of semiconductor elements, the demand for energy saving is increasing more and more from the viewpoint of reducing manufacturing cost and environmental load. Devices and systems related to temperature control as described above consume large amounts of energy in industrial production processes. For this reason, there are a plurality of prior arts for energy saving of the temperature adjusting mechanism provided in the semiconductor element manufacturing apparatus. For example, Patent Literature 2 discloses a control unit, a tank for storing a heat medium, a flow path and a pump for supplying and circulating the heat medium to an object to be cooled, and a cooling device for cooling the heat medium to a predetermined temperature or lower. And a heating means for heating the heat medium to a set temperature, and a temperature adjustment mechanism configured to supply high-temperature water discharged from the cooling device to the heating means is disclosed. It is described that according to this temperature control mechanism, energy consumption can be reduced and the entire apparatus can be miniaturized when cooling a semiconductor device or a liquid crystal device manufacturing apparatus.
 また、特許文献3には、半導体素子製造装置から排出される温められた冷却水を加熱源として再利用する排熱利用システムが開示されている。このシステムでは、複数の半導体素子製造装置を有する半導体素子製造設備において、半導体素子製造装置から排出された室温よりも高い温度を有する中温冷却水が、中温冷却水供給ラインを介して第1の半導体素子製造装置に供給される。また、第2の半導体素子製造装置から排出された、中温冷却水よりもさらに高い温度を有する高温冷却水が、第3の半導体素子製造装置に加熱源として供給される。このシステムによれば、半導体素子製造設備の省エネルギー化が実現できることが記載されている。 Patent Document 3 discloses an exhaust heat utilization system that reuses warmed cooling water discharged from a semiconductor device manufacturing apparatus as a heating source. In this system, in a semiconductor element manufacturing facility having a plurality of semiconductor element manufacturing apparatuses, intermediate temperature cooling water having a temperature higher than room temperature discharged from the semiconductor element manufacturing apparatus passes through the intermediate temperature cooling water supply line. Supplied to the device manufacturing apparatus. Further, high-temperature cooling water having a temperature higher than that of the medium-temperature cooling water discharged from the second semiconductor element manufacturing apparatus is supplied to the third semiconductor element manufacturing apparatus as a heating source. According to this system, it is described that energy saving of a semiconductor device manufacturing facility can be realized.
特開2002-299330号公報JP 2002-299330 A 実用新案登録第3061067号公報Utility Model Registration No. 3061067 国際公開第2002/067301号パンフレットInternational Publication No. 2002/066731 Pamphlet
 均一なプラズマ処理が行われるためには、誘電体窓の上面部だけでなく、誘電体窓の側面部に対しても適切な温度制御が行われることが好ましい。しかし、特許文献1は、誘電体窓の側面部の温度制御については具体的に開示していない。仮に、誘電体窓の側面部の温度制御が、誘電体窓の上面部の温度制御に用いられた熱媒体を用いて行われる場合、誘電体窓の側面部の温度を精密に制御することは難しい。 In order to perform uniform plasma processing, it is preferable that appropriate temperature control is performed not only on the upper surface portion of the dielectric window but also on the side surface portion of the dielectric window. However, Patent Document 1 does not specifically disclose the temperature control of the side surface portion of the dielectric window. If the temperature control of the side surface portion of the dielectric window is performed using the heat medium used for the temperature control of the upper surface portion of the dielectric window, it is possible to precisely control the temperature of the side surface portion of the dielectric window. difficult.
 加えて、誘電体窓の上面部についても、従来一般的に行われている熱媒体の流量変化による温度制御は、応答性が十分でないという問題がある。例えば誘電体窓の温度が変化し続けているような場合、熱媒体の流量を変化させることのみによって、誘電体窓の温度分布を迅速かつ精密に制御することは難しい。 In addition, the upper surface portion of the dielectric window also has a problem that the temperature control by the change in the flow rate of the heat medium, which is generally performed conventionally, is not sufficiently responsive. For example, when the temperature of the dielectric window continues to change, it is difficult to quickly and accurately control the temperature distribution of the dielectric window only by changing the flow rate of the heat medium.
 また、実際の半導体素子製造プロセスにおいては、プラズマ発生条件を制御し又は調整するために、作業者がマイクロ波プラズマ処理装置に対して直接操作を行う場合がある。この場合において、マイクロ波プラズマ処理装置の一部が過熱された状態にあると、作業者が熱傷等を負う危険性がある。マイクロ波プラズマ処理装置の、少なくとも外部に面した部分の温度は、プラズマ処理が適切に行われる範囲においてできるだけ低く保たれていることが安全性確保の観点からも好ましい。 In an actual semiconductor element manufacturing process, an operator may directly operate the microwave plasma processing apparatus in order to control or adjust the plasma generation conditions. In this case, if a part of the microwave plasma processing apparatus is overheated, there is a risk that the operator may be burned. From the viewpoint of ensuring safety, it is preferable that the temperature of at least the portion facing the outside of the microwave plasma processing apparatus is kept as low as possible within a range where the plasma processing is appropriately performed.
 この発明は、こうした実情に鑑みてなされたものであり、プラズマ処理に用いる誘電体窓の温度を制御して良好なプラズマ処理を実現するとともに、装置全体を効率よく温度制御し、作業の安全性を確保することができる温度調節機構および温度調節機構を備えるプラズマ処理装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and realizes good plasma processing by controlling the temperature of the dielectric window used for plasma processing, and also efficiently controls the temperature of the entire apparatus, thereby ensuring work safety. It is an object of the present invention to provide a temperature control mechanism and a plasma processing apparatus including the temperature control mechanism.
 上記目的を達成するため、本発明の第1の観点に係る温度調節機構は、
 誘電体材料で形成された誘電体窓を備え内部を減圧可能な処理容器と、
 前記処理容器の外部に配置され少なくともその一部分が前記処理容器と接触し前記処理容器の熱が伝導する外部装置と、
を備えるプラズマ処理装置の温度調節機構であって、
 前記外部装置に熱媒体を循環させる外部装置冷却流路と、
 少なくともその一部分が前記誘電体窓との間で熱交換可能なように配置され前記誘電体窓の近傍に熱媒体を循環させる誘電体窓冷却流路と、
 前記熱媒体を所定の温度に調節する冷却装置と、
 前記誘電体窓冷却流路に流入する前記熱媒体をあらかじめ所定の温度に加熱する加熱手段と、を備え、
 前記外部装置冷却流路から流出した前記熱媒体は、前記誘電体窓冷却流路に流入する前に前記冷却装置若しくは前記加熱手段又はその両方によって所定の温度に調節されるよう構成されている、
ことを特徴とする。
In order to achieve the above object, a temperature adjustment mechanism according to the first aspect of the present invention includes:
A processing vessel having a dielectric window formed of a dielectric material and capable of reducing the pressure inside;
An external device disposed outside the processing vessel and at least a portion of which is in contact with the processing vessel and conducts heat of the processing vessel;
A temperature control mechanism of a plasma processing apparatus comprising:
An external device cooling flow path for circulating a heat medium in the external device;
A dielectric window cooling flow path that is arranged so that at least a portion thereof can exchange heat with the dielectric window and circulates a heat medium in the vicinity of the dielectric window;
A cooling device for adjusting the heat medium to a predetermined temperature;
Heating means for heating the heat medium flowing into the dielectric window cooling channel to a predetermined temperature in advance,
The heat medium flowing out from the external device cooling channel is configured to be adjusted to a predetermined temperature by the cooling device and / or the heating means before flowing into the dielectric window cooling channel,
It is characterized by that.
 好ましくは、前記温度調節機構は、
 前記誘電体窓冷却流路のうち前記冷却装置から流出した熱媒体が前記加熱手段へと向かう部分と、
 前記外部装置冷却流路のうち前記外部装置から流出した前記熱媒体が前記冷却装置へと向かう部分、若しくは前記誘電体窓冷却流路のうち前記誘電体窓と接する部分から流出した前記熱媒体が前記冷却装置へと向かう部分、又はその両方と、
の間で熱交換を行うための熱交換器をさらに備える。
Preferably, the temperature adjustment mechanism includes:
A portion of the dielectric window cooling flow path where the heat medium flowing out of the cooling device is directed to the heating means;
Of the external device cooling flow path, the heat medium flowing out from the external device is directed to the cooling device, or the heat medium flowing out of the dielectric window cooling flow path from the portion in contact with the dielectric window is A portion toward the cooling device, or both,
A heat exchanger for exchanging heat between the two.
 好ましくは、前記誘電体窓冷却流路は、
 前記誘電体窓の、前記処理容器の外側に位置する面の近傍に前記熱媒体を循環させる上面部冷却流路と、
 前記処理容器の、前記誘電体窓の主面の延長方向に位置する部分に熱媒体を循環させる側面部冷却流路と、を備え、
 前記上面部冷却流路から流出した前記熱媒体は、前記側面部冷却流路に流入する前に、前記冷却装置若しくは前記加熱手段又はその両方によって温度調節されるよう構成されている。
Preferably, the dielectric window cooling channel is
An upper surface cooling channel for circulating the heat medium in the vicinity of a surface of the dielectric window located outside the processing container;
A side surface cooling channel that circulates a heat medium in a portion of the processing vessel located in the extending direction of the main surface of the dielectric window;
The heat medium flowing out from the upper surface cooling channel is configured to be temperature-controlled by the cooling device and / or the heating means before flowing into the side surface cooling channel.
 さらに好ましくは、前記誘電体窓冷却流路は、前記熱媒体が前記上面部冷却流路に流入する前に前記熱媒体を第1の温度に加熱する第1の加熱手段と、
 前記熱媒体が前記側面部冷却流路に流入する前に前記熱媒体を第2の温度に加熱する第2の加熱手段と、
をさらに備えることを特徴とする。
More preferably, the dielectric window cooling channel includes a first heating unit that heats the heating medium to a first temperature before the heating medium flows into the upper surface cooling channel.
A second heating means for heating the heat medium to a second temperature before the heat medium flows into the side surface cooling channel;
Is further provided.
 上記目的を達成するため、本発明の第2の観点に係るプラズマ処理装置は、
 本発明の第1の観点にかかる温度調節機構を備えることを特徴とする。
In order to achieve the above object, a plasma processing apparatus according to the second aspect of the present invention provides:
The temperature control mechanism according to the first aspect of the present invention is provided.
 本発明の温度調節機構および温度調節機構を用いるプラズマ処理装置によれば、プラズマ処理に用いる誘電体窓の温度を制御して良好なプラズマ処理特性を実現するとともに、装置全体を効率よく温度制御し、作業の安全性を確保することができる。 According to the temperature control mechanism and the plasma processing apparatus using the temperature control mechanism of the present invention, the temperature of the dielectric window used for the plasma processing is controlled to achieve good plasma processing characteristics, and the temperature of the entire apparatus can be controlled efficiently. , Work safety can be ensured.
本発明の第1実施形態に係るプラズマ処理装置の構成を示す概略図である。It is the schematic which shows the structure of the plasma processing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るプラズマ処理装置の温度調節機構を示すブロック図である。It is a block diagram which shows the temperature control mechanism of the plasma processing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るプラズマ処理装置の温度調節機構を示すブロック図である。It is a block diagram which shows the temperature control mechanism of the plasma processing apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態の変形例1に係るプラズマ処理装置の温度調節機構を示すブロック図である。It is a block diagram which shows the temperature control mechanism of the plasma processing apparatus which concerns on the modification 1 of 3rd Embodiment of this invention. 本発明の第3実施形態の変形例2に係るプラズマ処理装置の温度調節機構を示すブロック図である。It is a block diagram which shows the temperature control mechanism of the plasma processing apparatus which concerns on the modification 2 of 3rd Embodiment of this invention.
 以下、本発明の実施の形態に係るプラズマ処理装置及び温度調節機構について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。 Hereinafter, a plasma processing apparatus and a temperature control mechanism according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
(第1実施形態)
 図1に示すように、プラズマ処理装置1は、処理容器(チャンバ)8、アンテナ9、導波管15、冷却ジャケット6、ステージ7、排気チャンバ11、温度センサ16、チラー20、ヒータ25を備えている。
(First embodiment)
As shown in FIG. 1, the plasma processing apparatus 1 includes a processing vessel (chamber) 8, an antenna 9, a waveguide 15, a cooling jacket 6, a stage 7, an exhaust chamber 11, a temperature sensor 16, a chiller 20, and a heater 25. ing.
 処理容器8は、誘電体窓8a、保持リング8b、下部容器8cを備える。 The processing container 8 includes a dielectric window 8a, a holding ring 8b, and a lower container 8c.
 処理容器8は密封可能に構成される。処理容器8を密封することで、処理容器8の内部の圧力を所定の値に保つことが可能となる。また、処理容器8を密封することで、処理容器8の内部で生じたプラズマを処理容器8の内部に封止することが可能となる。 Processing container 8 is configured to be sealable. By sealing the processing container 8, the pressure inside the processing container 8 can be maintained at a predetermined value. Further, by sealing the processing container 8, it is possible to seal the plasma generated inside the processing container 8 inside the processing container 8.
 誘電体窓8aは、例えばSiOやAlなどの、マイクロ波を透過させる誘電体材料からなる。誘電体窓8aはアンテナ9から供給されたマイクロ波を処理容器8の内部へ透過させる。また、誘電体窓8aは、保持リング8bに嵌合されて処理容器8の蓋としての役割も果たす。さらに、誘電体窓8aは、シャワープレートとしての機能を有する。ガス供給手段(図示せず)から供給されたガスは、誘電体窓8aを通じて、空間Sへと均一に供給される。 The dielectric window 8a is made of a dielectric material that transmits microwaves, such as SiO 2 or Al 2 O 3 . The dielectric window 8 a transmits the microwave supplied from the antenna 9 into the processing container 8. Further, the dielectric window 8a is fitted into the holding ring 8b and also serves as a lid for the processing vessel 8. Furthermore, the dielectric window 8a functions as a shower plate. A gas supplied from a gas supply means (not shown) is uniformly supplied to the space S through the dielectric window 8a.
 保持リング8bは、アルミニウム(Al)等の金属からなる。その内壁面には、例えば酸化処理により酸化アルミニウム等からなる保護膜が形成されている。保持リング8bは、下部容器8cの上に組み付けられている。保持リング8bは、処理容器8の天井側へ向かってリング径(内径)が拡大する同心円状の段差を有している。この段差は、誘電体窓8aの下面周縁部を支持している。 The holding ring 8b is made of a metal such as aluminum (Al). A protective film made of aluminum oxide or the like is formed on the inner wall surface by, for example, oxidation treatment. The holding ring 8b is assembled on the lower container 8c. The holding ring 8 b has a concentric step whose ring diameter (inner diameter) increases toward the ceiling side of the processing container 8. This step supports the peripheral edge of the lower surface of the dielectric window 8a.
 また、保持リング8bは、誘電体窓8aの側面部を冷却する手段を備える。具体的には、保持リング8bは、その内部に、チラー20から供給された熱媒体を流通させるための冷却流路22を備える。誘電体窓8aの側面部は、チラー20によって所定の温度に調節された熱媒体が冷却流路22内を流通することにより、冷却される。 The holding ring 8b includes means for cooling the side surface of the dielectric window 8a. Specifically, the holding ring 8b includes a cooling flow path 22 for circulating the heat medium supplied from the chiller 20 therein. The side surface portion of the dielectric window 8 a is cooled as the heat medium adjusted to a predetermined temperature by the chiller 20 flows through the cooling flow path 22.
 下部容器8cは、Al等の金属からなる。その内壁面には、例えば酸化処理により酸化アルミニウム等からなる保護膜が形成されている。下部容器8cの底部には、排気チャンバ11が組み付けられている。 The lower container 8c is made of a metal such as Al. A protective film made of aluminum oxide or the like is formed on the inner wall surface by, for example, oxidation treatment. An exhaust chamber 11 is assembled at the bottom of the lower container 8c.
 アンテナ9はRLSA(Radial Line Slot Antenna)であり、導波部9a、スロット板9b、遅波板9cからなる。アンテナ9は、誘電体窓8aと密接して配置されている。導波部9aは、マイクロ波を透過させないシールド部材で構成されている。遅波板9cはSiOやAlなどの誘電体材料から構成されている。遅波板9cは、導波部9aとスロット板9bとの間に配置されている。遅波板9cは、マイクロ波の波長を圧縮する役割を有する。 The antenna 9 is an RLSA (Radial Line Slot Antenna) and includes a waveguide portion 9a, a slot plate 9b, and a slow wave plate 9c. The antenna 9 is disposed in close contact with the dielectric window 8a. The waveguide portion 9a is composed of a shield member that does not transmit microwaves. The slow wave plate 9c is made of a dielectric material such as SiO 2 or Al 2 O 3 . The slow wave plate 9c is disposed between the waveguide portion 9a and the slot plate 9b. The slow wave plate 9c has a role of compressing the wavelength of the microwave.
 導波管15は、アンテナ9に接続されている。導波管15は外側導波管15aと内側導波管15bとからなる同軸導波管である。外側導波管15aはアンテナ9の導波部9aに接続されている。内側導波管15bはスロット板9bに接続されている。 The waveguide 15 is connected to the antenna 9. The waveguide 15 is a coaxial waveguide composed of an outer waveguide 15a and an inner waveguide 15b. The outer waveguide 15 a is connected to the waveguide portion 9 a of the antenna 9. The inner waveguide 15b is connected to the slot plate 9b.
 冷却ジャケット6は、アンテナ9の上に密接して配置されている。冷却ジャケット6は、アルミニウム(Al)等の高い熱拡散率を有する材料で形成されている。冷却ジャケット6は、内部に冷却流路21を備える。冷却流路21は、熱媒体が冷却ジャケット6の内部全体に行き渡るように形成されている。アンテナ9、及び誘電体窓8aの上面部は、チラー20によって供給された熱媒体が冷却流路21の内部を流通することにより冷却される。 The cooling jacket 6 is arranged in close contact with the antenna 9. The cooling jacket 6 is made of a material having a high thermal diffusivity such as aluminum (Al). The cooling jacket 6 includes a cooling channel 21 inside. The cooling flow path 21 is formed so that the heat medium spreads over the entire interior of the cooling jacket 6. The antenna 9 and the upper surface portion of the dielectric window 8 a are cooled by the heat medium supplied by the chiller 20 flowing through the cooling flow path 21.
 ステージ7は、処理容器8の内部に配置されている。ステージ7は、被処理基板Wを固定する役割を有する。また、ステージ7にはヒータ(図示せず)が組み付けられている。ヒータは必要に応じて被処理基板Wを加熱し、被処理基板Wを適切な温度に調節する役割を有する。 The stage 7 is disposed inside the processing container 8. The stage 7 has a role of fixing the substrate W to be processed. Further, a heater (not shown) is assembled to the stage 7. The heater has a role of heating the substrate W to be processed as necessary and adjusting the substrate W to an appropriate temperature.
 排気チャンバ11は、処理容器8の下面に密接して配置されている。排気チャンバ11と処理容器8とは、図1に示すように、連通孔11aにより連通されている。処理容器8の内部が減圧される場合、処理容器8の内部の気体は、この連通孔11aを通じて排気される。また、排気チャンバ11は、図1に示すように、その内部に冷却流路23を備える。排気チャンバ11は、チラー20によって所定の温度に調節された熱媒体が冷却流路23の内部を流通することにより、冷却される。 The exhaust chamber 11 is disposed in close contact with the lower surface of the processing container 8. As shown in FIG. 1, the exhaust chamber 11 and the processing container 8 are communicated with each other through a communication hole 11a. When the inside of the processing container 8 is depressurized, the gas inside the processing container 8 is exhausted through the communication hole 11a. Further, as shown in FIG. 1, the exhaust chamber 11 includes a cooling flow path 23 therein. The exhaust chamber 11 is cooled as the heat medium adjusted to a predetermined temperature by the chiller 20 flows through the cooling flow path 23.
 支持軸7aは、図1に示すように、連通孔11aを貫いて配置され、ステージ7を支持している。支持軸7aの下端は、図1に示すように、排気チャンバ11の内壁に接している。支持軸7aと連通孔11aの内壁との間には、図1に示すように、間隙が形成されている。処理容器8の内部の排気は、この間隙を通じて行われる。 As shown in FIG. 1, the support shaft 7 a is disposed through the communication hole 11 a and supports the stage 7. The lower end of the support shaft 7a is in contact with the inner wall of the exhaust chamber 11 as shown in FIG. A gap is formed between the support shaft 7a and the inner wall of the communication hole 11a as shown in FIG. The inside of the processing container 8 is exhausted through this gap.
 支持台12は、図1に示すように、排気チャンバ11の外壁に組み付けられ、支持軸7aを固定している。支持台12は、その内部に冷却流路24を備える。支持台12は、チラー20によって所定の温度に調節された熱媒体が冷却流路24の内部を流通することにより冷却される。 As shown in FIG. 1, the support base 12 is assembled to the outer wall of the exhaust chamber 11 to fix the support shaft 7a. The support base 12 includes a cooling flow path 24 therein. The support 12 is cooled by the heat medium adjusted to a predetermined temperature by the chiller 20 flowing through the cooling flow path 24.
 温度センサ16は、導波管15の周囲をはじめ、必要な数が配置されている(図1では、1つの温度センサ16のみが図示され、他の温度センサ16は省略されている)。温度センサ16は、誘電体窓8aやアンテナ9等の温度を検出する。温度センサ16は、例えばファイバセンサ等からなる。 The required number of the temperature sensors 16 including the periphery of the waveguide 15 is arranged (in FIG. 1, only one temperature sensor 16 is illustrated, and the other temperature sensors 16 are omitted). The temperature sensor 16 detects the temperature of the dielectric window 8a, the antenna 9, and the like. The temperature sensor 16 is composed of, for example, a fiber sensor.
 チラー20は、熱媒体を所定の温度に調節し、プラズマ処理装置1に備えられている各冷却流路に供給する。熱媒体としては、例えばシリコーンオイル、フッ素系液体、又はエチレングリコール等の液体を用いることができる。 The chiller 20 adjusts the heat medium to a predetermined temperature and supplies it to each cooling flow path provided in the plasma processing apparatus 1. As the heat medium, for example, a liquid such as silicone oil, fluorine-based liquid, or ethylene glycol can be used.
 ヒータ25は、チラー20と、冷却流路21,22との間に配置されている。ヒータ25は、冷却流路21に供給される熱媒体を加熱するヒータ25aと、冷却流路22に供給される熱媒体を加熱する25bとからなる。ヒータ25は、チラー20から供給された熱媒体を必要に応じて加熱する。ヒータ25a,25bは、それぞれ独立に設定された発熱量で熱媒体を加熱することができる。 The heater 25 is disposed between the chiller 20 and the cooling channels 21 and 22. The heater 25 includes a heater 25 a that heats the heat medium supplied to the cooling flow path 21 and a heater 25 b that heats the heat medium supplied to the cooling flow path 22. The heater 25 heats the heat medium supplied from the chiller 20 as necessary. The heaters 25a and 25b can heat the heat medium with a calorific value set independently.
 プラズマ処理装置1の動作について説明する。プラズマ処理が行われる際、処理容器8内は、真空ポンプによって減圧される。ステージ7の上面には、被処理基板Wが固定されている。 The operation of the plasma processing apparatus 1 will be described. When plasma processing is performed, the inside of the processing container 8 is depressurized by a vacuum pump. A substrate to be processed W is fixed on the upper surface of the stage 7.
 ガス供給手段から、アルゴン(Ar)またはキセノン(Xe)、および窒素(N)などの不活性ガスと、必要に応じて例えば水素、C5F8などのプロセスガスが、誘電体窓8aを通じて空間Sへと供給される。 An inert gas such as argon (Ar) or xenon (Xe) and nitrogen (N 2 ), and a process gas such as hydrogen or C5F8, for example, from the gas supply means to the space S through the dielectric window 8a. Supplied with.
 マイクロ波は、マイクロ波源から導波管15を通じて供給される。供給されたマイクロ波は、導波部9aとスロット板9bとの間を、処理容器8の径方向に広がり、スロット板9bに形成されているスロット(開口部)から放射される。このとき、マイクロ波は円偏波を形成している。 The microwave is supplied from the microwave source through the waveguide 15. The supplied microwave spreads in the radial direction of the processing container 8 between the waveguide portion 9a and the slot plate 9b, and is radiated from a slot (opening) formed in the slot plate 9b. At this time, the microwave forms a circularly polarized wave.
 供給されたマイクロ波は、空間Sに存在しているガス分子を電離させ、プラズマを発生させる。この結果、ステージ7に載置された被処理基板Wの被処理面に対してプラズマ処理が行われる。プラズマ処理装置1を用いて行われる処理としては、例えば、いわゆるCVD(Chemical Vapor Deposition)による絶縁膜などの成膜や、いわゆるRIE(Reactive Ion Etching)によるエッチングが挙げられる。プラズマ処理が終了すると、処理された基板は搬出され、次の被処理基板Wが搬入されるという一連の流れが繰り返され、所定枚数の基板に対して所定のプラズマ処理が行われる。 Supplied microwaves ionize gas molecules existing in the space S and generate plasma. As a result, the plasma processing is performed on the target surface of the target substrate W placed on the stage 7. Examples of the process performed using the plasma processing apparatus 1 include film formation of an insulating film by so-called CVD (Chemical Vapor Deposition) and etching by so-called RIE (Reactive Ion Etching). When the plasma processing is completed, the processed substrate is unloaded, and a series of flows in which the next substrate to be processed W is loaded is repeated, and predetermined plasma processing is performed on a predetermined number of substrates.
 プラズマ処理が行われる際、誘電体窓8aには熱が蓄積し、誘電体窓8a及びその周辺部は高温になる。誘電体窓8aの過熱を防ぐため、チラー20は、冷却ジャケット6の内部に備えられた冷却流路21に、所定の温度に調節された熱媒体を供給する。冷却ジャケット6はアンテナ9に密接して配置されているため、アンテナ9及び誘電体窓8aの上面部を効率よく冷却できる。このようにして、誘電体窓8a及びアンテナ9の過熱が防がれる。また、冷却ジャケット6はアンテナ9に密接して配置されているため、アンテナ9及び誘電体窓8a以外の部分の温度には影響を与えにくい。このため、プラズマ処理装置1全体の温度分布を精密に制御することができる。 When the plasma treatment is performed, heat is accumulated in the dielectric window 8a, and the dielectric window 8a and its surroundings become high temperature. In order to prevent overheating of the dielectric window 8a, the chiller 20 supplies a heat medium adjusted to a predetermined temperature to the cooling flow path 21 provided inside the cooling jacket 6. Since the cooling jacket 6 is disposed in close contact with the antenna 9, the upper surface of the antenna 9 and the dielectric window 8a can be efficiently cooled. In this way, overheating of the dielectric window 8a and the antenna 9 is prevented. In addition, since the cooling jacket 6 is disposed in close contact with the antenna 9, the temperature of the portions other than the antenna 9 and the dielectric window 8a is hardly affected. For this reason, the temperature distribution of the whole plasma processing apparatus 1 can be controlled precisely.
 チラー20は、保持リング8bの内部に備えられた冷却流路22にも熱媒体を供給する。冷却流路22の内部を流通する熱媒体は、誘電体窓8aの側面部を冷却する。誘電体窓8aの上面部と側面部とを、それぞれ独立に設けられた冷却流路を用いて冷却することで、例えば冷却流路21から流出した熱媒体が温度調節されることなく冷却流路22に直接流入する場合に比べ、誘電体窓8aをより効率よく冷却することができる。なお、冷却流路21へと供給される熱媒体と、冷却流路22へと供給される熱媒体とを同じものとすることで、チラー20を複数設ける必要がなくなる。このようにすることで、プラズマ処理装置1の小型化が可能となる。 The chiller 20 also supplies a heat medium to the cooling flow path 22 provided inside the holding ring 8b. The heat medium that circulates inside the cooling flow path 22 cools the side surface of the dielectric window 8a. By cooling the upper surface portion and the side surface portion of the dielectric window 8a using cooling channels provided independently of each other, for example, the temperature of the heat medium flowing out from the cooling channel 21 is not adjusted and the cooling channel The dielectric window 8a can be cooled more efficiently as compared with the case where it directly flows into the heater 22. In addition, it is not necessary to provide a plurality of chillers 20 by making the heat medium supplied to the cooling flow path 21 and the heat medium supplied to the cooling flow path 22 the same. By doing so, the plasma processing apparatus 1 can be downsized.
 プラズマ処理中、誘電体窓8aの中心部と周縁部との間に温度差が生じる場合がある。例えば、誘電体窓8aの周縁部の温度が、中心部の温度よりも低くなる場合がある。この場合、局所的に熱膨張が起こることによって装置に歪みが生じたり、発生するプラズマの均一性が損なわれたりするという問題がある。 During the plasma processing, there may be a temperature difference between the central portion and the peripheral portion of the dielectric window 8a. For example, the temperature of the peripheral portion of the dielectric window 8a may be lower than the temperature of the central portion. In this case, there is a problem that the apparatus is distorted due to local thermal expansion or the uniformity of the generated plasma is impaired.
 ここで、プラズマ処理装置1は、チラー20と冷却流路21,22との間にヒータ25を備える。制御部(プラズマ処理装置1の構造を理解しやすくするため、図面では制御部は省略されている。)が温度センサ16を通じて誘電体窓8aの中心部と周縁部との間の温度差を検出した場合、制御部はヒータ25aと25bとをそれぞれ独立に制御して、冷却流路21へ供給される熱媒体と、冷却流路22へ供給される熱媒体とを、それぞれ異なる発熱量で加熱する。例えば、誘電体窓8aの周縁部の温度が中心部よりも低い場合、制御部は、ヒータ25bがヒータ25aよりも大きい発熱量で熱媒体を加熱するよう、ヒータ25を制御する。このようにすることで、誘電体窓8aの温度を迅速かつ精密に制御することができる。この結果、誘電体窓8aの温度分布の均一性が保たれ、被処理基板Wの被処理面全面に対して、より均一なプラズマ処理を行うことが可能となる。なお、ここでは制御部がヒータ25の発熱量のみを制御する例を示したが、制御部はヒータ25の発熱量を制御すると共にチラー20を制御して、冷却流路22へと供給する熱媒体の流量を冷却流路21へと供給する熱媒体の流量よりも小さくするよう設定されていてもよい。 Here, the plasma processing apparatus 1 includes a heater 25 between the chiller 20 and the cooling channels 21 and 22. The control unit (the control unit is omitted in the drawing for easy understanding of the structure of the plasma processing apparatus 1) detects a temperature difference between the central portion and the peripheral portion of the dielectric window 8a through the temperature sensor 16. In this case, the control unit controls the heaters 25a and 25b independently to heat the heat medium supplied to the cooling flow path 21 and the heat medium supplied to the cooling flow path 22 with different calorific values. To do. For example, when the temperature of the peripheral portion of the dielectric window 8a is lower than the center portion, the control unit controls the heater 25 so that the heater 25b heats the heat medium with a larger amount of heat generation than the heater 25a. By doing in this way, the temperature of the dielectric window 8a can be controlled quickly and precisely. As a result, the uniformity of the temperature distribution of the dielectric window 8a is maintained, and a more uniform plasma process can be performed on the entire surface to be processed of the substrate W to be processed. Here, an example in which the control unit controls only the heat generation amount of the heater 25 is shown, but the control unit controls the heat generation amount of the heater 25 and controls the chiller 20 to supply heat to the cooling flow path 22. The flow rate of the medium may be set to be smaller than the flow rate of the heat medium supplied to the cooling flow path 21.
 本実施形態では誘電体窓8aの上面部と側面部にそれぞれ冷却流路21,22を設ける例を示したが、誘電体窓8aの上面部又は側面部のどちらか一方に、対応する冷却流路21又は22の一方のみを備えていてもよい。この場合も、プラズマ処理装置1がヒータ25を備えることで、誘電体窓8aの温度をより精密に制御することができる。さらに、熱媒体の流量のみを変化させる場合に比べて、温度変化に対する応答性が高いため、温度制御にかかる時間を短縮できる。 In the present embodiment, an example in which the cooling channels 21 and 22 are provided in the upper surface portion and the side surface portion of the dielectric window 8a, respectively, but the corresponding cooling flow is provided in either the upper surface portion or the side surface portion of the dielectric window 8a. Only one of the paths 21 or 22 may be provided. Also in this case, since the plasma processing apparatus 1 includes the heater 25, the temperature of the dielectric window 8a can be controlled more precisely. Furthermore, compared with the case where only the flow rate of the heat medium is changed, the responsiveness to the temperature change is high, so the time required for temperature control can be shortened.
 また、本実施形態では、冷却流路21,22の両方にそれぞれヒータ25a,25bを設ける例を示したが、1つのヒータ25が、冷却流路21,22によって共有されていてもよい。誘電体窓8aの中心部と周縁部との温度差がそれほど大きくない場合は、このようにすることで、装置全体の構成を簡素化することができる。 In the present embodiment, the heaters 25a and 25b are provided in both the cooling channels 21 and 22, respectively. However, one heater 25 may be shared by the cooling channels 21 and 22. When the temperature difference between the central portion and the peripheral portion of the dielectric window 8a is not so large, the configuration of the entire apparatus can be simplified by doing so.
 一方、処理容器8の外側にある排気チャンバ11及び支持台12は、処理容器8の熱が伝導することにより高温となっている。特に、支持軸7aを介してステージ7を支持している支持台12は高温となりやすい。これは、ステージ7に被処理基板Wを加熱するためのヒータ(図示せず)が組み付けられているためである。ヒータの熱が支持軸7aを介して伝導するため、支持台12は特に高温となりやすい。 On the other hand, the exhaust chamber 11 and the support 12 on the outside of the processing container 8 are at a high temperature as the heat of the processing container 8 is conducted. In particular, the support base 12 that supports the stage 7 via the support shaft 7a tends to be hot. This is because a heater (not shown) for heating the substrate to be processed W is assembled to the stage 7. Since the heat of the heater is conducted through the support shaft 7a, the support base 12 is likely to be particularly hot.
 排気チャンバ11および支持台12は、処理容器8の外側に配置されているため、作業者はこれらに容易に触れることができる。プラズマ処理装置1は、プラズマ処理条件の調整や制御のため、作業者によって直接操作される場合がある。この際、排気チャンバ11や支持台12の温度が高いと、作業者が接触した場合に熱傷等を負う可能性があり、危険である。作業時における作業者の安全性を確保するためには、排気チャンバ11及び支持台12は、ある程度冷却されている必要がある。しかし、温度が低過ぎると、プラズマ処理装置1内に堆積物が付着し、生産性の低下や装置の不具合を招くという問題がある。 Since the exhaust chamber 11 and the support base 12 are disposed outside the processing container 8, the operator can easily touch them. The plasma processing apparatus 1 may be directly operated by an operator in order to adjust or control plasma processing conditions. At this time, if the temperature of the exhaust chamber 11 or the support base 12 is high, there is a possibility that the operator may be burned or the like when in contact with the worker. In order to ensure the safety of workers during work, the exhaust chamber 11 and the support base 12 need to be cooled to some extent. However, when the temperature is too low, there is a problem that deposits adhere to the plasma processing apparatus 1, resulting in a decrease in productivity and malfunction of the apparatus.
 ここで、プラズマ処理装置1は、図1に示す通り、排気チャンバ11の内部及び支持台12の内部にそれぞれ冷却流路23,24を備えている。チラー20から供給された熱媒体が冷却流路23,24内を熱媒体が流通することで、排気チャンバ11及び支持台12は作業者が接触した場合でも熱傷を負わない程度にまで冷却される。このようにして、作業時の安全性を確保することができる。チラー20により供給される熱媒体の温度を適切な範囲に保つことで、排気チャンバ11及び支持台12の温度を、作業時の安全性を確保でき、なおかつプラズマ処理装置1内への堆積物の付着を抑制できる範囲に制御することができる。この結果、プラズマ処理装置1内のプラズマ発生条件を安定化させ、被処理基板の被処理面全面に対して、均一なプラズマ処理を行うことができる。 Here, as shown in FIG. 1, the plasma processing apparatus 1 includes cooling flow paths 23 and 24 inside the exhaust chamber 11 and inside the support base 12, respectively. When the heat medium supplied from the chiller 20 flows through the cooling flow paths 23 and 24, the exhaust chamber 11 and the support 12 are cooled to the extent that they do not get burned even when the operator comes into contact with them. . In this way, safety during work can be ensured. By keeping the temperature of the heat medium supplied by the chiller 20 within an appropriate range, the temperatures of the exhaust chamber 11 and the support 12 can be secured during operation, and deposits in the plasma processing apparatus 1 can be secured. It can control to the range which can suppress adhesion. As a result, the plasma generation conditions in the plasma processing apparatus 1 can be stabilized, and uniform plasma processing can be performed on the entire surface to be processed of the substrate to be processed.
 なお、冷却流路23,24に供給される熱媒体の流量を、誘電体窓8aを冷却するための冷却流路21,22とは別に、独立して制御できるように設計されていてもよい。このようにすることで、排気チャンバ11及び支持台12の温度を、その温度変化に対応してより迅速に制御することができる。 The flow rate of the heat medium supplied to the cooling channels 23 and 24 may be designed so that it can be controlled independently of the cooling channels 21 and 22 for cooling the dielectric window 8a. . By doing in this way, the temperature of the exhaust chamber 11 and the support stand 12 can be controlled more quickly in response to the temperature change.
 冷却流路23,24に供給される熱媒体の種類は、冷却流路21,22に供給される熱媒体と同じ種類のものを用いることができる。冷却流路23,24に供給される熱媒体を、冷却流路21,22に供給されるものと同じ種類とすることで、1台のチラー20を複数の流路で共有することができる。この結果、複数のチラー20を設ける必要がなくなり、プラズマ処理装置1の小型化が可能となる。 The kind of the heat medium supplied to the cooling channels 23 and 24 can be the same type as the heat medium supplied to the cooling channels 21 and 22. By using the same type of heat medium supplied to the cooling channels 23 and 24 as that supplied to the cooling channels 21 and 22, one chiller 20 can be shared by a plurality of channels. As a result, there is no need to provide a plurality of chillers 20, and the plasma processing apparatus 1 can be downsized.
 1台のチラー20が共有される場合、各冷却流路に供給される熱媒体のうち、最も低い温度に保たれるべき熱媒体の温度に合わせて、チラー20の設定温度が定められる。一般的に排気チャンバ11及び支持台12の温度は、作業時の安全確保のため、誘電体窓8aよりも低く保たれることが好ましい。この場合、チラー20の設定温度は、排気チャンバ11の冷却流路23及び支持台12の冷却流路24に供給されるべき熱媒体の温度に合わせて定められる。一方、誘電体窓8aの冷却流路21,22に供給される熱媒体は、必要に応じて、ヒータ25a,25bによってあらかじめ加熱される。このように、1台のチラー20が複数の流路で共有される場合でも、プラズマ処理装置1がヒータ25a,25bを備えることにより、各冷却流路に、それぞれ適切な温度に調節された熱媒体を供給することができる。この結果、プラズマ処理装置1の温度分布をより精密に制御することができる。 When one chiller 20 is shared, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be kept at the lowest temperature among the heat medium supplied to each cooling flow path. In general, the temperatures of the exhaust chamber 11 and the support 12 are preferably kept lower than the dielectric window 8a in order to ensure safety during work. In this case, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the cooling flow path 23 of the exhaust chamber 11 and the cooling flow path 24 of the support 12. On the other hand, the heat medium supplied to the cooling channels 21 and 22 of the dielectric window 8a is preheated by the heaters 25a and 25b as necessary. As described above, even when one chiller 20 is shared by a plurality of flow paths, the plasma processing apparatus 1 includes the heaters 25a and 25b, so that each cooling flow path has heat adjusted to an appropriate temperature. Media can be supplied. As a result, the temperature distribution of the plasma processing apparatus 1 can be controlled more precisely.
 ところで、各冷却流路からチラー20へ戻る熱媒体は、チラー20から各冷却流路に供給される熱媒体よりも温度が高い。この温度差を有効に利用するため、プラズマ処理装置1は、チラー20から供給された熱媒体がヒータ25a,25bに流入するまでの間の部分と、熱媒体が各冷却流路からチラー20に戻るまでの部分と、の間に、熱交換器を備えてもよい。この部分に熱交換器を備えることによって、チラー20へと戻る熱媒体を冷却し、かつ、ヒータ25a,25bに流入する熱媒体を加熱することができる。この結果、チラー20、ヒータ25a,25bの負荷が軽減され、プラズマ処理装置1の温度調節に要するエネルギーを少なくすることができる。 By the way, the heat medium returning from each cooling channel to the chiller 20 has a higher temperature than the heat medium supplied from the chiller 20 to each cooling channel. In order to effectively use this temperature difference, the plasma processing apparatus 1 includes a portion until the heat medium supplied from the chiller 20 flows into the heaters 25a and 25b, and the heat medium from each cooling channel to the chiller 20. You may provide a heat exchanger between the parts until it returns. By providing a heat exchanger in this portion, the heat medium returning to the chiller 20 can be cooled, and the heat medium flowing into the heaters 25a and 25b can be heated. As a result, the load on the chiller 20 and the heaters 25a and 25b is reduced, and the energy required for temperature adjustment of the plasma processing apparatus 1 can be reduced.
 次に、本発明の実施形態に係る温度調節機構の具体的な動作について、図2~5を参照しながら詳細に説明する。以下の説明においては、排気チャンバ11と、支持台12とをまとめて外部機構10と呼称する。また、それぞれの内部に設けられている冷却流路23,24をまとめて外部冷却流路27と呼称する。なお、図2~5においては、発明の理解を容易にするために一部の構成要素が省略されている。省略されている構成要素については、本発明の第1実施形態に係るプラズマ処理装置1と同じである。 Next, a specific operation of the temperature adjustment mechanism according to the embodiment of the present invention will be described in detail with reference to FIGS. In the following description, the exhaust chamber 11 and the support 12 are collectively referred to as the external mechanism 10. In addition, the cooling channels 23 and 24 provided inside each are collectively referred to as an external cooling channel 27. 2 to 5, some components are omitted for easy understanding of the invention. The omitted components are the same as those of the plasma processing apparatus 1 according to the first embodiment of the present invention.
(第2実施形態)
 本発明の第2実施形態に係るプラズマ処理装置2の温度調節機構について、図2を参照しながら説明する。図2に示すように、プラズマ処理装置2は、チラー20と、誘電体窓8aを冷却するための冷却流路21と、ヒータ25と、外部機構10を冷却するための外部冷却流路27と、熱交換器26a,26bと、を備えている。破線で囲まれた部分は、それぞれ冷却流路21及び外部冷却流路27の内部を流れる熱媒体によって冷却される部分(被冷却部)である。プラズマ処理装置2においては、被冷却部はそれぞれ誘電体窓8a及び外部機構10である。冷却流路21は、誘電体窓8aの上面に接して配置されている。冷却流路21は、アンテナ9(図2では、アンテナ9は省略されている)の上面部全体を覆うよう配置されている。一方、外部冷却流路27は、外部機構10の内部に設けられている。
(Second Embodiment)
A temperature adjustment mechanism of the plasma processing apparatus 2 according to the second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 2, the plasma processing apparatus 2 includes a chiller 20, a cooling channel 21 for cooling the dielectric window 8a, a heater 25, and an external cooling channel 27 for cooling the external mechanism 10. And heat exchangers 26a and 26b. The portions surrounded by the broken lines are portions (cooled portions) that are cooled by the heat medium flowing inside the cooling flow path 21 and the external cooling flow path 27, respectively. In the plasma processing apparatus 2, the portions to be cooled are the dielectric window 8a and the external mechanism 10, respectively. The cooling channel 21 is disposed in contact with the upper surface of the dielectric window 8a. The cooling channel 21 is disposed so as to cover the entire top surface of the antenna 9 (the antenna 9 is omitted in FIG. 2). On the other hand, the external cooling flow path 27 is provided inside the external mechanism 10.
 チラー20は冷却流路21と外部冷却流路27とで共有されている。このため、チラー20の設定温度は、冷却されるべき温度がより低い被冷却部に供給されるべき熱媒体の温度に対応して定められる。ここでは、外部冷却流路27に供給されるべき熱媒体の温度に合わせてチラー20の設定温度が定められる。 The chiller 20 is shared by the cooling channel 21 and the external cooling channel 27. For this reason, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the cooled part where the temperature to be cooled is lower. Here, the set temperature of the chiller 20 is determined in accordance with the temperature of the heat medium to be supplied to the external cooling flow path 27.
 チラー20によって温度を調節された熱媒体は、図2中、実線で描かれた矢印の方向に流れ、被冷却部へと向かう。被冷却部を冷却した熱媒体は、破線で描かれた矢印の方向に流れ、チラー20へと戻る。ここでは、チラー20によって供給された熱媒体が各被冷却部へと向かう流路をそれぞれ往路21a,27aと呼称する。また、熱媒体が各被冷却部からチラー20へと戻る流路をそれぞれ復路21b,27bと呼称する。 The heat medium whose temperature is adjusted by the chiller 20 flows in the direction of the arrow drawn by a solid line in FIG. The heat medium that has cooled the portion to be cooled flows in the direction of the arrow drawn by the broken line and returns to the chiller 20. Here, the flow paths through which the heat medium supplied by the chiller 20 heads to each cooled part are referred to as forward paths 21a and 27a, respectively. Moreover, the flow paths in which the heat medium returns from each cooled part to the chiller 20 are referred to as return paths 21b and 27b, respectively.
 外部機構10は、密閉された処理容器8の外側に配置されている。外部機構10は、その一部が処理容器8と接しており、処理容器8の熱が伝わることで高温となる。もし外部機構10が過熱された状態にあると、作業者が装置の調整若しくは制御のため又は誤って外部機構10に触れた場合に、作業者が熱傷を負う危険がある。例えば、半導体素子の製造工場において、装置と装置との間に充分なスペースが確保できない場合など、このような事故が起こり得る。このため、外部機構10は、作業者が誤って触れても熱傷等を負わない温度にしておくことが好ましい。ただし、外部機構10の温度が低過ぎると、処理容器8の内部に堆積物が付着し、不具合の原因となる場合がある。このため、外部冷却流路27に供給される熱媒体の温度は、例えば、約80℃に設定されることが好ましい。 The external mechanism 10 is disposed outside the sealed processing container 8. A part of the external mechanism 10 is in contact with the processing container 8, and the temperature of the external mechanism 10 becomes high when heat from the processing container 8 is transmitted. If the external mechanism 10 is in an overheated state, there is a risk of the operator being burned if the operator touches the external mechanism 10 for adjustment or control of the apparatus or accidentally. For example, such an accident may occur when a sufficient space cannot be secured between devices in a semiconductor element manufacturing factory. For this reason, it is preferable that the external mechanism 10 is set to a temperature that does not cause burns or the like even if an operator touches it by mistake. However, if the temperature of the external mechanism 10 is too low, deposits may adhere to the inside of the processing container 8 and cause a problem. For this reason, it is preferable that the temperature of the heat medium supplied to the external cooling flow path 27 is set to about 80 ° C., for example.
 一方、誘電体窓8aの温度は、プラズマ生成条件に大きく影響するため、各段階に応じて厳密に制御されなければならない。例えば、プラズマ処理装置2を起動して、プラズマ処理に即応できる状態を維持している状態(いわゆるアイドリング状態)から、プラズマが安定して発生する状態になるまでは、冷却流路21に供給される熱媒体の温度は例えば100℃に設定されていることが好ましい。 On the other hand, since the temperature of the dielectric window 8a greatly affects the plasma generation conditions, it must be strictly controlled according to each stage. For example, the plasma processing apparatus 2 is activated and supplied to the cooling channel 21 from a state in which the plasma processing apparatus 2 is ready to be ready for plasma processing (a so-called idling state) until the plasma is stably generated. The temperature of the heating medium is preferably set to 100 ° C., for example.
 ここで、プラズマ処理装置2は、冷却流路21に供給される熱媒体を加熱するためのヒータ25を備えている。冷却流路21と外部冷却流路27とはそれぞれ独立しているため、各冷却流路には、互いに異なる所定の温度に調節された熱媒体が供給される。例えば、外部冷却流路27には、チラー20によって80℃に調節された熱媒体が供給される。一方、冷却流路21には、チラー20によって80℃に調節された後、ヒータ25によって100℃にまで加熱された熱媒体が供給される。冷却流路21と、外部冷却流路27とにそれぞれ適した温度の熱媒体が供給されることにより、外部機構10の温度と、誘電体窓8aの温度とが、適切な範囲に制御される。この結果、作業時の安全性が確保でき、かつ、プラズマ処理装置2の内部への堆積物の付着を抑制することができる。 Here, the plasma processing apparatus 2 includes a heater 25 for heating the heat medium supplied to the cooling flow path 21. Since the cooling flow path 21 and the external cooling flow path 27 are independent of each other, heat media adjusted to different predetermined temperatures are supplied to the respective cooling flow paths. For example, the external cooling flow path 27 is supplied with a heat medium adjusted to 80 ° C. by the chiller 20. On the other hand, a heat medium heated to 100 ° C. by the heater 25 after being adjusted to 80 ° C. by the chiller 20 is supplied to the cooling channel 21. By supplying a heat medium having a suitable temperature to each of the cooling flow path 21 and the external cooling flow path 27, the temperature of the external mechanism 10 and the temperature of the dielectric window 8a are controlled within appropriate ranges. . As a result, safety during operation can be ensured and adhesion of deposits to the inside of the plasma processing apparatus 2 can be suppressed.
 プラズマが安定して発生するようになり、基板のプラズマ処理が開始されると、熱が誘電体窓8aに蓄積されていく。この際、冷却流路21に供給される熱媒体の温度が100℃のまま維持されていると、誘電体窓8aに蓄積された熱が十分に除去されず、誘電体窓8aの温度が例えば150℃を超えてしまう場合がある。 When the plasma is generated stably and the plasma processing of the substrate is started, heat is accumulated in the dielectric window 8a. At this time, if the temperature of the heat medium supplied to the cooling flow path 21 is maintained at 100 ° C., the heat accumulated in the dielectric window 8a is not sufficiently removed, and the temperature of the dielectric window 8a is, for example, It may exceed 150 ° C.
 このような場合、プラズマの発生によって生じる熱量を考慮して、ヒータ25の発熱量が制御される。冷却流路21に供給される熱媒体の温度が、各段階に応じて適切な範囲に調節される結果、誘電体窓8aの温度は常に適切な範囲に維持される。このようにして、プラズマ発生条件が安定化され、被処理基板の被処理面全面に対して、均一なプラズマ処理を行うことが可能となる。 In such a case, the amount of heat generated by the heater 25 is controlled in consideration of the amount of heat generated by the generation of plasma. As a result of the temperature of the heat medium supplied to the cooling flow path 21 being adjusted to an appropriate range according to each stage, the temperature of the dielectric window 8a is always maintained within an appropriate range. In this way, plasma generation conditions are stabilized, and uniform plasma processing can be performed on the entire surface of the substrate to be processed.
 本実施形態において、誘電体窓8aの温度制御は、冷却流路21を流れる熱媒体の量は一定とし、ヒータ25の発熱量を制御することで行われている。熱媒体の流量を変化させる方法に比べ、ヒータ25の発熱量を変化させる方法による温度制御は応答性が高い。この方法によることで、プラズマ処理装置2の各部分の温度はより短時間で所定の範囲に制御される。あるいは、ヒータ25の発熱量の制御と併せて、各流路に供給される熱媒体の流量を変化させることにより、誘電体窓8aの温度制御が行われてもよい。 In this embodiment, the temperature control of the dielectric window 8a is performed by controlling the amount of heat generated by the heater 25 while the amount of the heat medium flowing through the cooling flow path 21 is constant. Compared with the method of changing the flow rate of the heat medium, the temperature control by the method of changing the heat generation amount of the heater 25 has high responsiveness. By this method, the temperature of each part of the plasma processing apparatus 2 is controlled within a predetermined range in a shorter time. Alternatively, the temperature control of the dielectric window 8a may be performed by changing the flow rate of the heat medium supplied to each flow path in conjunction with the control of the heat generation amount of the heater 25.
 誘電体窓8aを冷却した熱媒体は、復路21aを通ってチラー20へ戻る。同様に、外部機構10を冷却した熱媒体は、復路27bを通ってチラー20へ戻る。復路21b,27b内を流れる熱媒体の温度は、被冷却部から熱を奪った結果、対応する往路21a,27aを流れる熱媒体の温度よりも高くなっている。 The heat medium that has cooled the dielectric window 8a returns to the chiller 20 through the return path 21a. Similarly, the heat medium that has cooled the external mechanism 10 returns to the chiller 20 through the return path 27b. The temperature of the heat medium flowing in the return paths 21b and 27b is higher than the temperature of the heat medium flowing in the corresponding forward paths 21a and 27a as a result of taking heat from the cooled part.
 チラー20は、熱媒体の温度を再び設定温度である80℃にまで冷却する。80℃に調節された熱媒体は、再び冷却流路21及び外部冷却流路27へと供給される。このうち、冷却流路21に供給される熱媒体は、ヒータ25によって再び100℃又はプラズマの発生によって生じる熱量を考慮して設定された温度まで加熱される。 The chiller 20 cools the temperature of the heat medium again to the set temperature of 80 ° C. The heat medium adjusted to 80 ° C. is supplied again to the cooling flow path 21 and the external cooling flow path 27. Among these, the heat medium supplied to the cooling flow path 21 is heated by the heater 25 to 100 ° C. or a temperature set in consideration of the amount of heat generated by the generation of plasma.
 ここでプラズマ処理装置2は、図2に示すように、冷却流路21の往路21aのうちチラー20とヒータ25との間の部分と、復路21bと、の間に熱交換器26aを備えている。先に述べた通り、復路21bを流れる熱媒体は、往路21aを流れる熱媒体よりも温度が高い。図2において太い白抜きの矢印で示されているように、往路21aを流れる熱媒体は、熱交換器26aを介して復路21bを流れる熱媒体から熱量を受け取る。この結果、ヒータ25によって与えられるべき熱量が少なくてすみ、エネルギー消費量を少なくすることができる。また、往路21aを流れる熱媒体に熱量を与えたことによって、復路21bを流れる熱媒体の温度は低下する。この結果、チラー20の負荷が低減され、さらにエネルギー消費量を少なくすることができる。 Here, as shown in FIG. 2, the plasma processing apparatus 2 includes a heat exchanger 26 a between a portion between the chiller 20 and the heater 25 in the forward path 21 a of the cooling flow path 21 and the return path 21 b. Yes. As described above, the temperature of the heat medium flowing through the return path 21b is higher than that of the heat medium flowing through the forward path 21a. As shown by the thick white arrows in FIG. 2, the heat medium flowing in the forward path 21a receives heat from the heat medium flowing in the return path 21b via the heat exchanger 26a. As a result, the amount of heat to be given by the heater 25 can be reduced, and the energy consumption can be reduced. In addition, the amount of heat applied to the heat medium flowing in the forward path 21a decreases the temperature of the heat medium flowing in the return path 21b. As a result, the load on the chiller 20 is reduced, and the energy consumption can be further reduced.
 さらに、図2に示すように、プラズマ処理装置2は外部冷却流路27の復路27bと、冷却流路21の往路21aのうちチラー20とヒータ25との間の部分と、の間に熱交換器26bを備える。先に述べた通り、復路27bを流れる熱媒体の温度は、冷却流路21の往路21aを流れる熱媒体の温度よりも高い。熱交換器26bを備えることにより、さらにエネルギー消費量を少なくすることができる。 Further, as shown in FIG. 2, the plasma processing apparatus 2 exchanges heat between the return path 27 b of the external cooling flow path 27 and the portion between the chiller 20 and the heater 25 in the forward path 21 a of the cooling flow path 21. A container 26b is provided. As described above, the temperature of the heat medium flowing through the return path 27 b is higher than the temperature of the heat medium flowing through the forward path 21 a of the cooling flow path 21. By providing the heat exchanger 26b, energy consumption can be further reduced.
 熱交換器26aと往路21aとの接続部は、熱交換器26bと往路21aとの接続部よりもヒータ25に近い位置に配置されることが好ましい。なぜなら、誘電体窓8aの温度制御は外部機構10の温度制御よりも高い温度で行われるため、復路21bを流れる熱媒体の温度は、往路27bを流れる熱媒体の温度よりも高くなっているためである。二つの熱交換器26a,26bをそれぞれこのように配置することで、各往路と各復路との間の温度差が有効に利用され、熱交換がより効率よく行われる。なお、本実施形態ではプラズマ処理装置2に熱交換器26aと26bとが備えられる例を示したが、プラズマ処理装置2に備えられる熱交換器は、どちらか一方であってもよい。 It is preferable that the connection part between the heat exchanger 26a and the forward path 21a is disposed at a position closer to the heater 25 than the connection part between the heat exchanger 26b and the forward path 21a. Because the temperature control of the dielectric window 8a is performed at a temperature higher than the temperature control of the external mechanism 10, the temperature of the heat medium flowing through the return path 21b is higher than the temperature of the heat medium flowing through the forward path 27b. It is. By disposing the two heat exchangers 26a and 26b in this way, the temperature difference between each forward path and each return path is effectively used, and heat exchange is performed more efficiently. In the present embodiment, an example in which the plasma processing apparatus 2 is provided with the heat exchangers 26a and 26b has been described. However, either one of the heat exchangers provided in the plasma processing apparatus 2 may be provided.
 また、本実施形態においては、冷却流路21が誘電体窓8aの上面部のみを覆うように配置されている例を示したが、冷却流路21は誘電体窓8aの側面部を冷却するよう、処理容器8の、誘電体窓8aの主面の延長方向に位置する部分に配置されていてもよい。好ましくは、冷却流路21は、チラー20から供給された熱媒体が誘電体窓8aの上面部を冷却した後、誘電体窓8aの側面部を冷却するよう配置される。 Moreover, in this embodiment, although the cooling flow path 21 showed the example arrange | positioned so that only the upper surface part of the dielectric material window 8a might be covered, the cooling flow path 21 cools the side part of the dielectric material window 8a. As described above, the processing container 8 may be disposed in a portion located in the extending direction of the main surface of the dielectric window 8a. Preferably, the cooling flow path 21 is disposed so as to cool the side surface portion of the dielectric window 8a after the heat medium supplied from the chiller 20 cools the upper surface portion of the dielectric window 8a.
(第3実施形態)
 次に、本発明の第3実施形態に係るプラズマ処理装置3の温度調節機構について図3を参照しながら説明する。プラズマ処理装置3と第2実施形態に係るプラズマ処理装置2との違いは、図3に示すように、誘電体窓8aを冷却するための冷却流路が冷却流路21と冷却流路22とに分けられており、それぞれにヒータ25a,25bと、熱交換器26a,26bが備えられている点である。なお、図3において、破線で囲まれた部分はそれぞれ各冷却流路を流れる熱媒体によって冷却される部分(被冷却部)を示す。
(Third embodiment)
Next, a temperature adjustment mechanism of the plasma processing apparatus 3 according to the third embodiment of the present invention will be described with reference to FIG. The difference between the plasma processing apparatus 3 and the plasma processing apparatus 2 according to the second embodiment is that, as shown in FIG. 3, the cooling flow paths for cooling the dielectric window 8 a are the cooling flow paths 21 and 22. The heaters 25a and 25b and the heat exchangers 26a and 26b are provided respectively. In FIG. 3, portions surrounded by broken lines indicate portions (cooled portions) that are cooled by the heat medium flowing through the respective cooling flow paths.
 冷却流路21は、第2実施形態に係るプラズマ処理装置2と同様、誘電体窓8aの上面部全体を覆うように配置されている。一方、冷却流路22は、誘電体窓8aの側面部の全周を覆うよう配置されている(なお、図面の理解を容易にするために、図3においては、誘電体窓8aの左側に配置されている冷却流路22は省略されている)。プラズマ処理装置3は、誘電体窓8aの上面部と側面部とがそれぞれ独立した冷却流路によって冷却される。このため、プラズマ処理装置2よりも誘電体窓8aの冷却効率がさらに高い。 The cooling channel 21 is disposed so as to cover the entire top surface of the dielectric window 8a, as in the plasma processing apparatus 2 according to the second embodiment. On the other hand, the cooling flow path 22 is disposed so as to cover the entire circumference of the side surface of the dielectric window 8a (in order to facilitate understanding of the drawing, on the left side of the dielectric window 8a in FIG. 3). The arranged cooling flow path 22 is omitted). In the plasma processing apparatus 3, the upper surface portion and the side surface portion of the dielectric window 8a are cooled by independent cooling channels. For this reason, the cooling efficiency of the dielectric window 8a is higher than that of the plasma processing apparatus 2.
 図3に示すように、プラズマ処理装置3は、冷却流路21の往路21aにヒータ25aを備えている。同様に、冷却流路22の往路22aには、ヒータ25bが備えられている。チラー20によって供給される熱媒体の温度は、外部機構10の冷却に適した温度に調節されている。ヒータ25a,25bは必要に応じて、チラー20によって供給された熱媒体を、誘電体窓8aの冷却に適した所定の温度に加熱する。各冷却流路には、各被冷却部の温度制御に適した温度の熱媒体が供給される。外部機構10の温度は、チラー20から供給される熱媒体により、作業時の安全性を確保でき、なおかつプラズマ処理装置3の内部への堆積物の付着を抑制できる温度範囲に保たれる。一方、誘電体窓8aの温度は、ヒータ25a,25bにより所定の温度に加熱された熱媒体によって、プラズマ処理に適した温度範囲に制御される。 As shown in FIG. 3, the plasma processing apparatus 3 includes a heater 25 a in the forward path 21 a of the cooling flow path 21. Similarly, the forward path 22a of the cooling flow path 22 is provided with a heater 25b. The temperature of the heat medium supplied by the chiller 20 is adjusted to a temperature suitable for cooling the external mechanism 10. The heaters 25a and 25b heat the heat medium supplied by the chiller 20 to a predetermined temperature suitable for cooling the dielectric window 8a as necessary. A heat medium having a temperature suitable for temperature control of each cooled part is supplied to each cooling channel. The temperature of the external mechanism 10 is maintained within a temperature range in which the safety during operation can be ensured by the heat medium supplied from the chiller 20 and adhesion of deposits to the inside of the plasma processing apparatus 3 can be suppressed. On the other hand, the temperature of the dielectric window 8a is controlled to a temperature range suitable for plasma processing by a heat medium heated to a predetermined temperature by the heaters 25a and 25b.
 ここで、誘電体窓8aの上面部はプラズマ発生時の熱の影響を受けやすいため、側面部に比べて温度が高くなりやすい。この場合、ヒータ25aは、その発熱量がヒータ25bの発熱量よりも小さくなるよう制御される。このようにすることで、誘電体窓8aの温度分布が均一化され、処理容器8内の空間S全体において、均一性の高いプラズマを発生させることができる。この結果、被処理基板の被処理面全面に対し、均一なプラズマ処理を行うことができる。 Here, since the upper surface portion of the dielectric window 8a is easily affected by heat at the time of plasma generation, the temperature is likely to be higher than that of the side surface portion. In this case, the heater 25a is controlled such that the amount of heat generated is smaller than the amount of heat generated by the heater 25b. By doing so, the temperature distribution of the dielectric window 8a is made uniform, and plasma with high uniformity can be generated in the entire space S in the processing container 8. As a result, uniform plasma processing can be performed on the entire surface of the substrate to be processed.
 さらにプラズマ処理装置3は、図3に示すように、往路21aと復路21bとの間に熱交換器26aを備え、往路22aと復路22bとの間に熱交換器26bを備えている。第2実施形態に係るプラズマ処理装置2と同様、往路を流れる熱媒体と復路を流れる熱媒体との間で熱交換が行われることにより、エネルギー消費量を少なくすることができる。なお、熱交換器26a,26bはどちらか一方のみが備えられていてもよい。あるいは、第2実施形態に係るプラズマ処理装置2と同様、熱交換器26a,26bの他に、往路21aと復路27bとの間、若しくは往路22aと復路27bとの間、又はその両方に、さらに熱交換器が備えられていてもよい。この場合、追加で設けられる熱交換器は、プラズマ処理装置2の熱交換器26bと同様、プラズマ処理装置3の熱交換器26a及び26bよりもチラー20に近い位置に接続されていることが好ましい。このようにすることで、各流路の内部を流れる熱媒体の温度差をより有効に活用することができる。 Further, as shown in FIG. 3, the plasma processing apparatus 3 includes a heat exchanger 26a between the forward path 21a and the return path 21b, and a heat exchanger 26b between the forward path 22a and the return path 22b. Similar to the plasma processing apparatus 2 according to the second embodiment, energy exchange can be reduced by performing heat exchange between the heat medium flowing in the forward path and the heat medium flowing in the return path. Note that only one of the heat exchangers 26a and 26b may be provided. Alternatively, similarly to the plasma processing apparatus 2 according to the second embodiment, in addition to the heat exchangers 26a and 26b, between the forward path 21a and the return path 27b, between the forward path 22a and the return path 27b, or both, A heat exchanger may be provided. In this case, it is preferable that the additionally provided heat exchanger is connected to a position closer to the chiller 20 than the heat exchangers 26 a and 26 b of the plasma processing apparatus 3, similarly to the heat exchanger 26 b of the plasma processing apparatus 2. . By doing in this way, the temperature difference of the heat medium which flows through the inside of each flow path can be used more effectively.
(変形例1)
 次に、第3実施形態の変形例1に係るプラズマ処理装置4の温度調節機構について図4を参照しながら説明する。プラズマ処理装置3との違いは、図4に示すように、冷却流路21の往路21a及び冷却流路22の往路22a、ならびに冷却流路21の復路21b及び冷却流路22の復路22bが、それぞれ熱交換器26が接続されている部分において1本に集約されている点である。このように構成されていることで、熱交換器26を1台とすることができ、プラズマ処理装置2,3と比較して装置を簡素化できる。冷却流路21に供給される熱媒体と冷却流路22に供給される熱媒体との温度差は、冷却流路21又は22に供給される熱媒体と外部冷却流路27に供給される熱媒体との温度差に比べて小さいため、プラズマ処理装置4のように構成されていても、ヒータ25a,25bによる温度制御に支障は生じない。
(Modification 1)
Next, the temperature adjustment mechanism of the plasma processing apparatus 4 according to Modification 1 of the third embodiment will be described with reference to FIG. The difference from the plasma processing apparatus 3 is that, as shown in FIG. 4, the forward path 21 a of the cooling flow path 21 and the forward path 22 a of the cooling flow path 22, and the return path 21 b of the cooling flow path 21 and the return path 22 b of the cooling flow path 22 are Each is a point where the heat exchangers 26 are connected to one at a portion where the heat exchanger 26 is connected. By being comprised in this way, the heat exchanger 26 can be made into 1 unit | set, and an apparatus can be simplified compared with the plasma processing apparatuses 2 and 3. FIG. The temperature difference between the heat medium supplied to the cooling channel 21 and the heat medium supplied to the cooling channel 22 is the heat supplied to the cooling channel 21 or 22 and the heat supplied to the external cooling channel 27. Since it is smaller than the temperature difference with the medium, there is no problem in temperature control by the heaters 25a and 25b even if the plasma processing apparatus 4 is configured.
 なお、熱交換器26の一端は、冷却流路21,22の復路21b,22bに接続される代わりに、外部冷却流路27の復路27bに接続されていてもよい。あるいは第2実施形態に係るプラズマ処理装置2と同様、熱交換器26とは別に、冷却流路21,22の往路21a,22aが集約されている部分と外部冷却流路27の復路27bとの間に、さらに熱交換器が備えられていてもよい。この場合、先に述べたように、もう1台の熱交換器は熱交換器26よりもチラー20に近い位置に配置されることが好ましい。このようにすることで、各流路の内部を流れる熱媒体の温度差をより有効に活用することができる。 Note that one end of the heat exchanger 26 may be connected to the return path 27 b of the external cooling flow path 27 instead of being connected to the return paths 21 b and 22 b of the cooling flow paths 21 and 22. Or like the plasma processing apparatus 2 which concerns on 2nd Embodiment, separately from the heat exchanger 26, the part where the outward paths 21a and 22a of the cooling flow paths 21 and 22 are aggregated and the return path 27b of the external cooling flow path 27 A heat exchanger may be further provided between them. In this case, as described above, the other heat exchanger is preferably disposed at a position closer to the chiller 20 than the heat exchanger 26. By doing in this way, the temperature difference of the heat medium which flows through the inside of each flow path can be used more effectively.
(変形例2)
 次に、第3実施形態の変形例2に係るプラズマ処理装置5について図5を参照しながら説明する。プラズマ処理装置4との違いは、冷却流路21,22及び外部冷却流路27の往路21a,22a及び27aが1本に集約され、さらに、復路21b,22b及び27bも1本に集約されている点である。詳しくは、図5に示すように、チラー20から延びる1本の流路(往路)から、まず外部冷却流路27の往路27aが分かれる。次に、該1本の流路は2本に分かれ、それぞれ冷却流路21,22の往路21a,22aとなる。往路21aを経由して誘電体窓8aの上面部を冷却した熱媒体と往路22aを経由して誘電体窓8aの側面部を冷却した熱媒体は合流し、1本の流路(復路)に流入する。さらに、該復路に、外部機構10を冷却した熱媒体が流入し、1本の流れを形成してチラー20へ戻る。
(Modification 2)
Next, a plasma processing apparatus 5 according to Modification 2 of the third embodiment will be described with reference to FIG. The difference from the plasma processing apparatus 4 is that the forward paths 21a, 22a and 27a of the cooling channels 21 and 22 and the external cooling channel 27 are integrated into one, and the return paths 21b, 22b and 27b are also integrated into one. It is a point. Specifically, as shown in FIG. 5, first, the forward path 27 a of the external cooling flow path 27 is separated from one flow path (outward path) extending from the chiller 20. Next, the one flow path is divided into two, which become the forward paths 21a and 22a of the cooling flow paths 21 and 22, respectively. The heat medium that has cooled the upper surface of the dielectric window 8a via the forward path 21a and the heat medium that has cooled the side surface of the dielectric window 8a via the forward path 22a merge to form one flow path (return path). Inflow. Further, the heat medium that has cooled the external mechanism 10 flows into the return path, forms one flow, and returns to the chiller 20.
 熱交換器26は、図5に示すように、1本の往路から外部冷却流路27の往路27aが分かれた後であって冷却流路21,22の往路21a,22aが分かれる前の部分と、復路21b,22bが合流した後であって外部冷却流路27の復路27bと合流する前の部分と、の間に備えられている。この部分に熱交換器26を配置することにより、熱交換器26を1台とすることができ、プラズマ処理装置2,3と比較して装置の構成が簡素化される。なお、熱交換器26の一端は、復路21b,22bに接続される代わりに復路27bに接続されてもよい。あるいは、熱交換器26とは別に、もう1台の熱交換器が、1本の往路から外部冷却流路27の往路27aが分かれた後であって冷却流路21,22の往路21a,22aが分かれる前の部分と復路27bとの間に備えられていてもよい。この場合、先に述べたように、もう1台の熱交換器は熱交換器26よりもチラー20に近い位置に配置されることが好ましい。このようにすることで、各流路の内部を流れる熱媒体の温度差をより有効に活用することができる。 As shown in FIG. 5, the heat exchanger 26 includes a part after the forward path 27a of the external cooling flow path 27 is separated from one forward path and before the forward paths 21a and 22a of the cooling flow paths 21 and 22 are separated. , And after the return paths 21b and 22b merge and before the merge with the return path 27b of the external cooling flow path 27. By disposing the heat exchanger 26 in this part, the heat exchanger 26 can be made one, and the configuration of the apparatus is simplified as compared with the plasma processing apparatuses 2 and 3. Note that one end of the heat exchanger 26 may be connected to the return path 27b instead of being connected to the return paths 21b and 22b. Alternatively, in addition to the heat exchanger 26, another heat exchanger is provided after the forward path 27 a of the external cooling flow path 27 is separated from one forward path and the forward paths 21 a and 22 a of the cooling flow paths 21 and 22. May be provided between the part before the separation and the return path 27b. In this case, as described above, the other heat exchanger is preferably disposed at a position closer to the chiller 20 than the heat exchanger 26. By doing in this way, the temperature difference of the heat medium which flows through the inside of each flow path can be used more effectively.
 ここまで、本発明の温度調節機構及びこれを備えるプラズマ処理装置について実施形態及びその変形例を示して説明したが、これらは例示であり、本発明の実施形態はこれらに限定されない。流路、ヒータ、熱交換器の配置には様々なパターンが考えられる。本発明の温度調節機構は、プラズマ処理装置の形状や大きさに合わせて設計されることが好ましい。プラズマ処理方法やプラズマ処理に用いられるガス、被処理基板の種類や大きさ、温度センサの数などについても、様々な形態での実施が可能である。 Up to this point, the temperature control mechanism of the present invention and the plasma processing apparatus including the temperature control mechanism have been described with reference to the embodiments and modifications thereof. However, these are merely examples, and the embodiments of the present invention are not limited thereto. Various patterns can be considered for the arrangement of the flow path, the heater, and the heat exchanger. The temperature adjustment mechanism of the present invention is preferably designed in accordance with the shape and size of the plasma processing apparatus. The plasma processing method, the gas used for the plasma processing, the type and size of the substrate to be processed, the number of temperature sensors, and the like can be implemented in various forms.
 本発明のプラズマ処理装置を用いて可能なプラズマ処理としては、例えばプラズマ酸化処理、プラズマ窒化処理、プラズマ酸窒化処理、またはプラズマCVD処理、プラズマエッチング処理等がある。 Examples of plasma processing that can be performed using the plasma processing apparatus of the present invention include plasma oxidation processing, plasma nitriding processing, plasma oxynitriding processing, plasma CVD processing, and plasma etching processing.
 なお、本発明の実施においては、ヒータは被冷却部にできるだけ近い位置に配置されることが好ましい。ヒータを被冷却部に近い位置に配置することで、熱の損失が少なくなり、温度制御の応答性がさらに向上するとともに、エネルギー消費量をより少なくすることができる。 In the implementation of the present invention, the heater is preferably arranged as close as possible to the part to be cooled. By disposing the heater close to the part to be cooled, heat loss is reduced, the responsiveness of temperature control is further improved, and the energy consumption can be further reduced.
 本出願は、2008年9月22日に出願された、日本国特許出願2008-243125号に基づく。本明細書中に日本国特許出願2008-243125号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2008-243125 filed on Sep. 22, 2008. The specification, claims, and entire drawings of Japanese Patent Application No. 2008-243125 are incorporated herein by reference.
  1,2,3,4,5  プラズマ処理装置
          6  冷却ジャケット
          7  ステージ
          7a 支持軸
          8  処理容器(チャンバ)
          8a 誘電体窓
          8b 保持リング
          8c 下部容器
          9  アンテナ
          9a 導波部
          9b スロット板
          9c 遅波板
         10  外部機構
         11  排気チャンバ
         11a 連通孔
         12  支持台
         15  導波管
         15a 外側導波管
         15b 内側導波管
         16  温度センサ
         20  チラー
21,22,23,24  冷却流路
     21a,22a 往路
     21b,22b 復路
  25,25a,25b ヒータ
  26,26a,26b 熱交換器
         27  外部冷却流路
         27a 往路
         27b 復路
1, 2, 3, 4, 5 Plasma processing apparatus 6 Cooling jacket 7 Stage 7a Support shaft 8 Processing vessel (chamber)
8a Dielectric window 8b Retaining ring 8c Lower container 9 Antenna 9a Waveguide 9b Slot plate 9c Slow wave plate 10 External mechanism 11 Exhaust chamber 11a Communication hole 12 Support base 15 Waveguide 15a Outer waveguide 15b Inner waveguide 16 Temperature sensor 20 Chillers 21, 22, 23, 24 Cooling flow path 21a, 22a Outward path 21b, 22b Return path 25, 25a, 25b Heater 26, 26a, 26b Heat exchanger 27 External cooling path 27a Outbound path 27b Return path

Claims (5)

  1.  誘電体材料で形成された誘電体窓を備え内部を減圧可能な処理容器と、
     前記処理容器の外部に配置され少なくともその一部分が前記処理容器と接触し前記処理容器の熱が伝導する外部装置と、
    を備えるプラズマ処理装置の温度調節機構であって、
     前記外部装置に熱媒体を循環させる外部装置冷却流路と、
     少なくともその一部分が前記誘電体窓との間で熱交換可能なように配置され前記誘電体窓の近傍に熱媒体を循環させる誘電体窓冷却流路と、
     前記熱媒体を所定の温度に調節する冷却装置と、
     前記誘電体窓冷却流路に流入する前記熱媒体をあらかじめ所定の温度に加熱する加熱手段と、を備え、
     前記外部装置冷却流路から流出した前記熱媒体は、前記誘電体窓冷却流路に流入する前に前記冷却装置若しくは前記加熱手段又はその両方によって所定の温度に調節されるよう構成されている、
    ことを特徴とする温度調節機構。
    A processing vessel having a dielectric window formed of a dielectric material and capable of reducing the pressure inside;
    An external device disposed outside the processing vessel and at least a portion of which is in contact with the processing vessel and conducts heat of the processing vessel;
    A temperature control mechanism of a plasma processing apparatus comprising:
    An external device cooling flow path for circulating a heat medium in the external device;
    A dielectric window cooling flow path that is arranged so that at least a portion thereof can exchange heat with the dielectric window and circulates a heat medium in the vicinity of the dielectric window;
    A cooling device for adjusting the heat medium to a predetermined temperature;
    Heating means for heating the heat medium flowing into the dielectric window cooling channel to a predetermined temperature in advance,
    The heat medium flowing out from the external device cooling channel is configured to be adjusted to a predetermined temperature by the cooling device and / or the heating means before flowing into the dielectric window cooling channel,
    A temperature control mechanism characterized by that.
  2.  前記誘電体窓冷却流路のうち前記冷却装置から流出した熱媒体が前記加熱手段へと向かう部分と、
     前記外部装置冷却流路のうち前記外部装置から流出した前記熱媒体が前記冷却装置へと向かう部分、若しくは前記誘電体窓冷却流路のうち前記誘電体窓と接する部分から流出した前記熱媒体が前記冷却装置へと向かう部分、又はその両方と、
    の間で熱交換を行うための熱交換器をさらに備える、
    ことを特徴とする請求項1に記載の温度調節機構。
    A portion of the dielectric window cooling flow path where the heat medium flowing out of the cooling device is directed to the heating means;
    Of the external device cooling flow path, the heat medium flowing out from the external device is directed to the cooling device, or the heat medium flowing out of the dielectric window cooling flow path from the portion in contact with the dielectric window is A portion toward the cooling device, or both,
    A heat exchanger for performing heat exchange between
    The temperature control mechanism according to claim 1.
  3.  前記誘電体窓冷却流路は、前記誘電体窓の、前記処理容器の外側に位置する面の近傍に前記熱媒体を循環させる上面部冷却流路と、
     前記処理容器の、前記誘電体窓の主面の延長方向に位置する部分に熱媒体を循環させる側面部冷却流路と、を備え、
     前記上面部冷却流路から流出した前記熱媒体は、前記側面部冷却流路に流入する前に、前記冷却装置若しくは前記加熱手段又はその両方によって温度調節されるよう構成されている、
    ことを特徴とする請求項1に記載の温度調節機構。
    The dielectric window cooling flow path includes an upper surface cooling flow path for circulating the heat medium in the vicinity of a surface of the dielectric window located outside the processing container;
    A side surface cooling channel that circulates a heat medium in a portion of the processing vessel located in the extending direction of the main surface of the dielectric window;
    The heat medium flowing out from the upper surface cooling channel is configured to be temperature-controlled by the cooling device or the heating means or both before flowing into the side surface cooling channel.
    The temperature control mechanism according to claim 1.
  4.  前記誘電体窓冷却流路は、前記熱媒体が前記上面部冷却流路に流入する前に前記熱媒体を第1の温度に加熱する第1の加熱手段と、
     前記熱媒体が前記側面部冷却流路に流入する前に前記熱媒体を第2の温度に加熱する第2の加熱手段と、
    をさらに備えることを特徴とする請求項3に記載の温度調節機構。
    The dielectric window cooling channel includes: a first heating unit configured to heat the heating medium to a first temperature before the heating medium flows into the upper surface cooling channel;
    A second heating means for heating the heat medium to a second temperature before the heat medium flows into the side surface cooling channel;
    The temperature control mechanism according to claim 3, further comprising:
  5.  請求項1に記載の温度調節機構を備えることを特徴とするプラズマ処理装置。 A plasma processing apparatus comprising the temperature adjusting mechanism according to claim 1.
PCT/JP2009/066141 2008-09-22 2009-09-16 Temperature adjustment mechanism, and plasma treatment apparatus WO2010032745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-243125 2008-09-22
JP2008243125A JP2010073655A (en) 2008-09-22 2008-09-22 Temperature adjustment mechanism and plasma treatment device

Publications (1)

Publication Number Publication Date
WO2010032745A1 true WO2010032745A1 (en) 2010-03-25

Family

ID=42039569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066141 WO2010032745A1 (en) 2008-09-22 2009-09-16 Temperature adjustment mechanism, and plasma treatment apparatus

Country Status (3)

Country Link
JP (1) JP2010073655A (en)
TW (1) TW201029524A (en)
WO (1) WO2010032745A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102263A1 (en) * 2010-02-16 2011-08-25 シャープ株式会社 Vacuum processing device
WO2013172456A1 (en) * 2012-05-18 2013-11-21 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
CN103974518A (en) * 2013-02-01 2014-08-06 朗姆研究公司 Temperature controlled window of a plasma processing chamber component
CN104425197A (en) * 2013-08-23 2015-03-18 中微半导体设备(上海)有限公司 Plasma processing device and machine cover thereof
US20160284521A1 (en) * 2015-03-27 2016-09-29 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and semiconductor manufacturing method
CN110519905A (en) * 2018-05-21 2019-11-29 北京北方华创微电子装备有限公司 Temperature control device and plasma apparatus
CN110835751A (en) * 2018-08-17 2020-02-25 东京毅力科创株式会社 Valve device, processing device, and control method
CN111063603A (en) * 2019-12-30 2020-04-24 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515179B (en) * 2012-06-29 2016-02-10 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma-reaction-chamber and there is its plasma device
KR102262657B1 (en) 2014-10-13 2021-06-08 삼성전자주식회사 Plasma processing device
WO2024069757A1 (en) * 2022-09-27 2024-04-04 株式会社アドテックス Heating device, and temperature adjusting device provided with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067301A1 (en) * 2001-02-20 2002-08-29 Tokyo Electron Limited Exhaust heat utilization system, exhaust heat utilization method and semiconductor production facility
JP2003303812A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Method and apparatus of plasma treatment
JP2007250796A (en) * 2006-03-15 2007-09-27 Tokyo Electron Ltd Lifter and lifter-equipped processing apparatus of workpiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067301A1 (en) * 2001-02-20 2002-08-29 Tokyo Electron Limited Exhaust heat utilization system, exhaust heat utilization method and semiconductor production facility
JP2003303812A (en) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd Method and apparatus of plasma treatment
JP2007250796A (en) * 2006-03-15 2007-09-27 Tokyo Electron Ltd Lifter and lifter-equipped processing apparatus of workpiece

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102263A1 (en) * 2010-02-16 2011-08-25 シャープ株式会社 Vacuum processing device
JP2011168810A (en) * 2010-02-16 2011-09-01 Sharp Corp Vacuum processing apparatus
WO2013172456A1 (en) * 2012-05-18 2013-11-21 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
CN103974518A (en) * 2013-02-01 2014-08-06 朗姆研究公司 Temperature controlled window of a plasma processing chamber component
TWI621150B (en) * 2013-02-01 2018-04-11 蘭姆研究公司 Plasma processing chamber, temperature controlled dielectric window, and method for controlling temperature thereof
CN104425197A (en) * 2013-08-23 2015-03-18 中微半导体设备(上海)有限公司 Plasma processing device and machine cover thereof
US9761415B2 (en) * 2015-03-27 2017-09-12 Toshiba Memory Corporation Semiconductor manufacturing apparatus and semiconductor manufacturing method
US20160284521A1 (en) * 2015-03-27 2016-09-29 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus and semiconductor manufacturing method
CN110519905A (en) * 2018-05-21 2019-11-29 北京北方华创微电子装备有限公司 Temperature control device and plasma apparatus
CN110519905B (en) * 2018-05-21 2022-07-22 北京北方华创微电子装备有限公司 Temperature control device and plasma equipment
CN110835751A (en) * 2018-08-17 2020-02-25 东京毅力科创株式会社 Valve device, processing device, and control method
CN111063603A (en) * 2019-12-30 2020-04-24 北京北方华创微电子装备有限公司 Semiconductor processing equipment
CN111063603B (en) * 2019-12-30 2023-01-17 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Also Published As

Publication number Publication date
JP2010073655A (en) 2010-04-02
TW201029524A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
WO2010032745A1 (en) Temperature adjustment mechanism, and plasma treatment apparatus
JP5444218B2 (en) Plasma processing apparatus and temperature adjustment mechanism of dielectric window
TWI564990B (en) Electrostatic chuck and semiconductor processing system with variable pixelated heating, and method of controlling the temperature of the electrostatic chuck
US8030599B2 (en) Substrate processing apparatus, heating device, and semiconductor device manufacturing method
JP4191120B2 (en) Plasma processing equipment
JP2005079539A (en) Plasma treatment apparatus
WO2010001890A1 (en) Temperature adjusting mechanism and semiconductor manufacturing apparatus using temperature adjusting mechanism
JP6944990B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
US6736930B1 (en) Microwave plasma processing apparatus for controlling a temperature of a wavelength reducing member
JP5657953B2 (en) Plasma processing equipment
JP2003243490A (en) Wafer treatment device and wafer stage, and wafer treatment method
JP2019021910A (en) Substrate processing apparatus, substrate retainer and semiconductor device manufacturing method
WO2023145054A1 (en) Heater unit, multilayer structure, processing device, and method for manufacturing semiconductor device
US20220122859A1 (en) Method of manufacturing semiconductor device and apparatus for manufacturing semiconductor device
TWI817061B (en) Inductively coupled plasma processing equipment and its cover and dielectric window temperature control method
WO2021039270A1 (en) Device for producing and method for producing semiconductor device
WO2022208667A1 (en) Substrate processing device, heating device, and method for manufacturing semiconductor device
KR20220007518A (en) Substrate support, apparatus for processing substrate, and method of adjusting temperature of substrate
JP2008294154A (en) Cvd apparatus
JP2008294104A (en) Substrate treating apparatus
JPH01201482A (en) Vacuum vapor growth device
KR20130053570A (en) Maintain a uniform temperature of a mocvd reaction chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814590

Country of ref document: EP

Kind code of ref document: A1