WO2010032507A1 - Dispensing device, automatic analyzing device, and dispensing failure confirming method - Google Patents

Dispensing device, automatic analyzing device, and dispensing failure confirming method Download PDF

Info

Publication number
WO2010032507A1
WO2010032507A1 PCT/JP2009/055462 JP2009055462W WO2010032507A1 WO 2010032507 A1 WO2010032507 A1 WO 2010032507A1 JP 2009055462 W JP2009055462 W JP 2009055462W WO 2010032507 A1 WO2010032507 A1 WO 2010032507A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispensing
liquid
sample
container
dispensing probe
Prior art date
Application number
PCT/JP2009/055462
Other languages
French (fr)
Japanese (ja)
Inventor
仁啓 加瀬
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2010032507A1 publication Critical patent/WO2010032507A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a dispensing apparatus for dispensing a specimen or a reagent, an automatic analyzer equipped with the dispensing apparatus, and a dispensing failure confirmation method.
  • an automatic analyzer that analyzes the components of a sample by reacting the sample with a reagent
  • the sample is reliably aspirated and the probe is inserted into the sample or the reagent to minimize the distance between the samples.
  • change in capacitance between the probe itself or an electrode provided near the probe and an electrode provided integrally with or near the specimen or reagent container is detected.
  • An electrostatic capacitance type liquid level detection mechanism is employed.
  • the liquid level may be erroneously detected by static electricity charged in the liquid container, and in order to prevent this, the liquid level detection is provided with a mechanism for eliminating the charge of the liquid container.
  • a mechanism is known (see, for example, Patent Document 1).
  • a pipe pressure measurement mechanism is provided in the pipe to which the dispensing probe is connected, so that the liquid suction state of the sample or reagent is confirmed by pressure, and dispensing abnormalities are detected by pressure changes.
  • a technique is also disclosed (see, for example, Patent Document 2).
  • the liquid level detection mechanism described in Patent Document 1 can eliminate the charge of the specimen or reagent in the container, it is possible to reduce dispensing failures such as empty suction due to erroneous detection of the liquid level. In the case of clogging or the like, defective dispensing occurs, and there is a problem of finding and eliminating dispensing defects due to clogging of the probe.
  • the present invention has been made in view of the above, and a dispensing device, an automatic analyzer, and an automatic analyzer capable of avoiding misanalysis by confirming dispensing failure due to empty suction due to liquid level erroneous detection or probe clogging
  • An object is to provide a method for confirming dispensing failure.
  • a dispensing device of the present invention includes a dispensing probe that sucks or discharges a liquid that is conductive and stored in a container, and is integrated with the container or the A dispensing device comprising a liquid level detection mechanism that detects a liquid level of the liquid based on a change in capacitance between the dispensing probe and the electrode.
  • a dispensing control means for sucking a total amount of liquid and dummy liquid required for analysis from the container using the dispensing probe and then controlling the dummy liquid to be discharged on the container;
  • Detection means for detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid by the dispensing control means, and the dispensing based on the change in capacitance detected by the detection means.
  • the probe ejected liquid Determining a liquid discharge judging means, characterized in that it comprises a.
  • the dispensing device of the present invention is characterized in that, in the above invention, the detection means is the liquid level detection mechanism.
  • the capacitance change time between the dispensing probe and the electrode when discharging the dummy liquid is based on the capacitance change detected by the detection means.
  • Measuring means for measuring the liquid discharge wherein the liquid discharge determination means determines whether the dispensing probe has discharged a predetermined amount of liquid based on the capacitance change time measured by the measurement means. It is characterized by.
  • the automatic analyzer of the present invention is an automatic analyzer for reacting a specimen and a reagent in a reaction vessel and analyzing the reaction liquid based on the optical characteristics of the reaction liquid, and any one of the above It comprises the dispensing apparatus as described in above.
  • the sample and reagent contained in the container are dispensed into the reaction container, and the dispensed sample and reagent are stirred and reacted in the reaction container,
  • a method for confirming dispensing failure of an automatic analyzer that analyzes the reaction liquid based on optical characteristics of the reaction liquid, the liquid level detection step for detecting the liquid level of the liquid in the container based on a change in capacitance A suction step for sucking a total amount of liquid and dummy liquid required for analysis of the liquid in the container using a dispensing probe; and a dummy liquid for discharging the dummy liquid on the container by the dispensing probe.
  • the basis characterized in that it comprises a liquid discharge determining whether the dispensing probe ejected liquid.
  • the dispensing failure confirmation method of the automatic analyzer is the above invention, wherein the dispensing probe and the electrode at the time of discharging the dummy liquid are based on the capacitance change detected in the detection step. Measuring a capacitance change time between, and the liquid discharge determining step is based on the capacitance change time measured in the measurement step, the dispensing probe has discharged a predetermined amount of liquid It is characterized by determining whether or not.
  • the dispensing probe is used to suck the total amount of the liquid and dummy liquid required for analysis from the sample or reagent container, and And detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid, and determining whether the dispensing probe has discharged the liquid based on the change in capacitance.
  • FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to the first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a sample dispensing apparatus used in the automatic analyzer shown in FIG.
  • FIG. 3 is a schematic configuration diagram of a liquid level detection mechanism used in the sample dispensing apparatus shown in FIG.
  • FIG. 4 is a flowchart of the dispensing failure confirmation method according to the first embodiment of the present invention.
  • FIG. 5 is an operation diagram for confirming dispensing failure according to the first embodiment of the present invention.
  • FIG. 6 is an enlarged view of the dispensing probe when the dummy sample is discharged by the dispensing probe according to the first embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to the first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a sample dispensing apparatus used in the automatic analyzer shown in FIG.
  • FIG. 3 is a schematic configuration diagram of a liquid level detection mechanism used in
  • FIG. 7 is a diagram showing a change in capacitance when the dummy specimen is discharged according to the first embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of a liquid level detection mechanism used in the sample dispensing apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart of the dispensing failure confirmation method according to the second embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to the present invention.
  • the automatic analyzer 1 controls a measurement mechanism 9 that measures light passing through a reaction product between a specimen and a reagent, and the entire automatic analyzer 1 including the measurement mechanism 9.
  • the automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
  • the measurement mechanism 9 roughly includes a sample table 2, a reaction table 3, a reagent table 4, a sample dispensing device 5, a reagent dispensing device 7, and dispensing probe cleaning devices 6 and 8.
  • the sample table 2 has a disk-like table and includes a plurality of storage units 21 arranged at equal intervals along the circumferential direction of the table. In each storage unit 21, a sample container 22 containing a sample is detachably stored. The sample container 22 has an opening 22a that opens upward.
  • the sample table 2 is rotated in a direction indicated by an arrow in FIG. 1 by a sample table driving unit (not shown) with a vertical line passing through the center of the sample table 2 as a rotation axis.
  • a sample table driving unit not shown
  • the sample container 22 is transported to the sample aspirating position where the sample is aspirated by the sample dispensing device 5.
  • an identification label (not shown) having sample information relating to the type of sample contained and analysis items is attached to the sample container 22.
  • the sample table 2 includes a reading unit 23 that reads information on the identification label of the sample container 22.
  • the reaction table 3 has an annular table and includes a plurality of storage portions 31 arranged at equal intervals along the circumferential direction of the table.
  • a transparent reaction container 32 for storing a sample and a reagent is detachably stored in a form opening upward.
  • the reaction table 3 is rotated in a direction indicated by an arrow in FIG. 1 by a reaction table driving unit (not shown) with a vertical line passing through the center of the reaction table 3 as a rotation axis.
  • a reaction table driving unit not shown
  • the reaction container 32 is transported to the sample discharge position where the sample is discharged by the sample dispensing apparatus 5 or the reagent discharge position where the reagent is discharged by the reagent dispensing apparatus 7.
  • An openable and closable lid and a thermostat are provided above and below the reaction table 3, respectively. The thermostat is heated and adjusted to a temperature that promotes the reaction between the specimen dispensed into the reaction container 32 and the reagent.
  • the photometric device 33 has a light source 33a and a light receiving unit 33b.
  • the light source 33a emits analysis light having a predetermined wavelength
  • the light receiving unit 33b measures a light beam emitted from the light source 33a and transmitted through the reaction solution in which the sample and the reagent contained in the reaction container 32 have reacted.
  • the light source 33 a and the light receiving portion 33 b are arranged at positions where they oppose each other in the radial direction across the storage portion 31 of the reaction table 3.
  • the reaction table 3 discharges the measured reaction solution from the reaction vessel 32, and stirs the reaction vessel washing mechanism 34 for washing the reaction vessel 32 and the sample and reagent dispensed in the reaction vessel 32. And a stirring unit 35 for promoting the reaction.
  • the reagent table 4 has a disk-shaped table and includes a plurality of storage portions 41 arranged at equal intervals along the circumferential direction of the table.
  • a reagent container 42 storing a reagent is detachably stored in each storage unit 41.
  • the reagent container 42 has an opening 42a that opens upward.
  • the reagent table 4 is rotated in a direction indicated by an arrow in FIG. 1 by a reagent table driving unit (not shown) with a vertical line passing through the center of the reagent table 4 as a rotation axis.
  • the reagent container 42 is transported to the reagent suction position where the reagent is sucked by the reagent dispensing device 7.
  • An openable / closable lid (not shown) is provided above the reagent table 4.
  • a cold storage tank is provided below the reagent table 4. Therefore, when the reagent container 42 is stored in the reagent table 4 and the lid is closed, the reagent stored in the reagent container 42 is kept at a constant temperature by the cold storage tank and stored in the reagent container 42. Evaporation and denaturation of the reagent can be suppressed.
  • an identification label (not shown) having reagent information relating to the type and amount of reagent contained is affixed to the reagent container 42.
  • the reagent table 4 includes a reading unit 43 that reads information on the identification label of the reagent container 42.
  • the sample dispensing device 5 has a dispensing probe for aspirating and discharging a sample attached to the distal end, and freely moves up and down in the vertical direction and rotates around a vertical line passing through its proximal end as a central axis. Provide an arm.
  • the sample dispensing device 5 is provided between the sample table 2 and the reaction table 3, sucks the sample in the sample container 22 transported to a predetermined position by the sample table 2 with a dispensing probe, rotates the arm, The sample is dispensed into the reaction container 32 conveyed to a predetermined position by the reaction table 3, and the sample is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
  • the reagent dispensing apparatus 7 has a dispensing probe for aspirating and discharging the reagent attached to the distal end portion, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end portion as a central axis. Provide an arm.
  • the reagent dispensing device 7 is provided between the reagent table 4 and the reaction table 3, sucks the reagent in the reagent container 42 transported to a predetermined position by the reagent table 4 with a dispensing probe, rotates the arm, The reagent is dispensed into the reaction container 32 transported to a predetermined position by the reaction table 3, and the reagent is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
  • FIG. 2 shows a schematic configuration diagram of the specimen dispensing device 5 (the same applies to the reagent dispensing device 7).
  • the sample dispensing device 5 has a dispensing probe 50 as shown in FIG.
  • the dispensing probe 50 is formed in a rod-like shape from stainless steel or the like, and the tip side is tapered.
  • the dispensing probe 50 is attached to the distal end of the arm 51 with the upper proximal end facing downward.
  • the arm 51 is horizontally arranged, and its base end is fixed to the upper end of the support shaft 52.
  • the support shaft 52 is arranged vertically, and is rotated around the vertical axis O by the probe transfer unit 53. When the support shaft 52 rotates, the arm 51 turns in the horizontal direction and moves the dispensing probe 50 in the horizontal direction.
  • the support shaft 52 moves up and down along the vertical axis O by the probe transfer unit 53.
  • the arm 51 moves up and down in the vertical direction
  • the dispensing probe 50 moves up and down in the vertical (up and down) direction and in the longitudinal direction of the dispensing probe 50.
  • the syringe 55 includes a cylindrical cylinder 55a to which the other end of the tube 54a is connected, and a plunger 55b provided so as to be able to advance and retreat in the cylinder 55a while sliding on the inner wall surface of the cylinder 55a.
  • the plunger 55 b is connected to the plunger driving unit 56.
  • the plunger drive unit 56 is configured using, for example, a linear motor, and moves the plunger 55b back and forth with respect to the cylinder 55a.
  • One end of a tube 54b is connected to the cylinder 55a of the syringe 55.
  • the other end of the tube 54b is connected to a tank 57 that contains the extrusion liquid L1. Further, an electromagnetic valve 58 and a pump 59 are connected in the middle of the tube 54b.
  • an incompressible fluid such as distilled water or degassed water is applied as the extrusion liquid L1. This extrusion liquid L1 is also applied as cleaning water for cleaning the inside of the dispensing probe 50.
  • the sample dispensing device 5 drives the pump 59 and opens the electromagnetic valve 58 to fill the extruded liquid L1 accommodated in the tank 57 into the cylinder 55a of the syringe 55 via the tube 54b.
  • the cylinder 55a is filled up to the tip of the dispensing probe 50 through the tube 54a.
  • the electromagnetic valve 58 is closed and the pump 59 is stopped.
  • the plunger drive unit 56 is driven to move the plunger 55b backward with respect to the cylinder 55a, thereby sucking the tip of the dispensing probe 50 through the extrusion liquid L1.
  • the sample dispensing device 5 (reagent dispensing device 7) includes a liquid level detection mechanism 11 that detects the liquid level of the sample (reagent) dispensed by the dispensing probe.
  • a capacitance type liquid level detection mechanism will be described.
  • FIG. 3 is a schematic configuration diagram of the capacitance type liquid level detection mechanism 11. As shown in FIG. 3, the liquid level detection mechanism 11 includes an oscillation circuit 111, a differentiation circuit 112, and a voltage detection circuit 113.
  • the oscillation circuit 111 oscillates an AC signal and inputs it to the differentiation circuit 112.
  • the differentiating circuit 112 includes resistors 112a and 112b, capacitors 112c and 112d, and an operational amplifier 112e, and is adjusted so that input sensitivity is increased depending on the frequency of the AC signal oscillated by the oscillation circuit 111.
  • the + side input end of the differentiating circuit 112 is connected to the dispensing probe 50 via the lead wire 11a, and an electrostatic capacity is generated between the dispensing probe 50 and the electrode 4a which is the housing ground.
  • the capacitance is generated in parallel with the capacitor 112d.
  • the output voltage Vout of the differentiating circuit 112 changes due to the change in capacitance between the dispensing probe 50 and the electrode 4a which is the housing ground.
  • the voltage detection circuit 113 detects the output voltage Vout, and detects whether or not the lower end of the dispensing probe 50 is in contact with the liquid level present in the sample container 22 according to this value.
  • the output voltage signal detected by the voltage detection circuit 113 is output to the control unit 101, and the liquid level of the sample stored in the sample container 22 is detected.
  • the differentiation circuit 112 adjusted so that the input sensitivity is increased at the frequency of the oscillation circuit 111 by the capacitance value when the dispensing probe 50 is not in contact with the liquid surface is the capacitance value in the contact state. Then the sensitivity decreases. Therefore, the voltage detection circuit 113 detects the liquid level based on the change in the output voltage Vout.
  • the liquid level detection mechanism 11 is also used to detect capacitance when determining whether or not the sample can be discharged by the dispensing probe 50 when the sample dummy is discharged from the dispensing probe 50 on the sample container 22.
  • the dispensing control unit 109 controls the dispensing probe 50 to suck the total amount of the sample and the dummy sample necessary for the analysis from the sample container 22 and then discharge the dummy sample on the sample container 22.
  • the voltage detection circuit 113 detects the output voltage signal from when the dummy sample is discharged from the dispensing probe 50 until it reaches the sample liquid level in the sample container 22 and the discharge of the dummy sample is completed.
  • the output signal detected by the voltage detection circuit 113 is output to the control unit 101, and the liquid discharge determination unit 106 determines whether or not the dummy sample has been discharged based on the output voltage signal.
  • the liquid discharge determination unit 106 determines whether or not the dummy sample has been discharged based on the output voltage signal.
  • the sample sucked together with the dummy sample is sucked by a predetermined amount and discharged, and when it is determined that the dummy sample is not discharged, the sample is sucked together with the dummy sample. It is determined that a predetermined amount of the sample has not been aspirated or discharged, and a warning is given that dispensing is abnormal.
  • the dispensing probe cleaning device 6 is provided between the sample table 2 and the reaction table 3 and in the middle of the horizontal movement locus of the dispensing probe 50 in the sample dispensing device 5, and dispenses the next sample. In order to perform this, the dispensing probe 50 is washed after the specimen is discharged into the reaction container 32.
  • the dispensing probe cleaning device 8 is provided between the reagent table 4 and the reaction table 3 and in the middle of the horizontal movement trajectory of the dispensing probe 50 in the reagent dispensing device 7, and dispenses the next reagent. In order to perform this, the dispensing probe 50 is washed after the reagent is discharged into the reaction container 32.
  • the control mechanism 10 includes a control unit 101, an input unit 102, an analysis unit 103, a storage unit 104, an output unit 105, and a transmission / reception unit 107.
  • Each unit included in the control mechanism 10 is electrically connected to the control unit 101.
  • the analysis unit 103 is connected to the photometric device 33 via the control unit 101, analyzes the component concentration of the sample based on the amount of light received by the light receiving unit 33 b, and outputs the analysis result to the control unit 101.
  • the input unit 102 is a part that performs an operation of inputting an inspection item or the like to the control unit 101. For example, a keyboard or a mouse is used.
  • the input unit 102 may be realized by a touch panel.
  • the storage unit 104 is configured by using a hard disk that magnetically stores information and a memory that loads various programs related to the process from the hard disk and electrically stores them when the automatic analyzer 1 executes the process. Various information including the analysis result of the specimen is stored.
  • the storage unit 104 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.
  • the output unit 105 is configured using a printer, a speaker, and the like, and outputs various information related to analysis under the control of the control unit 101.
  • the output unit 105 displays analysis contents, alarms, and the like, and a display panel or the like is used.
  • the transmission / reception unit 107 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown).
  • the automatic analyzer 1 configured as described above discharges the reagent sucked from the reagent container 42 by the reagent dispensing device 7 to the plurality of reaction containers 32 conveyed along the circumferential direction by the rotating reaction table 3.
  • the reaction container 32 from which the reagent has been discharged is transported along the circumferential direction by the reaction table 3, and the sample is dispensed from the sample container 22 held in the sample table 2 by the sample dispensing device 5, and the photometric device 33.
  • the light flux that has passed through the reaction solution in which the specimen and the reagent have reacted is measured.
  • the dispensing probe 50 is transported onto the sample container 22 containing the sample to be dispensed by the probe transfer unit 53, and the dispensing probe 50 is lowered into the sample container 22 (step S100). Thereafter, it is determined whether or not the dispensing probe 50 has detected the liquid level (step S101).
  • the dispensing probe 50 is lowered into the sample container 22, the dispensing probe 50 comes into contact with the sample liquid surface, and the liquid level detection mechanism provided in the dispensing probe 50 causes the liquid level to change due to the change in capacitance caused by the liquid surface contact. Will be detected.
  • Step S ⁇ b> 100 when the dispensing probe 50 does not detect the liquid level (No at Step S ⁇ b> 101), the process proceeds to Step S ⁇ b> 100 and the dispensing probe 50 is further lowered by the probe transfer unit 53.
  • the dispensing probe 50 detects the liquid level (step S101, Yes)
  • the dispensing probe 50 is lowered by a predetermined amount in order to suck the sample (step S102), and is separated by the negative pressure of the plunger drive unit 56.
  • the specimen is aspirated from the injection probe 50 (step S103).
  • the amount of sample suction is aspirated by adding a dummy used for sample dummy discharge for checking whether or not the dispensing probe 50 has sucked the sample.
  • the dispensing probe 50 is moved up by several millimeters from the sample liquid surface by driving the probe transfer unit 53 (step S104). After rising, under the control of the dispensing control unit 109, the dummy sample is discharged from the dispensing probe 50 (step S105), and the static between the dispensing probe 50 and the electrode 4a which is the housing ground when the dummy sample is discharged is discharged.
  • the liquid level is detected by the liquid level detection mechanism 11, and the liquid discharge determination unit 106 determines whether or not the dummy sample is discharged from the dispensing probe 50 based on the detected capacitance change (step S106).
  • FIG. 5A an enlarged view of the dispensing probe at the time of dispensing the dummy sample shown in FIG. 6, and a dummy sample ejection shown in FIG.
  • the determination method of the dummy specimen discharge by the liquid discharge determination unit 106 will be further described.
  • the dispensing probe 50 is lowered into the sample container 22, and the capacitance when the probe tip of the dispensing probe 50 comes into contact with the sample liquid surface is determined as a liquid level detection mechanism. 11 to detect the liquid level based on the change in capacitance.
  • FIG. 5A the dispensing probe 50 is lowered into the sample container 22, and the capacitance when the probe tip of the dispensing probe 50 comes into contact with the sample liquid surface is determined as a liquid level detection mechanism. 11 to detect the liquid level based on the change in capacitance.
  • the dispensing probe 50 in the sample container 22 is further lowered by a predetermined amount to suck the sample.
  • the dispensing probe 50 is raised so that it is about several millimeters away from the sample liquid surface in the sample container 22, and a dummy sample is obtained as shown in FIG. 5 (d). Is discharged.
  • the distance between the dispensing probe 50 and the sample liquid surface is set in consideration of the dummy sample discharge amount, the sample viscosity, and the like. When the distance between the dispensing probe 50 and the sample liquid surface is closer, the dummy sample discharge amount can be reduced. However, when the viscosity of the sample is high, a liquid junction state occurs in which the sample and the probe are connected before the dummy sample is discharged. Since there is a risk, the distance shall not cause a liquid junction.
  • FIG. 6 is an enlarged view when the dispensing probe 50 discharges a dummy sample (FIG. 5D).
  • the dispensing control unit 109 issues a dummy sample discharge signal to the plunger driving unit 56, FIG.
  • FIG. 6B the dummy sample starts to be discharged from the tip of the dispensing probe 50.
  • FIG. 6C the dispensing probe 50 and the sample (sample container 22) are discharged from the discharged dummy sample. It becomes a liquid junction state.
  • the dispensing probe 50 and the sample container 22 are in a liquid junction state with the dummy sample discharged as shown in FIG. 6C, the capacitance between the dispensing probe 50 and the electrode 4a changes greatly.
  • FIG. 5D a dummy sample
  • FIG. 7 is a change diagram of the electrostatic capacity when the dummy specimen is discharged. As shown in FIG. 7, when the dummy specimen is ejected, the output voltage decreases with ejection, and the minimum output ⁇ V at t1 when the dispensing probe 50 and the specimen container 22 are in a liquid junction state with the ejected dummy specimen. Become.
  • the liquid discharge determination unit 106 determines whether or not a dummy sample has been discharged by comparing the set threshold value and the minimum output value.
  • the threshold value may be the same as the threshold value when the liquid level detection mechanism 11 detects the liquid level, but may be set to another value.
  • step S106 when it is determined that a dummy sample has been discharged (Yes in step S106), a predetermined amount of sample necessary for the analysis performed in step S103 is aspirated, and subsequent sample discharge is also performed. It is determined that it is normally performed, and after the dispensing probe 50 is transported to the reaction table 3, the specimen is discharged into the reaction container 32 accommodated in the reaction table 3 (step S107). If it is determined that the dummy sample is not ejected (No in step S106), it is determined that the sample performed in step S103 is not aspirated by a predetermined amount, or ejection is not performed normally, and a dispensing abnormality is not detected. A warning is issued (step S108).
  • a change in electrostatic capacitance when a dummy sample is discharged is detected on the sample container 22, and when the change is equal to or greater than a threshold, it is determined that the dummy sample has been discharged, and the previous sample suction is normal.
  • the capacitance change time measurement unit 108 measures the capacitance change time when the dummy sample is discharged, and the dummy sample is detected when the change time is within a predetermined range. It is different in that it is determined that a predetermined amount has been ejected and the sample aspiration is normal.
  • the first embodiment even when a predetermined amount of dummy specimen is not ejected and the capacitance change time is short, it is determined that dispensing is normal when a voltage equal to or higher than the threshold is output.
  • the second embodiment since it is determined whether or not the dummy sample discharge has been normally performed based on the change time of the capacitance, when the sample suction amount is smaller than the set amount and the dummy sample discharge amount is small, Although sample aspiration is normally performed, it is preferable because it is possible to determine that the dispensing is abnormal even when the dispensing probe 50 is clogged by a foreign substance in the sample and a predetermined amount of dummy sample is not discharged.
  • FIG. 7 shows a variation diagram of the electrostatic capacity when discharging the dummy specimen, a schematic configuration diagram of the capacitive liquid level detection mechanism 11A shown in FIG. 8, and the dispensing probe shown in FIG. This will be described with reference to a flowchart of a method for confirming dispensing failure.
  • the liquid level detection mechanism 11A of the second embodiment includes a capacitance change time measurement unit 108 in the control unit 101A.
  • the capacitance change time measuring unit 108 measures the capacitance change time in the change diagram of the capacitance when discharging the dummy specimen shown in FIG. 7, that is, ⁇ t (t2-t1), and the capacitance change.
  • the liquid ejection determining unit 106A determines whether a predetermined amount of the dummy sample has been discharged by comparing the set predetermined range with the change time ⁇ t. To do.
  • the predetermined range of the capacitance change time is set according to the discharge amount of the dummy specimen.
  • the dispensing probe 50 is transported onto the sample container 22 containing the sample to be dispensed by the probe transfer unit 53, and the dispensing probe 50 is lowered into the sample container 22 (step S200). . Thereafter, it is determined whether or not the dispensing probe 50 has detected the liquid level (step S201).
  • the dispensing probe 50 descends into the sample container 22, the dispensing probe 50 comes into contact with the sample liquid surface, and the liquid level detection mechanism 11A provided in the dispensing probe 50 causes the liquid to change due to the change in capacitance caused by the liquid surface contact. The surface will be detected.
  • the process proceeds to step S200, and the dispensing probe 50 is lowered by the probe driving means.
  • the dispensing probe 50 detects the liquid level (step S201, Yes)
  • the dispensing probe 50 is lowered by a predetermined amount in order to suck the sample (step S202), and is separated by the negative pressure of the plunger drive unit 56.
  • the specimen is aspirated from the injection probe 50 (step S203).
  • the amount of sample aspirated is a sum of the amount of dummy sample used for sample dummy discharge for checking whether or not the dispensing probe 50 has aspirated the sample.
  • the dispensing probe 50 is moved up by about several millimeters from the sample liquid surface by driving the probe transfer unit 53 (step S204). After rising, the dummy sample is discharged from the dispensing probe 50 (step S205), the capacitance between the dispensed probe 50 and the electrode 4a after discharge is detected, and the dummy sample is discharged from the dispensing probe 50 by a predetermined amount. It is determined whether or not (step S206).
  • the capacitance change time measurement unit 108 measures the time ⁇ t when the capacitance change ⁇ V is equal to or greater than the threshold value, and the liquid discharge determination unit 106A determines that the static discharge time ⁇ t is set according to the dummy sample discharge amount.
  • step S206 it is determined whether or not the capacitance change time is within a predetermined range.
  • the liquid discharge determination unit 106A when it is determined that a predetermined amount of the dummy sample has been discharged (step S206, Yes), it is determined that the sample performed in step S203 is also aspirated by a predetermined amount and discharge is normally performed. Then, the dispensing probe 50 is transported to the reaction table 3 and the specimen is discharged into the reaction container 32 accommodated in the reaction table 3 (step S207).
  • Step S208 If it is determined that the predetermined amount of the dummy sample is not ejected (No at Step S206), it is determined that the sample performed at Step S203 is not aspirated by a predetermined amount and the ejection is not normally performed, thereby causing a dispensing error. Is issued (step S208).
  • the sample dispensing has been described, but the dispensing failure due to empty aspiration or probe clogging can be confirmed in the same manner for reagent dispensing.
  • the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible to apply.
  • the dispensing device, the automatic analyzer, and the dispensing failure confirmation method of the present invention are effective when it is desired to easily and quickly determine dispensing failures, and particularly for samples that are prone to probe clogging. It is suitable for dispensing.

Abstract

Provided are a dispensing device, an automatic analyzing device and a dispensing failure confirming method, which can confirm a dead suction due to an erroneous detection of a liquid level or a dispensing failure due to probe clogging, thereby to avoid an erroneous analysis. A dispensing device (5) or (7) uses a dispensing probe (50) to suck the sum of a liquid necessary for the analysis and a dummy liquid from a specimen container (22) or a reagent container (42), discharges the dummy liquid under the control of a dispensing control unit (109) from the specimen container (22) or the reagent container (42), detects the electrostatic capacity change between the dispensing probe (50) and an electrode (4a) at the discharge time by a voltage detecting circuit (113), and decides whether or not the dispensing probe (50) has discharged the liquid, on the basis of the electrostatic capacity change, by a liquid discharge deciding unit (106).

Description

分注装置、自動分析装置および分注不良確認方法Dispensing device, automatic analyzer and dispensing failure confirmation method
 本発明は、検体または試薬を分注する分注装置、前記分注装置を備えた自動分析装置および分注不良確認方法に関する。 The present invention relates to a dispensing apparatus for dispensing a specimen or a reagent, an automatic analyzer equipped with the dispensing apparatus, and a dispensing failure confirmation method.
 従来、検体と試薬とを反応させることによってその検体の成分を分析する自動分析装置において、検体または試薬分注の際、確実に吸引するとともに検体または試薬中へのプローブの挿入を最小として検体間または試薬間のキャリーオーバーを防止するために、プローブ自身またはプローブの近傍に設けられる電極と、検体または試薬容器と一体にまたは近傍に配設される電極との間の静電容量の変化を検出する静電容量式の液面検知機構が採用されている。 Conventionally, in an automatic analyzer that analyzes the components of a sample by reacting the sample with a reagent, when dispensing the sample or reagent, the sample is reliably aspirated and the probe is inserted into the sample or the reagent to minimize the distance between the samples. Or, to prevent carryover between reagents, change in capacitance between the probe itself or an electrode provided near the probe and an electrode provided integrally with or near the specimen or reagent container is detected. An electrostatic capacitance type liquid level detection mechanism is employed.
 このような静電容量式の液面検知機構において、液体容器に帯電した静電気により液面を誤検知することがあり、これを防止するために液体容器の帯電を除電する機構を設ける液面検知機構が知られている(例えば、特許文献1を参照)。 In such a capacitance type liquid level detection mechanism, the liquid level may be erroneously detected by static electricity charged in the liquid container, and in order to prevent this, the liquid level detection is provided with a mechanism for eliminating the charge of the liquid container. A mechanism is known (see, for example, Patent Document 1).
 また、液面検知機構とは別に、分注プローブが接続される配管に配管圧力測定機構を設けることにより検体または試薬の液体吸引状態を圧力により確認して、圧力変化によって分注異常を検出する技術も開示されている(例えば、特許文献2を参照)。 In addition to the liquid level detection mechanism, a pipe pressure measurement mechanism is provided in the pipe to which the dispensing probe is connected, so that the liquid suction state of the sample or reagent is confirmed by pressure, and dispensing abnormalities are detected by pressure changes. A technique is also disclosed (see, for example, Patent Document 2).
特開平11-271319号公報Japanese Patent Laid-Open No. 11-271319 特開2007-285888号公報JP 2007-285888 A
 しかしながら、特許文献1に記載の液面検知機構は、検体または試薬の容器帯電を除電できるため液面誤検知による空吸引などの分注不良は低減できるものの、異物の吸引等により分注プローブが目詰まりした場合などにも分注不良は発生し、プローブ目詰まりによる分注不良の発見、解消という問題を有していた。 However, although the liquid level detection mechanism described in Patent Document 1 can eliminate the charge of the specimen or reagent in the container, it is possible to reduce dispensing failures such as empty suction due to erroneous detection of the liquid level. In the case of clogging or the like, defective dispensing occurs, and there is a problem of finding and eliminating dispensing defects due to clogging of the probe.
 また、特許文献2に記載の液面検知機構では、空吸引やプローブ目詰まりによる分注不良を確認することはできるものの、圧力検知機構を搭載する必要があり、コストやスペースの点で問題があった。 In addition, although the liquid level detection mechanism described in Patent Document 2 can confirm dispensing failure due to empty suction or probe clogging, it is necessary to mount a pressure detection mechanism, which is problematic in terms of cost and space. there were.
 本発明は、上記に鑑みてなされたものであって、液面誤検知による空吸引やプローブ目詰まりによる分注不良をも確認して、誤分析を回避しうる分注装置、自動分析装置および分注不良確認方法を提供することを目的とする。 The present invention has been made in view of the above, and a dispensing device, an automatic analyzer, and an automatic analyzer capable of avoiding misanalysis by confirming dispensing failure due to empty suction due to liquid level erroneous detection or probe clogging An object is to provide a method for confirming dispensing failure.
 上述した課題を解決し、目的を達成するために、本発明の分注装置は、導電性を有し容器に収容された液体を吸引または吐出する分注プローブと、前記容器と一体にまたは前記容器の近傍に配設される電極と、を備え、前記分注プローブと前記電極との間の静電容量の変化に基づいて前記液体の液面を検知する液面検知機構を備える分注装置であって、前記分注プローブを用いて前記容器から分析に必要な液体とダミー液体の合計量を吸引し、その後前記容器上で前記ダミー液体を吐出するよう制御する分注制御手段と、前記分注制御手段による前記ダミー液体を吐出時の前記分注プローブと前記電極との間の静電容量変化を検知する検知手段と、前記検知手段が検知した静電容量変化に基づき、前記分注プローブが液体を吐出したか否かを判定する液体吐出判定手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a dispensing device of the present invention includes a dispensing probe that sucks or discharges a liquid that is conductive and stored in a container, and is integrated with the container or the A dispensing device comprising a liquid level detection mechanism that detects a liquid level of the liquid based on a change in capacitance between the dispensing probe and the electrode. A dispensing control means for sucking a total amount of liquid and dummy liquid required for analysis from the container using the dispensing probe and then controlling the dummy liquid to be discharged on the container; Detection means for detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid by the dispensing control means, and the dispensing based on the change in capacitance detected by the detection means. Whether the probe ejected liquid Determining a liquid discharge judging means, characterized in that it comprises a.
 また、本発明の分注装置は、上記発明において、前記検知手段は、前記液面検知機構であることを特徴とする。 Further, the dispensing device of the present invention is characterized in that, in the above invention, the detection means is the liquid level detection mechanism.
 また、本発明の分注装置は、上記発明において、前記検知手段により検知された静電容量変化に基づき、ダミー液体を吐出時の前記分注プローブと前記電極との間の静電容量変化時間を測定する測定手段と、を備え、前記液体吐出判定手段は、前記測定手段が測定した静電容量変化時間に基づき、前記分注プローブが所定量の液体を吐出したか否かを判定することを特徴とする。 In the dispensing device of the present invention, in the above invention, the capacitance change time between the dispensing probe and the electrode when discharging the dummy liquid is based on the capacitance change detected by the detection means. Measuring means for measuring the liquid discharge, wherein the liquid discharge determination means determines whether the dispensing probe has discharged a predetermined amount of liquid based on the capacitance change time measured by the measurement means. It is characterized by.
 また、本発明の自動分析装置は、検体と試薬を反応容器で反応させ、反応液の光学的特性をもとに前記反応液の分析を行う自動分析装置であって、上記のいずれか一つに記載の分注装置を備えることを特徴とする。 Further, the automatic analyzer of the present invention is an automatic analyzer for reacting a specimen and a reagent in a reaction vessel and analyzing the reaction liquid based on the optical characteristics of the reaction liquid, and any one of the above It comprises the dispensing apparatus as described in above.
 また、本発明の自動分析装置の分注不良確認方法は、容器に収容された検体および試薬を反応容器に分注し、分注された検体及び試薬を反応容器内で攪拌して反応させ、反応液の光学的特性をもとに前記反応液を分析する自動分析装置の分注不良確認方法であって、前記容器内の液体の液面を静電容量変化に基づき検知する液面検知ステップと、前記容器内の液体を、分注プローブを用いて分析に必要な液体とダミー液体の合計量を吸引する吸引ステップと、前記分注プローブにより前記容器上で前記ダミー液体を吐出するダミー液体吐出ステップと、前記ダミー液体吐出ステップにおいて、前記ダミー液体の吐出時の前記分注プローブと電極との間の静電容量変化を検知する検知ステップと、前記検知ステップにて検知された静電容量変化に基づき、前記分注プローブが液体を吐出したか否かを判定する液体吐出判定ステップと、を含むことを特徴とする。 Further, in the dispensing failure confirmation method of the automatic analyzer of the present invention, the sample and reagent contained in the container are dispensed into the reaction container, and the dispensed sample and reagent are stirred and reacted in the reaction container, A method for confirming dispensing failure of an automatic analyzer that analyzes the reaction liquid based on optical characteristics of the reaction liquid, the liquid level detection step for detecting the liquid level of the liquid in the container based on a change in capacitance A suction step for sucking a total amount of liquid and dummy liquid required for analysis of the liquid in the container using a dispensing probe; and a dummy liquid for discharging the dummy liquid on the container by the dispensing probe. A discharge step; a detection step of detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid in the dummy liquid discharge step; and a capacitance detected in the detection step Strange The basis, characterized in that it comprises a liquid discharge determining whether the dispensing probe ejected liquid.
 また、本発明の自動分析装置の分注不良確認方法は、上記発明において、前記検知ステップにおいて検知された静電容量変化に基づき、前記ダミー液体の吐出時の前記分注プローブと前記電極との間の静電容量変化時間を測定する測定ステップと、を含み、前記液体吐出判定ステップは、前記測定ステップにより測定した静電容量変化時間に基づき、前記分注プローブが所定量の液体を吐出したか否かを判定することを特徴とする。 Moreover, the dispensing failure confirmation method of the automatic analyzer according to the present invention is the above invention, wherein the dispensing probe and the electrode at the time of discharging the dummy liquid are based on the capacitance change detected in the detection step. Measuring a capacitance change time between, and the liquid discharge determining step is based on the capacitance change time measured in the measurement step, the dispensing probe has discharged a predetermined amount of liquid It is characterized by determining whether or not.
 本発明に係る分注装置、自動分析装置および分注不良確認方法によれば、分注プローブを用いて検体または試薬容器から分析に必要な液体とダミー液体の合計量を吸引し、前記容器上で前記ダミー液体を吐出時の前記分注プローブと前記電極との間の静電容量変化を検知し、前記静電容量変化に基づき前記分注プローブが液体吐出したか否かを判定することにより、液面誤検知による空吸引やプローブ目詰まりによる分注不良を確認して、誤分析を回避することが可能となる。 According to the dispensing device, the automatic analyzer, and the dispensing failure confirmation method according to the present invention, the dispensing probe is used to suck the total amount of the liquid and dummy liquid required for analysis from the sample or reagent container, and And detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid, and determining whether the dispensing probe has discharged the liquid based on the change in capacitance. In addition, it is possible to avoid misanalysis by confirming dispensing failure due to empty suction or probe clogging due to erroneous liquid level detection.
図1は、本発明の実施の形態1にかかる自動分析装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to the first embodiment of the present invention. 図2は、図1に示す自動分析装置で使用される検体分注装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a sample dispensing apparatus used in the automatic analyzer shown in FIG. 図3は、図2に示す検体分注装置で使用される液面検知機構の概略構成図である。FIG. 3 is a schematic configuration diagram of a liquid level detection mechanism used in the sample dispensing apparatus shown in FIG. 図4は、本発明の実施の形態1にかかる分注不良の確認方法のフローチャートである。FIG. 4 is a flowchart of the dispensing failure confirmation method according to the first embodiment of the present invention. 図5は、本発明の実施の形態1にかかる分注不良を確認する動作図である。FIG. 5 is an operation diagram for confirming dispensing failure according to the first embodiment of the present invention. 図6は、本発明の実施の形態1にかかる分注プローブのダミー検体吐出時の分注プローブの拡大図である。FIG. 6 is an enlarged view of the dispensing probe when the dummy sample is discharged by the dispensing probe according to the first embodiment of the present invention. 図7は、本発明の実施の形態1にかかるダミー検体吐出時の静電容量の変化図である。FIG. 7 is a diagram showing a change in capacitance when the dummy specimen is discharged according to the first embodiment of the present invention. 図8は、本発明の実施の形態2にかかる検体分注装置で使用される液面検知機構の概略構成図である。FIG. 8 is a schematic configuration diagram of a liquid level detection mechanism used in the sample dispensing apparatus according to the second embodiment of the present invention. 図9は、本発明の実施の形態2にかかる分注不良の確認方法のフローチャートである。FIG. 9 is a flowchart of the dispensing failure confirmation method according to the second embodiment of the present invention.
符号の説明Explanation of symbols
 1                自動分析装置
 2                検体テーブル
 21、31、41         収納部
 22               検体容器
 22a、42a          開口部
 23、43            読取部
 3                反応テーブル
 32               反応容器
 33               測光装置
 33a              光源
 33b              受光部
 34               反応容器洗浄機構
 35               攪拌部
 4                試薬テーブル
 4a               電極
 42               試薬容器
 5                検体分注装置
 7                試薬分注装置
 50               分注プローブ
 51               アーム
 52               支軸
 53               プローブ移送部
 54a、54b          チューブ
 55               シリンジ
 55a              シリンダー
 55b              プランジャー
 56               プランジャー駆動部
 57               タンク
 58               電磁弁
 59               ポンプ
 6、8              分注プローブ洗浄装置
 9                測定機構
 10               制御機構
 101、101A         制御部
 102              入力部
 103              分析部
 104              記憶部
 105              出力部
 106、106A         液体吐出判定部
 107              送受信部
 108              静電容量変化時間測定部
 109              分注制御部
 11、11A           液面検知機構
 111              発振回路
 112              微分回路
 113              電圧検出回路
 L1               押し出し液
 O                鉛直軸
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Sample table 21, 31, 41 Storage part 22 Sample container 22a, 42a Opening part 23, 43 Reading part 3 Reaction table 32 Reaction container 33 Photometry apparatus 33a Light source 33b Light receiving part 34 Reaction container washing mechanism 35 Stirring part 4 Reagent table 4a Electrode 42 Reagent container 5 Specimen dispensing device 7 Reagent dispensing device 50 Dispensing probe 51 Arm 52 Support shaft 53 Probe transfer section 54a, 54b Tube 55 Syringe 55a Cylinder 55b Plunger 56 Plunger drive 57 Tank 58 Solenoid valve 59 Pump 6, 8 Dispensing probe cleaning device 9 Measurement mechanism 10 Control mechanism 101, 101A Control unit 102 Input unit 103 Analysis unit 104 Storage unit 105 Output unit 106, 106A Liquid discharge determination unit 107 Transmission / reception unit 108 Static Capacitance change time measurement unit 109 Dispensing control unit 11, 11A Liquid level detection mechanism 111 Oscillation circuit 112 Differentiation circuit 113 Voltage detection circuit L1 Pushed liquid O Vertical axis
 以下、添付図面を参照して本発明を実施するための最良の形態(以後、「実施の形態」と称する)を説明する。なお、本明細書の記載により本発明が限定されるものではない。 Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described with reference to the accompanying drawings. In addition, this invention is not limited by description of this specification.
(実施の形態1)
 図1は、本発明にかかる自動分析装置を示す概略構成図である。図1に示すように、自動分析装置1は、検体と試薬との間の反応物を通過する光を測定する測定機構9と、測定機構9を含む自動分析装置1全体の制御を行なうとともに、測定機構9における測定結果の分析を行なう制御機構10とを備える。自動分析装置1は、これらの二つの機構が連携することによって複数の検体の分析を自動的に行なう。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing an automatic analyzer according to the present invention. As shown in FIG. 1, the automatic analyzer 1 controls a measurement mechanism 9 that measures light passing through a reaction product between a specimen and a reagent, and the entire automatic analyzer 1 including the measurement mechanism 9. And a control mechanism 10 for analyzing a measurement result in the measurement mechanism 9. The automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
 まず、測定機構9について説明する。測定機構9は、大別して検体テーブル2と、反応テーブル3と、試薬テーブル4と、検体分注装置5と、試薬分注装置7と、分注プローブ洗浄装置6および8とを備えている。 First, the measurement mechanism 9 will be described. The measurement mechanism 9 roughly includes a sample table 2, a reaction table 3, a reagent table 4, a sample dispensing device 5, a reagent dispensing device 7, and dispensing probe cleaning devices 6 and 8.
 検体テーブル2は、円盤状のテーブルを有し、該テーブルの周方向に沿って等間隔で複数配置された収納部21を備えている。各収納部21には、検体を収容した検体容器22が着脱自在に収納される。検体容器22は、上方に向けて開口する開口部22aを有している。また、検体テーブル2は、検体テーブル2の中心を通る鉛直線を回転軸として検体テーブル駆動部(図示せず)によって図1に矢印で示す方向に回転する。検体テーブル2が回転すると検体容器22は、検体分注装置5によって検体が吸引される検体吸引位置に搬送される。 The sample table 2 has a disk-like table and includes a plurality of storage units 21 arranged at equal intervals along the circumferential direction of the table. In each storage unit 21, a sample container 22 containing a sample is detachably stored. The sample container 22 has an opening 22a that opens upward. The sample table 2 is rotated in a direction indicated by an arrow in FIG. 1 by a sample table driving unit (not shown) with a vertical line passing through the center of the sample table 2 as a rotation axis. When the sample table 2 rotates, the sample container 22 is transported to the sample aspirating position where the sample is aspirated by the sample dispensing device 5.
 なお、検体容器22には、収容された検体の種類や分析項目に関する検体情報を有する識別ラベル(図示せず)が貼り付けてある。一方、検体テーブル2は、検体容器22の識別ラベルの情報を読み取る読取部23を備えている。 It should be noted that an identification label (not shown) having sample information relating to the type of sample contained and analysis items is attached to the sample container 22. On the other hand, the sample table 2 includes a reading unit 23 that reads information on the identification label of the sample container 22.
 反応テーブル3は、円環状のテーブルを有し、該テーブルの周方向に沿って等間隔で複数配置された収納部31を備えている。各収納部31には、検体と試薬を収容する透明な反応容器32が上方に向けて開口した形態で着脱自在に収納される。また、反応テーブル3は、反応テーブル3の中心を通る鉛直線を回転軸として反応テーブル駆動部(図示せず)によって図1に矢印で示す方向に回転する。反応テーブル3が回転すると反応容器32は、検体分注装置5によって検体が吐出される検体吐出位置や、試薬分注装置7によって試薬が吐出される試薬吐出位置に搬送される。反応テーブル3の上方と下方には、図示しない開閉自在な蓋と恒温槽とがそれぞれ設けられている。恒温槽は、反応容器32に分注される検体と試薬の反応を促進させる温度に加温調整される。 The reaction table 3 has an annular table and includes a plurality of storage portions 31 arranged at equal intervals along the circumferential direction of the table. In each storage unit 31, a transparent reaction container 32 for storing a sample and a reagent is detachably stored in a form opening upward. The reaction table 3 is rotated in a direction indicated by an arrow in FIG. 1 by a reaction table driving unit (not shown) with a vertical line passing through the center of the reaction table 3 as a rotation axis. When the reaction table 3 rotates, the reaction container 32 is transported to the sample discharge position where the sample is discharged by the sample dispensing apparatus 5 or the reagent discharge position where the reagent is discharged by the reagent dispensing apparatus 7. An openable and closable lid and a thermostat (not shown) are provided above and below the reaction table 3, respectively. The thermostat is heated and adjusted to a temperature that promotes the reaction between the specimen dispensed into the reaction container 32 and the reagent.
 測光装置33は、光源33aおよび受光部33bを有している。光源33aは、所定波長の分析光を出射し、受光部33bは、光源33aから出射されて、反応容器32に収容された検体と試薬が反応した反応液を透過した光束を測定する。測光装置33は、前記光源33aと受光部33bが反応テーブル3の収納部31を挟んで半径方向に対向する位置に配置されている。なお、反応テーブル3は、測定後の反応液を反応容器32から排出し、該反応容器32を洗浄する反応容器洗浄機構34、および反応容器32に分注された検体と試薬との攪拌を行い、反応を促進させる攪拌部35を備えている。 The photometric device 33 has a light source 33a and a light receiving unit 33b. The light source 33a emits analysis light having a predetermined wavelength, and the light receiving unit 33b measures a light beam emitted from the light source 33a and transmitted through the reaction solution in which the sample and the reagent contained in the reaction container 32 have reacted. In the photometric device 33, the light source 33 a and the light receiving portion 33 b are arranged at positions where they oppose each other in the radial direction across the storage portion 31 of the reaction table 3. The reaction table 3 discharges the measured reaction solution from the reaction vessel 32, and stirs the reaction vessel washing mechanism 34 for washing the reaction vessel 32 and the sample and reagent dispensed in the reaction vessel 32. And a stirring unit 35 for promoting the reaction.
 試薬テーブル4は、円盤状のテーブルを有し、該テーブルの周方向に沿って等間隔で複数配置された収納部41を備えている。各収納部41には、試薬を収容した試薬容器42が着脱自在に収納される。試薬容器42は、上方に向いて開口する開口部42aを有している。また、試薬テーブル4は、試薬テーブル4の中心を通る鉛直線を回転軸として試薬テーブル駆動部(図示せず)によって図1に矢印で示す方向に回転する。試薬テーブル4が回転すると試薬容器42は、試薬分注装置7によって試薬が吸引される試薬吸引位置に搬送される。試薬テーブル4の上方には、開閉自在な蓋(図示せず)が設けられている。また、試薬テーブル4の下方には、保冷槽が設けられている。このため、試薬テーブル4内に試薬容器42が収納され、蓋が閉じられたときに、保冷槽により試薬容器42内に収容された試薬を一定の温度状態に保ち、試薬容器42内に収容された試薬の蒸発や変性を抑制することができる。 The reagent table 4 has a disk-shaped table and includes a plurality of storage portions 41 arranged at equal intervals along the circumferential direction of the table. In each storage unit 41, a reagent container 42 storing a reagent is detachably stored. The reagent container 42 has an opening 42a that opens upward. The reagent table 4 is rotated in a direction indicated by an arrow in FIG. 1 by a reagent table driving unit (not shown) with a vertical line passing through the center of the reagent table 4 as a rotation axis. When the reagent table 4 rotates, the reagent container 42 is transported to the reagent suction position where the reagent is sucked by the reagent dispensing device 7. An openable / closable lid (not shown) is provided above the reagent table 4. In addition, a cold storage tank is provided below the reagent table 4. Therefore, when the reagent container 42 is stored in the reagent table 4 and the lid is closed, the reagent stored in the reagent container 42 is kept at a constant temperature by the cold storage tank and stored in the reagent container 42. Evaporation and denaturation of the reagent can be suppressed.
 なお、試薬容器42には、収容された試薬の種類や収容量に関する試薬情報を有する識別ラベル(図示せず)が貼り付けてある。一方、試薬テーブル4は、試薬容器42の識別ラベルの情報を読み取る読取部43を備えている。 It should be noted that an identification label (not shown) having reagent information relating to the type and amount of reagent contained is affixed to the reagent container 42. On the other hand, the reagent table 4 includes a reading unit 43 that reads information on the identification label of the reagent container 42.
 検体分注装置5は、検体の吸引および吐出を行なう分注プローブが先端部に取り付けられ、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備える。検体分注装置5は、検体テーブル2と反応テーブル3との間に設けられ、検体テーブル2によって所定位置に搬送された検体容器22内の検体を分注プローブによって吸引し、アームを旋回させ、反応テーブル3によって所定位置に搬送された反応容器32に分注して検体を所定タイミングで反応テーブル3上の反応容器32内に移送する。 The sample dispensing device 5 has a dispensing probe for aspirating and discharging a sample attached to the distal end, and freely moves up and down in the vertical direction and rotates around a vertical line passing through its proximal end as a central axis. Provide an arm. The sample dispensing device 5 is provided between the sample table 2 and the reaction table 3, sucks the sample in the sample container 22 transported to a predetermined position by the sample table 2 with a dispensing probe, rotates the arm, The sample is dispensed into the reaction container 32 conveyed to a predetermined position by the reaction table 3, and the sample is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
 試薬分注装置7は、試薬の吸引および吐出を行なう分注プローブが先端部に取り付けられ、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備える。試薬分注装置7は、試薬テーブル4と反応テーブル3との間に設けられ、試薬テーブル4によって所定位置に搬送された試薬容器42内の試薬を分注プローブによって吸引し、アームを旋回させ、反応テーブル3によって所定位置に搬送された反応容器32に分注して試薬を所定タイミングで反応テーブル3上の反応容器32内に移送する。 The reagent dispensing apparatus 7 has a dispensing probe for aspirating and discharging the reagent attached to the distal end portion, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end portion as a central axis. Provide an arm. The reagent dispensing device 7 is provided between the reagent table 4 and the reaction table 3, sucks the reagent in the reagent container 42 transported to a predetermined position by the reagent table 4 with a dispensing probe, rotates the arm, The reagent is dispensed into the reaction container 32 transported to a predetermined position by the reaction table 3, and the reagent is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
 図2に検体分注装置5(試薬分注装置7も同様である)の概略構成図を示す。検体分注装置5は、図2に示すように分注プローブ50を有している。分注プローブ50は、ステンレスなどによって棒管状に形成されたもので、先端側はテーパー形状をとる。分注プローブ50は、先端を下方に向けて上方の基端がアーム51の先端に取り付けてある。アーム51は、水平配置され、その基端が支軸52の上端に固定してある。支軸52は、鉛直配置されており、プローブ移送部53によって鉛直軸Oを中心として回転する。支軸52が回転すると、アーム51が水平方向に旋回して、分注プローブ50を水平方向に移動させる。また、支軸52は、プローブ移送部53によって鉛直軸Oに沿って昇降する。支軸52が昇降すると、アーム51が鉛直方向に昇降して、分注プローブ50を鉛直(上下)方向であって分注プローブ50の長手方向に昇降させる。 FIG. 2 shows a schematic configuration diagram of the specimen dispensing device 5 (the same applies to the reagent dispensing device 7). The sample dispensing device 5 has a dispensing probe 50 as shown in FIG. The dispensing probe 50 is formed in a rod-like shape from stainless steel or the like, and the tip side is tapered. The dispensing probe 50 is attached to the distal end of the arm 51 with the upper proximal end facing downward. The arm 51 is horizontally arranged, and its base end is fixed to the upper end of the support shaft 52. The support shaft 52 is arranged vertically, and is rotated around the vertical axis O by the probe transfer unit 53. When the support shaft 52 rotates, the arm 51 turns in the horizontal direction and moves the dispensing probe 50 in the horizontal direction. Further, the support shaft 52 moves up and down along the vertical axis O by the probe transfer unit 53. When the support shaft 52 moves up and down, the arm 51 moves up and down in the vertical direction, and the dispensing probe 50 moves up and down in the vertical (up and down) direction and in the longitudinal direction of the dispensing probe 50.
 分注プローブ50の基端には、チューブ54aの一端が接続される。このチューブ54aの他端は、シリンジ55に接続される。シリンジ55は、チューブ54aの他端が接続された筒状のシリンダー55aと、シリンダー55aの内壁面に摺動しながらシリンダー55a内を進退可能に設けられたプランジャー55bとを有する。プランジャー55bは、プランジャー駆動部56に接続される。プランジャー駆動部56は、例えばリニアモーターを用いて構成され、シリンダー55aに対するプランジャー55bの進退移動を行うものである。シリンジ55のシリンダー55aには、チューブ54bの一端が接続される。このチューブ54bの他端は、押し出し液L1を収容するタンク57に接続される。また、チューブ54bの途中には、電磁弁58およびポンプ59が接続される。なお、押し出し液L1としては、蒸留水や脱気水などの非圧縮性流体が適用される。この押し出し液L1は、分注プローブ50の内部の洗浄を行う洗浄水としても適用される。 One end of a tube 54a is connected to the proximal end of the dispensing probe 50. The other end of the tube 54 a is connected to the syringe 55. The syringe 55 includes a cylindrical cylinder 55a to which the other end of the tube 54a is connected, and a plunger 55b provided so as to be able to advance and retreat in the cylinder 55a while sliding on the inner wall surface of the cylinder 55a. The plunger 55 b is connected to the plunger driving unit 56. The plunger drive unit 56 is configured using, for example, a linear motor, and moves the plunger 55b back and forth with respect to the cylinder 55a. One end of a tube 54b is connected to the cylinder 55a of the syringe 55. The other end of the tube 54b is connected to a tank 57 that contains the extrusion liquid L1. Further, an electromagnetic valve 58 and a pump 59 are connected in the middle of the tube 54b. In addition, as the extrusion liquid L1, an incompressible fluid such as distilled water or degassed water is applied. This extrusion liquid L1 is also applied as cleaning water for cleaning the inside of the dispensing probe 50.
 検体分注装置5は、ポンプ59を駆動し、電磁弁58を開状態にすることでタンク57に収容されている押し出し液L1が、チューブ54bを経てシリンジ55のシリンダー55a内に充填され、さらにシリンダー55aからチューブ54aを経て分注プローブ50の先端まで満たされる。このように押し出し液L1が分注プローブ50の先端まで満たされた状態で、電磁弁58を閉状態にし、ポンプ59を止めておく。そして、検体や試薬の吸引を行う場合、プランジャー駆動部56を駆動してプランジャー55bをシリンダー55aに対して後退移動させることにより、押し出し液L1を介して分注プローブ50の先端部に吸引圧が印加され、この吸引圧によって検体や試薬が吸引される。一方、検体や試薬の吐出を行う場合には、プランジャー駆動部56を駆動してプランジャー55bをシリンダー55aに対して進出移動させることにより、押し出し液L1を介して分注プローブ50の先端部に吐出圧が印加され、この吐出圧によって検体や試薬が吐出される。 The sample dispensing device 5 drives the pump 59 and opens the electromagnetic valve 58 to fill the extruded liquid L1 accommodated in the tank 57 into the cylinder 55a of the syringe 55 via the tube 54b. The cylinder 55a is filled up to the tip of the dispensing probe 50 through the tube 54a. In such a state that the extrusion liquid L1 is filled up to the tip of the dispensing probe 50, the electromagnetic valve 58 is closed and the pump 59 is stopped. When aspirating the specimen or reagent, the plunger drive unit 56 is driven to move the plunger 55b backward with respect to the cylinder 55a, thereby sucking the tip of the dispensing probe 50 through the extrusion liquid L1. Pressure is applied, and the specimen and reagent are aspirated by this suction pressure. On the other hand, when the specimen or reagent is discharged, the distal end portion of the dispensing probe 50 is driven via the push-out liquid L1 by driving the plunger driving portion 56 and moving the plunger 55b to the cylinder 55a. A discharge pressure is applied to the sample, and the specimen and reagent are discharged by the discharge pressure.
 なお、検体分注装置5(試薬分注装置7)は、分注プローブで分注する検体(試薬)の液面を検知する液面検知機構11を備えており、図3を参照して静電容量式の液面検知機構について説明する。図3は、静電容量式の液面検知機構11の概略構成図である。図3に示すように、液面検知機構11は、発振回路111、微分回路112及び電圧検出回路113を備えている。 The sample dispensing device 5 (reagent dispensing device 7) includes a liquid level detection mechanism 11 that detects the liquid level of the sample (reagent) dispensed by the dispensing probe. A capacitance type liquid level detection mechanism will be described. FIG. 3 is a schematic configuration diagram of the capacitance type liquid level detection mechanism 11. As shown in FIG. 3, the liquid level detection mechanism 11 includes an oscillation circuit 111, a differentiation circuit 112, and a voltage detection circuit 113.
 発振回路111は、交流信号を発振し、微分回路112に入力する。微分回路112は、図3に示すように、抵抗112a、112b、コンデンサ112c、112d及びオペアンプ112eを有し、発振回路111が発振する交流信号の周波数によって入力感度が高くなるように調整されている。微分回路112の+側入力端は、リード線11aを介して分注プローブ50に接続されており、分注プローブ50と筐体アースである電極4aとの間に静電容量が発生し、この静電容量はコンデンサ112dと並列に生じることになる。そのため、分注プローブ50と筐体アースである電極4aとの間の静電容量の変化により微分回路112の出力電圧Voutが変化する。電圧検出回路113は、この出力電圧Voutを検出し、この値に応じて分注プローブ50の下端が検体容器22内に存在する液体の液面に接したか否かを検知する。電圧検出回路113が検出したこの出力電圧信号は、制御部101へ出力され、検体容器22に収容される検体の液面高が検知される。 The oscillation circuit 111 oscillates an AC signal and inputs it to the differentiation circuit 112. As shown in FIG. 3, the differentiating circuit 112 includes resistors 112a and 112b, capacitors 112c and 112d, and an operational amplifier 112e, and is adjusted so that input sensitivity is increased depending on the frequency of the AC signal oscillated by the oscillation circuit 111. . The + side input end of the differentiating circuit 112 is connected to the dispensing probe 50 via the lead wire 11a, and an electrostatic capacity is generated between the dispensing probe 50 and the electrode 4a which is the housing ground. The capacitance is generated in parallel with the capacitor 112d. Therefore, the output voltage Vout of the differentiating circuit 112 changes due to the change in capacitance between the dispensing probe 50 and the electrode 4a which is the housing ground. The voltage detection circuit 113 detects the output voltage Vout, and detects whether or not the lower end of the dispensing probe 50 is in contact with the liquid level present in the sample container 22 according to this value. The output voltage signal detected by the voltage detection circuit 113 is output to the control unit 101, and the liquid level of the sample stored in the sample container 22 is detected.
 この場合、分注プローブ50が液体の液面に非接触状態の静電容量値により発振回路111の周波数で入力感度が高くなるように調節された微分回路112は、接触状態の静電容量値では感度が低下する。従って、電圧検出回路113は、出力電圧Voutの変化により液面を検知する。 In this case, the differentiation circuit 112 adjusted so that the input sensitivity is increased at the frequency of the oscillation circuit 111 by the capacitance value when the dispensing probe 50 is not in contact with the liquid surface is the capacitance value in the contact state. Then the sensitivity decreases. Therefore, the voltage detection circuit 113 detects the liquid level based on the change in the output voltage Vout.
 また、液面検知機構11は、検体容器22上で分注プローブ50から検体ダミー吐出を行なう際の、分注プローブ50による検体吐出の可否を判断するための静電容量の検知にも使用される。分注制御部109は、分注プローブ50を用いて検体容器22から分析に必要な検体とダミー検体の合計量を吸引し、その後検体容器22上でダミー検体を吐出するよう制御する。ダミー検体が分注プローブ50から吐出されたときから、検体容器22内の検体液面に到達し、ダミー検体の吐出が終了するまでの出力電圧信号を電圧検出回路113により検出する。電圧検出回路113が検出した出力信号は、制御部101へ出力され、液体吐出判定部106が当該出力電圧信号に基づきダミー検体が吐出されたか否かを判定する。ダミー検体が吐出されたと判定された場合は、ダミー検体とともに吸引された検体は所定量吸引され、吐出も行なわれると判断され、ダミー検体が吐出されないと判定された場合は、ダミー検体とともに吸引された検体は所定量吸引されていないか、または吐出されないと判断され、分注異常である旨の警告が出される。 The liquid level detection mechanism 11 is also used to detect capacitance when determining whether or not the sample can be discharged by the dispensing probe 50 when the sample dummy is discharged from the dispensing probe 50 on the sample container 22. The The dispensing control unit 109 controls the dispensing probe 50 to suck the total amount of the sample and the dummy sample necessary for the analysis from the sample container 22 and then discharge the dummy sample on the sample container 22. The voltage detection circuit 113 detects the output voltage signal from when the dummy sample is discharged from the dispensing probe 50 until it reaches the sample liquid level in the sample container 22 and the discharge of the dummy sample is completed. The output signal detected by the voltage detection circuit 113 is output to the control unit 101, and the liquid discharge determination unit 106 determines whether or not the dummy sample has been discharged based on the output voltage signal. When it is determined that the dummy sample has been discharged, it is determined that the sample sucked together with the dummy sample is sucked by a predetermined amount and discharged, and when it is determined that the dummy sample is not discharged, the sample is sucked together with the dummy sample. It is determined that a predetermined amount of the sample has not been aspirated or discharged, and a warning is given that dispensing is abnormal.
 分注プローブ洗浄装置6は、検体テーブル2と反応テーブル3との間であって、検体分注装置5における分注プローブ50の水平移動の軌跡の途中位置に設けられ、次の検体の分注を行なうために、検体を反応容器32に吐出した後分注プローブ50を洗浄する。分注プローブ洗浄装置8は、試薬テーブル4と反応テーブル3との間であって、試薬分注装置7における分注プローブ50の水平移動の軌跡の途中位置に設けられ、次の試薬の分注を行なうために、試薬を反応容器32に吐出した後分注プローブ50を洗浄する。 The dispensing probe cleaning device 6 is provided between the sample table 2 and the reaction table 3 and in the middle of the horizontal movement locus of the dispensing probe 50 in the sample dispensing device 5, and dispenses the next sample. In order to perform this, the dispensing probe 50 is washed after the specimen is discharged into the reaction container 32. The dispensing probe cleaning device 8 is provided between the reagent table 4 and the reaction table 3 and in the middle of the horizontal movement trajectory of the dispensing probe 50 in the reagent dispensing device 7, and dispenses the next reagent. In order to perform this, the dispensing probe 50 is washed after the reagent is discharged into the reaction container 32.
 つぎに、制御機構10について説明する。図1に示すように、制御機構10は、制御部101、入力部102、分析部103、記憶部104、出力部105および送受信部107を備える。制御機構10が備える各部は、制御部101に電気的に接続されている。分析部103は、制御部101を介して測光装置33に接続され、受光部33bが受光した光量に基づいて検体の成分濃度等を分析し、分析結果を制御部101に出力する。入力部102は、制御部101へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。入力部102はタッチパネルによって実現するようにしてもよい。 Next, the control mechanism 10 will be described. As shown in FIG. 1, the control mechanism 10 includes a control unit 101, an input unit 102, an analysis unit 103, a storage unit 104, an output unit 105, and a transmission / reception unit 107. Each unit included in the control mechanism 10 is electrically connected to the control unit 101. The analysis unit 103 is connected to the photometric device 33 via the control unit 101, analyzes the component concentration of the sample based on the amount of light received by the light receiving unit 33 b, and outputs the analysis result to the control unit 101. The input unit 102 is a part that performs an operation of inputting an inspection item or the like to the control unit 101. For example, a keyboard or a mouse is used. The input unit 102 may be realized by a touch panel.
 記憶部104は、情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて構成され、検体の分析結果等を含む諸情報を記憶する。記憶部104は、CD-ROM、DVD-ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。 The storage unit 104 is configured by using a hard disk that magnetically stores information and a memory that loads various programs related to the process from the hard disk and electrically stores them when the automatic analyzer 1 executes the process. Various information including the analysis result of the specimen is stored. The storage unit 104 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card.
 出力部105は、プリンタ、スピーカー等を用いて構成され、制御部101の制御のもと、分析に関する諸情報を出力する。出力部105は、分析内容や警報等を表示するもので、ディスプレイパネル等が使用される。送受信部107は、図示しない通信ネットワークを介して所定の形式にしたがった情報の送受信を行なうインターフェースとしての機能を有する。 The output unit 105 is configured using a printer, a speaker, and the like, and outputs various information related to analysis under the control of the control unit 101. The output unit 105 displays analysis contents, alarms, and the like, and a display panel or the like is used. The transmission / reception unit 107 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown).
 以上のように構成される自動分析装置1は、回転する反応テーブル3によって周方向に沿って搬送されてくる複数の反応容器32に、試薬分注装置7が試薬容器42から吸引した試薬を吐出し、試薬が吐出された反応容器32は、反応テーブル3によって周方向に沿って搬送され、検体分注装置5によって検体テーブル2に保持された検体容器22から検体が分注され、測光装置33により検体と試薬が反応した反応液を透過した光束が測定される。 The automatic analyzer 1 configured as described above discharges the reagent sucked from the reagent container 42 by the reagent dispensing device 7 to the plurality of reaction containers 32 conveyed along the circumferential direction by the rotating reaction table 3. The reaction container 32 from which the reagent has been discharged is transported along the circumferential direction by the reaction table 3, and the sample is dispensed from the sample container 22 held in the sample table 2 by the sample dispensing device 5, and the photometric device 33. Thus, the light flux that has passed through the reaction solution in which the specimen and the reagent have reacted is measured.
 次に、実施の形態1にかかる分注プローブの分注不良の確認方法について、図4に示すフローチャートを参照して説明する。先ず、プローブ移送部53により分注する検体を収容した検体容器22上に分注プローブ50を搬送し、検体容器22内に分注プローブ50を降下する(ステップS100)。その後、分注プローブ50が液面を検知したか否かを判断する(ステップS101)。分注プローブ50が検体容器22内に降下すると、分注プローブ50は検体液面に接触し、分注プローブ50が備える液面検知機構は、かかる液面接触による静電容量の変化により液面を検知することになる。ここで、分注プローブ50が液面を検知しない場合(ステップS101、No)、ステップS100に移行し、分注プローブ50がプローブ移送部53によりさらに降下される。一方、分注プローブ50が液面を検知すると(ステップS101、Yes)、検体を吸引するために、分注プローブ50は所定量降下され(ステップS102)、プランジャー駆動部56の負圧により分注プローブ50から検体を吸引する(ステップS103)。検体の吸引量は、分析に要する量に加え、分注プローブ50が検体を吸引したか否かを確認する検体ダミー吐出に用いるダミーを加えた分吸引される。 Next, a method for confirming the dispensing failure of the dispensing probe according to the first embodiment will be described with reference to the flowchart shown in FIG. First, the dispensing probe 50 is transported onto the sample container 22 containing the sample to be dispensed by the probe transfer unit 53, and the dispensing probe 50 is lowered into the sample container 22 (step S100). Thereafter, it is determined whether or not the dispensing probe 50 has detected the liquid level (step S101). When the dispensing probe 50 is lowered into the sample container 22, the dispensing probe 50 comes into contact with the sample liquid surface, and the liquid level detection mechanism provided in the dispensing probe 50 causes the liquid level to change due to the change in capacitance caused by the liquid surface contact. Will be detected. Here, when the dispensing probe 50 does not detect the liquid level (No at Step S <b> 101), the process proceeds to Step S <b> 100 and the dispensing probe 50 is further lowered by the probe transfer unit 53. On the other hand, when the dispensing probe 50 detects the liquid level (step S101, Yes), the dispensing probe 50 is lowered by a predetermined amount in order to suck the sample (step S102), and is separated by the negative pressure of the plunger drive unit 56. The specimen is aspirated from the injection probe 50 (step S103). In addition to the amount required for analysis, the amount of sample suction is aspirated by adding a dummy used for sample dummy discharge for checking whether or not the dispensing probe 50 has sucked the sample.
 検体吸引後、分注プローブ50をプローブ移送部53の駆動により検体液面から数ミリ程度離れるよう上昇させる(ステップS104)。上昇後、分注制御部109の制御のもと、分注プローブ50からダミー検体を吐出させ(ステップS105)、ダミー検体を吐出時の分注プローブ50と筐体アースである電極4a間の静電容量を液面検知機構11により検知し、検知した静電容量変化に基づき、ダミー検体が分注プローブ50から吐出されたか否かを液体吐出判定部106が判定する(ステップS106)。ここで、図5に示す実施の形態1の分注不良の確認方法の動作図、図6に示す分注プローブのダミー検体吐出時の分注プローブの拡大図、および図7に示すダミー検体吐出時の静電容量の変化図を参照して、液体吐出判定部106によるダミー検体吐出の判定方法についてさらに説明する。まず、図5(a)に示すように、検体容器22内に分注プローブ50を降下させて、分注プローブ50のプローブ先端が検体液面と接触した際の静電容量を液面検知機構11により検出し、静電容量変化に基づき液面を検知する。その後、図5(b)に示すように、検体容器22内の分注プローブ50を所定量さらに降下させて検体を吸引する。検体吸引後、図5(c)に示すように、分注プローブ50を検体容器22内の検体液面から数ミリ程度はなれるように上昇させて、図5(d)に示すようにダミー検体を吐出する。分注プローブ50と検体液面との距離は、ダミー検体吐出量や検体の粘度等を考慮して設定する。分注プローブ50と検体液面の距離が近接したほうがダミー検体吐出量を少なくできるが、検体の粘度が高い場合に、ダミー検体の吐出前に検体とプローブが繋がってしまう液絡の状態となるおそれがあるため、液絡が発生しない距離とするものとする。 After the sample is aspirated, the dispensing probe 50 is moved up by several millimeters from the sample liquid surface by driving the probe transfer unit 53 (step S104). After rising, under the control of the dispensing control unit 109, the dummy sample is discharged from the dispensing probe 50 (step S105), and the static between the dispensing probe 50 and the electrode 4a which is the housing ground when the dummy sample is discharged is discharged. The liquid level is detected by the liquid level detection mechanism 11, and the liquid discharge determination unit 106 determines whether or not the dummy sample is discharged from the dispensing probe 50 based on the detected capacitance change (step S106). Here, an operation diagram of the dispensing failure confirmation method of the first embodiment shown in FIG. 5, an enlarged view of the dispensing probe at the time of dispensing the dummy sample shown in FIG. 6, and a dummy sample ejection shown in FIG. With reference to the change diagram of the capacitance at the time, the determination method of the dummy specimen discharge by the liquid discharge determination unit 106 will be further described. First, as shown in FIG. 5A, the dispensing probe 50 is lowered into the sample container 22, and the capacitance when the probe tip of the dispensing probe 50 comes into contact with the sample liquid surface is determined as a liquid level detection mechanism. 11 to detect the liquid level based on the change in capacitance. Thereafter, as shown in FIG. 5B, the dispensing probe 50 in the sample container 22 is further lowered by a predetermined amount to suck the sample. After the sample is aspirated, as shown in FIG. 5 (c), the dispensing probe 50 is raised so that it is about several millimeters away from the sample liquid surface in the sample container 22, and a dummy sample is obtained as shown in FIG. 5 (d). Is discharged. The distance between the dispensing probe 50 and the sample liquid surface is set in consideration of the dummy sample discharge amount, the sample viscosity, and the like. When the distance between the dispensing probe 50 and the sample liquid surface is closer, the dummy sample discharge amount can be reduced. However, when the viscosity of the sample is high, a liquid junction state occurs in which the sample and the probe are connected before the dummy sample is discharged. Since there is a risk, the distance shall not cause a liquid junction.
 図6は、分注プローブ50のダミー検体吐出時(図5(d))の拡大図であり、分注制御部109がプランジャー駆動部56にダミー検体吐出の信号を発すると、図6(b)に示すように分注プローブ50の先端からダミー検体が吐出し始め、その後、図6(c)に示すように、吐出されたダミー検体で分注プローブ50と検体(検体容器22)が液絡状態となる。図6(c)のように吐出されたダミー検体で分注プローブ50と検体容器22が液絡状態となると、分注プローブ50と電極4a間の静電容量が大きく変化する。図7は、ダミー検体吐出時の静電容量の変化図である。図7に示すように、ダミー検体が吐出されると吐出とともに出力電圧が低下し、吐出されたダミー検体で分注プローブ50と検体容器22が液絡状態となるt1時に最低出力-△Vとなる。かかる最低出力値について予め閾値を設定し、記憶部104に記憶させることにより、液体吐出判定部106が設定された閾値と最低出力値の比較によりダミー検体が吐出されたか否かを判定する。前記閾値は、液面検知機構11の液面検知の際の閾値と同じでもよいが、別の値を設定してもよい。 FIG. 6 is an enlarged view when the dispensing probe 50 discharges a dummy sample (FIG. 5D). When the dispensing control unit 109 issues a dummy sample discharge signal to the plunger driving unit 56, FIG. As shown in FIG. 6B, the dummy sample starts to be discharged from the tip of the dispensing probe 50. Thereafter, as shown in FIG. 6C, the dispensing probe 50 and the sample (sample container 22) are discharged from the discharged dummy sample. It becomes a liquid junction state. When the dispensing probe 50 and the sample container 22 are in a liquid junction state with the dummy sample discharged as shown in FIG. 6C, the capacitance between the dispensing probe 50 and the electrode 4a changes greatly. FIG. 7 is a change diagram of the electrostatic capacity when the dummy specimen is discharged. As shown in FIG. 7, when the dummy specimen is ejected, the output voltage decreases with ejection, and the minimum output −ΔV at t1 when the dispensing probe 50 and the specimen container 22 are in a liquid junction state with the ejected dummy specimen. Become. By setting a threshold value in advance for the minimum output value and storing it in the storage unit 104, the liquid discharge determination unit 106 determines whether or not a dummy sample has been discharged by comparing the set threshold value and the minimum output value. The threshold value may be the same as the threshold value when the liquid level detection mechanism 11 detects the liquid level, but may be set to another value.
 液体吐出判定部106による判定の結果、ダミー検体が吐出されたと判定された場合は(ステップS106、Yes)、ステップS103で行なった分析に必要な検体が所定量吸引され、その後の検体の吐出も正常に行なわれるものと判断され、分注プローブ50を反応テーブル3に搬送の後、反応テーブル3に収容された反応容器32に検体を吐出する(ステップS107)。また、ダミー検体が吐出されないと判定された場合は(ステップS106、No)、ステップS103で行なった検体が所定量吸引されないか、または吐出も正常に行なわれないと判断して、分注異常の警告が出される(ステップS108)。 As a result of the determination by the liquid discharge determination unit 106, when it is determined that a dummy sample has been discharged (Yes in step S106), a predetermined amount of sample necessary for the analysis performed in step S103 is aspirated, and subsequent sample discharge is also performed. It is determined that it is normally performed, and after the dispensing probe 50 is transported to the reaction table 3, the specimen is discharged into the reaction container 32 accommodated in the reaction table 3 (step S107). If it is determined that the dummy sample is not ejected (No in step S106), it is determined that the sample performed in step S103 is not aspirated by a predetermined amount, or ejection is not performed normally, and a dispensing abnormality is not detected. A warning is issued (step S108).
(実施の形態2)
 実施の形態1は、検体容器22上でダミー検体吐出時の静電容量変化を検出し、当該変化が閾値以上の場合はダミー検体が吐出されたと判定し、先の検体吸引も正常であると判断するのに対し、実施の形態2では、ダミー検体吐出時の静電容量の変化時間を静電容量変化時間測定部108により測定して、変化時間が所定範囲内である場合にダミー検体が所定量吐出されたと判定して、検体吸引が正常であると判断する点で異なる。実施の形態1では、所定量のダミー検体が吐出されずに静電容量の変化時間が短い場合であっても、閾値以上の電圧が出力されると分注が正常であると判定されるが、実施の形態2では、静電容量の変化時間に基づいてダミー検体吐出が正常に行なわれたか否かを判定するので、検体吸引量が設定量より少なく、ダミー検体吐出量も少ない場合や、検体吸引は正常に行なわれたが、検体中の異物により分注プローブ50が目詰まりして所定量のダミー検体が吐出されない場合でも分注異常であることを判定できるので好ましい。
(Embodiment 2)
In the first embodiment, a change in electrostatic capacitance when a dummy sample is discharged is detected on the sample container 22, and when the change is equal to or greater than a threshold, it is determined that the dummy sample has been discharged, and the previous sample suction is normal. In contrast, in the second embodiment, the capacitance change time measurement unit 108 measures the capacitance change time when the dummy sample is discharged, and the dummy sample is detected when the change time is within a predetermined range. It is different in that it is determined that a predetermined amount has been ejected and the sample aspiration is normal. In the first embodiment, even when a predetermined amount of dummy specimen is not ejected and the capacitance change time is short, it is determined that dispensing is normal when a voltage equal to or higher than the threshold is output. In the second embodiment, since it is determined whether or not the dummy sample discharge has been normally performed based on the change time of the capacitance, when the sample suction amount is smaller than the set amount and the dummy sample discharge amount is small, Although sample aspiration is normally performed, it is preferable because it is possible to determine that the dispensing is abnormal even when the dispensing probe 50 is clogged by a foreign substance in the sample and a predetermined amount of dummy sample is not discharged.
 実施の形態2について、図7に示すダミー検体吐出時の静電容量の変化図、図8に示す静電容量式の液面検知機構11Aの概略構成図、および図9に示す分注プローブの分注不良の確認方法のフローチャートを参照して説明する。図8に示すように、実施の形態2の液面検知機構11Aは、制御部101A内に静電容量変化時間測定部108を備える。前記静電容量変化時間測定部108が、図7に示すダミー検体吐出時の静電容量の変化図の静電容量変化時間、即ち△t(t2-t1)を測定し、かかる静電容量変化時間について予め所定範囲を設定して、記憶部104に記憶させることにより、液体吐出判定部106Aが設定された所定範囲と変化時間△tの対比によりダミー検体が所定量吐出されたか否かを判定する。静電容量変化時間の所定範囲は、ダミー検体の吐出量に応じて設定する。 FIG. 7 shows a variation diagram of the electrostatic capacity when discharging the dummy specimen, a schematic configuration diagram of the capacitive liquid level detection mechanism 11A shown in FIG. 8, and the dispensing probe shown in FIG. This will be described with reference to a flowchart of a method for confirming dispensing failure. As shown in FIG. 8, the liquid level detection mechanism 11A of the second embodiment includes a capacitance change time measurement unit 108 in the control unit 101A. The capacitance change time measuring unit 108 measures the capacitance change time in the change diagram of the capacitance when discharging the dummy specimen shown in FIG. 7, that is, Δt (t2-t1), and the capacitance change. By setting a predetermined range in advance and storing it in the storage unit 104, the liquid ejection determining unit 106A determines whether a predetermined amount of the dummy sample has been discharged by comparing the set predetermined range with the change time Δt. To do. The predetermined range of the capacitance change time is set according to the discharge amount of the dummy specimen.
 図9に示すように、先ず、プローブ移送部53により分注する検体を収容した検体容器22上に分注プローブ50を搬送し、検体容器22内に分注プローブ50を降下する(ステップS200)。その後、分注プローブ50が液面を検知したか否かを判断する(ステップS201)。分注プローブ50が検体容器22内に降下すると、分注プローブ50は検体液面に接触し、分注プローブ50が備える液面検知機構11Aは、かかる液面接触による静電容量の変化により液面を検知することになる。ここで、分注プローブ50が液面を検知しない場合(ステップS201、No)、ステップS200に移行し、分注プローブ50がプローブ駆動手段により降下される。一方、分注プローブ50が液面を検知すると(ステップS201、Yes)、検体を吸引するために、分注プローブ50は所定量降下され(ステップS202)、プランジャー駆動部56の負圧により分注プローブ50から検体を吸引する(ステップS203)。検体の吸引量は、分析に要する量に加え、分注プローブ50が検体を吸引したか否かを確認する検体ダミー吐出に用いるダミー検体量を加えた分吸引する。 As shown in FIG. 9, first, the dispensing probe 50 is transported onto the sample container 22 containing the sample to be dispensed by the probe transfer unit 53, and the dispensing probe 50 is lowered into the sample container 22 (step S200). . Thereafter, it is determined whether or not the dispensing probe 50 has detected the liquid level (step S201). When the dispensing probe 50 descends into the sample container 22, the dispensing probe 50 comes into contact with the sample liquid surface, and the liquid level detection mechanism 11A provided in the dispensing probe 50 causes the liquid to change due to the change in capacitance caused by the liquid surface contact. The surface will be detected. Here, when the dispensing probe 50 does not detect the liquid level (No in step S201), the process proceeds to step S200, and the dispensing probe 50 is lowered by the probe driving means. On the other hand, when the dispensing probe 50 detects the liquid level (step S201, Yes), the dispensing probe 50 is lowered by a predetermined amount in order to suck the sample (step S202), and is separated by the negative pressure of the plunger drive unit 56. The specimen is aspirated from the injection probe 50 (step S203). In addition to the amount required for analysis, the amount of sample aspirated is a sum of the amount of dummy sample used for sample dummy discharge for checking whether or not the dispensing probe 50 has aspirated the sample.
 検体吸引後、分注プローブ50をプローブ移送部53の駆動により検体液面から数ミリ程度離れるよう上昇させる(ステップS204)。上昇後、分注プローブ50からダミー検体を吐出させ(ステップS205)、吐出後の分注プローブ50と電極4a間の静電容量を検出し、ダミー検体が分注プローブ50から所定量吐出されたか否かを判定する(ステップS206)。静電容量変化時間測定部108は、静電容量の変化△Vが閾値以上である時間△tを測定し、液体吐出判定部106Aは、△tがダミー検体吐出量に応じて設定された静電容量変化時間の所定範囲内であるか否かを判定する。液体吐出判定部106Aによる判定の結果、ダミー検体が所定量吐出されたと判定された場合は(ステップS206、Yes)、ステップS203で行なった検体も所定量吸引され、吐出も正常に行なわれると判断され、分注プローブ50を反応テーブル3に搬送し、反応テーブル3に収容された反応容器32に検体を吐出する(ステップS207)。また、ダミー検体が所定量吐出されないと判定された場合は(ステップS206、No)、ステップS203で行なった検体は所定量吸引されず、吐出も正常に行なわれないと判断して、分注異常の警告が出される(ステップS208)。 After the sample is aspirated, the dispensing probe 50 is moved up by about several millimeters from the sample liquid surface by driving the probe transfer unit 53 (step S204). After rising, the dummy sample is discharged from the dispensing probe 50 (step S205), the capacitance between the dispensed probe 50 and the electrode 4a after discharge is detected, and the dummy sample is discharged from the dispensing probe 50 by a predetermined amount. It is determined whether or not (step S206). The capacitance change time measurement unit 108 measures the time Δt when the capacitance change ΔV is equal to or greater than the threshold value, and the liquid discharge determination unit 106A determines that the static discharge time Δt is set according to the dummy sample discharge amount. It is determined whether or not the capacitance change time is within a predetermined range. As a result of the determination by the liquid discharge determination unit 106A, when it is determined that a predetermined amount of the dummy sample has been discharged (step S206, Yes), it is determined that the sample performed in step S203 is also aspirated by a predetermined amount and discharge is normally performed. Then, the dispensing probe 50 is transported to the reaction table 3 and the specimen is discharged into the reaction container 32 accommodated in the reaction table 3 (step S207). If it is determined that the predetermined amount of the dummy sample is not ejected (No at Step S206), it is determined that the sample performed at Step S203 is not aspirated by a predetermined amount and the ejection is not normally performed, thereby causing a dispensing error. Is issued (step S208).
 実施の形態1および2では検体分注について説明したが、試薬分注についても同様にして空吸引やプローブ目詰まりによる分注不良を確認できる。  In the first and second embodiments, the sample dispensing has been described, but the dispensing failure due to empty aspiration or probe clogging can be confirmed in the same manner for reagent dispensing.
 このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。 Thus, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. It is possible to apply.
 以上のように、本発明の分注装置、自動分析装置および分注不良確認方法は、分注不良を簡易かつ迅速に判断したい場合に有効であり、特に、プローブ目詰まりが発生し易い検体を分注する場合に適するものである。 As described above, the dispensing device, the automatic analyzer, and the dispensing failure confirmation method of the present invention are effective when it is desired to easily and quickly determine dispensing failures, and particularly for samples that are prone to probe clogging. It is suitable for dispensing.

Claims (6)

  1.  導電性を有し容器に収容された液体を吸引または吐出する分注プローブと、前記容器と一体にまたは前記容器の近傍に配設される電極と、を備え、前記分注プローブと前記電極との間の静電容量の変化に基づいて前記液体の液面を検知する液面検知機構を備える分注装置であって、
     前記分注プローブを用いて前記容器から分析に必要な液体とダミー液体の合計量を吸引し、その後前記容器上で前記ダミー液体を吐出するよう制御する分注制御手段と、
     前記分注制御手段による前記ダミー液体吐出時の前記分注プローブと前記電極との間の静電容量変化を検知する検知手段と、
     前記検知手段が検知した静電容量変化に基づき、前記分注プローブが液体を吐出したか否かを判定する液体吐出判定手段と、
     を備えることを特徴とする分注装置。
    A dispensing probe that has conductivity and sucks or discharges the liquid contained in the container; and an electrode that is disposed integrally with or near the container; and the dispensing probe and the electrode A dispensing device comprising a liquid level detection mechanism for detecting the liquid level of the liquid based on a change in capacitance during
    Dispensing control means for sucking the total amount of liquid and dummy liquid required for analysis from the container using the dispensing probe and then controlling the dummy liquid to be discharged on the container;
    Detecting means for detecting a change in capacitance between the dispensing probe and the electrode when the dummy liquid is discharged by the dispensing control means;
    A liquid discharge determining means for determining whether or not the dispensing probe has discharged liquid based on a change in capacitance detected by the detecting means;
    A dispensing device comprising:
  2.  前記検知手段は、前記液面検知機構であることを特徴とする請求項1に記載の分注装置。 The dispensing device according to claim 1, wherein the detection means is the liquid level detection mechanism.
  3.  前記検知手段により検知された静電容量変化に基づき、前記ダミー液体を吐出時の前記分注プローブと前記電極との間の静電容量変化時間を測定する測定手段と、
     を備え、前記液体吐出判定手段は、前記測定手段が測定した静電容量変化時間に基づき、前記分注プローブが所定量の液体を吐出したか否かを判定することを特徴とする請求項1または2に記載の分注装置。
    Measuring means for measuring a capacitance change time between the dispensing probe and the electrode at the time of discharging the dummy liquid based on the capacitance change detected by the detection means;
    The liquid discharge determination means determines whether or not the dispensing probe has discharged a predetermined amount of liquid based on the capacitance change time measured by the measurement means. Or the dispensing apparatus of 2.
  4.  検体と試薬を反応容器で反応させ、反応液の光学的特性をもとに前記反応液の分析を行う自動分析装置であって、
     請求項1~3のいずれか一つに記載の分注装置を備えることを特徴とする自動分析装置。
    An automatic analyzer that reacts a sample and a reagent in a reaction vessel and analyzes the reaction solution based on the optical characteristics of the reaction solution,
    An automatic analyzer comprising the dispensing device according to any one of claims 1 to 3.
  5.  容器に収容された検体および試薬を反応容器に分注し、分注された検体及び試薬を反応容器内で攪拌して反応させ、反応液の光学的特性をもとに前記反応液を分析する自動分析装置の分注不良確認方法であって、
     前記容器内の液体の液面を静電容量変化に基づき検知する液面検知ステップと、
     前記容器内の液体を、分注プローブを用いて分析に要する液体量とダミー液体の合計量を吸引する吸引ステップと、
     前記分注プローブにより前記容器上で前記ダミー液体を吐出するダミー液体吐出ステップと、
     前記ダミー液体吐出ステップにおいて、前記ダミー液体の吐出時の前記分注プローブと電極との間の静電容量変化を検知する検知ステップと、
     前記検知ステップにて検知された静電容量変化に基づき、前記分注プローブが液体を吐出したか否かを判定する液体吐出判定ステップと、
     を含むことを特徴とする自動分析装置の分注不良確認方法。
    The sample and reagent contained in the container are dispensed into the reaction container, and the dispensed sample and reagent are stirred and reacted in the reaction container, and the reaction solution is analyzed based on the optical characteristics of the reaction solution. A method for confirming dispensing failure of an automatic analyzer,
    A liquid level detection step for detecting the liquid level of the liquid in the container based on a change in capacitance;
    A suction step of sucking the total amount of liquid and dummy liquid required for analysis of the liquid in the container using a dispensing probe;
    A dummy liquid discharging step of discharging the dummy liquid on the container by the dispensing probe;
    In the dummy liquid discharge step, a detection step of detecting a change in capacitance between the dispensing probe and the electrode when discharging the dummy liquid;
    A liquid discharge determination step for determining whether or not the dispensing probe has discharged liquid based on the capacitance change detected in the detection step;
    A dispensing failure confirmation method for an automatic analyzer characterized by comprising:
  6.  前記検知ステップにおいて検知された静電容量変化に基づき、前記ダミー液体の吐出時の前記分注プローブと前記電極との間の静電容量変化時間を測定する測定ステップと、
     を含み、前記液体吐出判定ステップは、前記測定ステップにより測定した静電容量変化時間に基づき、前記分注プローブが所定量の液体を吐出したか否かを判定することを特徴とする請求項5に記載の自動分析装置の分注不良確認方法。
    Based on the capacitance change detected in the detection step, a measurement step for measuring a capacitance change time between the dispensing probe and the electrode when discharging the dummy liquid;
    The liquid discharge determining step includes determining whether or not the dispensing probe has discharged a predetermined amount of liquid based on the capacitance change time measured in the measuring step. The dispensing failure confirmation method of the automatic analyzer described in 1.
PCT/JP2009/055462 2008-09-17 2009-03-19 Dispensing device, automatic analyzing device, and dispensing failure confirming method WO2010032507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008238522A JP2010071766A (en) 2008-09-17 2008-09-17 Dispensing device, automatic analyzing apparatus, and dispensing failure confirming method
JP2008-238522 2008-09-17

Publications (1)

Publication Number Publication Date
WO2010032507A1 true WO2010032507A1 (en) 2010-03-25

Family

ID=42039354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055462 WO2010032507A1 (en) 2008-09-17 2009-03-19 Dispensing device, automatic analyzing device, and dispensing failure confirming method

Country Status (2)

Country Link
JP (1) JP2010071766A (en)
WO (1) WO2010032507A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121427A (en) * 2013-12-20 2015-07-02 株式会社日立ハイテクノロジーズ Automatic analyzer
CN112867924A (en) * 2018-09-25 2021-05-28 株式会社日立高新技术 Automatic analyzer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028037A1 (en) 2005-09-02 2007-03-08 Visen Medical, Inc. Biocompatible n, n-disubstituted sulfonamide-containing fluorescent dye labels
JP2013096910A (en) * 2011-11-02 2013-05-20 Tosoh Corp B/f cleaning apparatus
CN102602059B (en) * 2012-03-27 2013-05-22 温州启迪机械有限公司 Cardboard laminating machine
EP3673271A1 (en) * 2017-08-25 2020-07-01 Kiyotaka Kubota Substance dispense system for biological sample analysis instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281106A (en) * 1992-03-31 1993-10-29 Shimadzu Corp Method and apparatus for detecting clogging of sample distributing syringe
JPH11271320A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Automatic dispensing apparatus
JP2006138765A (en) * 2004-11-12 2006-06-01 Yaskawa Electric Corp Liquid droplet discharge device and driving method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281106A (en) * 1992-03-31 1993-10-29 Shimadzu Corp Method and apparatus for detecting clogging of sample distributing syringe
JPH11271320A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Automatic dispensing apparatus
JP2006138765A (en) * 2004-11-12 2006-06-01 Yaskawa Electric Corp Liquid droplet discharge device and driving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121427A (en) * 2013-12-20 2015-07-02 株式会社日立ハイテクノロジーズ Automatic analyzer
CN112867924A (en) * 2018-09-25 2021-05-28 株式会社日立高新技术 Automatic analyzer

Also Published As

Publication number Publication date
JP2010071766A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
US8911685B2 (en) Automated analyzer
JP4966913B2 (en) Liquid dispensing device
WO2010032507A1 (en) Dispensing device, automatic analyzing device, and dispensing failure confirming method
JP2010071765A (en) Dispensing probe cleaning method and automatic analyzing apparatus
WO2011074273A1 (en) Automatic analyzing device
EP2019321A1 (en) Cleaning equipment and automatic analyzer
JP5583337B2 (en) Automatic analyzer and its dispensing method
JP4898270B2 (en) Liquid level detector and automatic analyzer
JP5199785B2 (en) Blood sample detection method, blood sample dispensing method, blood sample analysis method, dispensing apparatus, and blood sample type detection method
JP6945340B2 (en) Automatic analyzer and method of adjusting the amount of cleaning liquid
JP5337619B2 (en) Automatic analyzer and dispensing device control method
JP2011017608A (en) Automatic analyzer and method for determining whether liquid level detection made thereby is normal or not
JP4110082B2 (en) Automatic analyzer
JP5374092B2 (en) Automatic analyzer and blood sample analysis method
JP3120180U (en) Automatic analyzer
JP2007322394A (en) Dispensing device and automated analyzer
WO2009148013A1 (en) Method for cleaning probe in analyte dispensing device, analyte dispensing device and automatic analyzer
JP7461963B2 (en) Automatic analyzer and reagent dispensing method
JP6711690B2 (en) Automatic analyzer
JP2010286324A (en) Dispensing system, automatic analysis system, and dispensing method
WO2020195500A1 (en) Automatic analysis apparatus
JP7301764B2 (en) automatic analyzer
JP7105577B2 (en) automatic analyzer
JP2010286325A (en) Dispensing device, automatic analyzer and liquid level detection method
WO2010150502A1 (en) Automatic analysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814352

Country of ref document: EP

Kind code of ref document: A1